FEM Zabaras DirectMethod-TrussAnalysis

55
C C O OR R N N E E L L L L  U N I V E R S I T Y 1 MAE 4700 – FE Analysi s for Mechanical & Aerospace Design N. Zabaras (9/7/2009) MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design Cornell University, Fall 2009 Nicholas Zabaras Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineeri ng 101 Rhodes Hall Cornell University Ithaca, NY 14853-3801

Transcript of FEM Zabaras DirectMethod-TrussAnalysis

Page 1: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 1/55

Page 2: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 2/55

CCOORRNNEELLLL U N I V E R S I T Y 2 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

• Many engineering

structures consist ofstraight members

connected at their ends

by bolts, pins or welding.

Truss analysis

• The truss element forms the

basic element of such

structures.

• It can only take forces alongits span (no moments).

Page 3: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 3/55

CCOORRNNEELLLL U N I V E R S I T Y 3 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss analysis

• Internal forces in a truss element act alongthe member

• However, displacements at the nodes canhave both components (x’- and y’-directions,

in local coordinates).

• This is due to rotation

'( ) '( )

1 20

e e

 y yF F = =

Page 4: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 4/55

CCOORRNNEELLLL U N I V E R S I T Y 4 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss analysis

• To analyze a trusselement in the globalcoordinates x and y , you

need to account for bothcomponents of

displacement:

• Also note that the crosssection of truss elements

can vary as shown.

( ) ( ) ( ) ( )

1 1 2 2, , ,

e e e e

  x y x yu u u u

Page 5: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 5/55

CCOORRNNEELLLL U N I V E R S I T Y 5 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Stiffness of a truss element• The internal force in the

truss is given (see free bodydiagram) as:

• Assuming elasticdeformations:

• The (small) strain is given as:

• Finally:

( ) ( )

2 1

e e e e e  p F F Aσ = = − =

( ) ( )

2 1

e e e e e e  p F F A E  ε = = − =

2 1

e ee

e

u u

 L

ε −

=

e p

( ) ( )

2 1 2 1

2 1

( )

( )

e ee e e e

e

e e e

 A E F F u u

 L

k u u

= − = − =

= −

( )

1

e

F ( )

2

e

( ) ( )( ) ( )

1 1

( ) ( ) ( ) ( )

2 2

e ee e

e e e e

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭e e

e

e

 A E k 

 L=

Page 6: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 6/55

CCOORRNNEELLLL U N I V E R S I T Y 6 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss element stiffness in local coordinates

• We can re-write theelement stiffness

equations as:

( )( ) ( )

'( ) '( )

1 1

'( ) '( )

1 1( )

'( ) '( )2 2

'( ) '( )

2 2

[ ' ]{ ' } { ' }

1 0 1 0

0 0 0 0

1 0 1 00 0 0 0

ee e

e e

 x x

e e

 y ye

e e x x

e e

 y y

K F d 

F u

F uk 

F u

F u

⎧ ⎫ ⎧ ⎫−⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬

⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

'( ) ( ) '( ){ } [ ' ]

e e eF K d =

'( ) '( )( ) ( )1 1

'( ) ( ) ( ) '( )

2 2

e ee e x x

e e e e

 x x

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

'( ) '( )

1 20

e e

 y yF F = =

Notice (as it should be) that:

Page 7: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 7/55

CCOORRNNEELLLL U N I V E R S I T Y 7 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Element stiffness in global coordinates

• We need to be able totransform displacementsfrom the x’ and y’ axes to

displacements along the x and y axes. We start withthe reverse:

Transformation matrix T (e)

( ) ( )( )

'( ) ( )

1 1'( ) ( )

1 1

'( ) ( )

