Fig. 10-CO, p. 264

83
Fig. 10-CO, p. 264

description

Fig. 10-CO, p. 264. Fig. 10-1, p. 266. Wave direction. Wave. Fig. 10-1, p. 266. Wave. Wave direction. Stepped Art. Fig. 10-1, p. 266. Fig. 10-2, p. 266. Direction of wave motion. A. B. Wavelength. Height. Still water level. Trough. Crest. - PowerPoint PPT Presentation

Transcript of Fig. 10-CO, p. 264

Page 1: Fig. 10-CO, p. 264

Fig. 10-CO, p. 264

Page 2: Fig. 10-CO, p. 264

Fig. 10-1, p. 266

Page 3: Fig. 10-CO, p. 264

Fig. 10-1, p. 266

Wave directionWave

Page 4: Fig. 10-CO, p. 264

Fig. 10-1, p. 266

Wave directionWave

Stepped Art

Page 5: Fig. 10-CO, p. 264

Fig. 10-2, p. 266

Page 6: Fig. 10-CO, p. 264

Fig. 10-2, p. 266

Direction of wave motion

A B

Wavelength

Height

Still water level Crest Trough

Frequency: Number of wave crests passing point A or point B each second

Orbital path of individual water molecule at water surface

Period: Time required for wave crest at point A to reach point B

Page 7: Fig. 10-CO, p. 264

Fig. 10-3, p. 267

Page 8: Fig. 10-CO, p. 264

Fig. 10-3, p. 267

Direction of wave motion

Wave-length

Still water levelCrest Trough Crest

1/2 wave-length depth

Page 9: Fig. 10-CO, p. 264

Fig. 10-4, p. 267

Page 10: Fig. 10-CO, p. 264

Fig. 10-4, p. 267

Stokes drift (mass

transport)

No mass transport

Wave

Wave

Closed orbit after one period

Open orbit after one period

Page 11: Fig. 10-CO, p. 264

Table 10-1, p. 268

Page 12: Fig. 10-CO, p. 264

Fig. 10-5, p. 269

Page 13: Fig. 10-CO, p. 264

Fig. 10-5, p. 269

Seismic disruptionDisturbing forcelandslides

Gravity Wind

Restoring force GravitySurface tension

Type of wave Tide Tsunami Seiche Wind wave Capillary wave (ripple)

24 hr.

Am

ou

nt

of

ener

gy

in o

cean

su

rfac

e

100,000 sec (1 1/4 days)

10,000 sec (3 hr)

1,000 sec (17 min)

100 sec 10 sec 1 sec 1/10 sec 1/100 sec

Period (time, in seconds for two successive wave crests to

pass a fixed point)

1 10 100

Frequency (waves per second)

12 hr.

Page 14: Fig. 10-CO, p. 264

Fig. 10-6, p. 269

Page 15: Fig. 10-CO, p. 264

Fig. 10-7, p. 270

Page 16: Fig. 10-CO, p. 264

Fig. 10-7, p. 270

30.6

Wavelength (m)

0 100 200 300 400 500 600

27.818

17 6225.0 15

22.211 14

13 16 50

9 12 37

19.4

16.6

11.0

5.6 4 138.4

3

57

Sp

eed

(m

ph

)

Period (in

seconds)

2513.8

Sp

eed

(m

/sec

)

2.80.0

10

2

Wavelength (ft)

0 328 656 984 1,312 1,640 1,968

10

86

Page 17: Fig. 10-CO, p. 264

Fig. 10-8, p. 271

Page 18: Fig. 10-CO, p. 264

Fig. 10-8, p. 271

Wind

b

aSea surface

Maximum wavelength 1.73 cm (0.68 in.)

