Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect...

72
Field Effect Transistor (FET) 1

Transcript of Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect...

Page 1: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

1

Field Effect Transistor (FET)

Page 2: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

2

Introduction

Field Effect Transistor (FET)

Junction Field Effect Transistor (JFET)

Metal Oxide Semiconductor FET

(MOSFET)

Depletion TypeMOSFET

Enhancement TypeMOSFET

Page 3: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

3

Junction Field Effect Transistor (JFET) n-channel JFET p-channel JFET

Page 4: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

4

JFET Introduction

• JFET is always operated with the gate source p-n junction reversed biased.

Page 5: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

5

JFET Introduction

Channel width and thus the channel resistance can be controlled by varying the gate voltage.

JFET biased for construction Greater VGG narrows the channel

Less VGG widens the channel Water analogy for the JFET control

Page 6: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

6

JFET Characteristics and Parameters

• For VGS = 0 v, the value of VDS at which ID becomes essentially constant is the pinch-off voltage (Vp) and is denoted as IDSS.

• Breakdown occurs at point C when ID begins to increase very rapidly with any further increase in VDS .

Page 7: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

7

VGS controls ID.

The value of VGS that makes ID approximately zero is the cutoff voltage VGS(off). The JFET must operate between VGS = 0 and VGS(off) .

Page 8: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

8

Transfer Characteristics • William Bradford Shockley derived a relationship

between ID and VGS which is known as Shockley’s equation and is given by

• The above equation suggests that when VGS = 0, ID = IDSS. When VGS = Vp, ID = 0

2

p

GSDSSD V

V1II

Page 9: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

9

Transfer curve from the drain characteristics

Page 10: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

10

Example

The following parameters are obtained from a certain JFET datasheet: VP = -8 v and IDSS = 5 mA. Determine the values of ID for each value of VGS ranging from 0 v to -8 v in 1 v steps. Plot the transfer characteristic curve from these data.

Solution:2

p

GSDSSD V

V1II

mA58

01mA5I

2

D

mA83.38

11mA5I

2

D

Page 11: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

11

mA81.28

21mA5I

2

D

mA95.18

31mA5I

2

D

mA25.18

41mA5I

2

D

mA703.08

51mA5I

2

D

mA313.08

61mA5I

2

D

mA078.08

71mA5I

2

D

mA08

81mA5I

2

D

Page 12: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

12

-8 -7 -6 -5 -4 -3 -2 -1 00

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-3

VGS

ID

Page 13: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

13

FET Biasing• The following relations can be applied to the dc

analysis of most of the FET amplifiers:A0IG

SD II 2

p

GSDSSD V

V1II

Page 14: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

14

JFET Biasing: Fixed Bias Circuit

Page 15: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

15

JFET Biasing: Fixed Bias Circuit

0IG 0RIV GGRG

Circuit for dc analysis

Page 16: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

16

Fixed Bias CircuitGS Loop:• Apply KVL

GGGS VV

• Apply the Shockley’s Equation:2

p

GSDSSD V

V1II

• Plot Shockley’s equation:

Page 17: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

17

Fixed Bias Circuit• Q-Point:

Page 18: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

18

Fixed Bias Circuit• DS Loop

DSDDDD VRIV

DDDDDS RIVV

Also note that0VS

0VVVV DSDDS

DSD VV

In addition0VVVV GSGGS

GSG VV

Page 19: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

19

Example: Determine the following for the given Fig.(a) VGSQ (b) IDQ (c) VDS (d) VD (e) VG (f) VS.

Solution:(a) VGSQ = -VGG = -2 V

mA625.58

21mA10

V

V1II

22

P

GSDSSDQ

(b)

(c) V75.4RIVV DDDDDS

(d) VD = VDS = 4.75 V

(e) VG = VGS = -2 V(f) VS = 0 V

Page 20: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

20

JFET Biasing: Self Bias Configuration

Page 21: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

21

Self Bias Circuit: DC Analysis

Self-bias Circuit for dc analysis

Page 22: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

22

JFET Self Bias CircuitIG = 0

IS = ID

From GS Loop: -VGS = VRS

or VGS = -ISRS

Substituting IS = ID

VGS = -IDRS.