2 2

'( ) ( )2 2

{ }{ ' }

cos sin 0 0sin cos 0 0

0 0 cos sin

0 0 sin cos

e ee

e ee e

 x xe ee e

 y y

e e e e

 x x

e ee e y y

T  d d 

u u

u u

u u

u u

φ φ φ φ 

φ φ 

φ φ 

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

The angle is measuredanti-clockwise from

x to x’ 

eφ 

Page 8: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 8/55

CCOORRNNEELLLL U N I V E R S I T Y 8 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Coordinate transformation

 

( ) ( )( )

'( ) ( )

1 1'( ) ( )

1 1

'( ) ( )

2 2

'( ) ( )2 2

[ ] { }{ ' }

cos sin 0 0sin cos 0 0

0 0 cos sin

0 0 sin cose ee

e ee e

 x xe ee e

 y y

e e e e

 x x

e ee e y y

T  d d 

u u

u u

u u

u u

φ φ φ φ 

φ φ 

φ φ 

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

{ ' } [ ]{ }e e e

d T d =

{ } [ ] { ' }e e T ed T d =

:

[ ] [ ] [ ]e T e

 Note that 

T T I =

Page 9: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 9/55

CCOORRNNEELLLL U N I V E R S I T Y 9 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

4 4

cos sin 0 0 cos sin 0 0

sin cos 0 0 sin cos 0 0

0 0 cos sin 0 0 cos sin

0 0 sin cos 0 0 sin cos

1 0 0 0

0 1 0 00 0 1 0

0 0 0 1

T ee

e e e e

e e e e

e e e e

e e e e

T T 

 I 

φ φ φ φ  

φ φ φ φ  

φ φ φ φ  

φ φ φ φ  

×

⎡ ⎤ ⎡ ⎤−

⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

 

Coordinate transformation

Verify that: 4 4[ ] [ ] [ ]e T e

 xT T I =

Page 10: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 10/55

CCOORRNNEELLLL U N I V E R S I T Y 10 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Stiffness of a truss element

• Similarly for the forces:

( )

'( ) ( )

1 1

'( ) ( )

1 1

'( ) ( )

2 2

'( ) ( )

2 2

[ ]{ ' } { }

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cosee e

e ee e x x

e ee e y y

e e e e

 x x

e ee e

 y y

T F F 

F F 

F F 

F F 

F F 

φ φ 

φ φ 

φ φ 

φ φ 

⎧ ⎫ ⎧ ⎫⎡ ⎤

⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪

⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

{ } [ ] { ' }e e T e

F T F =

{ ' } [ ]{ }e e e

F T F =

Page 11: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 11/55

CCOORRNNEELLLL U N I V E R S I T Y 11

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Stiffness of a truss element

• Usingand the transformation

equations,

we can write thestiffness in the x,y 

system as follows:

'( ) ( ) '( )

{ } [ ' ]

e e e

F K d =

'( ) ( ) ( )

{ } [ ]e e e

F T F ='( ) ( ) ( )

{ } [ ]e e e

d T d =

{ }( ) ( ) ( ) ( ) ( )[ ] [ ' ][ ]

e e e e eT F K T d  = ⇒

( ) ( ) ( ) ( )

[ ] [ ] [ ' ][ ]e e T e e

K T K T  =

{( )

( ) ( ) ( ) ( ) ( )

[ ]

[ ] [ ' ][ ]

e

e e T e e e

F T K T d  = ⇒

{'( ) ( ) '( )

{ } [ ' ]e e e

F K d = ⇒

Page 12: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 12/55

CCOORRNNEELLLL U N I V E R S I T Y 12 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss element stiffness( ) ( ) ( ) ( )

[ ] [ ] [ ' ][ ]

e e T e e

K T K T  =

( ) ( )

1 0 1 0

0 0 0 0

[ ' ] ,1 0 1 0

0 0 0 0

e e

K k 

−⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥−⎢ ⎥⎣ ⎦

( )

cos sin 0 0

sin cos 0 0

[ ] 0 0 cos sin

0 0 sin cos

e e

e e

e

e e

e e

φ φ 

φ φ 

φ φ 

φ φ 

⎡ ⎤⎢ ⎥−⎢ ⎥=

⎢ ⎥⎢ ⎥⎢ ⎥−⎣ ⎦

2 2

2 2

( ) ( )

