Fiber Optic Cable Splicing

83
Fiber Optic Cable Splicing Two optical fiber splicing methods are available for permanent joining of two optical fibers. Both methods provide much lower insertion loss compared to fiber connectors. 1. Fiber optic cable fusion splicing – Insertion loss < 0.1dB 2. Fiber mechanical splicing – Insertion loss < 0.5dB Fiber optic cable fusion splicing Fiber optic cable fusion splicing provides the lowest-loss connection. Special equipment called fusion splicer is used to perform the fiber fusion splicing. The fusion splicer performs optical fiber fusion splicing in two steps. 1. Precisely align the two fibers 2. Generate a small electric arc to melt the fibers and weld them together High precision fusion splicers are usually bulky and expensive. With proper training, a fiber splicing technician can routinely achieve less than 0.1dB insertion loss splicing for both single mode and multimode fiber cables. Fiber optic cable splicing procedure (How to splice fiber optic cable) 1. Strip fiber cable jacket. Strip back about 3 meters of fiber cable jacket to expose the fiber loose tubes or tight buffered fibers. Use cable rip cord to cut through the fiber jacket. Then carefully peel back the jacket and expose the insides. Cut off the excess jacket. Clean off all cable gel with cable gel remover. Separate the fiber loose tubes and buffers by carefully cutting away any yarn or sheath. Leave enough of the strength member to properly secure the cable in the splice enclose. 2. Strip fiber tubes. For a loose tube fiber cable, strip away about 2 meters of fiber tube using a buffer tube stripper and expose the individual fibers. 3. Clean cable gel. Carefully clean all fibers in the loose tube of any filling gel with cable gel remover. 4. Secure cable tubes. Secure the end of the loose tube to the splice tray and lay out cleaned and separated fibers on the

Transcript of Fiber Optic Cable Splicing

Page 1: Fiber Optic Cable Splicing

Fiber Optic Cable Splicing

Two optical fiber splicing methods are available for permanent joining of two optical fibers. Both methods provide much lower insertion loss compared to fiber connectors.

1. Fiber optic cable fusion splicing – Insertion loss < 0.1dB 2. Fiber mechanical splicing – Insertion loss < 0.5dB

Fiber optic cable fusion splicing

Fiber optic cable fusion splicing provides the lowest-loss connection. Special equipment called fusion splicer is used to perform the fiber fusion splicing. The fusion splicer performs optical fiber fusion splicing in two steps.

1. Precisely align the two fibers 2. Generate a small electric arc to melt the fibers and weld them together

High precision fusion splicers are usually bulky and expensive. With proper training, a fiber splicing technician can routinely achieve less than 0.1dB insertion loss splicing for both single mode and multimode fiber cables.

Fiber optic cable splicing procedure (How to splice fiber optic cable)

1. Strip fiber cable jacket. Strip back about 3 meters of fiber cable jacket to expose the fiber loose tubes or tight buffered fibers. Use cable rip cord to cut through the fiber jacket. Then carefully peel back the jacket and expose the insides. Cut off the excess jacket. Clean off all cable gel with cable gel remover. Separate the fiber loose tubes and buffers by carefully cutting away any yarn or sheath. Leave enough of the strength member to properly secure the cable in the splice enclose.

2. Strip fiber tubes. For a loose tube fiber cable, strip away about 2 meters of fiber tube using a buffer tube stripper and expose the individual fibers.

3. Clean cable gel. Carefully clean all fibers in the loose tube of any filling gel with cable gel remover.

4. Secure cable tubes. Secure the end of the loose tube to the splice tray and lay out cleaned and separated fibers on the table. Strip and clean the other cable tube’s fiber that is to be spliced, and secure to the splice tray.

5. Strip first splicing fiber. Hold the first splicing fiber and remove the 250um fiber coating to expose 5cm of 125um bare fiber cladding with fiber coating stripper tool. For tight buffered fibers, remove 5cm of 900um tight buffer first with a buffer stripping tool, and then remove the 5cm of 250um coating.

6. Place the fusion splice protection sleeve. Put a fusion splice protection sleeve onto the fiber being spliced.

7. Clean the bare fiber. Carefully clean the stripped bare fiber with lint-free wipes soaked in isopropyl alcohol. After cleaning, prevent the fiber from touching anything.

8. Fiber cleaving. With a high precision fiber cleaver, cleave the fiber to a specified length according to your fusion splicer’s manual.

9. Prepare second fiber being spliced. Strip, clean and cleave the other fiber to be spliced.

10. Fusion splicing. Place both fibers in the fusion splicer and do the fusion splice according to its manual.

Page 2: Fiber Optic Cable Splicing

11. Heat shrink the fusion splice protection sleeve. Slide the fusion splice protection sleeve on the joint and put it into the heat shrink oven, and press the heat button.

12. Place splice into splice tray. Carefully place the finished splice into the splice tray and loop excess fiber around its guides. Ensure that the fiber’s minimum bending radius is not compromised.

13. Perform OTDR test. Perform a OTDR test of the splice and redo the splice if necessary.

14. Close the splice tray. After all fibers have been spliced, carefully close the splice tray and place it into the splice enclosure.

15. Bidirectional OTDR test (or power meter test). Test the splices with an OTDR or power meter from both directions.

16. Mount the splice enclosure.  Close and mount the splice enclosure if all splices meet the specifications.

Fiber optic cable mechanical splices

Fiber optic cable mechanical splicing is an alternate splicing technique which does not require a fusion splicer.

Mechanical splicing uses a small, mechanical splice, about 6cm long and 1cm in diameter that permanently joins the two optical fibers.

A mechanical splice is a small fiber connector that precisely aligns two bare fibers and then secures them mechanically.

A snap-type cover, an adhesive cover, or both, are used to permanently fasten the splice.

Fiber optic cable mechanical splices are small, quite easy to use, and are very handy for either quick repairs or permanent installations. They are available in permanent and reenter able types.

Fiber optic cable mechanical splices are available for single mode or multimode fibers. Their connection loss is usually less than 0.5dB which is much bigger than a 0.1dB fusion splice.

Fiber Test Equipment

Fiber Continuity Tester

Visual Fault Locator

Page 3: Fiber Optic Cable Splicing

Fiber Identifier

Fiber Optic Inspection Microscope

How to Splice Fiber Optic Cable

The technology of fiber optics has been around for quite a few years. The technology came into full swing in the early 1970's. Since fiber optics is essential to the telecommunication industry, LAN and various networking projects, knowing how to splice these cables is mandatory. Simply put, fiber optic splicing is no more than the joining of two cables together. Any company using fiber optics will have trained technicians that are knowledgeable in how to correctly splice these intricate cables. Since this can be an expensive repair, knowledge and experience is a must.When dealing with fiber optics splicing, there are two methods of completing the work. A company needs to look at their long-term goals and finances when deciding which technique is best. Which method is chosen will basically be decided on how much money a business wants to spend. Depending on how precise the alignment needs to be, the more money will be spent on an alignment machine. The better the machine, means lower light loss and a better alignment will be achieved.

Instructions

Things You'll Need: Fiber cleaver Heat shrink wrap tubing Silicone gel Mechanical crimp protectors Alignment machine Fusion splicer Connectors Mechanical splice unit Experienced technician

Fusion Splicing1. Step 1

Page 4: Fiber Optic Cable Splicing

Understand that fusion splicing is basically two or more optical fibers being permanently joined together by welding using an an electronic arc. The need for a precise cleaver is mandatory if you desire less light loss and reflection problems. Keep in mind that a quality cleaver for this precise work can run anywhere from $1000 to $4000. If a poor spice is made, the fiber ends may not melt together properly and problems can arise.

2. Step 2

Prepare the fiber by stripping the coatings, jackets and a tube, making sure that only bare fiber is left showing. You will want to clean all the fibers of any filling gel. A clean environment is imperative for a good connection.

3. Step 3

Cleave the fiber. A good cleaver is mandatory to obtain a successful splice. When fusing the fibers together, you can either align the fibers manually or automatic, depending on what type of machinery you have. Once you've obtained a proper alignment, an electrical arc is used to melt the fibers together creating a permanent weld of the two fiber ends.

4. Step 4

Protect the fiber with heat shrink tubing, silicone get. This will keep the optical fiber safe from any outside elements it may encounter or future breakage.

Mechanical Splicing5. Step 1

Understand that the basic difference between mechanical splicing and fusion splicing is you don't require a fusion splicer. It's also considered a quicker method and there is no heat involved.

6. Step 2

Prepare the fiber by stripping all the protective coatings away. You will then want to cleave the fiber as in fusion, but precision is not as critical to the splice. The ends are then mechanically joined together by positioning them inside the mechanical splice unit. In this step a connector or an adhesive cover is used to join the splice together.

7. Step 3

Protect the fiber with heat shrink tubing. As in fusion splicing, this will keep the optical fiber cable safe from the outside elements or breakage.

Page 5: Fiber Optic Cable Splicing

Tips & Warnings Depending on what type of industry you are working in, will generally

decide which type of optical fiber splicing you decide to use. Though mechanical splicing costs more per splice, the initial investment will be much lower than fusion. In fusion optical splicing, the initial investment in machine costs will be much higher, but the cost per splice is much lower than mechanical. If precision alignments are mandatory, you're probably going to want to go with fusion splicing. Mechanical is quicker and easier, but the alignments of the fibers are not as accurate as fusion. Whichever method you decide to use, make sure the person doing the splicing is trained in the operation they will be performing

Fiber Optic Cable

Fiber optic "cable" refers to the complete assembly of fibers, strength members and jacket. Fiber optic cables come in lots of different types, depending on the number of fibers and how and where it will be installed. Choose cable carefully as the choice will affect how easy it is to install, splice or terminate and, most important, what it will cost!

Choosing a cable What hazards will it face?

Cable's job is to protect the fibers from the hazards encountered in an installation. Will the cables be exposed to chemicals or have to withstand a wide temperature range? What about being gnawed on by a woodchuck or prairie dog? Inside buildings, cables don't have to be so strong to protect the fibers, but they have to meet all fire code provisions. Outside the building, it depends on whether the cable is buried directly, pulled in conduit, strung aerially or whatever.

You should contact several cable manufacturers (two minimum, three preferred) and give them the specs. They will want to know where the cable is going, how many fibers you need and what kind (single mode or multimode or both in what we call "hybrid" cables.) You can also have a "composite" cable that includes copper conductors for signals or power. The cable companies will evaluate your requirements and make suggestions. Then you can get competitive bids.

Since the plan will call for a certain number of fibers, consider adding spare fibers to the cable - fibers are cheap! That way, you won't be in trouble if you break a fiber or two when splicing, breaking-out or terminating fibers. And request the end user consider their future expansion needs. Most users install lots more fibers than needed, especially adding single mode fiber to multimode fiber cables for campus or backbone applications.

Page 6: Fiber Optic Cable Splicing

Cable Types

Simplex and Zip Cord: Simplex cables are one fiber, tight-buffered (coated with a 900 micron buffer over the primary buffer coating) with Kevlar (aramid fiber) strength members and jacketed for indoor use. The jacket is usually 3mm (1/8 in.) diameter. Zipcord is simply two of these joined with a thin web. It's used mostly for patch cord and backplane applications, but zipcord can also be used for desktop connections.

Distribution Cables: They contain several tight-buffered fibers bundled under the same jacket with Kevlar strength members and sometimes fiberglass rod reinforcement to stiffen the cable and prevent kinking. These cables are small in size, and used for short, dry conduit runs, riser and plenum applications. The fibers are double buffered and can be directly terminated, but because their fibers are not individually reinforced, these cables need to be broken out with a "breakout box" or terminated inside a patch panel or junction box.

Breakout Cables: They are made of several simplex cables bundled together. This is a strong, rugged design, but is larger and more expensive than the distribution cables. It is suitable for conduit runs, riser and plenum applications. Because each fiber is individually reinforced, this design allows for quick termination to connectors and does not require patch panels or boxes. Breakout cable can be more economic where fiber count isn't too large and distances too long, because is requires so much less labor to terminate.

Loose Tube Cables: These cables are composed of several fibers together inside a small plastic tube, which are in turn wound around a central strength member and jacketed, providing a small, high fiber count cable. This type of cable is ideal for outside plant trunking applications, as it can be made with the loose tubes filled with gel or water absorbent powder to prevent harm to the fibers from water. It can be used in conduits, strung overhead or buried directly into the ground. Since the fibers have only a thin buffer coating, they must be carefully handled and protected to prevent damage.

Ribbon Cable: This cable offers the highest packing density, since all the fibers are laid out in rows, typically of 12 fibers, and laid on top of each other. This way 144 fibers only has a cross section of about 1/4 inch or 6 mm! Some cable designs use a "slotted core" with up to 6 of these 144 fiber ribbon assemblies for 864 fibers in one cable! Since it's outside plant cable, it's gel-filled for water blocking.

Armored Cable: Cable installed by direct burial in areas where rodents are a problem usually have metal armoring between two jackets to prevent rodent penetration. This means the cable is conductive, so it must be grounded properly.

Aerial Cable: Aerial cables are for outside installation on poles. They can be lashed to a messenger or another cable (common in CATV) or have metal or aramid strength members to make them self supporting.

Even more types are available: every manufacturer has it's own favorites, so it's a good idea to get literature from as many cable makers as possible. And check out the little guys; often they can save

Page 7: Fiber Optic Cable Splicing

you a bundle by making special cable just for you, even in relative small quantities.

Cable Design CriteriaPulling Strength: Some cable is simply laid into cable trays or ditches, so pull strength is not too important. But other cable may be pulled thorough 2 km or more of conduit. Even with lots of cable lubricant, pulling tension can be high. Most cables get their strength from an aramid fiber (Kevlar is the DuPont trade name), a unique polymer fiber that is very strong but does not stretch - so pulling on it will not stress the other components in the cable. The simplest simplex cable has pull strength of 100-200 pounds, while outside plant cable may have a specification of over 800 pounds.

