Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25...

32
Feshbach resonance and BCS-BEC crossover Victor Gurarie Windsor, August 2012 1

Transcript of Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25...

Page 1: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Feshbach resonance and

BCS-BEC crossover

Victor Gurarie

Windsor, August 2012

1

Page 2: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Atomic gases 2

Very dilute gas of Li, K or Rb

Interparticle spacingd = 103 nm

De Broglie wavelength�dB =

hpmT

Condition of quantum degeneracy

�dB =hpmT

⇠ d T ⇠ h2

md2⇠ 1µK

d

hot

d

cold

Page 3: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Degenerate weakly interacting gases 3

Bosons:

• Integer spin• Symmetric wave function

Bose condensate

Fermions:

• Half-integer spin• Antisymmetric wave function

EF= kBTF

(two iso-spin states)

Degenerate Fermi gas: “Fermi condensate”

Bose Einstein

Fermi Dirac

Page 4: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Bose-Einstein condensate 4

Macroscopic occupation of the single particle ground state

# of particles # of particles with nonzero momentum

# of particles “in the condensate”, with zero momentum

N =X

i

1

ep2i

2mT � µT � 1

=

Zd3p

(2⇡)31

ep2

2mT � µT � 1

+N0

N0

TTc

Page 5: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

BEC detection 5

Time of flight measurement

Page 6: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

BEC detection 5

` =p

mt

Time of flight measurement

Page 7: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

6

2001

Cornell Wieman

June 1995 in 87Rb

Ketterle

September 1995 in 23Na

CU Boulder

MIT

First BEC

Page 8: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Atomic interactions 7

Atoms are neutral, no direct Coulomb interaction

Van der Waals attraction, hard core repulsion

U

r

Typical scattering lengthRe ⇡ 2.5 nm

a ⇠ Re

Re ⌧ d

Page 9: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Level structure of Lithium 8

6Li 3 protons + 3 electrons + 3 neutrons = fermionNuclear spin I=1, electronic spin S=1/2

Hyperfine interactions + magnetic fieldH = g ~S · ~I + µ ~B · ~S

Page 10: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Feshbach resonance 9

BSz =

1

2 Sz =1

2

Iz = 1 Iz = 0

Atoms in “open channel”

nucleus

electron

U

r

Page 11: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Feshbach resonance 9

BSz =

1

2 Sz =1

2

Iz = 1 Iz = 0

Atoms in “open channel”

nucleus

electron

U

r

Atoms in “closed channel”

Sz =1

2

Iz = 1 Iz = 1

U

r

Sz = �1

2

Page 12: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Feshbach resonance 9

BSz =

1

2 Sz =1

2

Iz = 1 Iz = 0

Atoms in “open channel”

nucleus

electron

U

rg ~S · ~I flips channels

Atoms in “closed channel”

Sz =1

2

Iz = 1 Iz = 1

U

r

Sz = �1

2

Page 13: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Notations 10

Sz =1

2

Iz = 1

Sz =1

2a"

Iz = 0

a#

Sz =1

2

Iz = 1 Iz = 1

U

r✏0

detuningmolecule

Sz = �1

2

b

Page 14: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Two channel model 11

Free motion of atoms Free motion of moleculesshifted by detuning Atomic-molecular interconversion

H =X

p,�=",#

p2

2ma†p,�ap,�+

X

q

✓✏0 +

q2

4m

◆b†q bq+

gpV

X

p,q

b†qa q2+p,"a q

2�p,# +X

p,q

bqa†q2�p,#a

†q2+p,"

!

Page 15: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Weak g limit 12

Free motion of atoms Free motion of moleculesshifted by detuning Atomic-molecular interconversion

H =X

p,�=",#

p2

2ma†p,�ap,�+

X

q

✓✏0 +

q2

4m

◆b†q bq+

gpV

X

p,q

b†qa q2+p,"a q

2�p,# +X

p,q

bqa†q2�p,#a

†q2+p,"

!