2 2

2 2

cos sin cos cos sin cos

sin cos sin sin cos sin[ ]

cos sin cos cos sin cossin cos sin sin cos sin

e e e e e e

e e e e e e

e e

e e e e e e

e e e e e e

K k 

φ φ φ φ φ φ  

φ φ φ φ φ φ  

φ φ φ φ φ φ  φ φ φ φ φ φ  

⎡ ⎤− −⎢ ⎥

− −⎢ ⎥= ⎢ ⎥− −⎢ ⎥

⎢ ⎥− −⎣ ⎦

Page 13: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 13/55

Page 14: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 14/55

CCOORRNNEELLLL U N I V E R S I T Y 14 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Assembly process

• The assembly process is identical to theone discussed for `spring structures’ and it

will not be repeated here in its general

form (no need to show at this pointcomplicated looking matrix operations).

• We will however provide soon a simpleexample demonstrating this assembly

process.

Page 15: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 15/55

CCOORRNNEELLLL U N I V E R S I T Y 15 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Generalizing the application of essential BCs

• You already have seen through an examplehow essential boundary conditions are

applied to the global system of eqs:

• In essence, we partition the stiffness matrix

in a way that separates known from unknown

degrees of freedom as follows:

[ ]{ } { }K d F =

 E   E EF    E 

  EF F F   F 

K K  f d 

K K d  f 

⎧ ⎫⎡ ⎤ ⎧ ⎫=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭

: E d  Known displacements

:F 

d  Unknown displacements

: E 

 f  Unknown reaction forcescorresponding tonodes/directionswith prescribed displacement

:F  f  Applied (known) forces

Page 16: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 16/55

CCOORRNNEELLLL U N I V E R S I T Y 16 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Generalizing the application of essential BCs

 E   E EF    E 

  EF F F   F 

K K  f d 

K K d  f ⎧ ⎫⎡ ⎤ ⎧ ⎫ = ⇒⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 E   E EF F E  

T  E   EF F F F  

K d K d f  

K d K d f  

+ =+ =

The unknown displacements are obtained from the 2nd eq. as:

1( )

T T  E E 

  EF F F F F F F EF  

K d K d f d K f K d  −+ = ⇒ = −

With known , we can return to the 1st eq. to compute thereaction forces:

 E   E EF F   E   f K d K d  = +

F d 

Note that the matrix is symmetric and positive definite,

so a solution for always exists!

F K 

F d 

Page 17: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 17/55

CCOORRNNEELLLL U N I V E R S I T Y 17 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example

• Construct the global stiffness matrix and load vector

• Partition the matrices and solve for the unknowndisplacements at point B, and displacement in x

direction at point D.• Find the stresses in the three bars

• Find the reactions at C, D and F

E = 107Pa

Note that point D isfree to move in the x direction

1 2 3

1,2 3,4 5,6

7,8

1 210 A A

−≡ =

22 A A=

3 A A=

Page 18: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 18/55

CCOORRNNEELLLL U N I V E R S I T Y 18 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Element 1

(1)

1/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2 1/ 2 1/ 2

[ ]1/ 2 1/ 2 1/ 2 1/ 22

1/ 2 1/ 2 1/ 2 1/ 2

 EAK 

− −⎡ ⎤⎢ ⎥− −⎢ ⎥=⎢ ⎥− −⎢ ⎥− −⎣ ⎦

1 2 7 8

12

7

8

(1) 0135φ  =

Note: Recall that you can number the corresponding global nodes in the

sequence 7 8 1 2 without any changes in .