Water Protection: Outdoors, every cable must be protected from water or moisture. It starts with a moisture resistant jacket, usually PE (polyethylene), and a filling of water-blocking material. The usual way is to flood the cable with a water-blocking gel. It's effective but messy - requiring a gel remover (use the commercial stuff - its best- -but bottled lemon juice works in a pinch!). A newer alternative is dry water blocking using a miracle powder - the stuff developed to absorb moisture in disposable diapers. Check with your cable supplier to see if they offer it.

Fire Code Ratings: Every cable installed indoors must meet fire codes. That means the jacket must be rated for fire resistance, with ratings for general use, riser (a vertical cable feeds flames more than horizontal) and plenum (for installation in air-handling areas. Most indoor cables us PVC (polyvinyl chloride) jacketing for fire retardance. In the United States, all premises cables must carry identification and flammability ratings per the NEC (National Electrical Code) paragraph 770. These ratings are:

NEC Rating Description

OFN Optical fiber non-conductive

OFC Optical fiber conductive

OFNG or OFCG General purpose

OFNR or OFCR Riser rated cable for vertical runs

OFNP or OFCP Plenum rated cables for use in air-handling plenums

OFN-LS Low smoke density

Cables without markings should never be installed as they will not pass inspections! Outdoor cables are not fire-rated and can only be used up to 50 feet indoors. If you need to bring an outdoor cable indoors, consider a double-jacketed cable with PE jacket over a PVC UL-rated indoor jacket. Simply remove the outdoor jacket when you come indoors and you will not have to terminate at the entry point.

Choosing a CableWith so much choice in cables, it is hard to find the right one. The table below summarizes the choices, applications and advantages of each.

Cable Type Application Advantages

Tight Buffer Premises Makes rugged patch cords

Distribution Premises Small size for lots of fibers, inexpensive

Page 8: Fiber Optic Cable Splicing

Breakout Premises Rugged, easy to terminate, no hardware needed

Loose Tube Outside Plant Rugged, gel or dry water-blocking

Armored Outside Plant Prevents rodent damage

Ribbon Outside Plant Highest fiber count for small size

Pulling Fiber Optic CableInstallation methods for both wire cables and optical fiber cables are similar. Fiber cable can be pulled with much greater force than copper wire if you pull it correctly. Just remember these rules:

Do not pull on the fibers, pull on the strength members only! The cable manufacturer gives you the perfect solution to pulling the cables; they install special strength members, usually DuPont Kevlar aramid yarn or a fiberglass rod to pull on. Use it! Any other method may put stress on the fibers and harm them. Most cables cannot be pulled by the jacket. Do not pull on the jacket unless it is specifically approved by the cable manufacturers and you use an approved cable grip.

Do not exceed the maximum pulling load rating. On long runs, use proper lubricants and make sure they are compatible with the cable jacket. On really long runs pull from the middle out to both ends. If possible, use an automated puller with tension control or at least a breakaway pulling eye.

Do not exceed the cable bend radius. Fiber is stronger than steel when you pull it straight, but it breaks easily when bent too tightly. These will harm the fibers, maybe immediately, maybe not for a few years, but you will harm them and the cable must be removed and thrown away!

Do not twist the cable. Putting a twist in the cable can stress the fibers too. Always roll the cable off the spool instead of spinning it off the spool end. This will put a twist in the cable for every turn on the spool! If you are laying cable out for a long pull, use a "figure 8" on the ground to prevent twisting (the figure 8 puts a half twist in on one side of the 8 and takes it out on the other, preventing twists.) And always use a swivel pulling eye because pulling tension will cause twisting forces on the cable.

Check the length. Make sure the cable is long enough for the run. It's not easily or cheap to splice fiber and it needs special protection. Try to make it in one pull, possible up to about 2-3 miles.

Conduit and Inner duct: Outside plant cables are either installed in conduit or inner duct or direct buried, depending on the cable type. Building cables can be installed directly, but you might consider putting them inside plenum-rated inner duct. This inner duct is bright orange and will provide a good way to identify fiber optic cable and protect it from damage, generally a result of someone cutting it by mistake! The inner duct can speed installation and maybe even cut costs. It can be installed quickly by unskilled labor, then the fiber cable can be pulled through in seconds. You can even get the inner duct with pulling tape already installed.

For additional practical information on pullingplease see our other article "Pulling Fiber Optic & Communication Cables"

Cable Plant HardwareVarious enclosures, cabinets, racks and panels are used to protect and organize splice and termination points. The network designer should know the type of network, support systems, and the routes to be taken. Then the connection/splice locations can be determined and the hardware planned. There are lots of rules to follow, of course (the EIA/TIA 569 has something to say about all this).

Here are some examples of fiber optic hardware:

Breakout kits: They allow you to separate and protect individual fibers in a loose tube cable so it can be terminated.

Page 9: Fiber Optic Cable Splicing

Splice enclosures - for long cable runs outside, the point where cables are spliced, sealed up and buried in the ground, put in a vault of some kind or hung off a pole.

Splice panels - connect individual fibers from cables to pigtails

Patch panels - provides a centralized location for patching fibers, testing, monitoring and restoring cables.

Racks and cabinets: enclosures for patch panels and splice panels. Usually these also include cable management - without this the cables start looking like spaghetti flying everywhere in a short time!

There are tons of hardware and tons of manufacturers who make them. Be sure to choose panels that have the connections behind locked doors, since the biggest problem we see is connector broken by people messing around in communications closets! Fiber doesn't need maintenance or inspection. Lock 'em up and only unlock it when you have to move something!

Fiber Optic Testing

After the cables are installed and terminated, it's time for testing. For every fiber optic cable plant, you will need to test for continuity, end-to-end loss and then troubleshoot the problems. If it's a long outside plant cable with intermediate splices, you will probably want to verify the individual splices with an OTDR also, since that's the only way to make sure that each one is good. If you are the network user, you will also be interested in testing power, as power is the measurement that tells you whether the system is operating properly.

You'll need a few special tools and instruments to test fiber optics. See Jargon in the beginning of Lenin’s Guide to see a description of each instrument.

Getting StartedEven if you're an experienced installer, make sure you remember these things.

1. Have the right tools and test equipment for the job. You will need:1. Source and power meter, optical loss test set or test kit with proper equipment adapters for the cable plant you are testing.2. Reference test cables that match the cables to be tested and mating adapters, including hybrids if needed.3. Fiber Tracer or Visual Fault Locator.4. Cleaning materials - lint free cleaning wipes and pure alcohol.5. OTDR and launch cable for outside plant jobs.

2. Know how to use your test equipmentBefore you start, get together all your tools and make sure they are all working properly and you and your installers know how to use them. It's hard to get the job done when you have to call the manufacturer from the job site on your cell phone to ask for help. Try all your equipment in the office before you take it into the field. Use it to test every one of your reference test jumper cables in both directions using the single-ended loss test to make sure they are all good. If your power meter has internal memory to record data is sure you know how to use this also. You can often customize these reports to your specific needs - figure all this out before you go it the field - it could save you time and on installations, time is money!

Page 10: Fiber Optic Cable Splicing

3. Know the network you're testing...This is an important part of the documentation process we discussed earlier. Make sure you have cable layouts for every fiber you have to test. Prepare a spreadsheet of all the cables and fibers before you go in the field and print a copy for recording your test data. You may record all your test data either by hand or if your meter has a memory feature, it will keep test results in on-board memory that can be printed or transferred to a computer when you return to the office.

A note on using a fiber optic source eye safety...Fiber optic sources, including test equipment, are generally too low in power to cause any eye damage, but it's still a good idea to check connectors with a power meter before looking into it. Some Telco DWDM and CATV systems have very high power and they could be harmful, so better safe than sorry.

Fiber optic testing includes three basic tests that we will cover separately: Visual inspection for continuity or connector checking, Loss testing, and Network Testing.

Visual Inspection

Visual TracingContinuity checking makes certain the fibers are not broken and to trace a path of a fiber from one end to another through many connections. Use a visible light "fiber optic tracer" or "pocket visual fault locator". It looks like a flashlight or a pen-like instrument with a light bulb or LED source that mates to a fiber optic connector. Attach a cable to test to the visual tracer and look at the other end to see the light transmitted through the core of the fiber. If there is no light at the end, go back to intermediate connections to find the bad section of the cable.

A good example of how it can save time and money is testing fiber on a reel before you pull it to make sure it hasn't been damaged during shipment. Look for visible signs of damage (like cracked or broken reels, kinks in the cable, etc.) . For testing, visual tracers help also identify the next fiber to be tested for loss with the test kit. When connecting cables at patch panels, use the visual tracer to make sure each connection is the right two fibers! And to make certain the proper fibers are connected to the transmitter and receiver, use the visual tracer in place of the transmitter and your eye instead of the receiver (remember that fiber optic links work in the infrared so you can't see anything anyway.)

Visual Fault LocationA higher power version of the tracer uses a laser that can also find faults. The red laser light is powerful enough to show breaks in fibers or high loss connectors. You can actually see the loss of the bright red light even through many yellow or orange simplex cable jackets except black or gray jackets. You can also use this gadget to optimize mechanical splices or pre polished-splice type fiber optic connectors. In fact- don't even think of doing one of those connectors without one no other method will assure you of high yield with them.

Visual Connector InspectionFiber optic microscopes are used to inspect connectors to check the quality of the termination procedure and diagnose problems. A well made connector will have a smooth , polished, scratch free finish and the fiber will not show any signs of cracks, chips or areas where the fiber is either protruding from the end of the ferrule or pulling back into it.

The magnification for viewing connectors can be 30 to 400 power but it is best to use a medium magnification. The best microscopes allow you to inspect the connector from several angles, either by tilting the connector or having angle illumination to get the best picture of what's going on. Check to make sure the microscope has an easy-to-use adapter to attach the connectors of interest to the microscope.

And remember to check that no power is present in the cable before you look at it in a microscope

Page 11: Fiber Optic Cable Splicing

protect your eyes!

Optical Power - Power or Loss? ("Absolute" vs. "Relative")Practically every measurement in fiber optics refers to optical power. The power outputs of a transmitter or the input to receiver are "absolute" optical power measurements, that is, you measure the actual value of the power. Loss is a "relative" power measurement, the difference between the power coupled into a component like

a cable or a connector and the power that is transmitted through it. This difference is what we call optical loss and defines the performance of a cable, connector, splice, etc.

Measuring powerPower in a fiber optic system is like voltage in an electrical circuit - it's what makes things happen! It's important to have enough power, but not too much. Too little power and the receiver may not be able to distinguish the signal from noise; too much power overloads the receiver and causes errors too.

Measuring power requires only a power meter (most come with a screw-on adapter that matches the connector being tested) and a little help from the network electronics to turn on the transmitter. Remember when you measure power, the meter must be set to the proper range (usually dBm, sometimes microwatts, but never "dB" that's a relative power range used only for testing loss!) and the proper wavelengths matching the source being used. Refer to the instructions that come with the test equipment for setup and measurement instructions (and don't wait until you get to the job site to try the equipment)!

To measure power, attach the meter to the cable that has the output you want to measure. That can be at the receiver to measure receiver power, or to a reference test cable (tested and known to be good) that is attached to the transmitter, acting as the "source", to measure transmitter power. Turn on the transmitter/source and note the power the meter measures. Compare it to the specified power for the system and make sure it's enough power but not too much.

Testing lossLoss testing is the difference between the power coupled into the cable at the transmitter end and what comes out at the receiver end. Testing for loss requires measuring the optical power lost in a cable (including connectors, splices, etc.) with a fiber optic source and power meter by mating the cable being tested to known good reference cable.

In addition to our power meter, we will need a test source. The test source should match the type of source (LED or laser) and wavelength (850, 1300, 1550 nm). Again, read the instructions that come with the unit carefully.

We also need one or two reference cables, depending on the test we wish to perform. The accuracy of the measurement we make will depend on the quality of your reference cables. Always test your reference cables by the single ended method shown below to make sure they're good before you start testing other cables!

Next we need to set our reference power for loss our "0 dB" value. Correct setting of the launch power is critical to making good loss measurements!

Clean your connectors and set up your equipment like this:Turn on the source and select the wavelength you want for the loss test. Turn on the meter, select the "dBm" or "dB" range and select the wavelength you want for the loss test. Measure the power at the meter. This is your reference power level for all loss measurements. If your meter has a "zero" function, set this as your "0" reference.

Some reference books and manuals show setting the reference power for loss using both a launch and receive cable mated with a mating adapter. This method is acceptable for some tests, but will

Page 12: Fiber Optic Cable Splicing

reduce the loss you measure by the amount of loss between your reference cables when you set your "0dB loss" reference. Also, if either the launch or receive cable is bad, setting the reference with both cables hides the fact. Then you could begin testing with bad launch cables making all your loss measurements wrong. EIA/TIA 568 calls for a single cable reference, while OFSTP-14 allows either method.

Testing LossThere are two methods that are used to measure loss, which we call "single-ended loss" and "double-ended loss". Single-ended loss uses only the launch cable, while double-ended loss uses a receive cable attached to the meter also.

Single-ended loss is measured by mating the cable you want to test to the reference launch cable and measuring the power out the far end with the meter. When you do this you measure 1. the loss of the connector mated to the launch cable and 2. the loss of any fiber, splices or other connectors in the cable you are testing. This method is described in FOTP-171 and is shown in the drawing. Reverse the cable to test the connector on the other end.

In a double-ended loss test, you attach the cable to test between two reference cables, one attached to the source and one to the meter. This way, you measure two connectors' loses, one on each end, plus the loss of all the cable or cables in between. This is the method specified in OFSTP-14, the test for loss in an installed cable plant.

What Loss Should You Get When Testing Cables?While it is difficult to generalize, here are some guidelines:

- For each connector, figure 0.5 dB loss (0.7 max)- For each splice, figure 0.2 dB- For multimode fiber, the loss is about 3 dB per km for 850 nm sources, 1 dB per km for 1300 nm. This roughly translates into a loss of 0.1 dB per 100 feet for 850 nm, 0.1 dB per 300 feet for 1300 nm.- For single mode fiber, the loss is about 0.5 dB per km for 1300 nm sources, 0.4 dB per km for 1550 nm.