Page 19: Fig. 10-CO, p. 264

Fig. 10-9, p. 271

Page 20: Fig. 10-CO, p. 264

Fig. 10-10, p. 272

Page 21: Fig. 10-CO, p. 264

Fig. 10-10, p. 272

5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2

7 6 5 4 3

7 6 5 4 3

7 6 5 4

8 7 6 5

8 7 6 5

Page 22: Fig. 10-CO, p. 264

Fig. 10-10, p. 272

Stepped Art

7 6 5 4 3

6 5 4 3 2

8 7 6 5

8 7 6 5

7 6 5 4 3

5 4 3 2 1

7 6 5 4

6 5 4 3 2 1

Page 23: Fig. 10-CO, p. 264

Fig. 10-11, p. 273

Page 24: Fig. 10-CO, p. 264

Fig. 10-11, p. 273

Fully developed seas

Changing to swellRipples to chop

to wind waves

Direction of wave advance

Wind

Length of fetch

Page 25: Fig. 10-CO, p. 264

Table 10-2, p. 273

Page 26: Fig. 10-CO, p. 264

Fig. 10-12, p. 274

Page 27: Fig. 10-CO, p. 264

Fig. 10-13, p. 274

Page 28: Fig. 10-CO, p. 264

Fig. 10-14, p. 275

Page 29: Fig. 10-CO, p. 264

Fig. 10-14, p. 275

7 across

1 high

120°

Page 30: Fig. 10-CO, p. 264

Fig. 10-15, p. 275

Page 31: Fig. 10-CO, p. 264

Fig. 10-15, p. 275

1 2

a

b

Constructive interference

(addition)

Destructive interference (subtraction)

Constructive interference

(addition)

Page 32: Fig. 10-CO, p. 264

Fig. 10-16, p. 276

Page 33: Fig. 10-CO, p. 264

Fig. 10-17, p. 277

Page 34: Fig. 10-CO, p. 264

Fig. 10-17, p. 277

1 2 4 53

Depth = 1/2 wavelength

Surf zone

Page 35: Fig. 10-CO, p. 264

Box 10-1, p. 278

Page 36: Fig. 10-CO, p. 264

Fig. 10-18a, p. 279

Page 37: Fig. 10-CO, p. 264

Fig. 10-18b, p. 279

Page 38: Fig. 10-CO, p. 264

Fig. 10-19a, p. 279

Page 39: Fig. 10-CO, p. 264

Fig. 10-19a, p. 279

Direction of progress

Wave crests

Waves begin to "feel bottom" here, water depth is L/2.

Bottom contours

Shoreline

Page 40: Fig. 10-CO, p. 264

Fig. 10-19b, p. 279

Page 41: Fig. 10-CO, p. 264

Fig. 10-20a, p. 280

Page 42: Fig. 10-CO, p. 264

Fig. 10-20b, p. 280

Page 43: Fig. 10-CO, p. 264

Fig. 10-20b, p. 280

Waves A and B create a checkerboard of peaks and troughs

A

B

Page 44: Fig. 10-CO, p. 264

Fig. 10-21, p. 280

Page 45: Fig. 10-CO, p. 264

Fig. 10-22, p. 280

Page 46: Fig. 10-CO, p. 264

Fig. 10-22, p. 280

(Every tenth wave crest shown)