(1)

[ ]K 

Page 19: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 19/55

CCOORRNNEELLLL U N I V E R S I T Y 19 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Element 2

(2)

0 0 0 0

0 2 2 0 2 2

[ ] 0 0 0 02

0 2 2 0 2 2

 EA

⎡ ⎤⎢ ⎥

−⎢ ⎥= ⎢ ⎥

⎢ ⎥⎢ ⎥−⎣ ⎦

3 4 7 8

3

4

7

8

090φ  =

22 A A=

3,4

Page 20: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 20/55

CCOORRNNEELLLL U N I V E R S I T Y 20 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Element 3

(3)

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2[ ]

1/ 2 1/ 2 1/ 2 1/ 221/ 2 1/ 2 1/ 2 1/ 2

 EAK 

− −⎡ ⎤⎢ ⎥− −⎢ ⎥=

⎢ ⎥− −⎢ ⎥− −⎣ ⎦

5 6 7 8

5

6

78

0

45φ  =

3 A A=

Page 21: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 21/55

CCOORRNNEELLLL U N I V E R S I T Y 21

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Assembly (element 1)

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 20 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0[ ]

0 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

 EAK 

− − −⎡ ⎤⎢ ⎥− −⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥=⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥− −⎢ ⎥

− −⎢ ⎥⎣ ⎦

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(1)

1/2 1/ 2 1/2 1/ 21/2 1/ 2 1/ 2 1/ 2

[ ]1/2 1/ 2 1/ 2 1/ 22

1/2 1/ 2 1/ 2 1/ 2

 EAK 

− −⎡ ⎤⎢ ⎥− −⎢ ⎥=⎢ ⎥− −⎢ ⎥

− −⎣ ⎦

1 2 7 8

12

7

8

Page 22: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 22/55

CCOORRNNEELLLL U N I V E R S I T Y 22 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Assembly (element 2)

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 20 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 2 2[ ]

0 0 0 0 0 0 0 02

0 0 0 0 0 0 0 0

1/ 2 1/ 2 0 0 0 0 1/ 2 0 1/ 2 0

1/ 2 1/ 2 0 2 2 0 0 1/ 2 1/ 2 2 2

 EAK 

− − −⎡ ⎤⎢ ⎥

− −⎢ ⎥⎢ ⎥⎢ ⎥

−⎢ ⎥= ⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥− + − +⎢ ⎥⎢ ⎥− − − +⎣ ⎦

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

( 2 )

0 0 0 0

0 2 2 0 2 2[ ]

0 0 0 02

0 2 2 0 2 2

 EAK 

⎡ ⎤⎢ ⎥

−⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥−⎣ ⎦

3 4 7 8

3

4

7

8

Page 23: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 23/55

CCOORRNNEELLLL U N I V E R S I T Y 23 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Assembly (element 3)

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 20 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 2 2[ ]

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 0 0 1/ 2 1/ 2 1/ 2 0 1/ 2 1/ 2 0 1/ 2

1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 2 2 1 / 2

 EAK 

− − −⎡ ⎤⎢ ⎥

− −⎢ ⎥⎢ ⎥⎢ ⎥

−⎢ ⎥= ⎢ ⎥− −

⎢ ⎥− −⎢ ⎥⎢ ⎥− − − + + − + +⎢ ⎥⎢ ⎥− − − − − + + +⎣ ⎦

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

(3)

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2[ ]

1/ 2 1/ 2 1/ 2 1/ 22

1/ 2 1/ 2 1/ 2 1/ 2

 EAK 

− −⎡ ⎤⎢ ⎥− −⎢ ⎥=⎢ ⎥− −⎢ ⎥− −⎣ ⎦

5 6 7 8

56

7

8

Page 24: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 24/55

CCOORRNNEELLLL U N I V E R S I T Y 24 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

A truss example: Assembly

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 20 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 2 2[ ]