This roughly translates into a loss of 0.1 dB per 600 feet for 1300 nm, 0.1 dB per 750 feet for 1300 nm. So for the loss of a cable plant, calculate the approximate loss as:

(0.5 dB X # connectors) + (0.2 dB x # splices) + fiber loss on the total length of cable

Troubleshooting Hints:If you have high loss in a cable, make sure to reverse it and test in the opposite direction using the single-ended method. Since the single ended test only tests the connector on one end, you can isolate a bad connector - it's the one at the launch cable end (mated to the launch cable) on the test when you measure high loss.

High loss in the double ended test should be isolated by retesting single-ended and reversing the direction of test to see if the end connector is bad. If the loss is the same, you need to either test each segment separately to isolate the bad segment or, if it is long enough, use an OTDR.

If you see no light through the cable (very high loss - only darkness when tested with your visual tracer), it's probably one of the connectors, and you have few options. The best one is to isolate the problem cable, cut the connector of one end (flip a coin to choose) and hope it was the bad one (well, you have a 50-50 chance!)

OTDR TestingAs we mentioned earlier, OTDRs are always used on OSP cables to verify the loss of each splice. But they are also used as troubleshooting tools. Let's look at how an OTDR works and see how it can

Page 13: Fiber Optic Cable Splicing

help testing and troubleshooting.

How OTDRs WorkUnlike sources and power meters which measure the loss of the fiber optic cable plant directly, the OTDR works indirectly. The source and meter duplicate the transmitter and receiver of the fiber optic transmission link, so the measurement correlates well with actual system loss.

The OTDR, however, uses backscattered light of the fiber to imply loss. The OTDR works like RADAR, sending a high power laser light pulse down the fiber and looking for return signals from backscattered light in the fiber itself or reflected light from connector or splice interfaces.

At any point in time, the light the OTDR sees is the light scattered from the pulse passing through a region of the fiber. Only a small amount of light is scattered back toward the OTDR, but with sensitive receivers and signal averaging, it is possible to make measurements over relatively long distances. Since it is possible to calibrate the speed of the pulse as it passes down the fiber, the OTDR can measure time, calculate the pulse position in the fiber and correlate what it sees in backscattered light with an actual location in the fiber. Thus it can create a display of the amount of backscattered light at any point in the fiber.

Since the pulse is attenuated in the fiber as it passes along the fiber and suffers loss in connectors and splices, the amount of power in the test pulse decreases as it passes along the fiber in the cable plant under test. Thus the portion of the light being backscattered will be reduced accordingly, producing a picture of the actual loss occurring in the fiber. Some calculations are necessary to convert this information into a display, since the process occurs twice, once going out from the OTDR and once on the return path from the scattering at the test pulse.

There is a lot of information in an OTDR display. The slope of the fiber trace shows the attenuation coefficient of the fiber and is calibrated in dB/km by the OTDR. In order to measure fiber attenuation, you need a fairly long length of fiber with no distortions on either end from the OTDR resolution or overloading due to large reflections. If the fiber looks nonlinear at either end, especially near a reflective event like a connector, avoid that section when measuring loss.

Connectors and splices are called "events" in OTDR jargon. Both should show a loss, but connectors and mechanical splices will also show a reflective peak so you can distinguish them from fusion splices. Also, the height of that peak will indicate the amount of reflection at the event, unless it is so large that it saturates the OTDR receiver. Then peak will have a flat top and tail on the far end, indicating the receiver was overloaded. The width of the peak shows the distance resolution of the OTDR, or how close it can detect events.

Page 14: Fiber Optic Cable Splicing

OTDRs can also detect problems in the cable caused during installation. If a fiber is broken, it will show up as the end of the fiber much shorter than the cable or a high loss splice at the wrong place. If excessive stress is placed on the cable due to kinking or too tight a bend radius, it will look like a splice at the wrong location.

OTDR LimitationsThe limited distance resolution of the OTDR makes it very hard to use in a LAN or building environment where cables are usually only a few hundred meters long. The OTDR has a great deal of difficulty resolving features in the short cables of a LAN and is likely to show "ghosts" from reflections at connectors, more often than not simply confusing the user.

Using The OTDRWhen using an OTDR, there are a few cautions that will make testing easier and more understandable. First always use a long launch cable, which allows the OTDR to settle down after the initial pulse and provides a reference cable for testing the first connector on the cable. Always start with the OTDR set for the shortest pulse width for best resolution and a range at least 2 times the length of the cable you are testing. Make an initial trace and see how you need to change the parameters to get better results.

Coming soon - our OTDR self-study course will teach you a lot more about how to use OTDRs!

RestorationThe time may come when you have to troubleshoot and fix the cable plant. If you have a critical application or lots of network cable, you should be ready to do it yourself. Smaller networks can rely on a contractor. If you plan to do it yourself, you need to have equipment ready (extra cables, mechanical splices, quick termination connectors, etc., plus test equipment.) and someone who knows how to use it.

We cannot emphasize more strongly the need to have good documentation on the cable plant. If you don't know where the cables go, how long they are or what they tested for loss, you will be spinning you wheels from the get-go. And you need tools to diagnose problems and fix them, and spares including a fusion splicer or some mechanical splices and spare cables. In fact, when you install cable, save the leftovers for restoration! And the first thing you must decide is if the problem is with the cables or the equipment using it. A simple power meter can test sources for output and receivers for input and a visual tracer will check for fiber continuity. If the problem is in the cable plant, the OTDR is the next tool needed to locate the fault.

Optical fiber

Page 15: Fiber Optic Cable Splicing

A bundle of optical fibers

A TOSLINK fiber optic audio cable being illuminated at one end

An optical fiber (or fiber) is a glass or plastic fiber that carries light along its length. Fiber optics is the overlap of applied science and engineering concerned with the design and application of optical fibers. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communications. Fibers are used instead of metal wires because signals travel along them with less loss, and they are also immune to electromagnetic interference. Fibers are also used for illumination, and are wrapped in bundles so they can be used to carry images, thus allowing viewing in tight spaces. Specially designed fibers are used for a variety of other applications, including sensors and fiber lasers.

Light is kept in the core of the optical fiber by total internal reflection. This causes the fiber to act as a waveguide. Fibers which support many propagation paths or transverse modes are called multi-mode fibers (MMF), while those which can only support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a larger core diameter, and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 550 meters (1,800 ft).

Joining lengths of optical fiber is more complex than joining electrical wire or cable. The ends of the fibers must be carefully cleaved, and then spliced together either mechanically or by fusing them together with an electric arc. Special connectors are used to make removable connections.

Page 16: Fiber Optic Cable Splicing

History

Daniel Caledon first described this "light fountain" or "light pipe" in an 1842 article entitled On the reflections of a ray of light inside a parabolic liquid stream. This particular illustration comes from a later article by Caledon, in 1884.

Fiber optics, though used extensively in the modern world, is a fairly simple and old technology. Guiding of light by refraction, the principle that makes fiber optics possible, was first demonstrated by Daniel Colladon and Jacques Babinet in Paris in the early 1840s. John Tyndall included a demonstration of it in his public lectures in London a dozen years later.[1] Tyndall also wrote about the property of total internal reflection in an introductory book about the nature of light in 1870: "When the light passes from air into water, the refracted ray is bent towards the perpendicular... When the ray passes from water to air it is bent from the perpendicular... If the angle which the ray in water encloses with the perpendicular to the surface be greater than 48 degrees, the ray will not quit the water at all: it will be totally reflected at the surface.... The angle which marks the limit where total reflection begins is called the limiting angle of the medium. For water this angle is 48°27', for flint glass it is 38°41', while for diamond it is 23°42'."

Practical applications, such as close internal illumination during dentistry, appeared early in the twentieth century. Image transmission through tubes was demonstrated independently by the radio experimenter Clarence Hansel and the television pioneer John Logie Baird in the 1920s. The principle was first used for internal medical examinations by Heinrich Lamm in the following decade. In 1952, physicist Narinder Singh Kapany conducted experiments that led to the invention of optical fiber. Modern optical fibers, where the glass fiber is coated with a transparent cladding to offer a more suitable refractive index, appeared later in the decade. Development then focused on fiber bundles for image transmission. The first fiber optic semi-flexible gastro scope was patented by

Page 17: Fiber Optic Cable Splicing

Basil Hirschowitz, C. Wilbur Peters, and Lawrence E. Curtiss, researchers at the University of Michigan, in 1956. In the process of developing the gastro scope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air or impractical oils and waxes as the low-index cladding material. A variety of other image transmission applications soon followed.

Jun-ichi Nishizawa, a Japanese scientist at Tohoku University, was the first to propose the use of optical fibers for communications in 1963. Nishizawa invented other technologies that contributed to the development of optical fiber communications as well. Nishizawa invented the graded-index optical fiber in 1964 as a channel for transmitting light from semiconductor lasers over long distances with low loss.

In 1965, Charles K. Kao and George A. Hock ham of the British company Standard Telephones and Cables (STC) were the first to promote the idea that the attenuation in optical fibers could be reduced below 20 decibels per kilometer (dB/km), allowing fibers to be a practical medium for communication. They proposed that the attenuation in fibers available at the time was caused by impurities, which could be removed, rather than fundamental physical effects such as scattering. This discovery led to Kao being awarded the Nobel Prize in Physics in 2009.[

The crucial attenuation level of 20 dB/km was first achieved in 1970, by researchers Robert D. Maurer, Donald Keck, Peter C. Schultz, and Frank Zimar working for American glass maker Corning Glass Works, now Corning Incorporated. They demonstrated a fiber with 17 dB/km attenuation by doping silica glass with titanium. A few years later they produced a fiber with only 4 dB/km attenuation using germanium dioxide as the core dopant. Such low attenuations ushered in optical fiber telecommunications and enabled the Internet. In 1981, General Electric produced fused quartz ingots that could be drawn into fiber optic strands 25 miles (40 km) long.

Attenuations in modern optical cables are far less than those in electrical copper cables, leading to long-haul fiber connections with repeater distances of 70–150 kilometers (43–93 mi). The erbium-doped fiber amplifier, which reduced the cost of long-distance fiber systems by reducing or even in many cases eliminating the need for optical-electrical-optical repeaters, was co-developed by teams led by David N. Payne of the University of Southampton, and Emmanuel Desurvire at Bell Labs in 1986. The more robust optical fiber commonly used today utilizes glass for both core and sheath and is therefore less prone to aging processes. It was invented by Gerhard Bernsee in 1973 of Schott Glass in Germany.

In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000. Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.

Applications

Page 18: Fiber Optic Cable Splicing

Optical fiber communication

Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber can be modulated at rates as high as 111 gigabits per second, although 10 or 40 GB/s are typical in deployed systems. Each fiber can carry many independent channels, each using a different wavelength of light (wavelength-division multiplexing (WDM)). The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the FEC overhead, multiplied by the number of channels (usually up to eighty in commercial dense WDM systems as of 2008). The current laboratory fiber optic data rate record, held by Bell Labs in Villarceaux, France, is multiplexing 155 channels, each carrying 100 Gbps over a 7000 km fiber.

Over short distances, such as networking within a building, fiber saves space in cable ducts because a single fiber can carry much more data than a single electrical cable.[vague] Fiber is also immune to electrical interference; there is no cross-talk between signals in different cables and no pickup of environmental noise. Non-armored fiber cables do not conduct electricity, which makes fiber a good solution for protecting communications equipment located in high voltage environments such as power generation facilities, or metal communication structures prone to lightning strikes. They can also be used in environments where explosive fumes are present, without danger of ignition. Wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof.

Although fibers can be made out of transparent plastic, glass, or a combination of the two, the fibers used in long-distance telecommunications applications are always glass, because of the lower optical attenuation. Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances, up to 550 m (600 yards), and single-mode fiber used for longer distance links. Because of the tighter tolerances required to couple light into and between single-mode fibers (core diameter about 10 micrometers), single-mode transmitters, receivers, amplifiers and other components are generally more expensive than multi-mode components.

Examples of applications are TOSLINK, Fiber distributed data interface, Synchronous optical networking.

Fiber optic sensors

Fibers have many uses in remote sensing. In some applications, the sensor is itself an optical fiber. In other cases, fiber is used to connect a non-fiber optic sensor to a measurement system. Depending on the application, fiber may be used because of its small size, or the fact that no electrical power is needed at the remote location, or because many sensors can be multiplexed along the length of a fiber by using different

Page 19: Fiber Optic Cable Splicing

wavelengths of light for each sensor, or by sensing the time delay as light passes along the fiber through each sensor. Time delay can be determined using a device such as an optical time-domain reflectometer.

Optical fibers can be used as sensors to measure strain, temperature, pressure and other quantities by modifying a fiber so that the quantity to be measured modulates the intensity, phase, polarization, wavelength or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and detector are required. A particularly useful feature of such fiber optic sensors is that they can, if required, provide distributed sensing over distances of up to one meter.

Extrinsic fiber optic sensors use an optical fiber cable, normally a multi-mode one, to transmit modulated light from either a non-fiber optical sensor, or an electronic sensor connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach places which are otherwise inaccessible. An example is the measurement of temperature inside aircraft jet engines by using a fiber to transmit radiation into a radiation pyrometer located outside the engine. Extrinsic sensors can also be used in the same way to measure the internal temperature of electrical transformers, where the extreme electromagnetic fields present make other measurement techniques impossible. Extrinsic sensors are used to measure vibration, rotation, displacement, velocity, acceleration, torque, and twisting.

[edit] Other uses of optical fibers

A frisbee illuminated by fiber optics

Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building (see non-imaging optics). Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.

Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy). Industrial endoscopes (see

Page 20: Fiber Optic Cable Splicing

fiberscope or borescope) are used for inspecting anything hard to reach, such as jet engine interiors.