0

10 Waves moving

20

30

Islands

Areas of wave crest reinforcement due to diffraction and interference

Page 47: Fig. 10-CO, p. 264

Fig. 10-23, p. 281

Page 48: Fig. 10-CO, p. 264

Fig. 10-23a, p. 281

NodeCrest

Node NodeCrest

Trough No motion Maximum water flow

No motion

1 2 3

Page 49: Fig. 10-CO, p. 264

Fig. 10-23b, p. 281

Node Node

Crest

TroughMaximum water flow

No motionTrough

4 5

Starts again at 2

Page 50: Fig. 10-CO, p. 264

Fig. 10-24a, p. 282

Page 51: Fig. 10-CO, p. 264

Fig. 10-24a, p. 282

Wind waves on surface

Less dense water Pycnocline

Internal wave crestDenser

water

Page 52: Fig. 10-CO, p. 264

Fig. 10-24b, p. 282

Page 53: Fig. 10-CO, p. 264

Fig. 10-24c, p. 282

Page 54: Fig. 10-CO, p. 264

Fig. 10-25a, p. 283

Page 55: Fig. 10-CO, p. 264

Fig. 10-25a, p. 283

CCW spin

Direction of storm and storm surge

Low atmospheric pressureDome of water

Page 56: Fig. 10-CO, p. 264

Dome of water

Low atmospheric pressure

CCW spin

Direction of storm and storm surge

Stepped Art

Fig. 10-25a, p. 283

Page 57: Fig. 10-CO, p. 264

Fig. 10-25b, p. 283

Page 58: Fig. 10-CO, p. 264

Fig. 10-26a, p. 284

Page 59: Fig. 10-CO, p. 264

Fig. 10-26b, p. 284

Page 60: Fig. 10-CO, p. 264

Fig. 10-27a, p. 285

Page 61: Fig. 10-CO, p. 264

Fig. 10-27b, p. 285

Page 62: Fig. 10-CO, p. 264

Fig. 10-27b, p. 285

176

175Buffalo

174

173Toledo

172

Lak

e E

rie

wat

er l

evel

(m

eter

s ab

ove

sea

lev

el)

171 12:00

0:00

12:00

0:00

12:00

0:00

12:00

12 November 13 November 14 November 15 November

b Date

0:00

Page 63: Fig. 10-CO, p. 264

Fig. 10-28, p. 286

Page 64: Fig. 10-CO, p. 264

Fig. 10-29a, p. 287

Page 65: Fig. 10-CO, p. 264

Fig. 10-29b, p. 287

Page 66: Fig. 10-CO, p. 264

Fig. 10-29c, p. 287

Page 67: Fig. 10-CO, p. 264

Fig. 10-29d, p. 287

Page 68: Fig. 10-CO, p. 264

Fig. 10-29e, p. 287

Page 69: Fig. 10-CO, p. 264

Fig. 10-30, p. 288

Page 70: Fig. 10-CO, p. 264

Fig. 10-31, p. 288

Page 71: Fig. 10-CO, p. 264

Fig. 10-32a, p. 289

Page 72: Fig. 10-CO, p. 264

Fig. 10-32b, p. 289

Page 73: Fig. 10-CO, p. 264

Fig. 10-32c, p. 289

Page 74: Fig. 10-CO, p. 264

Fig. 10-33, p. 290

Page 75: Fig. 10-CO, p. 264

Fig. 10-34, p. 290

Page 76: Fig. 10-CO, p. 264

Fig. 10-34, p. 290

November 14, 1994 Mindoro Island Maximum wave: 7 m Fatalities: 49

July 12, 1993 Okushiri, Japan Maximum wave:31 m Fatalities: 239

October 9, 1995 Jalisco, Mexico Maximum wave: 11 m Fatalities: 1

January 1, 1996 Sulawesi Island Maximum wave: 3.4 m Fatalities: 9

February 17, 1996 Irian Jaya Maximum wave: 7.7 m Fatalities: 161

September 2, 1992 Nicaragua Maximum wave: 10 m Fatalities: 170

December 12, 1992 Flores Island Maximum wave: 26 m Fatalities: >1,000

July 17, 1998 Papua New Guinea Maximum wave: 15 m Fatalities: >2,200

June 2, 1994 East Java Maximum wave: 14 m Fatalities: 238

December 26, 2004 Indonesia and vicinity Maximum wave: 35 m Fatalities: >176,000

February 21, 1996 North coast of Peru Maximum wave: 5 m Fatalities: 12

Page 77: Fig. 10-CO, p. 264

Fig. 10-35, p. 291

Page 78: Fig. 10-CO, p. 264

Fig. 10-36a, p. 292

Page 79: Fig. 10-CO, p. 264

Fig. 10-36b, p. 292

Page 80: Fig. 10-CO, p. 264

Fig. 10-36c, p. 292

Page 81: Fig. 10-CO, p. 264

Fig. 10-37, p. 293

Page 82: Fig. 10-CO, p. 264

Fig. 10-37, p. 293

GOES Satellite

Transducers

Signal flag Acoustic telemetry

Glass ball flotation ~6000 m

TransducerBottom pressure recorder

Sensor anchor

Anchor

Page 83: Fig. 10-CO, p. 264

Table 10-3, p. 293