Page 23: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

23

JFET Self Bias Circuit

Shockley Equation:2

p

SDDSS

2

p

GSDSSD V

RI1I

V

V1II

2

p

SDDSSD V

RI1II

Page 24: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

24

JFET Self Bias Circuit: Q-Point

Self-Bias Line:Since VGS = -IDRS .

If ID = 0 then VGS = 0

and ID = IDDS/2 (say),

then VGS = -IDDS RS /2

Superimposing this straight line on the transfer curve, we get Q-point as shown in the Fig.

Self Bias line

Transfer Curve(Shockley equation)

Page 25: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

25

JFET Self Bias CircuitDS Loop: Using KVL

Substituting IS = ID,

or

In addition

SSDSDDDD RIVRIV

SDDSDDDD RIVRIV

DSDDDDS RRIVV

SDS RIV

0VG

DRDDSDSD VVVVV

Page 26: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

26

JFET Self Bias Circuit: Example 1

Determine the following: VGSQ , IDQ, VDS, VS,

VG, and VD.

Solution:Step 1: Draw the self bias line: VGS = - IDRS , When ID = 0, VGS = 0.

Choosing ID = 4 mA, VGS = -4mA×1 k = -4 v

The line is drawn below:

Page 27: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

27VGS (volts)

JFET Self Bias Circuit: Example 1Step 2: Plot the Shockley equation: (IDSS = 8mA, VP = -6v)

2

p

GSDSSD V

V1II

VGS0 -1 -3 -4 -5 -6

ID (mA) 8 5.55 2 0.88 0.22 0

I D (m

A)

-6 -5 -4 -3 -2 -1 00

1

2

3

4

5

6

7

8

Page 28: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

28

JFET Self Bias Circuit: Example 1Step 3: Show the Shockley curve and the self bias line on the same

graph paper

From the graph, VGSQ = -2.6 v, IDQ = 2.6 mA

-6 -5 -4 -3 -2 -1 00

1

2

3

4

5

6

7

8

I D (m

A)

VGS (volts)

Self bias line

Shockley Curve

Q-Point

Page 29: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

29

JFET Self Bias Circuit: Example 1

Step 4: Find the remaining quantities: VDS = VDD – ID(RS + RD )

= 20 – 2.6mA( 1 k + 3.3 k) = 8.82 v

VS = IDRS = (2.6mA)(1k) = 2.6 v

VG = 0 v

VD = VDS + VS = 8.82 + 2.6 = 11.42 v

(or VD = VDD – IDRD = 11.42 v)

Page 30: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

30

JFET Biasing: Voltage Divider Circuit

Page 31: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

31

JFET Biasing: Voltage Divider Circuit dc analysis

VG

21

DD2G RR

VRV

Applying KVL, 0VVV RSGSG

orRSGSG VVV

But VRS = ISRS = IDRS

Therefore

SDGSG RIVV

S

GSGD R

VVI

Page 32: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

32

Voltage Divider Circuit: Q-Point

Bias Line:(i) When ID = 0

VGS = VG – IDRS = VG – (0)(RS)

VGS = VG

(ii) When VGS = 0

S

G

S

GSGD R

0V

R

VVI

S

GD R

VI

Plot this line along with the Shockley Curve, as shown in the Figure.

Page 33: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

33

JFET Biasing: Voltage Divider Circuit dc analysis

VG

0RIVRIV sSDSDDDD

sSDDDDDS RIRIVV

)RR(IVV SDDDDDS

DDDDD RIVV

SDS RIV

21

DD2R1R RR

VII

From DS Loop:

Page 34: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

34

Voltage Divider Circuit: Example

Determine the following:(a) IDQ and VGSQ.