It is equivalent to noninteracting bosons with chemical potential 2μ and fermions, with chemical potential μ.

g->0 limit

H�µN =X

p,�=",#

p2

2ma†p,�ap,�+

X

q

✓✏0 +

q2

4m

◆b†q bq�µ

0

@X

p,�=",#a†p,�ap,� + 2

X

q

b†q bq

1

A

Page 16: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Weak g limit, zero temperature 13

H � µN =X

p,�=",#

✓p2

2m� µ

◆a†p,�ap,� +

X

q

✓✏0 +

q2

4m� 2µ

◆b†q bq

0!21

F

F

F

"

k

"

k(b)

"

k(a)

(c)

0!21

µ

"

"

µ

µ="

!2 01

✏0 > 2✏F No bosons, all particles are fermions. µ = ✏F

2✏F > ✏0 > 0 There are both fermions and bosons µ = ✏0/2

0 > ✏0 There are only bosons µ = ✏0/2 < 0

!0 ⌘ ✏0

Nb

✏02✏F

Page 17: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Scattering amplitude 14

H =X

p,�=",#

p2

2ma†p,�ap,�+

X

q

✓✏0 +

q2

4m

◆b†q bq+

gpV

X

p,q

b†qa q2+p,"a q

2�p,# +X

p,q

bqa†q2�p,#a

†q2+p,"

!

fp =1

� 1a + r0

p2

2 � ipScattering length a = � mg2

4⇡!0

Effective range r0 = � 8⇡

m2g2

!0 = ✏0 �g2m

2⇡2ReThe poles of the scattering amplitude with Re p=0, Im p > 0 correspond to the bound state of two atoms with the wave function

⇠ eip|r1�r2| exist only for a>0 or ω0<0

fp =1

g(p)� ip

g(p) = g0 + g2p2 + g4p

4 + . . .

generally

Page 18: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Small g behavior 15

H =X

p,�=",#

p2

2ma†p,�ap,�+

X

q

✓✏0 +

q2

4m

◆b†q bq+

gpV

X

p,q

b†qa q2+p,"a q

2�p,# +X

p,q

bqa†q2�p,#a

†q2+p,"

!

mean field theory bq ! �q,0B

H =X

p,�=",#

✓p2

2m� µ

◆a†p,�ap,�+V (✏0 � 2µ) BB+g

BX

p

ap,"a�p,# +BX

p

a†�p,#a†p,"

!

minimize the ground state energy@

@BEG.S.(B) = 0

!0 � 2µ =g2

2

Zd3p

(2⇡)3

2

6641r⇣

p2

2m � µ⌘2

+ g2B2

� 2m

p2

3

775

Zd3p

(2⇡)3

2

6641�p2

2m � µr⇣

p2

2m � µ⌘2

+ g2B2

3

775+ 2B2 = n

!0

Nb = B2Two important equations

zero g

nonzero g

Page 19: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

BCS-BEC crossover 16

BCS (Bardeen-Cooper-Schrieffer)superconductor

BEC (Bose-Einstein condensate) of the diatomic molecules

!0

H =X

p,�=",#

p2

2ma†p,�ap,�+

X

q

✓✏0 +

q2

4m

◆b†q bq+

gpV

X

p,q

b†qa q2+p,"a q

2�p,# +X

p,q

bqa†q2�p,#a

†q2+p,"

!

Page 20: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

One channel model limit 17

Interesting limit: ✏0 ! 1, g ! 1,g2

✏0= �

dbqdt

= i[H, bq] = �✏0bq �gpVa q

2+p,"a q2�p,# ⇡ 0

H =X

p,�=",#

p2

2ma†p,�ap,� � �

V

X

q,p,p0

a q2+p,"a q

2�p,#a†q2�p0,#a

†q2+p0,"

One channel model: interacting particles with variable attractive interactions

✏0

Page 21: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

The physics of one channel model 18

H =X

p,�=",#

p2

2ma†p,�ap,� � �

V

X

q,p,p0

a q2+p,"a q

2�p,#a†q2�p0,#a

†q2+p0,"