In spectroscopy, optical fiber bundles are used to transmit light from a spectrometer to a substance which cannot be placed inside the spectrometer itself, in order to analyze its composition. A spectrometer analyzes substances by bouncing light off of and through them. By using fibers, a spectrometer can be used to study objects that are too large to fit inside, or gasses, or reactions which occur in pressure vessels.[17][18][19]

An optical fiber doped with certain rare earth elements such as erbium can be used as the gain medium of a laser or optical amplifier. Rare-earth doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission.

Optical fibers doped with a wavelength shifter are used to collect scintillation light in physics experiments.

Optical fiber can be used to supply a low level of power (around one watt) to electronics situated in a difficult electrical environment. Examples of this are electronics in high-powered antenna elements and measurement devices used in high voltage transmission equipment.

[edit] Principle of operation

An optical fiber is a cylindrical dielectric waveguide (nonconducting waveguide) that transmits light along its axis, by the process of total internal reflection. The fiber consists of a core surrounded by a cladding layer, both of which are made of dielectric materials. To confine the optical signal in the core, the refractive index of the core must be greater than that of the cladding. The boundary between the core and cladding may either be abrupt, in step-index fiber, or gradual, in graded-index fiber.

[edit] Index of refractionMain article: Refractive index

The index of refraction is a way of measuring the speed of light in a material. Light travels fastest in a vacuum, such as outer space. The actual speed of light in a vacuum is about 300 million meters (186 thousand miles) per second. Index of refraction is calculated by dividing the speed of light in a vacuum by the speed of light in some other medium. The index of refraction of a vacuum is therefore 1, by definition. The typical value for the cladding of an optical fiber is 1.46. The core value is typically 1.48. The larger the index of refraction, the slower light travels in that medium. From this information, a good rule of thumb is that signal using optical fiber for communication

Page 21: Fiber Optic Cable Splicing

will travel at around 200 million meters per second. Or to put it another way, to travel 1000 kilometres in fiber, the signal will take 5 milliseconds to propagate. Thus a phone call carried by fiber between Sydney and New York, a 12000 kilometre distance, means that there is an absolute minimum delay of 60 milliseconds (or around 1/16th of a second) between when one caller speaks to when the other hears. (Of course the fiber in this case will probably travel a longer route, and there will be additional delays due to communication equipment switching and the process of encoding and decoding the voice onto the fiber).

[edit] Total internal reflectionMain article: Total internal reflection

When light traveling in a dense medium hits a boundary at a steep angle (larger than the "critical angle" for the boundary), the light will be completely reflected. This effect is used in optical fibers to confine light in the core. Light travels along the fiber bouncing back and forth off of the boundary. Because the light must strike the boundary with an angle greater than the critical angle, only light that enters the fiber within a certain range of angles can travel down the fiber without leaking out. This range of angles is called the acceptance cone of the fiber. The size of this acceptance cone is a function of the refractive index difference between the fiber's core and cladding.

In simpler terms, there is a maximum angle from the fiber axis at which light may enter the fiber so that it will propagate, or travel, in the core of the fiber. The sine of this maximum angle is the numerical aperture (NA) of the fiber. Fiber with a larger NA requires less precision to splice and work with than fiber with a smaller NA. Single-mode fiber has a small NA.

[edit] Multi-mode fiber

The propagation of light through a multi-mode optical fiber.

A laser bouncing down an acrylic rod, illustrating the total internal reflection of light in a multi-mode optical fiber.Main article: Multi-mode optical fiber

Page 22: Fiber Optic Cable Splicing

Fiber with large core diameter (greater than 10 micrometers) may be analyzed by geometrical optics. Such fiber is called multi-mode fiber, from the electromagnetic analysis (see below). In a step-index multi-mode fiber, rays of light are guided along the fiber core by total internal reflection. Rays that meet the core-cladding boundary at a high angle (measured relative to a line normal to the boundary), greater than the critical angle for this boundary, are completely reflected. The critical angle (minimum angle for total internal reflection) is determined by the difference in index of refraction between the core and cladding materials. Rays that meet the boundary at a low angle are refracted from the core into the cladding, and do not convey light and hence information along the fiber. The critical angle determines the acceptance angle [disambiguation needed] of the fiber, often reported as a numerical aperture. A high numerical aperture allows light to propagate down the fiber in rays both close to the axis and at various angles, allowing efficient coupling of light into the fiber. However, this high numerical aperture increases the amount of dispersion as rays at different angles have different path lengths and therefore take different times to traverse the fiber.

Optical fiber types.

In graded-index fiber, the index of refraction in the core decreases continuously between the axis and the cladding. This causes light rays to bend smoothly as they approach the cladding, rather than reflecting abruptly from the core-cladding boundary. The resulting curved paths reduce multi-path dispersion because high angle rays pass more through the lower-index periphery of the core, rather than the high-index center. The index profile is chosen to minimize the difference in axial propagation speeds of the various rays in the fiber. This ideal index profile is very close to a parabolic relationship between the index and the distance from the axis.

[edit] Single-mode fiber

The structure of a typical single-mode fiber.1. Core: 8 µm diameter2. Cladding: 125 µm dia.3. Buffer: 250 µm dia.4. Jacket: 400 µm dia.Main article: Single-mode optical fiber

Fiber with a core diameter less than about ten times the wavelength of the propagating light cannot be modeled using geometric optics. Instead, it must be analyzed as an electromagnetic structure, by solution of Maxwell's equations as reduced to the electromagnetic wave equation. The electromagnetic analysis may also be required to understand behaviors such as speckle that occur when coherent light propagates in multi-mode fiber. As an optical waveguide, the fiber supports one or more confined transverse modes by which light can propagate along the fiber. Fiber supporting only one mode is called single-mode or mono-mode fiber. The behavior of larger-core multi-mode fiber can

Page 23: Fiber Optic Cable Splicing

also be modeled using the wave equation, which shows that such fiber supports more than one mode of propagation (hence the name). The results of such modeling of multi-mode fiber approximately agree with the predictions of geometric optics, if the fiber core is large enough to support more than a few modes.

The waveguide analysis shows that the light energy in the fiber is not completely confined in the core. Instead, especially in single-mode fibers, a significant fraction of the energy in the bound mode travels in the cladding as an evanescent wave.

The most common type of single-mode fiber has a core diameter of 8–10 micrometers and is designed for use in the near infrared. The mode structure depends on the wavelength of the light used, so that this fiber actually supports a small number of additional modes at visible wavelengths. Multi-mode fiber, by comparison, is manufactured with core diameters as small as 50 micrometers and as large as hundreds of micrometres. The normalized frequency V for this fiber should be less than the first zero of the Bessel function J0 (approximately 2.405).

[edit] Special-purpose fiber

Some special-purpose optical fiber is constructed with a non-cylindrical core and/or cladding layer, usually with an elliptical or rectangular cross-section. These include polarization-maintaining fiber and fiber designed to suppress whispering gallery mode propagation.

Photonic-crystal fiber is made with a regular pattern of index variation (often in the form of cylindrical holes that run along the length of the fiber). Such fiber uses diffraction effects instead of or in addition to total internal reflection, to confine light to the fiber's core. The properties of the fiber can be tailored to a wide variety of applications.

[edit] Mechanisms of attenuation

Light attenuation by ZBLAN and silica fibersMain article: Transparent materials

Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical transmission media. The medium is typically usually a fiber of silica glass that confines the incident

Page 24: Fiber Optic Cable Splicing

light beam to the inside. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. Empirical research has shown that attenuation in optical fiber is caused primarily by both scattering and absorption.

[edit] Light scattering

Specular reflection

Diffuse reflection

The propagation of light through the core of an optical fiber is based on total internal reflection of the lightwave. Rough and irregular surfaces, even at the molecular level, can cause light rays to be reflected in random directions. This is called diffuse reflection or scattering, and it is typically characterized by wide variety of reflection angles.

Light scattering depends on the wavelength of the light being scattered. Thus, limits to spatial scales of visibility arise, depending on the frequency of the incident light-wave and the physical dimension (or spatial scale) of the scattering center, which is typically in the form of some specific micro-structural feature. Since visible light has a wavelength of the order of one micron (one millionth of a meter) scattering centers will have dimensions on a similar spatial scale.

Thus, attenuation results from the incoherent scattering of light at internal surfaces and interfaces. In (poly)crystalline materials such as metals and ceramics, in addition to pores, most of the internal surfaces or interfaces are in the form of grain boundaries that separate tiny regions of crystalline order. It has recently been shown that when the size of the scattering center (or grain boundary) is reduced below the size of the wavelength of the light being scattered, the scattering no longer occurs to any significant extent. This phenomenon has given rise to the production of transparent ceramic materials.

Similarly, the scattering of light in optical quality glass fiber is caused by molecular level irregularities (compositional fluctuations) in the glass structure. Indeed, one emerging school of thought is that a glass is simply the limiting case of a polycrystalline solid. Within this framework, "domains" exhibiting various degrees of short-range order become the building blocks of both metals and alloys, as well as glasses and ceramics. Distributed both between and within these domains are micro-structural defects which will provide the most ideal locations for the occurrence of light scattering. This same phenomenon is seen as one of the limiting factors in the transparency of IR missile domes.[20]

At high optical powers, scattering can also be caused by nonlinear optical processes in the fiber.[21][22]

Page 25: Fiber Optic Cable Splicing

See also: Physics of glass

[edit] UV-Vis-IR absorption

In addition to light scattering, attenuation or signal loss can also occur due to selective absorption of specific wavelengths, in a manner similar to that responsible for the appearance of color. Primary material considerations include both electrons and molecules as follows:

1) At the electronic level, it depends on whether the electron orbitals are spaced (or "quantized") such that they can absorb a quantum of light (or photon) of a specific wavelength or frequency in the ultraviolet (UV) or visible ranges. This is what gives rise to color.

2) At the atomic or molecular level, it depends on the frequencies of atomic or molecular vibrations or chemical bonds, how close-packed its atoms or molecules are, and whether or not the atoms or molecules exhibit long-range order. These factors will determine the capacity of the material transmitting longer wavelengths in the infrared (IR), far IR, radio and microwave ranges.

The design of any optically transparent device requires the selection of materials based upon knowledge of its properties and limitations. The lattice [disambiguation needed] absorption characteristics observed at the lower frequency regions (mid IR to far-infrared wavelength range) define the long-wavelength transparency limit of the material. They are the result of the interactive coupling between the motions of thermally induced vibrations of the constituent atoms and molecules of the solid lattice and the incident light wave radiation. Hence, all materials are bounded by limiting regions of absorption caused by atomic and molecular vibrations (bond-stretching)in the far-infrared (>10 µm).

Normal modes of vibration in a crystalline solid.

Page 26: Fiber Optic Cable Splicing

Thus, multi-phonon absorption occurs when two or more phonons simultaneously interact to produce electric dipole moments with which the incident radiation may couple. These dipoles can absorb energy from the incident radiation, reaching a maximum coupling with the radiation when the frequency is equal to the fundamental vibrational mode of the molecular dipole (e.g. Si-O bond) in the far-infrared, or one of its harmonics.

The selective absorption of infrared (IR) light by a particular material occurs because the selected frequency of the light wave matches the frequency (or an integral multiple of the frequency) at which the particles of that material vibrate. Since different atoms and molecules have different natural frequencies of vibration, they will selectively absorb different frequencies (or portions of the spectrum) of infrared (IR) light.

Reflection and transmission of light waves occur because the frequencies of the light waves do not match the natural resonant frequencies of vibration of the objects. When IR light of these frequencies strike an object, the energy is either reflected or transmitted.

[edit] Manufacturing

[edit] Materials

Glass optical fibers are almost always made from silica, but some other materials, such as fluorozirconate, fluoroaluminate, and chalcogenide glasses, are used for longer-wavelength infrared applications. Like other glasses, these glasses have a refractive index of about 1.5. Typically the difference between core and cladding is less than one percent.

Plastic optical fibers (POF) are commonly step-index multi-mode fibers with a core diameter of 0.5 millimeters or larger. POF typically have higher attenuation co-efficients than glass fibers, 1 dB/m or higher, and this high attenuation limits the range of POF-based systems.

[edit] Silica

Tetrahedral structural unit of silica (SiO2).

The amorphous structure of glassy silica (SiO2). No long-range order is present, however there is local ordering with respect to the tetrahedral arrangement of oxygen (O) atoms around the silicon (Si) atoms.

Silica exhibits fairly good optical transmission over a wide range of wavelengths. In the near-infrared (near IR) portion of the spectrum, particularly around 1.5 μm, silica can have extremely low absorption and scattering losses of the order of 0.2 dB/km. A high transparency in the 1.4-μm region is achieved by maintaining a low concentration of hydroxyl groups (OH). Alternatively, a high OH concentration is better for transmission in the ultraviolet (UV) region.

Page 27: Fiber Optic Cable Splicing

Silica can be drawn into fibers at reasonably high temperatures, and has a fairly broad glass transformation range. One other advantage is that fusion splicing and cleaving of silica fibers is relatively effective. Silica fiber also has high mechanical strength against both pulling and even bending, provided that the fiber is not too thick and that the surfaces have been well prepared during processing. Even simple cleaving (breaking) of the ends of the fiber can provide nicely flat surfaces with acceptable optical quality. Silica is also relatively chemically inert. In particular, it is not hygroscopic (does not absorb water).

Silica glass can be doped with various materials. One purpose of doping is to raise the refractive index (e.g. with Germanium dioxide (GeO2) or Aluminium oxide (Al2O3)) or to lower it (e.g. with fluorine or Boron trioxide (B2O3)). Doping is also possible with laser-active ions (for example, rare earth-doped fibers) in order to obtain active fibers to be used, for example, in fiber amplifiers or laser applications. Both the fiber core and cladding are typically doped, so that the entire assembly (core and cladding) is effectively the same compound (e.g. an aluminosilicate, germanosilicate, phosphosilicate or borosilicate glass).

Particularly for active fibers, pure silica is usually not a very suitable host glass, because it exhibits a low solubility for rare earth ions. This can lead to quenching effects due to clustering of dopant ions. Aluminosilicates are much more effective in this respect.

Silica fiber also exhibits a high threshold for optical damage. This property ensures a low tendency for laser-induced breakdown. This is important for fiber amplifiers when utilized for the amplification of short pulses.