(b) VD

(c) VS

(d) VDS

(e) VDG.

Page 35: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

35

Voltage Divider Circuit: Example 1

Solution: IDSS = 8 mA, Vp = -4 v.

Shockley Equation:

Bias Line:

2

GS3

2

p

GSDSSD 4

V1108

V

V1II

VGS -4 -2 -1 0ID mA 0 2 4.5 8

v82.110270101.2

1610270

RR

VRV 36

3

21

DD2G

)105.1(I82.1

RIVV3

D

SDGGS

When ID = 0, VGS = 1.82 v For VGS = 0, ID = 1.82/1.5k = 1.21 mA

Page 36: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

36

From the Figure, IDQ = 2.4 mA, VGSQ = -1.8 v

(b) VD = VDD - IDRD = 16 – (2.4mA)(2.4k) = 10.24 v(c) VS = IDRS = 16 – (2.4mA)(2.4k) = 10.24 v

(d) VDS = V DD – ID(RD + RS ) = 16 – (2.4mA)(2.4k + 1.5k) = 6.64 v

(e) VDG = VD - VG = 10.24 – 1.82 = 8.42 v

Page 37: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

37

Voltage Divider Circuit: Example 2For the given network, Detrmine(a) VG.

(b) IDQ and VGSQ.

(c) VD and VS.

(d) VDSQ .

Solution:(a)

(b) IDSS = 10mA, Vp = -3.5 v

v16.2k110k910

20k910

RR

VRV

21

DD1G

2

GS3

2

p

GSDSSD 4

V11010

V

V1II

Page 38: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

38

VGS (volts) -3.5 -2 -1 0ID (mA) 0 1.8 5.1 10

Bias Line: VGS = VG – IDRS = 2.16 – ID(1.1k)When ID = 0, VGS = 2.6 vWhen VGS = 0, I = 2.16/1.1k = 2mAFrom the graph, we see thatIDQ = 3.3 mA, VGSQ = -1.5 v(c) VD = VDD – IDQRD = 20 - (3.3mA)(2.2k) = 12.74 v VS = IDRS = 3.63 v(d) VDSQ = VDD – IDQ(RD +RS ) = 9.11 v

Page 39: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

39

Metal-Oxide -Semiconductor Field Effect Transistor (MOSFET)

MOSFET

Depletion –Type MOSFET

Enhancement-Type MOSFET

Page 40: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

40

N- Channel Depletion-Type MOSFET

Construction of D-MOSFET(n-Channel)

• The foundation of this type of FET is the substrate (p-type material).

• The source and drain terminals are connected through metallic contacts to n doped regions linked by an n channel.

• The gate is also connected to a metal contact surface but remains insulated from the n-channel by a SiO2 layer.

Page 41: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

41

Basic Operation and Charactersitics of N – Channel D-MOSFET

I D= I S= IDSS

VGS = 0

• When VGS = 0 and VDS is applied, the drain current ID = IDSS flows through the circuit due to the free electrons of the n-channel.

Page 42: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

42

Basic Operation and Characterstics of N-Channel D-MOSFET

• When VGS < 0, recombination between electrons and holes occurs. The more negative the bias, the higher the rate of combination. The resulting level of ID is reduced and becomes zero at pinch-off voltage. Electrons repelled by

negative Potential at gate.

Page 43: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

43

Basic Operation and Charactersitics of D-MOSFET

When VGS > 0, the gate will draw additional electrons from the p-substrate due to the reverse leakage current and the drain current increases at a rapid rate.

Page 44: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

44

Example: Sketch the transfer characteristics for an n-channel depletion type MOSFET with IDSS = 10 mA and Vp = -4 v.

Solution: 2

GS3

2

p

GSDSSD 4

V11010

V

V1II

VGS -4 -2 -1 0 +1ID (mA) 0 2.5 5.6 10 15.6

The curve is plotted on the next slide.