Critical interaction strength for two fermions to form a bound state � > �c

fp =1

� 1a � ip

Scattering amplitude of two atoms

a

�c

no bound states

bound states

Ebinding = � 1

ma2

(~r1 � ~r2) ⇠ e�|~r1�~r2|

a

a�1 = � 4⇡

m�+

1

r0

Page 22: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

One channel model: superconductor 19

H =X

p,�=",#

p2

2ma†p,�ap,� � �

V

X

q,p,p0

a q2+p,"a q

2�p,#a†q2�p0,#a

†q2+p0,"

n =

Zd3p

(2⇡)3

2

6641�p2

2m � µr⇣

p2

2m � µ⌘2

+�2

3

775 Δ - gap function

Unlike small g case, these equations are valid only for very small λ or very large λ

� m

4⇡a=

1

2

Zd3p

(2⇡)3

2

6641r⇣

p2

2m � µ⌘2

+�2

� 2m

p2

3

775

Page 23: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Small λ - BCS 20

Small λ - small and negative a - large integral - small Δ

Conventional weakly coupled superconductor

� m

4⇡a=

1

2

Zd3p

(2⇡)3

2

6641r⇣

p2

2m � µ⌘2

+�2

� 2m

p2

3

775

� ⇠ e⇡

4kF a

Page 24: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Large λ - BEC 21

Large λ - small and positive a.μ<0, |μ| >> Δ

� m

4⇡a=

1

2

Zd3p

(2⇡)3

"1

p2

2m + |µ|� 2m

p2

#

µ = � 1

2ma2

μ - binding energy of a diatomic moleculeThis is a Bose condensate of noninteracting (weakly interacting) diatomic molecules

� m

4⇡a=

1

2

Zd3p

(2⇡)3

2

6641r⇣

p2

2m � µ⌘2

+�2

� 2m

p2

3

775

It has a very high BEC transition temperature T ⇠ ~2m`2

If we arranged for this BEC among electrons in a solid, T would have been 10,000K

Page 25: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Chemical potential 22

µ

� 1

kFa

✏F

Page 26: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Unitary point 23

� ! �c a ! 1

a

�c

no bound states

bound states

fp = � 1

ip

The strongest possible scattering

Ground state energy is proportional to the Fermi energy in the absence of interactions

Eg = ⇠✏F

ξ is a constant which can be determined only numerically:

⇠ ⇡ 0.4

Page 27: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Transition temperature 24

Tc

� 1

kFa

Tc ⇠~2m`2

BCS: conventional superconductorBEC: weakly interacting diatomic molecules

Tc ⇠ ✏F e⇡

4kF a

T ⇤

Page 28: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

µ =4⇡ab(n/2)

m

RG picture of the BCS-BEC crossover

25

µ

Interaction strength

VacuumUnitary critical point

Noninteracting Fermi gas fixed

point

Fermi liquidBCS Molecular BEC

Sachdev, ’06Radzihovsky, ‘06

0 �

µ =

�3⇡2n

�2/3

2m

Page 29: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

µ =4⇡ab(n/2)

m

RG picture of the BCS-BEC crossover

25

µ

Interaction strength

VacuumUnitary critical point

Noninteracting Fermi gas fixed

point

Fermi liquidBCS Molecular BEC

Crossover

Sachdev, ’06Radzihovsky, ‘06

0 �

µ =

�3⇡2n

�2/3

2m

Page 30: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

µ = ⇥

�3⇤2n

⇥ 23

2m

µ =4⇡ab(n/2)

m

RG picture of the BCS-BEC crossover

25

µ

Interaction strength

VacuumUnitary critical point

Noninteracting Fermi gas fixed

point

Fermi liquidBCS Molecular BEC

Crossover

Sachdev, ’06Radzihovsky, ‘06

At unitarity

Universal critical amplitude

� ⇥ 0.3� 0.45

0 �

µ =

�3⇡2n

�2/3

2m

Page 31: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

Feshbach resonance for bosons 26

Molecular relaxation processes

Suppressed for fermions due to Pauli principle

Not suppressed for bosons

Results in the bosonic condensate lifetime close to resonance

⌧ ⇠ m`2

~That’s very short, less than a ms

These fly out of the condensate

Page 32: Feshbach resonance and BCS-BEC crossover · 2012-08-20 · RG picture of the BCS-BEC crossover 25 µ Interaction strength Unitary Vacuum critical point Noninteracting Fermi gas fixed

27

The end