Because of these properties silica fibers are the material of choice in many optical applications, such as communications (except for very short distances with plastic optical fiber), fiber lasers, fiber amplifiers, and fiber-optic sensors. The large efforts which have been put forth in the development of various types of silica fibers have further increased the performance of such fibers over other materials. [23] [24] [25] [26] [27] [28] [29] [30] [31]

[edit] Fluorides

Fluoride glass is a class of non-oxide optical quality glasses composed of fluorides of various metals. Due to their low viscosity, it is very difficult to completely avoid crystallization while processing it through the glass transition (or drawing the fiber from the melt). Thus, although heavy metal fluoride glasses (HMFG) exhibit very low optical attenuation, they are not only difficult to manufacture, but are quite fragile, and have poor resistance to moisture and other environmental attacks. Their best attribute is that they lack the absorption band associated with the hydroxyl (OH) group (3200–3600 cm−1), which is present in nearly all oxide-based glasses.

An example of a heavy metal fluoride glass is the ZBLAN glass group, composed of zirconium, barium, lanthanum, aluminum, and sodium fluorides. Their main technological

Page 28: Fiber Optic Cable Splicing

application is as optical waveguides in both planar and fiber form. They are advantageous especially in the mid-infrared (2000–5000 nm) range.

HMFG's were initially slated for optical fiber applications, because the intrinsic losses of a mid-IR fiber could in principle be lower than those of silica fibers, which are transparent only up to about 2 μm. However, such low losses were never realized in practice, and the fragility and high cost of fluoride fibers made them less than ideal as primary candidates. Later, the utility of fluoride fibers for various other applications was discovered. These include mid-IR spectroscopy, fiber optic sensors, thermometry, and imaging [disambiguation needed]. Also, fluoride fibers can be used to for guided lightwave transmission in media such as YAG (yttria-alumina garnet) lasers at 2.9 μm, as required for medical applications (e.g. ophthalmology and dentistry). [32] [33]

[edit] Phosphates

The P4O10 cagelike structure—the basic building block for phosphate glass.

Phosphate glass constitutes a class of optical glasses composed of metaphosphates of various metals. Instead of the SiO4 tetrahedra observed in silicate glasses, the building block for this glass former is Phosphorus pentoxide (P2O5), which crystallizes in at least four different forms. The most familiar polymorph (see figure) comprises molecules of P4O10.

Phosphate glasses can be advantageous over silica glasses for optical fibers with a high concentration of doping rare earth ions. A mix of fluoride glass and phosphate glass is fluorophosphate glass. [34] [35]

[edit] Chalcogenides

The chalcogens—the elements in group 16 of the periodic table—particularly sulphur (S), selenium (Se) and tellurium (Te)—react with more electropositive elements, such as silver, to form chalcogenides. These are extremly versatile compounds, in that they can be crystalline or amorphous, metallic or semiconducting, and conductors of ions or electrons.

[edit] Process

Illustration of the modified chemical vapor deposition (inside) process

Standard optical fibers are made by first constructing a large-diameter preform, with a carefully controlled refractive index profile, and then pulling the preform to form the long, thin optical fiber. The preform is commonly made by three chemical vapor deposition methods: inside vapor deposition, outside vapor deposition, and vapor axial deposition.[36]

Page 29: Fiber Optic Cable Splicing

With inside vapor deposition, the preform starts as a hollow glass tube approximately 40 centimetres (16 in) long, which is placed horizontally and rotated slowly on a lathe. Gases such as silicon tetrachloride (SiCl4) or germanium tetrachloride (GeCl4) are injected with oxygen in the end of the tube. The gases are then heated by means of an external hydrogen burner, bringing the temperature of the gas up to 1900 K (1600 °C, 3000 °F), where the tetrachlorides react with oxygen to produce silica or germania (germanium dioxide) particles. When the reaction conditions are chosen to allow this reaction to occur in the gas phase throughout the tube volume, in contrast to earlier techniques where the reaction occurred only on the glass surface, this technique is called modified chemical vapor deposition.

The oxide particles then agglomerate to form large particle chains, which subsequently deposit on the walls of the tube as soot. The deposition is due to the large difference in temperature between the gas core and the wall causing the gas to push the particles outwards (this is known as thermophoresis). The torch is then traversed up and down the length of the tube to deposit the material evenly. After the torch has reached the end of the tube, it is then brought back to the beginning of the tube and the deposited particles are then melted to form a solid layer. This process is repeated until a sufficient amount of material has been deposited. For each layer the composition can be modified by varying the gas composition, resulting in precise control of the finished fiber's optical properties.

In outside vapor deposition or vapor axial deposition, the glass is formed by flame hydrolysis, a reaction in which silicon tetrachloride and germanium tetrachloride are oxidized by reaction with water (H2O) in an oxyhydrogen flame. In outside vapor deposition the glass is deposited onto a solid rod, which is removed before further processing. In vapor axial deposition, a short seed rod is used, and a porous preform, whose length is not limited by the size of the source rod, is built up on its end. The porous preform is consolidated into a transparent, solid preform by heating to about 1800 K (1500 °C, 2800 °F).

The preform, however constructed, is then placed in a device known as a drawing tower, where the preform tip is heated and the optic fiber is pulled out as a string. By measuring the resultant fiber width, the tension on the fiber can be controlled to maintain the fiber thickness.

[edit] Coatings

Fiber optic coatings are UV-cured urethane acrylate composite materials applied to the outside of the fiber during the drawing process. The coatings protect the very delicate strands of glass fiber—about the size of a human hair—and allow it to survive the rigors of manufacturing, proof testing, cabling and installation.

Today’s glass optical fiber draw processes employ a dual-layer coating approach. An inner primary coating is designed to act as a shock absorber to minimize attenuation caused by microbending. An outer secondary coating protects the primary coating against mechanical damage and acts as a barrier to lateral forces.

Page 30: Fiber Optic Cable Splicing

These fiber optic coating layers are applied during the fiber draw, at speeds approaching 100 kilometres per hour (60 mph). Fiber optic coatings are applied using one of two methods: wet-on-dry, in which the fiber passes through a primary coating application, which is then UV cured, then through the secondary coating application which is subsequently cured; and wet-on-wet, in which the fiber passes through both the primary and secondary coating applications and then goes to UV curing.

Fiber optic coatings are applied in concentric layers to prevent damage to the fiber during the drawing application and to maximize fiber strength and microbend resistance. Unevenly coated fiber will experience non-uniform forces when the coating expands or contracts, and is susceptible to greater signal attenuation. Under proper drawing and coating processes, the coatings are concentric around the fiber, continuous over the length of the application and have constant thickness.

Fiber optic coatings protect the glass fibers from scratches that could lead to strength degradation. The combination of moisture and scratches accelerates the aging and deterioration of fiber strength. When fiber is subjected to low stresses over a long period, fiber fatigue can occur. Over time or in extreme conditions, these factors combine to cause microscopic flaws in the glass fiber to propagate, which can ultimately result in fiber failure.

Three key characteristics of fiber optic waveguides can be affected by environmental conditions: strength, attenuation and resistance to losses caused by microbending. External fiber optic coatings protect glass optical fiber from environmental conditions that can affect the fiber’s performance and long-term durability. On the inside, coatings ensure the reliability of the signal being carried and help minimize attenuation due to microbending.[37]

[edit] Practical issues

[edit] Optical fiber cables

An optical fiber cableMain article: Optical fiber cable

In practical fibers, the cladding is usually coated with a tough resin buffer layer, which may be further surrounded by a jacket layer, usually plastic. These layers add strength to the fiber but do not contribute to its optical wave guide properties. Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.[38][39]

Page 31: Fiber Optic Cable Splicing

Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, high voltage isolation, dual use as power lines,[40][not in citation

given] installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets. The cost of small fiber-count pole-mounted cables has greatly decreased due to the high Japanese and South Korean demand for fiber to the home (FTTH) installations.

Fiber cable can be very flexible, but traditional fiber's loss increases greatly if the fiber is bent with a radius smaller than around 30 mm. This creates a problem when the cable is bent around corners or wound around a spool, making FTTX installations more complicated. "Bendable fibers", targeted towards easier installation in home environments, have been standardized as ITU-T G.657. This type of fiber can be bent with a radius as low as 7.5 mm without adverse impact. Even more bendable fibers have been developed.[41] Bendable fiber may also be resistant to fiber hacking, in which the signal in a fiber is surreptitiously monitored by bending the fiber and detecting the leakage.[42]

[edit] Termination and splicing

ST connectors on multi-mode fiber.

Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, or MTRJ.

Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a "mechanical splice" is used.

Fusion splicing is done with a specialized instrument that typically operates as follows: The two cable ends are fastened inside a splice enclosure that will protect the splices, and the fiber ends are stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a small spark between electrodes at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the melting point of the glass, fusing the ends together permanently. The location and energy of the spark is carefully controlled so

Page 32: Fiber Optic Cable Splicing

that the molten core and cladding don't mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer, by directing light through the cladding on one side and measuring the light leaking from the cladding on the other side. A splice loss under 0.1 dB is typical. The complexity of this process makes fiber splicing much more difficult than splicing copper wire.

Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning and precision cleaving. The fiber ends are aligned and held together by a precision-made sleeve, often using a clear index-matching gel that enhances the transmission of light across the joint. Such joints typically have higher optical loss and are less robust than fusion splices, especially if the gel is used. All splicing techniques involve the use of an enclosure into which the splice is placed for protection afterward.

Fibers are terminated in connectors so that the fiber end is held at the end face precisely and securely. A fiber-optic connector is basically a rigid cylindrical barrel surrounded by a sleeve that holds the barrel in its mating socket. The mating mechanism can be "push and click", "turn and latch" ("bayonet"), or screw-in (threaded). A typical connector is installed by preparing the fiber end and inserting it into the rear of the connector body. Quick-set adhesive is usually used so the fiber is held securely, and a strain relief is secured to the rear. Once the adhesive has set, the fiber's end is polished to a mirror finish. Various polish profiles are used, depending on the type of fiber and the application. For single-mode fiber, the fiber ends are typically polished with a slight curvature, such that when the connectors are mated the fibers touch only at their cores. This is known as a "physical contact" (PC) polish. The curved surface may be polished at an angle, to make an "angled physical contact" (APC) connection. Such connections have higher loss than PC connections, but greatly reduced back reflection, because light that reflects from the angled surface leaks out of the fiber core; the resulting loss in signal strength is known as gap loss. APC fiber ends have low back reflection even when disconnected.

In the mid 1990's fiber optic cable termination was very labor intensive with many different parts per connector, fiber polishing and the need for an oven to bake the epoxy in each connector made terminating fiber optic very hard and labor intensive.

Today many different connectors are on the market and offer an easier less labor intensive way of terminating fiber optic cable.

Some of the most popular connectors have already been polished from the factory and include a gel inside the connector and those two steps help save money on labor especially on large projects. A Cleave (fiber) is made at a required length in order to get as close the the polished piece already inside the connector, with the gel surrounding the point where the two piece meet inside the connector very little light loss is exposed. Here’s an example of a newer style connector being terminated [43].

Page 33: Fiber Optic Cable Splicing

[edit] Free-space coupling

It is often necessary to align an optical fiber with another optical fiber, or with an optoelectronic device such as a light-emitting diode, a laser diode, or a modulator. This can involve either carefully aligning the fiber and placing it in contact with the device, or can use a lens to allow coupling over an air gap. In some cases the end of the fiber is polished into a curved form that is designed to allow it to act as a lens.

In a laboratory environment, a bare fiber end is coupled using a fiber launch system, which uses a microscope objective lens to focus the light down to a fine point. A precision translation stage (micro-positioning table) is used to move the lens, fiber, or device to allow the coupling efficiency to be optimized. Fibers with a connector on the end make this process much simpler: the connector is simply plugged into a prealigned fiberoptic collimator, which contains a lens that is either accurately positioned with respect to the fiber, or is adjustable. To achieve the best injection efficiency into singlemode fiber, the direction, position, size and divergence of the beam must all be optimized. With good beams, 70% to 90% coupling efficiency can be achieved.

With properly polished singlemode fibers, the emitted beam has an almost perfect Gaussian shape—even in the far field—if a good lens is used. The lens needs to be large enough to support the full numerical aperture of the fiber, and must not introduce aberrations in the beam. Aspheric lenses are typically used.

[edit] Fiber fuse

At high optical intensities, above 2 megawatts per square centimeter, when a fiber is subjected to a shock or is otherwise suddenly damaged, a fiber fuse can occur. The reflection from the damage vaporizes the fiber immediately before the break, and this new defect remains reflective so that the damage propagates back toward the transmitter at 1–3 meters per second (4−11 km/h, 2–8 mph).[44][45] The open fiber control system, which ensures laser eye safety in the event of a broken fiber, can also effectively halt propagation of the fiber fuse.[46] In situations, such as undersea cables, where high power levels might be used without the need for open fiber control, a "fiber fuse" protection device at the transmitter can break the circuit to prevent any damage.

Fiber Optic Termination

We terminate fiber optic cable two ways - with connectors that can mate two fibers to create a temporary joint and/or connect the fiber to a piece of network gear or with splices which create a permanent joint between the two fibers. These terminations must be of the right style, installed in a manner that makes them have little light loss and protected against dirt or damage in use. No area of fiber optics has been given greater attention than termination. Manufacturers have come up with over 80 styles of connectors and and about a dozen ways to install them. There are two types of splices and many ways of implementing the splice. Fortunately for me and you, only a few types are used most applications. Different connectors and splice termination procedures are used for singlemode and multimode connectors, so make sure you know what the fiber will be before you specify connectors or splices!

Page 34: Fiber Optic Cable Splicing

ConnectorsWe'll start our section on termination by considering connectors. Since fiber optic technology was introduced in the late 70s, numerous connector styles have been developed. Each new design was meant to offer better performance (less light loss and back reflection), easier and/or termination and lower cost. Of course, the marketplace determines which connectors are ultimately successful.

