Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005...

36
kW fibre laser kW fibre laser Fiber Fiber lasers: The next generation lasers: The next generation David N Payne David N Payne Optoelectronics Research Centre Optoelectronics Research Centre and SPI Lasers and SPI Lasers No connection! No connection!

Transcript of Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005...

Page 1: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

kW fibre laserkW fibre laser

FiberFiber lasers: The next generationlasers: The next generationDavid N PayneDavid N Payne

Optoelectronics Research CentreOptoelectronics Research Centreand SPI Lasersand SPI Lasers

No connection!No connection!

Page 2: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

After the telecoms EDFAAfter the telecoms EDFAThe fibre laser The fibre laser –– another fibre revolution?another fibre revolution?

Fibre laser 1985Fibre laser 2006

21th anniversary of the invention of the diode-pumped silica fibre laser

Page 3: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

High power fiber lasersOFC 2005

GapontsevGapontsev’’ss LawLawFiber Laser Power doubles every year Fiber Laser Power doubles every year

Year1997 1998 1999 2000 2001 2002 2003 2004 2005

Pow

er [

W]

10

100

1000 Telecomboom &

bust

3 dB/year

4 dB/ye

ar

Major Players:•SPI•ORC•IPG•Jena

Power output limited by available diode pumps, not by fiber

Current record2.5kW (IPG)

1kW (DARPA and Southampton)

Page 4: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Fiber lasers withstand heat because:

Large surface areaCore is close to heatsinkGuided mode resists thermal distortionSilica has excellent heat resistance

What is a fibre laser?

PumpModule

PumpModule

PumpModule

PumpModule

Rod

Conventional Laser

•Mirror1 •Mirror2

Fibre laser (1986)

HEAT

Page 5: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Approaches to heat resistanceFibre Laser or Disk Laser?

The two newcomers

Long and thin? Or short and fat?

Page 6: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Why can a fiber take so much power?Scaling the core size for high power handling

Core area can be 400 times larger than for telecomsNon linear effects and damage scale with core area

10 kW should be possible!

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Slope efficiency: 83%

Sig

nal p

ower

[kW

]

Launched pump powwer [kW]

Measured Linear fit

Max power: 1.36 kW @1090 nmSlope efficiency: 83%Beam quality M2: 1.4

Launched pump power [kW]

Page 7: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Welding

Pacemakers Cutting

Printing/gravureStent manufacture

Superb beam quality and pointing accuracy at kW’sExcellent pulse stabilityHigh gain permits MOPA’s

High efficiency (>30% wall plug)Ease of thermalmanagementLow-cost medium

Monolithic robust structureSmall footprintCan be mobile/airborne

Unique advantages of fibre lasers

Marking

Page 8: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

-8 -6 -4 -2 0 2 4 6 8

1mm.mrad

1.0

Beam

siz

e in

mm

1.0

0

Distance from Beam Waist (mm)

DPSS

12.5mm.mradDisk

8mm.mrad1kW Fiber Laser 1mm.mrad

Beam waist = 200um diameter

Perfect Beam Quality:Smaller spot, greater target intensity or larger working distance

Users have never before had a toolwith such beam precision at high power

Page 9: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

The advantages of beam qualityThe advantages of beam qualityWelding at a distanceWelding at a distance

Page 10: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Disadvantages of Disadvantages of FiberFiber LasersLasersLong and thin gives:Long and thin gives:

Very high core intensity Very high core intensity –– damage, nonlinear damage, nonlinear limitations for pulsed applications (Brillouin, Kerr and limitations for pulsed applications (Brillouin, Kerr and Raman)Raman)Small active volume Small active volume –– low pulse energy (~10mJ)low pulse energy (~10mJ)Very high gain Very high gain –– can be difficult to stop spurious can be difficult to stop spurious lasinglasingPhotodarkeningPhotodarkening (if you are not careful!)(if you are not careful!)And And -- are they scalable to very high powers?are they scalable to very high powers?

But But –– we can use all the lowwe can use all the low cost cost fiberfiber telecom trickstelecom tricksSpecial Special fibersfibers, filters, compression, couplers, etc, filters, compression, couplers, etc

Page 11: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Some fibre tricks:All silica double-clad fibres for high power

Circular geometry100nm struts give NA>0.6

Square geometry2μm struts give NA=0.1

Page 12: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

What is a Cladding-Pumped Fiber Laser?

