Finaal voordrag Franske version2

14
Franske Stenden Dr. J.P. Beukes Dr. P.G. van Zyl Mr. R.I. Glastonbury Final presentation, 14 November 2014 North-West University, Potchefstroom Honours project 2014 Chromium research: Characterisation of Söderberg electrodes using XRD and breaking strength

Transcript of Finaal voordrag Franske version2

Page 1: Finaal voordrag Franske version2

Franske StendenDr. J.P. BeukesDr. P.G. van ZylMr. R.I. Glastonbury

Final presentation, 14 November 2014North-West University, Potchefstroom

Honours project 2014 Chromium research:Characterisation of Söderberg electrodes using

XRD and breaking strength

Page 2: Finaal voordrag Franske version2

Content

1. Introduction

2. Aim

3. Experimental Procedures

4. Results

5. Conclusion

Page 3: Finaal voordrag Franske version2

Introduction & Background

• Electrodes: transmit electricity from transformers to ore mix

• Two types electrodes: Söderberg- and pre-baked electrodes

• Söderberg predominantly used – lower cost

• Sketch illustrating general functioning

Innvaer, R., Olsen, L., Vatland, A., 1984. Operational parameters for Söderberg electrodes from calculations, measurements and plant experience. In:Proceedings: Mintek, vol. 50, pp. 787–797 .[1] Innvær, R., 1992. A status for the Söderberg smelting electrode. In: Proc. of UIE,Electrotech 92. Montreal, Canada.[2]

Page 4: Finaal voordrag Franske version2

Introduction & Background

B. Larsen, H. Feldborg, S.A Halvorsen. Minimizing thermal stress during shutdown of Söderberg electrodes. 2013.

• Poor electrode management: electrode breakage

• Almost no research published since 1970 in scientific journals

• Only conference contributions by electrode component manufacturers

Page 5: Finaal voordrag Franske version2

Aim

The aim was to uncover means of improving electrode

management in the FeCr industry: centred on the

graphitisation occurring in a Söderberg electrode & breaking

strength changes of the region beneath the contact shoes.

Accepted by operation staff, the level of graphitisation and

strength of the Söderberg increases as the electrode is

presented to higher temperatures. This forms the general

consensus in terms of handling the Söderberg electrode,

these postulations are not supported in published scientific

studies. Research conducted in this study aims to examine

the authenticity of these assumptions.

Page 6: Finaal voordrag Franske version2

Experimental Procedures

• 100mm core drill samples were drilled from the 1.3m diameter X 2.5m (long) electrodes

• Samples were drilled every 0.3m to 0.5m from the top of the electrode

• Only used: samples cut off 1m below the contact shoe, the top-most middle, and the bottom core drill samples

• A cutting machine was used to slice the core drill samples into 10mm thick slices

• The 10mm slices were drilled into smaller pellets: pellets then used for analysis

Sample technique

Page 7: Finaal voordrag Franske version2

Experimental Procedures

X-ray diffraction (XRD)• The degree of graphitisation (DOG) was calculated using

XRD

Breaking strength testing• Tests the physical strength of the pellets

Scanning electron microscopy (SEM) • Reveals differences between calcined anthracite and coal

tar pitch.

Page 8: Finaal voordrag Franske version2

Results

0

5000

10000

15000

Counts

Position [°2θ] (Copper (Cu))28 28.50 29

Displacement Corrected K-alpha2 substracted Original

X-ray diffraction (XRD)

• Subtracting K-alpha2 component, adding internal standard

• Applying 2θ peak maximum correction

Page 9: Finaal voordrag Franske version2

Results

Position [°2θ] (Copper (Cu))25 30

Counts

0

10000

20000

30000

0

10000

20000

30000

0

10000

20000

30000

X-ray diffraction (XRD)

"a"

"b"

"c "

• XRD spectrum of three Söderberg electrode samples

• “a” top, “b” middle and “c” bottom core drill samples

• Degree of graphitisation virtually the same, i.e. 34.5%, 34.6% and 34.7% for samples "a", "b" and "c" respectively

Page 10: Finaal voordrag Franske version2

Results

Breaking strength

0 200 400 600 800 1000 12000

0.2

0.4

0.6

0.8

1

1.2

Length vs load at maximum load

Length vs load at max load 24+ 100 Length vs load at max 166+100 Length vs load at max load 85+100

Length

Load

at m

axim

um lo

ad (k

N)

“a”

“b”

“c”

Page 11: Finaal voordrag Franske version2

Results

0 200 400 600 800 1000 12000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Length vs load at break

Length vs load at break 24+ 100Length vs load at break 166+ 100Length vs load at break 85+100

Length

Load

at b

reak

(kN

)

“a”

“b”

“c”

Breaking strength

Page 12: Finaal voordrag Franske version2

Results

Scanning electron microscopy

Page 13: Finaal voordrag Franske version2

Conclusion

• XRD showed that the the degree of graphitisation of the calcined anthracite stayed virtually the same.

• Shoulder developing: indicative of coal tar pitch graphitisation

• No substantial difference in breaking strength

• Future studies: graphitisation of coal tar pitch will be further investigated

Page 14: Finaal voordrag Franske version2

Contact details:[email protected]

THANK YOU