Connector and Splice Loss MechanismsConnector and splice loss is caused by a number of factors. Loss is minimized when the two fiber cores are identical and perfectly aligned, the connectors or splices are properly finished and no dirt is present. Only the light that is coupled into the receiving fiber's core will propagate, so all the rest of the light becomes the connector or splice loss.

End gaps cause two problems, insertion loss and return loss. The emerging cone of light from the connector will spill over the core of the receiving fiber and be lost. In addition, the air gap between the fibers causes a reflection when the light encounters the change n refractive index from the glass fiber to the air in the gap. This reflection (called fresnel reflection) amounts to about 5% in typical flat polished connectors, and means that no connector with an air gap can have less than 0.3 dB loss. This reflection is also referred to as back reflection or optical return loss, which can be a problem in laser based systems. Connectors use a number of polishing techniques to insure physical contact of the fiber ends to minimize back reflection. On mechanical splices, it is possible to reduce back reflection by using non-perpendicular cleaves, which cause back reflections to be absorbed in the cladding of the fiber.

The end finish of the fiber must be properly polished to minimize loss. A rough surface will scatter light and dirt can scatter and absorb light. Since the optical fiber is so small, typical airborne dirt can be a major source of loss. Whenever connectors are not terminated, they should be covered to protect the end of the ferrule from dirt. One should never touch the end of the ferrule, since the oils on one's skin causes the fiber to attract dirt. Before connection and testing, it is advisable to clean connectors with lint-free wipes moistened with isopropyl alcohol.

Two sources of loss are directional; numerical aperture (NA) and core diameter. Differences in these two will create connections that have different losses depending on the direction of light propagation. Light from a fiber with a larger NA will be more sensitive to angularity and end gap, so transmission from a fiber of larger NA to one of smaller NA will be higher loss than the reverse. Likewise, light from a larger fiber will have high loss coupled to a fiber of smaller diameter, while one can couple a small diameter fiber to a large diameter fiber with minimal loss, since it is much less sensitive to end gap or lateral

offset.

These fiber mismatches occur for two reasons. The occasional need to interconnect two dissimilar fibers and production variances in fibers of the same nominal dimensions. With two multimode fibers in usage today and two others which have been used occasionally in the past and several types of singlemode fiber in use, it is possible to sometimes have to connect dissimilar fibers or use systems designed for one fiber on another. Some system manufacturers provide guidelines on using various fibers, some don't. If you connect a smaller fiber to a larger one, the coupling losses will be minimal, often only the fresnel loss (about 0.3 dB). But connecting larger fibers to smaller ones results in substantial losses, not only due to the smaller cores size, but also the smaller NA of most small core fibers.

Guide to Fiber Optic ConnectorsCheck out the "spotters guide" below and you will see the most common fiber optic connectors. (All the photos are to the same scale, so you can get an idea of the relative size of these connectors.)

Page 35: Fiber Optic Cable Splicing

ST (an AT&T Trademark) is the most popular connector for multimode networks, like most buildings and campuses. It has a bayonet mount and a long cylindrical ferrule to hold the fiber. Most ferrules are ceramic, but some are metal or plastic. And because they are spring-loaded, you have to make sure they are seated properly. If you have high loss, reconnect them to see if it makes a difference.

FC/PC has been one of the most popular singlemode connectors for many years. It screws on firmly, but make sure you have the key aligned in the slot properly before tightening. It's being replaced by SCs and LCs.

SC is a snap-in connector that is widely used in singlemode systems for it's excellent performance. It's a snap-in connector that latches with a simple push-pull motion. It is also available in a duplex configuration.

Besides the SC Duplex, you may occasionally see the FDDI and ESCON* duplex connectors which mate to their specific networks. They are generally used to connect to the equipment from a wall outlet, but the rest of the network will have ST or SC connectors.*ESCON is an IBM trademark

Below are some of the new Small Form Factor (SFF) connectors:

LC is a new connector that uses a 1.25 mm ferrule, half the size of the ST. Otherwise, it's a standard ceramic ferrule connector, easily terminated with any adhesive. Good performance, highly favored for singlemode.

MT-RJ is a duplex connector with both fibers in a single polymer ferrule. It uses pins for alignment and has male and female versions. Multimode only, field terminated only by prepolished/splice method.

Page 36: Fiber Optic Cable Splicing

Opti-Jack is a neat, rugged duplex connector cleverly designed aournd two ST-type ferrules in a package the size of a RJ-45. It has male and female (plug and jack) versions.

Volition is a slick, inexpensive duplex connector that uses no ferrule at all. It aligns fibers in a V-groove like a splice. Plug and jack versions, but field terminate jacks only.

E2000/LX-5 is like a LC but with a shutter over the end of the fiber.

MU looks a miniature SC with a 1.25 mm ferrule. It's more popular in Japan.

Page 37: Fiber Optic Cable Splicing

MT is a 12 fiber connector for ribbon cable. It's main use is for preterminated cable assemblies.

The ST/SC/FC/FDDI/ESON connectors have the same ferrule size - 2.5 mm or about 0.1 inch - so they can be mixed and matched to each other using hybrid mating adapters. This makes it convenient to test, since you can have a set of multimode reference test cables with ST connectors and adapt to all these connectors. Likewise, the LC, MU and E2000/LX-5 use the same ferrule but cross-mating adapters are not easy to find.

Connector TypesThe ST is still the most popular multimode connector because it is cheap and easy to install. The SC connector was specified as a standard by the old EIA/TIA 568A specification, but its higher cost and difficulty of installation (until recently) has limited its popularity. However, newer SCs are much better in both cost and installation ease, so it has been growing in use. The duplex FDDI, ESCON and SC connectors are used for patchcords to equipment and can be mated to ST or SC connectors at wall outlets. Singlemode networks use FC or SC connectors in about the same proportion as ST and SC in multimode installations. There are some D4s out there too.

EIA/TIA 568 B allows any fiber optic connector as long as it has a FOCIS (Fiber Optic Connector Intermateability Standard) document behind it. This opened the way to the use of several new connectors, which we call the "Small Form Factor" (SFF) connectors, including AT&T LC, the MT-RJ, the Panduit "Opti-Jack," 3M's Volition, the E2000/LX-5 and MU. The LC has been particularly successful in the US.

Connector Ferrule Shapes & PolishesFiber optic connectors can have several different ferrule shapes or finishes, usually referred to as polishes. early connectors, because they did not have keyed ferrules and could rotate in mating adapters, always had an air gap between the connectors to prevent them rotating and grinding scratches into the ends of the fibers.

Beginning with the ST and FC which had keyed ferrules, the connectors were designed to contact tightly, what we now call physical contact (PC) connectors. Reducing the air gap reduced the loss and back reflection (very important to laser-based singlemode systems ), since light has a loss of about 5% (~0.25 dB) at each air gap and light is reflected back up the fiber. While air gap connectors usually had losses of 0.5 dB or more and return loss of 20 dB, PC connectors had typical losses of 0.3 dB and a return loss of 30 to 40 dB.

Soon thereafter, it was determined that making the connector ferrules convex would produce an even better connection. The convex ferrule guaranteed the fiber cores were in contact. Losses were under 0.3dB and return loss 40 dB or better. The final solution for singlemode systems extremely sensitive to reflections, like CATV or high bitrate telco links, was to angle the end of the ferrule 8 degrees to create what we call an APC or angled PC connector. Then any reflected light is at an angle that is absorbed in the cladding of the fiber.

Page 38: Fiber Optic Cable Splicing

Termination ProceduresWhatever you do, follow the manufacturer's termination instructions closely. Multimode connectors are usually installed in the field on the cables after pulling, while singlemode connectors are usually installed by splicing a factory-made "pigtail" onto the fiber. That is because the tolerances on singlemode terminations are much tighter and the polishing processes are more critical. You can install singlemode connectors in the field for low speed data networks, but you may not be able to get losses lower than 1 dB! Cables can be pulled with connectors already on them if, and a big if, you can deal with these two problems: First, the length must be precise. Too short and you have to pull another longer one (its not cost effective to splice), too long and you waste money and have to store the extra cable length. Secondly, the connectors must be protected. Some cable and connector manufacturers offer protective sleeves to cover the connectors, but you must still be much more careful in pulling cables. You might consider terminating one end and pulling the unterminated end to not risk the connectors. There is a growing movement to install preterminated systems but with the MT 12 multifiber connector. It's tiny not much bigger than a ST or SC, but has up to 12 fibers. Manufactures sell multifiber cables with MTs on them that connect to preterminated patch panels with STs or SCs. Works well if you have a good designer and can live with the higher loss (~1 dB) typical of these connectors.

Multimode Terminations: Several different types of terminations are available for multimode fibers. Each version has its advantages and disadvantages, so learning more about how each works helps decide which one to use.

A note on adhesives: Most connectors use epoxies or other adhesives to hold the fiber in the connector. Use only the specified epoxy, as the fiber to ferrule bond is critical for low loss and long term reliability! We've seen people use hardware store epoxies, Crazy Glue, you name it! And they regretted doing it.

Epoxy/Polish: Most connectors are the simple "epoxy/polish" type where the fiber is glued into the connector with epoxy and the end polished with special polishing film. These provide the most reliable connection, lowest losses (less than 0.5 dB) and lowest costs, especially if you are doing a lot of connectors. The epoxy can be allowed to set overnight or cured in an inexpensive oven. A "heat gun" should never be used to try to cure the epoxy faster as the uneven heat may not cure all the epoxy or may overheat some of it which will prevent it ever curing!

"Hot Melt": This is a 3M trade name for a connector that already has the epoxy (actually a heat set glue) inside the connector. You strip the cable, insert it in the connector, crimp it, and put it in a special oven. In a few minutes, the glue is melted, so you remove the connector, let it cool and it is ready to polish. Fast and easy, low loss, but not as cheap as the epoxy type, it has become the favorite of lots of contractors who install relatively small quantities of connectors.

Anaerobic Adhesives: These connectors use a quick setting adhesive to replace the epoxy. They work well if your technique is good, but often they do not have the wide temperature range of epoxies, so only use them indoors. A lot of installers are using Loctite 648, with or without the accellerator solution, that is neat and easy to use.

Crimp/Polish: Rather than glue the fiber in the connector, these connectors use a crimp on the fiber to hold it in. Early types offered "iffy" performance, but today they are pretty good, if you practice a lot. Expect to trade higher losses for the faster termination speed. And they are more costly than epoxy polish types. A good choice if you only install small quantities and your customer will accept them.

Prepolished/splice: Some manufacturers offer connectors that have a short stub fiber already epoxied into the ferrule and polished perfectly, so you just cleave a fiber and insert it like a splice. (See next section for splicing info.) While it sound like a great idea, it has several downsides. First it is very costly, five to ten times as much as an epoxy polish type. Second, you have to make a good cleave to make them low loss, and that is not as easy as you might think. Third, even if you do everything correctly, you loss will be higher, because you have a connector loss plus two splice losses at every connection! The best way to terminate them is to monitor the loss with a visual fault

Page 39: Fiber Optic Cable Splicing

locator and "tweak" them.

Hints for doing field terminationsHere are a few things to remember when you are terminating connectors in the field. Following these guidelines will save you time, money and frustration:

Choose the connector carefully and clear it with the customer if it is anything other than an epoxy/polish type. Some customers have strong opinions on the types or brands of connectors used in their job. Find out first, not later!

Never, never, NEVER take a new connector in the field until you have installed enough of them in the office that you can put them on in your sleep. The field is no place to experiment or learn! It'll cost you big time!

Have the right tools for the job. Make sure you have the proper tools and they are in good shape before you head out for the job. This includes all the termination tools, cable tools and test equipment. Do you know your test cables are good? Without that, you will test good terminations as bad every time. More and more installers are owning their own tools like auto mechanics, saying that is the only way to make sure the tools are properly cared for.

Dust and dirt are your enemies. It's very hard to terminate or splice in a dusty place. Try to work in the cleanest possible location. Use lint-free wipes (not cotton swaps or rags made from old T-shirts!) to clean every connector before connecting or testing it. Don't work under heating vents, as they are blowing dirt down on you continuously.

Don't overpolish. Contrary to common sense, too much polishing is just as bad as too little. The ceramic ferrule in most of today's connector is much harder than the glass fiber. Polish too much and you create a concave fiber surface, increasing the loss. A few swipes is all it takes.

Remember singlemode fiber requires different connectors and polishing techniques. Most SM fiber is terminated by splicing on a preterminated pigtail, but you can put SM connectors on in the field if you know what you are doing. Expect much higher loss, approaching 1 dB and high back reflections, so don't try it for anything but data networks, not telco or CATV.

Change polishing film regularly. Polishing builds up residue and dirt on the film that can cause problems after too many connectors and cause poor end finish. Check the manufacturers' specs.

Put covers on connectors and patch panels when not in use. Keep them covered to keep them clean.

Inspect and test, then document. It is very hard to troubleshoot cables when you don't know how long they are, where they go or how they tested originally! So keep good records, smart users require it and expect to pay extra for good records.

Page 40: Fiber Optic Cable Splicing

SplicingSplicing is only needed if the cable runs are too long for one straight pull or you need to mix a number of different types of cables (like bringing a 48 fiber cable in and splicing it to six 8 fiber cables - could you have used a breakout cable instead?) And of course, we use splices for restoration, after the number one problem of outside plant cables, a dig-up and cut of a buried cable, usually referred to as "backhoe fade" for obvious reasons!

Splices are "permanent" connections between two fibers. There are two types of splices, fusion and mechanical, and the choice is usually based on cost or location. Most splicing is on long haul outside plant SM cables, not multimode LANs, so if you

do outside plant SM jobs, you will want to learn how to fusion splice. If you do mostly MM LANs, you may never see a splice.

Fusion Splices are made by "welding" the two fibers together usually by an electric arc. Obviously, you don't do that in an explosive atmosphere (at least not more than once!), so fusion splicing is usually done above ground in a truck or trailer set up for the purpose. Good fusion splicers cost $15,000 to $40,000, but the splices only cost a few dollars each. Today's singlemode fusion splicers are automated and you have a hard time making a bad splice. The biggest application is singlemode fibers in outside plant installations.