Rare-earth-doped core converts multimode pump energy to high brightness, diffraction-limited, signal beam

Outer cladding:Low-index polymer-

coating

Pump injection:End or side-

pumping

Inner cladding:Multimode waveguide

to trap pump lightCore:RE-doped, single-mode

waveguide

All-fiberintegration:e.g. grating

mirror

High power,high brightness

laser signalHigh power

diode pumps

Page 13: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

An elegant solution to pump injection:An elegant solution to pump injection:GTWaveGTWaveTMTM DoubleDouble--Clad Clad FiberFiber

Common low-indexpolymer cladding

Pump Fibers(Silica)

Yb-Doped (signal) fiber

Coating applicator

Furnace

3 x preforms

Diam ~1mm

4x high NAmultimodepump fiber

ports

Single mode laser fiber GTWave fiber

Page 14: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Strictly Private. Not to be distributed without prior consent of Southampton Photonics, Inc.

Power Scaling using a MOPA Chain

• Add one or more amplifiers • Retain all-fibre approach • Scalable to >1000W

Beam Delivery

Head

HR FBG ( >99% )

Output CouplerFBG

GTWave Seed

GTWave Amplifier

Beam-Combined Diode Pump Modules

Further power scaling currently requires spatialbeam combination and loss of beam quality

Page 15: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Strictly Private. Not to be distributed without prior consent of Southampton Photonics, Inc.

400W GTWave module

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

Pump power (% max)

Out

put p

ower

(W)

What is the optimum module power before beam combining?

Page 16: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

CW laser Configuration1.36 kW Yb1.36 kW Yb--doped fibre laser (Mdoped fibre laser (M²²=1.4)=1.4)633 W PM Yb633 W PM Yb--doped fibre laserdoped fibre laser188 W 1550 nm Er/Yb co188 W 1550 nm Er/Yb co--doped fibre laser (doped fibre laser (““eye safeeye safe””))75 W 2 75 W 2 µµm Ybm Yb--sensitized Tmsensitized Tm--doped fibre laserdoped fibre laser

CW MOPA Configuration402 W / 511 (PM / Non402 W / 511 (PM / Non--PM) singlePM) single--frequency Ybfrequency Yb--doped fibre MOPAdoped fibre MOPA151 W 1562 nm single151 W 1562 nm single--frequency Er/Yb cofrequency Er/Yb co--doped fibre MOPAdoped fibre MOPA

Pulsed120 W Q120 W Q--switched Ybswitched Yb--doped fibre laser (0.6/8.4 doped fibre laser (0.6/8.4 mJmJ/pulse)/pulse)60 W 4 60 W 4 psps 10 GHz Er/Yb 10 GHz Er/Yb codopedcodoped fibre MOPA (1550 nm)fibre MOPA (1550 nm)321 W 20 321 W 20 psps 1 GHz Yb1 GHz Yb--doped fibre MOPA (1060 nm)doped fibre MOPA (1060 nm)

Recent results at SouthamptonRecent results at Southampton

All pumped with 915 - 980nm laser diodes

Seed

Page 17: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

More wavelengths:More wavelengths:

‘‘EyeEye--safesafe’’ wavelengths > 1.5wavelengths > 1.5µµmm are are importantimportant

Technology alert

Page 18: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Diode stack@975 nm, 1.2 kW

Double-clad Er/Yb-doped fibre

HT @975 nm, ~1 μmHR @~1.5 μm

Signal output@1567 nm

HT @975 nm, ~1 μmHR @~1.5 μm

Emission@~1 μm

HT @975 nmHR @~1 μm

Unabsorbedpump

Emission@~1 μm

293 W

Latest 293W Latest 293W ‘‘EyeEye--safesafe’’ Er/Yb coEr/Yb co--doped doped fibre laserfibre laser

Er/Yb co-doped core ~30 μmFiber OD 600 μmLength 6 m

Page 19: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

HighHigh--power pulsed operationpower pulsed operation

• Fiber lasers typically limited to a few mJ and ~10kWpeak power

• A very large core volume increases stored energy • Leads to questions over packaging and mode control• Beam combination may be the answer• What can we do?