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

 EAK 

− − −⎡ ⎤⎢ ⎥

− −⎢ ⎥⎢ ⎥⎢ ⎥

−⎢ ⎥= ⎢ ⎥− −

⎢ ⎥− −⎢ ⎥⎢ ⎥− − −⎢ ⎥⎢ ⎥− − − − +⎣ ⎦

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Page 25: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 25/55

CCOORRNNEELLLL U N I V E R S I T Y 25 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

1

2

3

4

5

6

7

8

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

0 0 0 0 0 0 0 0 0

00 0 0 2 2 0 0 0 2 2

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2 0

1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

d  EA

− − −⎡ ⎤ =⎧⎢ ⎥ ⎪− − =⎢ ⎥ ⎪⎢ ⎥ ⎪ =

⎢ ⎥ ⎪ =− ⎪⎢ ⎥⎨⎢ ⎥− − ⎪⎢ ⎥⎪− − =⎢ ⎥

⎢ ⎥− − −⎢ ⎥⎢ ⎥− − − − + ⎩⎣ ⎦

1

2

3

4

6

3

0

10

0

 Nt 

⎧ ⎫⎫⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪

⎪ ⎪⎪⎪⎪ ⎪⎬⎨ ⎬⎪⎪ ⎪⎪⎪ ⎪

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

⎭⎩ ⎭

A truss example: Partition and BCs

A l P i i d BC

Page 26: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 26/55

CCOORRNNEELLLL U N I V E R S I T Y 26 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

1

2

3

4

6

5

7

8

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

0 0 0 0 0 0 0 0 0

00 0 0 2 2 0 0 0 2 2

00 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

d  EA

− − −⎡ ⎤ =⎧⎢ ⎥ ⎪− − =⎢ ⎥ ⎪⎢ ⎥ ⎪ =

⎢ ⎥ ⎪ =− ⎪⎢ ⎥⎨⎢ ⎥ =− − ⎪⎢ ⎥

− −⎢ ⎥

⎢ ⎥− − −⎢ ⎥⎢ ⎥− − − − − + ⎩⎣ ⎦

1

2

3

4

6

3

0

10

0

 Nt 

⎧ ⎫⎫⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪

⎪ ⎪⎪⎪⎪ ⎪⎬⎨ ⎬⎪⎪ ⎪

⎪ ⎪⎪ ⎪

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

⎭⎩ ⎭

A truss example: Partition and BCs

[ ] E 

[ ]F K 

[ ] EF K 

[ ] EF 

K  F  f 

 E  f 

0 E d  =

F d 

A l P i i d BC

Page 27: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 27/55

CCOORRNNEELLLL U N I V E R S I T Y 27 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

 

5

3

7

8

01/ 2 1/ 2 1/ 2

1/ 2 1 0 102

01/ 2 0 1 2 2

F F F 

d   f K 

d  EA

d Nt 

⎡ ⎤ ⎧ ⎫− − ⎧ ⎫⎢ ⎥ ⎪ ⎪ ⎪ ⎪− =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− + ⎩ ⎭ ⎩ ⎭⎣ ⎦

A truss example: Partition and BCs

5

7

8

0.038284

0.0332840.005

d  m

d mmd 

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪

=⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

A l R i l l i

Page 28: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 28/55

CCOORRNNEELLLL U N I V E R S I T Y 28 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