Mechanical Splices are alignment gadgets that hold the ends of two fibers together with some index matching gel or glue between them. There are a number of types of mechanical splices, like little glass tubes or V-shaped metal clamps. The tools to make mechanical splices are cheap, but the splices themselves are expensive. Many mechanical splices are used for restoration, but they can

work well with both singlemode and multimode fiber, with practice.

Which Splice?If cost is the issue, we've given you the clues to make a choice: fusion is expensive equipment and cheap splices, while mechanical is cheap equipment and expensive splices. So if you make a lot of splices (like thousands in an big telco or CATV network) use fusion splices. If you need just a few, use mechanical splices. Fusion splices give very low back reflections and are preferred for singlemode high speed digital or CATV networks. However, they don't work too well on multimode splices, so mechanical splices are preferred for MM, unless it is an underwater or aerial application, where the greater reliability of the fusion splice is preferred.

Fiber Optic Patch Cable Assemblies

Patch Cables, Mode Conditioning, Pre-Terminated

Fiber Optic Test Instruments

Test Kits, Power Meters, Length Testers, Fault

Fiber Optic Hardware & Accessories

Termination Boxes, Mating Sleeves, Bare Fiber Adapters,

Page 41: Fiber Optic Cable Splicing

Assemblies, MTP Cables & Modules

Locators, Talk Sets, & Connector Adapters

& Optical Attenuators

Splicing

Fiber-optic cables might have to be spliced together for a number of reasons—for example, to realize a link of a particular length. Another reason might involve backhoe fade, in which case a fiber-optic cable might have been ripped apart due to trenching work. The network installer might have in his inventory several fiber-optic cables, but none long enough to satisfy the required link length. Situations such as this often arise because cable manufacturers offer cables in limited lengths—usually 1 to 6 km. A link of 10 km can be installed by splicing several fiber-optic cables together. The installer can then satisfy the distance requirement and avoid buying a new fiber-optic cable. Splices might be required at building entrances, wiring closets, couplers, and literally any intermediate point between a transmitter and receiver.

Connecting two fiber-optic cables requires precise alignment of the mated fiber cores or spots in a single-mode fiber-optic cable. This is required so that nearly all the light is coupled from one fiber-optic cable across a junction to the other fiber-optic cable. Actual contact between the fiber-optic cables is not even mandatory.

There are two principal types of splices: fusion and mechanical. Fusion splices use an electric arc to weld two fiber-optic cables together. The process of fusion splicing involves using localized heat to melt or fuse the ends of two optical fibers together. The splicing process begins by preparing each fiber end for fusion. Fusion splicing requires that all protective coatings be removed from the ends of each fiber. The fiber is then cleaved using the score-and-break method. The quality of each fiber end is inspected using a microscope. In fusion splicing, splice loss is a direct function of the angles and quality of the two fiber-end faces.

The basic fusion-splicing apparatus consists of two fixtures on which the fibers are mounted with two electrodes. An inspection microscope assists in the placement of the prepared fiber ends into a fusion-splicing apparatus. The fibers are placed into the apparatus, aligned, and then fused together. Initially, fusion splicing used nichrome wire as the heating element to melt or fuse fibers together. New fusion-splicing techniques have replaced the nichrome wire with carbon dioxide (CO2) lasers, electric arcs, or gas flames to heat the fiber ends, causing them to fuse together. Arc fusion splicers can splice single fibers or 12- and 24-fiber-count ribbon fibers at the same time. The small size of the fusion splice and the development of automated fusion-splicing machines have made electric arc fusion one of the most popular splicing techniques in commercial applications. The splices offer sophisticated, computer-controlled alignment of fiber-optic cables to achieve losses as low as 0.02 dB.

Splices can also be used as optical attenuators if there is a need to attenuate a high-powered signal. Splice losses of up to 10.0 dB can be programmed and inserted into the cable if desired. This way, the splice can act as an in-line attenuator with the characteristic nonreflectance of a fusion splice. Typical fusion-splice losses can be estimated at 0.02 dB for loss-budget calculation purposes. Mechanical splices are easily

implemented in the field, require little or no tooling, and offer losses of about 0.5 to 0.75 dB.

FIBER OPTICS

THE BASICS OF FIBER OPTIC CABLE (Single-mode multi-mode)

Page 42: Fiber Optic Cable Splicing

a Tutorial      

 

BRIEF OVER VIEW OF FIBER OPTIC CABLE ADVANTAGES OVER COPPER:

• SPEED: Fiber optic networks operate at high speeds - up into the gigabits• BANDWIDTH: large carrying capacity• DISTANCE: Signals can be transmitted further without needing to be "refreshed" or strengthened.• RESISTANCE: Greater resistance to electromagnetic noise such as radios, motors or other nearby cables.• MAINTENANCE: Fiber optic cables costs much less to maintain.

In recent years it has become apparent that fiber-optics are steadily replacing copper wire as an appropriate means of communication signal transmission. They span the long distances between local phone systems as well as providing the backbone for many network systems. Other system users include cable television services, university campuses, office buildings, industrial plants, and electric utility companies.

A fiber-optic system is similar to the copper wire system that fiber-optics is replacing. The difference is that fiber-optics use light pulses to transmit information down fiber lines instead of using electronic pulses to transmit information down copper lines. Looking at the components in a fiber-optic chain will give a better understanding of how the system works in conjunction with wire based systems.

At one end of the system is a transmitter. This is the place of origin for information coming on to fiber-optic lines. The transmitter accepts coded electronic pulse information coming from copper wire. It then processes and translates that information into equivalently coded light pulses. A light-emitting diode (LED) or an injection-laser diode (ILD) can be used for generating the light pulses. Using a lens, the light pulses are funneled into the fiber-optic medium where they travel down the cable. The light (near infrared) is most often 850nm for shorter distances and 1,300nm for longer distances on Multi-mode fiber and 1300nm for single-mode fiber and 1,500nm is used for for longer distances.

Page 43: Fiber Optic Cable Splicing

Think of a fiber cable in terms of very long cardboard roll (from the inside roll of paper towel) that is coated with a mirror on the inside.If you shine a flashlight in one end you can see light come out at the far end - even if it's been bent around a corner.

Light pulses move easily down the fiber-optic line because of a principle known as total internal reflection. "This principle of total internal reflection states that when the angle of incidence exceeds a critical value, light cannot get out of the glass; instead, the light bounces back in. When this principle is applied to the construction of the fiber-optic strand, it is possible to transmit information down fiber lines in the form of light pulses. The core must a very clear and pure material for the light or in most cases near infrared light (850nm, 1300nm and 1500nm). The core can be Plastic (used for very short distances) but most are made from glass. Glass optical fibers are almost always made from pure silica, but some other materials, such as fluorozirconate, fluoroaluminate, and chalcogenide glasses, are used for longer-wavelength infrared applications.

There are three types of fiber optic cable commonly used: single mode, multimode and plastic optical fiber (POF).

Transparent glass or plastic fibers which allow light to be guided from one end to the other with minimal loss.

Page 44: Fiber Optic Cable Splicing

Fiber optic cable functions as a "light guide," guiding the light introduced at one end of the cable through to the other end. The light source can either be a light-emitting diode (LED)) or a laser.

The light source is pulsed on and off, and a light-sensitive receiver on the other end of the cable converts the pulses back into the digital ones and zeros of the original signal.

Even laser light shining through a fiber optic cable is subject to loss of strength, primarily through dispersion and scattering of the light, within the cable itself. The faster the laser fluctuates, the greater the risk of dispersion. Light strengtheners, called repeaters, may be necessary to refresh the signal in certain applications.

While fiber optic cable itself has become cheaper over time - a equivalent length of copper cable cost less per foot but not in capacity. Fiber optic cable connectors and the equipment needed to install them are still more expensive than their copper counterparts.

Single Mode cable is a single stand (most applications use 2 fibers) of glass fiber with a diameter of 8.3 to 10 microns that has one mode of transmission.  Single Mode Fiber with a relatively narrow diameter, through which only one mode will propagate typically 1310 or 1550nm. Carries higher bandwidth than multimode fiber, but requires a light source with a narrow spectral width. Synonyms mono-mode optical fiber, single-mode fiber, single-mode optical waveguide, uni-mode fiber.

Single Modem fiber is used in many applications where data is sent at multi-frequency (WDM Wave-Division-Multiplexing) so only one cable is needed - (single-mode on one single fiber)

Single-mode fiber gives you a higher transmission rate and up to 50 times more distance than multimode, but it also costs more. Single-mode fiber has a much smaller core than multimode. The small core and single light-wave virtually

Page 45: Fiber Optic Cable Splicing

eliminate any distortion that could result from overlapping light pulses, providing the least signal attenuation and the highest transmission speeds of any fiber cable type.  

Single-mode optical fiber is an optical fiber in which only the lowest order bound mode can propagate at the wavelength of interest typically 1300 to 1320nm.

jump to single mode fiber page

 

Multi-Mode cable has a little bit bigger diameter, with a common diameters in the 50-to-100 micron range for the light carry component (in the US the most common size is 62.5um). Most applications in which Multi-mode fiber is used, 2 fibers are used (WDM is not normally used on multi-mode fiber).  POF is a newer plastic-based cable which promises performance similar to glass cable on very short runs, but at a lower cost.

Multimode fiber gives you high bandwidth at high speeds (10 to 100MBS - Gigabit to 275m to 2km) over medium distances. Light waves are dispersed into numerous paths, or modes, as they travel through the cable's core typically 850 or 1300nm. Typical multimode fiber core diameters are 50, 62.5, and 100 micrometers. However, in long cable runs (greater than 3000 feet [914.4 meters), multiple paths of light can cause signal distortion at the receiving end, resulting in an unclear and incomplete data transmission so designers now call for single mode fiber in new applications using Gigabit and beyond.  

Page 46: Fiber Optic Cable Splicing
Page 47: Fiber Optic Cable Splicing

The use of fiber-optics was generally not available until 1970 when Corning Glass Works was able to produce a fiber with a loss of 20 dB/km. It was recognized that optical fiber would be feasible for telecommunication transmission only if glass could be developed so pure that attenuation would be 20dB/km or less. That is, 1% of the light would remain after traveling 1 km. Today's optical fiber attenuation ranges from 0.5dB/km to 1000dB/km depending on the optical fiber used. Attenuation limits are based on intended application.

The applications of optical fiber communications have increased at a rapid rate, since the first commercial installation of a fiber-optic system in 1977. Telephone companies began early on, replacing their old copper wire systems with optical fiber lines. Today's telephone companies use optical fiber throughout their system as the backbone architecture and as the long-distance connection between city phone systems.

Cable television companies have also began integrating fiber-optics into their cable systems. The trunk lines that connect central offices have generally been replaced with optical fiber. Some providers have begun experimenting with fiber to the curb using a fiber/coaxial hybrid. Such a hybrid allows for the integration of fiber and coaxial at a neighborhood location. This location, called a node, would

Page 48: Fiber Optic Cable Splicing

provide the optical receiver that converts the light impulses back to electronic signals. The signals could then be fed to individual homes via coaxial cable.

Local Area Networks (LAN) is a collective group of computers, or computer systems, connected to each other allowing for shared program software or data bases. Colleges, universities, office buildings, and industrial plants, just to name a few, all make use of optical fiber within their LAN systems.

Power companies are an emerging group that have begun to utilize fiber-optics in their communication systems. Most power utilities already have fiber-optic communication systems in use for monitoring their power grid systems.

 jump to Illustrated Fiber Optic Glossary pages

Fiber by John MacChesney - Fellow at Bell Laboratories, Lucent Technologies

Some 10 billion digital bits can be transmitted per second along an optical fiber link in a commercial network, enough to carry tens of thousands of telephone calls. Hair-thin fibers consist of two concentric layers of high-purity silica glass the core and the cladding, which are enclosed by a protective sheath. Light rays modulated into digital pulses with a laser or a light-emitting diode move along the core without penetrating the cladding.

The light stays confined to the core because the cladding has a lower refractive index—a measure of its ability to bend light. Refinements in optical fibers, along with the development of new lasers and diodes, may one day allow commercial fiber-optic networks to carry trillions of bits of data per second.

 Total internal refection confines light within optical fibers (similar to looking down a mirror made in the shape of a long paper towel tube). Because the cladding has a lower refractive index, light rays reflect back into the core if they encounter the cladding at a shallow angle (red lines). A ray that exceeds a certain "critical" angle escapes from the fiber (yellow line).

 

Page 49: Fiber Optic Cable Splicing

 

STEP-INDEX MULTIMODE FIBER has a large core, up to 100 microns in diameter. As a result, some of the light rays that make up the digital pulse may travel a direct route, whereas others zigzag as they bounce off the cladding. These alternative pathways cause the different groupings of light rays, referred to as modes, to arrive separately at a receiving point. The pulse, an aggregate of different modes, begins to spread out, losing its well-defined shape. The need to leave spacing between pulses to prevent overlapping limits bandwidth that is, the amount of information that can be sent. Consequently, this type of fiber is best suited for transmission over short distances, in an endoscope, for instance.

GRADED-INDEX MULTIMODE FIBER contains a core in which the refractive index diminishes gradually from the center axis out toward the cladding. The higher refractive index at the center makes the light rays moving down the axis advance more slowly than those near the cladding. Also, rather than zigzagging off the cladding, light in the core curves helically because of the graded index, reducing its travel distance. The shortened path and the higher speed allow light at the periphery to arrive at a receiver at about the same time as the slow but straight rays in the core axis. The result: a digital pulse suffers less dispersion. 

SINGLE-MODE FIBER has a narrow core (eight microns or less), and the index of refraction between the core and the cladding changes less than it does for multimode fibers. Light thus travels parallel to the axis, creating little pulse dispersion. Telephone and cable television networks install millions of kilometers of this fiber every year.