Page 20: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

J. Nilsson et al.Southampton University / Southampton Photonics

July 2004

1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

Pul

se e

nerg

y, m

J

Pump power, W

Pulsed 1550nm EYDF Pulsed 1550nm EYDF MOPAMOPA’’ss

100ns High-energyAmplified Q-switched fibre laser

1.0

0.8

0.6

0.4

0.2

0.0

Inte

nsity

(au

)

3020100-10-20-30

Delay (ps)

(b)

20ps/div

Input

25 W

60 W

(a)

4 ps 60W 10GHzAmplified gain-switched diode

1 mJ @1550 nm

Latest results: 321W (1060nm) 20ps 1GHz and now 300fs

Page 21: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

321 W average power, 1 GHz, 20 ps,1060 nm pulsed fibre MOPA source

Core-pumpedYDFA

Cladding-pumpedYDFA

GTWave®

975 nmpump

Unabsorbed pump

Double-cladYDF

Double-cladYDFCFBGDC

Bias

SeedLaser

90/10coupler

50/50coupler

HR@975 nmHT@1060 nm

HR@1060 nmHT@975 nm

HR@1060 nmHT@975 nm

200 mW5 mW

2 W

490 μW

1 GHz

975 nmpump

Gain-switched diode(Master-oscillator)

20 ps(after CFBG)

321 WPeak power 13kWPulse energy 0.26 μJSlope efficiency 78%

-80 -40 0 40 80

0.0

0.2

0.4

0.6

0.8

1.0

17.5 W 221 W

Nor

mal

ized

am

plitu

deTime delay [ps]

Page 22: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

delay (fs)

-1500 -1000 -500 0 500 1000 1500

sign

al

0.0

0.2

0.4

0.6

0.8

1.05 nJ410 nJ

For higher peak power we can usepulse compression tricks

Parabolic pulse amplification (fs)

• Broad gain bandwidth of Yb allowsamplification of ultrashort (~100fs) pulses

• Parabolic pulse formation exploits fibergain/nonlinearity to give high-powerlinearly-chirped pulses that can be compressed

>5MW peak power ~100fs pulses at 25W average power

T=110 fsP=5MW

Page 23: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

160W 300fs MOPA

Passively mode-locked 1055-nm VECSEL and Yb-fiber power amplifier

Pulsed: Higher average power

Page 24: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Amplified VECSL 160W fs source

-16 -12 -8 -4 0 4 8 12 16

0.0

0.2

0.4

0.6

0.8

1.0

λ = 1054.64nmΔλ = 0.45nm

FMHMGaussian = 4.00ps

Gaussian fit1.10 x FL

Nor

mal

ised

Sec

ond

Har

mon

ic s

igna

l

Time delay /ps

1053 1054 1055 1056

0

1

2

Opt

ical

Spe

ctru

m

Wavelength [nm]

4 ps, 910 MHZ pulses at 1055nm from a VECSEL

Fiber amplification up to 160 W plus temporal compression to 330 fs

L = 12 mLMA

Input pulse

Page 25: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

80 W average power green from a frequency-doubled picosecond Yb-doped

fiber MOPA source

More colours

Page 26: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

80W Green laser

Pulsed laser diode

Pum

p LD Pum

p LD

Pum

p LDYDF

YDF

FBGλ/2

Unabsorbed pump

PM YDF

LBO

λ/2

λ/2

975 nmPump LD

1060 nm

YDF

120MHz, 80ps, 1060nm seed

Length = 8 mCore diameter = 9 μmCladding = 400 μm

80W 530 nm

47% conversion efficiencyDiffraction limited (M2 ~ 1.15)

180W 0.5nm polarised beam M2<1.1

Page 27: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

OptoelectronicsResearchCentre

OptoelectronicsResearchCentreThe $300 laser lamp for projection displays?

Supercontinuum generation in highly nonlinear holey fibres

Megalumens!

Page 28: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

OptoelectronicsResearchCentre

OptoelectronicsResearchCentre

The Power LimitsThe Power Limits

How High Can We Go?How High Can We Go?