Page 45: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

45

Gate Source Voltage

Dra

in C

urre

nt (A

)

-4 -3 -2 -1 0 10

0.005

0.01

0.015

0.02

Page 46: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

46

P-Channel depletion type MOSFET

Page 47: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

47

Symbols

N-Channel P-Channel

Page 48: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

48

Example1: For the n-channel depletion type MOSFET of the Fig., determine

(a) IDQ and VGSQ.

(b) VDS.

Solution: Shockley Equation:

18 v

2

GS3

2

p

GSDSSD

3

V1106

V

V1II

VGS -3 -2 -1 0 1

ID (mA) 0 0.7 2.7 6 10.7

Page 49: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

49

Bias Line:

v5.1M100M10

18M10

RR

VRV

21

DD2G

)750(I5.1RIVV DSDGGS

When ID = 0, VGS = 1.5,

When VGS = 0, ID = VG/RS = 1.5/750 = 2 mA

From the graph, IDQ = 3.1 mA, VGSQ = -0.8 v

VDS = VDD – ID(RD + RS) = 10.1 v

Page 50: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

50

Example2: Determine the following for the given network. (a) IDQ and VGSQ (b) VD.

Solution:(a) Shockley Equation:

2

GS3

2

p

GSDSSD

8

V1108

V

V1II

VGS -8 -6 -5 -4 -2 0 1 2ID(mA) 0 0.5 1.125 2.00 4.5 8.00 10.125 12.5

Page 51: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

51

Bias Line:VGS = -IDRS.

When VGS = 0, ID = 0.

When ID = 2.5 mA (say)

VGS = -2.510-3 2.4 1000 = -6V

-8 -6 -2 0 2-4.30

4

6

8

10

12

14

1.7

I D (m

A)

VGS (volts)

From the graph paperVGSQ = 4.3 V, ID = 1.7mA(b) VD = VDD – ID RD = 20 – (1.7mA)(6.2k) = 9.46 V

ShockleyEquation

Bias LineQ-Point

Page 52: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

52

Example 3: For the following network, determine (a) IDQ and VGSQ (b) VDS and VS.

Solution: Shockley Equation:

2

GS3

2

p

GSDSSD

8

V1108

V

V1II

VGS -8 -6 -5 -4 -2 0 1 2ID(mA) 0 0.5 1.125 2.00 4.5 8.00 10.125 12.5

Page 53: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

53

Bias Line:VGS = -VSS – IDRS.

When ID = 0

VGS = -(-4) = 4 V

When VGS = 0

ID = -VSS/RS = 4/0.39k

= 10.26 mA(a) From the graphVGSQ 0.5 V, IDQ 9mA

(b) VDS = VDD – IDQ(RD + RS)

= 7.69 V VS = -VGSQ = -0.5V

-8 -6 -4 -2 2 4 60.50

2

4

6

8

12

14

109

10

I D (m

A)

VGS (volts)Sh

ockley

Equati

on

Bias

Lin

e

Q-Point

Page 54: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

54

N-Channel Enhancement Type MOSFETThe construction of an

enhancement type MOSFET is quite similar to that of the depletion type MOSFET except for the absence of a channel between the drain and source terminals.

When VGS = 0, ID = 0 because the n-channel is absent.

Page 55: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

55

Basic Operation and Characteristics of an n-Channel E-MOSFET

When VGS > 0 & VDS > 0,

A depletion region is creatednear the SiO2 layer void of

holes.As VGS increases, the

concentration of electronsnear the SiO2 increases and

there is some flow between drain and source.The level of VGS that results in the

significant increase in ID is

called the Threshold Voltage (VT).

Page 56: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

56

Basic Operation and Characteristics of an n-Channel E-MOSFET

If VGS > VT is constant and

VDS is increased, ID will

Increase and will reach saturation.

Page 57: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

57

Drain Characteristics of an n-channel enhancement-type MOSFET

Page 58: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

58

Transfer characteristics for n-channel enhancement type MOSFET from the drain characteristics.