1

2

3

4

6

5

7

8

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

1/ 2 1/ 2 0 0 0 0 1/ 2 1/ 2 0

0 0 0 0 0 0 0 0 0

00 0 0 2 2 0 0 0 2 2

00 0 0 0 1/ 2 1/ 2 1/ 2 1/ 22

0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 0 0 1/ 2 1/ 2 1 0

1/ 2 1/ 2 0 2 2 1/ 2 1/ 2 0 1 2 2

d  EA

− − −⎡ ⎤ =⎧⎢ ⎥ ⎪− − =⎢ ⎥ ⎪⎢ ⎥ ⎪ =

⎢ ⎥ ⎪ =− ⎪⎢ ⎥⎨⎢ ⎥ =− − ⎪⎢ ⎥⎪− −⎢ ⎥

⎢ ⎥− − −⎢ ⎥⎢ ⎥− − − − + ⎩⎣ ⎦

1

2

3

4

6

3

0

10

0

 Nt 

⎧ ⎫⎫⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪

⎪ ⎪⎪⎪⎪ ⎪⎬⎨ ⎬⎪⎪ ⎪⎪⎪ ⎪

⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

⎭⎩ ⎭

A truss example: Reaction calculation

[ ] E 

[ ]F K 

[ ] EF 

[ ] EF 

K  F  f 

 E  f 

0 E d  =

F d 

 E   E EF F   E 

  f K d K d  = +

A t l R ti l l ti

Page 29: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 29/55

CCOORRNNEELLLL U N I V E R S I T Y 29 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

 

 

1

52

3 7

4 8

6

0 1/ 2 1/ 2

0 1/ 2 1/ 2

0 0 02

0 0 2 2

1/ 2 1/ 2 1/ 2 F 

 E  EF 

 f  K 

d r  EA

r d 

r d 

⎡ ⎤−⎧ ⎫⎢ ⎥

⎪ ⎪ − ⎧ ⎫⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= ⇒⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪

−⎢ ⎥ ⎩ ⎭⎪ ⎪

⎢ ⎥⎪ ⎪ − −⎩ ⎭ ⎣ ⎦

A truss example: Reaction calculation

1

2

3

4

6

1000

10000

1000

0

Fx

Fy

Cx

Cy

 Dy

 Rr  Nt 

 Rr  Nt r R

 Nt r R

r R

⎧ ⎫ −⎧ ⎫ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪

⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪≡ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭ ⎩ ⎭

A t l C t th t

Page 30: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 30/55

CCOORRNNEELLLL U N I V E R S I T Y 30 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

cos sin cos sin { }e

e e e e e e

e

 E d 

 Lσ φ φ φ φ  ⎡ ⎤= − −⎣ ⎦

A truss example: Compute the stresses

' ' ' '

2 1 2 1e e e ee e e  x x x x

e eu u u u E 

 L Lε σ − −= ⇒ =

Combining the 2 Eqs gives:{ }

ed 

'( ) ( )

1 1

'( ) ( )

1 1

'( ) ( )2 2

'( ) ( )

2 2

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

e ee e x x

e ee e y y

e e e e x x

e ee e

 y y

u u

u u

u u

u u

φ φ 

φ φ 

φ φ 

φ φ 

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

However:

A t l C t th t

Page 31: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 31/55

CCOORRNNEELLLL U N I V E R S I T Y 31

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

cos sin cos sin { }

ee e e e e e

e

 E 

d  Lσ φ φ φ φ  ⎡ ⎤= − −⎣ ⎦

A truss example: Compute the stresses

• Applying this to each element, we have:(1)

0

02 2 2 2141.421

0.0382842 2 2 22

0.005

 E kPa

m

m

σ 

⎧ ⎫⎪ ⎪⎡ ⎤ ⎪ ⎪

= − − = −⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪

⎪ ⎪⎩ ⎭

[ ](2)

0

00 1 0 1 50

0.033284

0.005

  E kPam

m

σ 

⎧ ⎫⎪ ⎪⎪ ⎪

= − =⎨ ⎬⎪ ⎪

⎪ ⎪⎩ ⎭

(3)

0.038284

02 2 2 20

0.0332842 2 2 22

0.005

m

 E kPa

m

m

σ 

⎧ ⎫⎪ ⎪⎡ ⎤ ⎪ ⎪

= − − =⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪

⎪ ⎪

⎩ ⎭

Th di i l ( ) t t t

Page 32: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 32/55

CCOORRNNEELLLL U N I V E R S I T Y 32 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Three-dimensional (space) truss structures

• The local stiffness eqs are exactly as

before, i.e.