Page 29: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Nov. 27 2003

Thermal limits of single fiber lasers

Assumptions:

• JAC fiber, NA~0.44, 20μm air-gap.

• Surface temperature maintained at 25C by cooling

• Uniform heat dissipation along 10m device length

• Core and Inner Cladding dimensions scaled to maintain pump and signal intensities at a known safe level

Output power/kW

0 20 40 60 80 100

Cor

e:Ja

cket

tem

pera

ture

diff

eren

ce /

degC

0

200

400

600

800

Anticipated core temp limit

20kW?

Core

tem

pera

ture

deg

C

Fiber output power kW

Page 30: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Further Power Scaling: Fiber Design Is The Key

9/125 mm100W

Sizematters!

40/650 mm> 1kW

multi-modepump fiber

multi-modepump fiber

GTWave fiber

single-modesignal fiber

GTWavemulti-port fiber

Air cladAir cladHiHi--bibi

Multi coreMulti core

RibbonRibbon

Photonic Photonic BandgapBandgap

Page 31: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Towards a Megawatt CW?Towards a Megawatt CW?

FiberFiber lasers are ideal for power scaling by beam lasers are ideal for power scaling by beam combination because of their nearcombination because of their near--perfect beam perfect beam profiles and coherenceprofiles and coherenceImportant to maintain beam quality (MImportant to maintain beam quality (M²²~1)~1)Wavelength beam combination for industrial?Wavelength beam combination for industrial?Coherent beam combination looks attractive for Coherent beam combination looks attractive for military (Requires singlemilitary (Requires single--frequency and polarised frequency and polarised beams)beams)

Where have we got to?

Page 32: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Page 32

Beam ControlLaser Chiller

Prime Power

Laser DeviceFire Control

Who is interested?

Page 33: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Future Future SteerableSteerable 1 MW Design?1 MW Design?MultiMulti--path MOPApath MOPA

1000 WDFB fiber

laser

1000 W

1000 W

1000 W

Single-modeSingle-frequencySingle-polarization

Phase-coherentoutput for synthetic-aperture source

Lengths matched to within coherence length of source

Page 34: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

511W Single511W Single--Frequency MOPAFrequency MOPA

Output Power Backward Signal Power

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

Slope efficiency: 80%Max. power: >500 W

Sig

nal p

ower

[W]

Launched pump power [W]

Measured Linear fit

fiber Length 9mOD 650µmCore 43µm

-120-100 -80 -60 -40 -20 0 20 40 60 80 100 120-75

-70

-65

-60

-55

-50

-45

-40

Pow

er [d

B]

Frequency [kHz]

80 mW (seed) 264 W

But why was the Brillouin limit so high?

Linewidth <60kHzM² <1.6

Page 35: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

DiodepumpDiode

pump

Diodepump Diode

pump

Tm-dopedfibre Grating

R=45%Laseroutput

f=25mm

Wavelength (nm)1940 1950 1960 1970 1980 1990

Pow

er (a

.u.)

0

1

2

3

4

5

6

Wavelength-combining for high power industrial lasers?

• Could combine tens of fiberlasers as in telecom DWDM

• Retains beam quality• An advantage to have numerous

pump diode injection points

Page 36: Fiber lasers: The next generation - Eprints · 2019-03-13 · High power fiber lasers OFC 2005 Gapontsev’s Law Fiber Laser Power doubles every year Year 1997 1998 1999 2000 2001

Conclusions: A view from the cutting edgeConclusions: A view from the cutting edge

Fibre lasers are challenging conventional laser technology and Fibre lasers are challenging conventional laser technology and continue to gain market sharecontinue to gain market share

FiberFiber circuitry provides a unique highcircuitry provides a unique high--gain environment for robust gain environment for robust designs. Stable, reliable and reproducibledesigns. Stable, reliable and reproducible

The singleThe single--fiberfiber laser will reach 10kW sooner than you think!laser will reach 10kW sooner than you think!

MOPA configuration allows highlyMOPA configuration allows highly--controllable pulse and singlecontrollable pulse and single--frequency operationfrequency operation

With beam combination, the ideal laser for both industrial and With beam combination, the ideal laser for both industrial and defence applicationsdefence applications