Page 50: Fiber Optic Cable Splicing

 

BASIC CABLE DESIGN

1 - Two basic cable designs are:

Loose-tube cable, used in the majority of outside-plant installations in North America, and tight-buffered cable, primarily used inside buildings.

The modular design of loose-tube cables typically holds up to 12 fibers per buffer tube with a maximum per cable fiber count of more than 200 fibers. Loose-tube cables can be all-dielectric or optionally armored. The modular buffer-tube design permits easy drop-off of groups of fibers at intermediate points, without interfering with other protected buffer tubes being routed to other locations. The loose-tube design also helps in the identification and administration of fibers in the system.

Single-fiber tight-buffered cables are used as pigtails, patch cords and jumpers to terminate loose-tube cables directly into opto-electronic transmitters, receivers and other active and passive components.

Multi-fiber tight-buffered cables also are available and are used primarily for alternative routing and handling flexibility and ease within buildings.

2 - Loose-Tube Cable

In a loose-tube cable design, color-coded plastic buffer tubes house and protect optical fibers. A gel filling compound impedes water penetration. Excess fiber length (relative to buffer tube length) insulates fibers from stresses of installation and environmental loading. Buffer tubes are stranded around a dielectric or steel central member, which serves as an anti-buckling element.

The cable core, typically uses aramid yarn, as the primary tensile strength member. The outer polyethylene jacket is extruded over the core. If armoring is required, a corrugated steel tape is formed around a single jacketed cable with an additional jacket extruded over the armor.

Page 51: Fiber Optic Cable Splicing

Loose-tube cables typically are used for outside-plant installation in aerial, duct and direct-buried applications.

 

3 - Tight-Buffered Cable

With tight-buffered cable designs, the buffering material is in direct contact with the fiber. This design is suited for "jumper cables" which connect outside plant cables to terminal equipment, and also for linking various devices in a premises network.

Multi-fiber, tight-buffered cables often are used for intra-building, risers, general building and plenum applications.

The tight-buffered design provides a rugged cable structure to protect individual fibers during handling, routing and connectorization. Yarn strength members keep the tensile load away from the fiber.

As with loose-tube cables, optical specifications for tight-buffered cables also should include the maximum performance of all fibers over the operating temperature range and life of the cable. Averages should not be acceptable.

Connector Types 

Page 52: Fiber Optic Cable Splicing

Gruber Industriescable connectors

 

here are some common fiber cable types 

Distribution Cable 

Distribution Cable (compact building cable) packages individual 900µm buffered fiber reducing size and cost when compared to breakout cable. The connectors may be installed directly on the 900µm buffered fiber at the breakout box location. The space

Page 53: Fiber Optic Cable Splicing

saving (OFNR) rated cable may be installed where ever breakout cable is used. FIS will connectorize directly onto 900µm fiber or will build up ends to a 3mm jacketed fiber before the connectors are installed. Indoor/Outdoor Tight Buffer 

FIS now offers indoor/outdoor rated tight buffer cables in Riser and Plenum rated versions. These cables are flexible, easy to handle and simple to install. Since they do not use gel, the connectors can be terminated directly onto the fiber without difficult to use breakout kits. This provides an easy and overall less expensive installation. (Temperature rating -40ºC to +85ºC). Indoor/Outdoor Breakout Cable 

FIS indoor/outdoor rated breakout style cables are easy to install and simple to terminate without the need for fanout kits. These rugged and durable cables are OFNR rated so they can be used indoors, while also having a -40c to +85c operating temperature range and the benefits of fungus, water and UV protection making them perfect for outdoor applications. They come standard with 2.5mm sub units and they are available in plenum rated versions. Corning Cable Systems Freedm LST Cables 

Corning Cable Systems FREEDM® LST™ cables are OFNR-rated, UV-resistant, fully waterblocked indoor/outdoor cables. This innovative DRY™ cable with water blocking technology eliminates the need for traditional flooding compound, providing more efficient and craft-friendly cable preparation. Available in 62.5µm, 50µm, Singlemode and hybrid versions.

Page 54: Fiber Optic Cable Splicing

Krone Indoor Outdoor Dry Loose Tube Cable 

KRONE’s innovative line of indoor/outdoor loose tube cables are designed to meet all the rigors of the outside plant environment, and the necessary fire ratings to be installed inside the building. These cables eliminate the gel filler of traditional loose tube style cables with super absorbent polymers. Loose Tube Cable 

Loose tube cable is designed to endure outside temperatures and high moisture conditions. The fibers are loosely packaged in gel filled buffer tubes to repel water. Recommended for use between buildings that are unprotected from outside elements. Loose tube cable is restricted from inside building use, typically allowing entry not to exceed 50 feet (check your local codes). Aerial Cable/Self-Supporting 

Aerial cable provides ease of installation and reduces time and cost. Figure 8 cable can easily be separated between the fiber and the messenger. Temperature range ( -55ºC to +85ºC) Hybrid & Composite Cable 

Page 55: Fiber Optic Cable Splicing

Hybrid cables offer the same great benefits as our standard indoor/outdoor cables, with the convenience of installing multimode and singlemode fibers all in one pull. Our composite cables offer optical fiber along with solid 14 gauge wires suitable for a variety of uses including power, grounding and other electronic controls. Armored Cable 

Armored cable can be used for rodent protection in direct burial if required. This cable is non-gel filled and can also be used in aerial applications. The armor can be removed leaving the inner cable suitable for any indoor/outdoor use. (Temperature rating -40ºC to +85ºC) Low Smoke Zero Halogen (LSZH) 

Low Smoke Zero Halogen cables are offered as as alternative for halogen free applications. Less toxic and slower to ignite, they are a good choice for many international installations. We offer them in many styles as well as simplex, duplex and 1.6mm designs. This cable is riser rated and contains no flooding gel, which makes the need for a separate point of termination unnecessary. Since splicing is eliminated, termination hardware and labor times are reduced, saving you time and money. This cable may be run through risers directly to a convenient network hub or splicing closet for interconnection.

 

What's the best way to terminate fiber optic cable? That depends on the application, cost considerations and your own personal preferences. The following connector comparisons can make the decision easier.

Epoxy & Polish

Epoxy & polish style connectors were the original fiber optic connectors. They still represent the largest segment of

Page 56: Fiber Optic Cable Splicing

connectors, in both quantity used and variety available. Practically every style of connector is available including ST, SC, FC, LC, D4, SMA, MU, and MTRJ. Advantages include:

• Very robust. This connector style is based on tried and true technology, and can withstand the greatest environmental and mechanical stress when compared to the other connector technologies.• This style of connector accepts the widest assortment of cable jacket diameters. Most connectors of this group have versions to fit onto 900um buffered fiber, and up to 3.0mm jacketed fiber.• Versions are. available that hold from 1 to 24 fibers in a single connector.

Installation Time: There is an initial setup time for the field technician who must prepare a workstation with polishing equipment and an epoxy-curing oven. The termination time for one connector is about 25 minutes due to the time needed to heat cure the epoxy. Average time per connector in a large batch can be as low as 5 or 6 minutes. Faster curing epoxies such as anaerobic epoxy can reduce the installation time, but fast cure epoxies are not suitable for all connectors.

Skill Level: These connectors, while not difficult to install, do require the most supervised skills training, especially for polishing. They are best suited for the high-volume installer or assembly house with a trained and stable work force.

Costs: Least expensive connectors to purchase, in many cases being 30 to 50 percent cheaper than other termination style connectors. However, factor in the cost of epoxy curing and ferrule polishing equipment, and their associated consumables.

Pre-Loaded Epoxy or No-Epoxy & Polish

There are two main categories of no-epoxy & polish connectors. The first are connectors that are pre-loaded with a measured amount of epoxy. These connectors reduce the skill level needed to install a connector but they don't significantly reduce the time or equipment need-ed. The second category of connectors uses no epoxy at all. Usually they use an internal crimp mechanism to stabilize the fiber. These connectors reduce both the skill level needed and installation time. ST, SC, and FC connector styles are available. Advantages include:

• Epoxy injection is not required.

Page 57: Fiber Optic Cable Splicing

• No scraped connectors due to epoxy over-fill.• Reduced equipment requirements for some versions.

Installation Time: Both versions have short setup time, with pre-loaded epoxy connectors having a slightly longer setup. Due to curing time, the pre-loaded epoxy connectors require the same amount of installation time as standard connectors, 25 minutes for 1 connector, 5-6 minutes average for a batch. Connectors that use the internal crimp method install in 2 minutes or less.

Skill Level: Skill requirements are reduced because the crimp mechanism is easier to master than using epoxy. They provide maximum flexibility with one technology and a balance between skill and cost.

Costs: Moderately more expensive to purchase than a standard connector. Equipment cost is equal to or less than that of standard con¬nectors. Consumable cost is reduced to polish film and cleaning sup-plies. Cost benefits derive from reduced training requirements and fast installation time.

No-Epoxy & No-Polish

Easiest and fastest connectors to install; well suited for contractors who cannot cost-justify the training and supervision required for standard connectors. Good solution for fast field restorations. ST, SC, FC, LC, and MTRJ connector styles are available. Advantages include:• No setup time required.• Lowest installation time per connector.• Limited training required.• Little or no consumables costs.

Installation Time: Almost zero. Its less than 1 minute regardless of number of connectors.

Skill level: Requires minimal training, making this type of connector ideal for installation companies with a high turnover rate of installers and/or that do limited amounts of optical-fiber terminations.

Costs: Generally the most expensive style connector to purchase, since some of the labor (polishing) is done in the factory. Also, one or two fairly expensive installation tools may be required. However, it may still be less expensive on a cost-per-installed-connector basis due to lower labor cost.

Page 58: Fiber Optic Cable Splicing

A Pigtail is a short length of fiber with a factory fitted and polished connector. In the past these were used in preference to field terminations because of the complexities at the time of manually terminating optical fibers. These days pigtails are mainly used where the environment isn't suitable for manual terminations or where speed is a factor.

As with all fiber termination methods, safety is very important so first some safety tips.

* Always work in a clean and tidy area.

* Fiber offcuts are hard to see and can easily penetrate the skin especially if they get into your clothes, so care must be taken to ensure the safe disposal of all offcuts. Dispose of fiber scraps immediately using a suitable container and do not throw into a waste paper bin. * Because of the dangers of ingesting a fiber, do not eat or drink in the termination area.

* Fusion splicers use an electric arc to fuse the fibers together so they should never be used in an environment where flammable gases or liquids are present.* Never look into the end of a live fiber connector. Holding some multimode fibers up to a piece of paper may prove the presence of light and therefore prove that it is live, but it doesn't prove that it isn't live! Some laser powered equipment use light which is outside of the visible spectrum, so err on the side of caution.

Overview

A fusion splice is a way of joining two fiber cores by melting the ends together using an electric arc. A splicing machine is used because an extremely high degree of accuracy is needed, the machine first has to align the cores and then apply the exact amount of heat to melt the ends before pressing them together.

Splicing can be carried out using a mechanical splice but these only hold the fiber ends together, precisely aligned but not permanently joined.There are four basic steps to fusion splicing

1 - Strip back all coatings down to the bare fibers and clean using isopropyl alcohol.2 - Cleave the fibers using a precision cleaving tool and put the heat shrink tube on to one of the ends.3 - Fuse the fibers together in the fusion splicer.4 - Put the heat shrink protector on the fiber joint.

Fusion Splicing Method

Stripping

Page 59: Fiber Optic Cable Splicing

Strip back the external sheathing of the cable using a rotary stripping tool. Cut back the aramid strength member using ceramic or kevlar scissors.

Strip the primary buffer from the fiber using fiber strippers not ordinary wire strippers. Do this a small section at a time to prevent the fiber breaking, about 10mm (3/8 in) on each cut is fine until you get used to it. Strip back about 35mm (1.5 in).

Clean the bare fiber with a lint free wipe and isopropyl alcohol, it will "squeak" when it is clean.

Cleaving

The cleaver first scores the fiber and then pulls the fiber apart to make a clean break. It is important that the the ends are smooth and perpendicular to get a good joint, this is why a hand held cleaver will not do.

Cleavers vary from manufacturer to manufacturer and you should read the instructions for the one you are using. Basically the operation consists of putting the fiber into the groove and clamping, then close the lid and press the lever. Easy eh!Good cleaving tools can cost between $800 to $3000

The Fusion Process

Page 60: Fiber Optic Cable Splicing

Once the fiber ends are prepared they are placed in the fusion splicer. Press the button and the machine takes care of the rest of the fusion process automatically.

First the two fibers are aligned, you can see this on the photo where a much magnified image shows the two fiber ends. The display also shows how well the cleaver does its job of producing a perfect 90 degree cut.

If you watch very carefully in the video you can see the X and Y alignment that takes place. The splicer aligns the fibers on one axis and then from another camera angle set at at 90 degrees, it aligns the other axis. This high precision alignment is critical for a low loss joint, any mismatch of the fiber cores will significantly reduce the propagation of light through the joint.

Bearing in mind that we are dealing with two very small glass rods of only 125 microns in diameter, it brings it home as to how extremely accurate these machines are.

Once the fibers are aligned the splicer fires an electric arc between the two ends which melts them immediately and pushes them together, or fuses them into one piece of fiber.

The fusion splicer then tests for dB loss and tensile strength before giving the "OK" beeps for you to remove the splice from the machine.

Protection

Page 61: Fiber Optic Cable Splicing

The splicer in the video has a built in heat shrink oven, so when the fiber is taken out of the machine the protective tube is slid into place and the whole assembly is put into the oven to shrink the tube on to the splice.

The protective tube gives physical protection to the splice and further protection is provided by placing the splice into a splice tray.

 

Once all of the fibers have been joined the whole tray is then fixed into a splice box which protects the cable joint as a whole and the cable clamps are then tightened to prevent any external forces from pulling on the splices.

Fusion splicers are expensive and can cost between about $5,000 to over $30,000, so you need to be doing a lot of splicing to justify the initial outlay but, for a low loss and relatively fast connection it is the only tool for the job.

This tutorial should be read in conjunction with the video. Click Here

 

Page 62: Fiber Optic Cable Splicing