• However, we now have to includedisplacements and forces in the x, y and z 

axes.

'( ) '( )( ) ( )

1 1

'( ) ( ) ( ) '( )

2 2

,

e ee e

 x x

e e e e

 x x

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

( ) e eee

 A E k  L

=

Th di i l ( ) t t t

Page 33: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 33/55

CCOORRNNEELLLL U N I V E R S I T Y 33 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Three-dimensional (space) truss structures

'( ) '( )( ) ( )

1 1

'( ) ( ) ( ) '( )

2 2

e ee e

 x x

e e e e

 x x

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

• A unit vector along the direction x’ of a 3D trusselement has the components (direction cosines of

the axes between x’ and x,y,z, respectively):

where are the nodal

coordinates in the (x,y,z) system.

2 1 2 1 2 1

2 1 2 1 2 1

2 2 2

, ,

( ) ( ) ( )

s s s

e e e e e e

e e e

e e e

e e e e e e e

  x x y y z zl m n

  L L L

  L x x y y z z

− − −= = =

= − + − + −

1 1 1 22 2( , , ) ( , , )

e e e e e e  x y z and x y z

Th di i l ( ) t t t

Page 34: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 34/55

CCOORRNNEELLLL U N I V E R S I T Y 34 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Three-dimensional (space) truss structures

'( ) '( )( ) ( )

1 1'( ) ( ) ( ) '( )

2 2

e ee e

 x xe e e e

 x x

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

• The displacement transformation then takes the form:

• Similar transformation is applied for the forces:

 

( )

1

( )

1

'( ) ( )

1 1

'( ) ( )

2 2

( )[ ] 2

( )

2

{ }

0 0 0[ ]{ }

0 0 0

s s s

s s s

e

e

e

 x

e

 y

e e ee e

 x z e e

e e e e e

 x x

eT   y

e

 z

u

ul m nu u

T d u l m n u

u

u

⎧ ⎫⎪ ⎪

⎪ ⎪⎪ ⎪⎡ ⎤⎧ ⎫⎪ ⎪ ⎪ ⎪= ≡⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦

⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

'( )

1

'( )

2

[ ]{ }

e

 x e e

e

 x

F T F 

⎧ ⎫⎪ ⎪=⎨ ⎬

⎪ ⎪⎩ ⎭

Three dimensional (space) truss structures

Page 35: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 35/55

CCOORRNNEELLLL U N I V E R S I T Y 35 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Three-dimensional (space) truss structures

'( ) '( )( ) ( )

1 1

'( ) ( ) ( ) '( )

2 2

e ee e

 x x

e e e e

 x x

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

• Similarly to the derivation for 2D trusses, the stiffnessmatrix in global coordinates is then:

     

6 6 6 2 2 62 2

[ ] [ ] { } [ ]e T e e

  x x x x

K T K T  ≡

Stiffness of a space element

Page 36: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 36/55

CCOORRNNEELLLL U N I V E R S I T Y 36 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Stiffness of a space element

2 2

2 2

2 2

( )

2 2

2 2 2

[ ]

s s s s s s s s s s

s s s s s s s s s s

s s s s s s s s s s

s s s s s s s s s s

s s s s s s s s s s

s s s

e e e e e e e e e e

e e e e e e e e e e

e e e e e e e e e ee e

e

e e e e e e e e e e e

e e e e e e e e e e

e e e

l m l n l l m l n l

m l m m n m l m m n

n l m n n n l m n n E A

K   L l m l n l l m l n l

m l m m n m l m m n

n l m

− − −

− − −

− − −

= − − −

− − −

− −2 2

s s s s s s se e e e e e en n n l m n n

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥−⎣ ⎦

2 1 2 1 2 1

2 1 2 1 2 1

2 2 2

: , ,

( ) ( ) ( )

s s s

e e e e e e

e e ee e e

e e e e e e e

  x x y y z zwhere l m n

  L L L

  L x x y y z z

− − −= = =

= − + − + −

Computing the stresses in a space truss element

Page 37: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 37/55

CCOORRNNEELLLL U N I V E R S I T Y 37 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