2TGSD VVkI where 2)Th(GS)on(GS

)on(D

VV

Ik

Page 59: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

59

p-Channel enhancement-type MOSFET

Page 60: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

60

Symbols

Page 61: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

61

Feedback Biasing of n-Channel e-MOSFET

Equations:GSDS VV DDDDGS RIVV

From the above equations, we get 0IDDGS D

VV 0VD

DDD GSR

VI

Page 62: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

62

Feedback Biasing of n-Channel e-MOSFET

Page 63: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

63

Example: Determine IDQ and VDSQ for the enhancement-type MOSFET of the following.

Solution: For the transfer curve

3

2

2)TH(GS)on(GS

)on(D

1024.0

)38(

mA6

VV

Ik

2TGSD VVkI

VGS 3 6 8 10ID 0 2.16mA 6 11.76mA

Page 64: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

64

For the network bias line:

For ID = 0, VGS = VDD = 12 v, and for VGS = 0

ID = VDD /ID = 12 v / 2k = 6 mA

From the graphVGSQ = 6.4 v

IDQ = 2.75 mA

DDDDGS RIVV

Page 65: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

65

Voltage Divider Bias

21

DD2G RR

VRV

Applying KVL around the indicated loop:0VVV RSGSG

orRSGGS VVV

sDGGS RIVV

For the output section:

SDDDSSDDSDD

RDSRDD

RRIVRIVRI

VVVVSD

)RR(IVV SDDDDDS

Page 66: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

66

Example: Determine IDQ and VDSQ for the given enhancement type MOSFET.

Solution: Network:

v18M)1822(

40M18

RR

VRV

21

DD2G

DSDGGS Ik82.018RIVV

When VGS = 0, mA95.21k82.0

18ID

When ID = 0, VGS = 18 v

Page 67: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

67

Device:

23

22)TH(GS)on(GS

)on(D v/A1012.0510

mA3

VV

Ik

2GS32

)TH(GSGSD 5V1012.0VVkI

VGS 5 10 15 20ID

(mA)0 0.48 12 27

From the graphVGSQ = 12.5 vIDQ = 6.7 mA

v4.14RRIVV DSDDDDS

Page 68: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

68

Combination NetworksExample1: Determine the levels of VD and VC for the

given network:Solution:

v62.3k24k82

16k24

RR

VRV

21

CC2B

v92.27.062.3VVV BEBE

mA825.1k6.1

92.2

R

V

R

VI

E

E

E

RE

E

mA825.1II EC

CSD III

v07.11)k7.2)(mA825.1(16)k7.2(I16V DD

Page 69: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

69

2

p

GSQDSSDQ V

V1II

Plot the following equation

From the plot, VGSQ = -3.7 v

NowVC = VB – VGSQ = 3.62 – (-3.7) = 7.32 v

Page 70: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

70

Example 2: Determine VD for the given network.Solution:From the JFET:VGS = -IDRS = -ID(2.4k)

From this equation, the selfBias line is plotted as shown Below.

Page 71: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

71

The resulting Q_point is at:VGSQ = -2.6 V, IDQ = 1mA

For the BJT:IE IC = ID = 1mA

IB = IC/ = 1mA/80 = 12.5A

VB = VCC – IBRB = 16 – 12.5A470k = 10.125 V

VE = VD = VB – VBE = 10.125 – 0.7 = 9.425 V

Page 72: Field Effect Transistor (FET) 1. Introduction Field Effect Transistor (FET) Junction Field Effect Transistor (JFET) Metal Oxide Semiconductor FET (MOSFET)

72

Example 3: For the network of Fig. (a), determine:VG , VGSQ, IDQ, IE, IB, VD and VC.

Solution:VG = 3.3 V

VGSQ = -1.25 V

IDQ = 3.75 mA

IE = 3.75 mA

IB = 23.44A

VD = 11.56 V

VC = 15.88 V

Fig. (a)