{ }s s s s s s

ee e e e e e e e

e

 E l m n l m n d  

 Lσ  ⎡ ⎤= − − −⎣ ⎦

Computing the stresses in a space truss element

' '

2 1

' '

' '2 1

2 1( )

e ee x x

e

e e ee e e e x x

 x xe e

u u

 L

u u E   E u u

 L L

ε 

σ 

= ⇒

−= = −

Combining the 2 Eqs gives:

( )

1

( )

1

'( ) ( )1 1

'( ) ( )

2 2

( )

2

( )

2

0 0 0[ ]{ }

0 0 0

s s s

s s s

e

 x

e

 y

e e ee e x z e e

e e e e e

 x x

e

 y

e

 z

u

u

l m nu uT d 

u l m n u

u

u

⎧ ⎫⎪ ⎪⎪ ⎪

⎪ ⎪⎡ ⎤⎧ ⎫⎪ ⎪ ⎪ ⎪= ≡⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦

⎪ ⎪

⎪ ⎪⎪ ⎪⎩ ⎭

However:

Accounting for thermal effects in truss analysis

Page 38: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 38/55

CCOORRNNEELLLL U N I V E R S I T Y 38 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Accounting for thermal effects in truss analysis

• Consider a truss structure that is heated. We need to

account for thermal expansion effects. Note:

• Hooke’s law is now modified as follows (using the x’coordinate system):

2 1( ) ( )e e

e e e e e e e e e

elastic thermal e

total strain

u u  E E E T

 L

−= = − = − Δσ ε ε ε α  

0

( ) ( ) 2 12 1

2 1 0

( )

( ) ,

e

e e

e e e e e e e e e

e

e ee e e e e e e

e

u uF F p A A E T   L

 A E k u u A E k  

 L

ε 

σ α 

ε 

−= − = = = − Δ =

= − − =

( ) ( )( ) ( )

1 1

0( ) ( ) ( ) ( )

2 2

l n

1

1

e ee e

e e e

e e e e

Therma odal vector 

F uk k  A E 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤− −⎧ ⎫⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

−⎩ ⎭⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

ε 

e e eelastic thermal

total strain

ε ε ε = +

Element equations with thermal effects

Page 39: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 39/55

CCOORRNNEELLLL U N I V E R S I T Y 39 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Element equations with thermal effects

• Expanding these equations to include nodal displacements

in the y ’ axis gives:

• We need to transform this to x and y displacements (ourdegrees of freedom for this element)

( )( ) ( )

'( ) '( )

1 1

'( ) '( )

1 1( )

0'( ) '( )

2 2

'( ) '( )

2 2

{ ' } [ ' ]{ ' } { ' }

1 1 0 1 0

0 0 0 0 0

1 1 0 1 0

0 0 0 0 0e ethermale e

e e

 x x

e e

 y ye e e e

e e

 x x

e e

 y y

F K F d 

F u

F u  A E k  

F u

F u

⎧ ⎫ ⎧ ⎫− −⎧ ⎫ ⎡ ⎤

⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩ ⎭

ε 

{ ' } [ ]{ }e e e

d T d = { ' } [ ]{ }e e e

F T F =

Element equations with thermal effects

Page 40: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 40/55

CCOORRNNEELLLL U N I V E R S I T Y 40 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Element equations with thermal effects

• We can transform these element equations as follows:

• From these equations, we conclude that:

( )( ) ( )

'( ) '( )

1 1

'( ) '( )

1 1( )

0'( ) '( )

2 2

'( ) '( )

2 2

{ ' } [ ' ]{ ' } { ' }

1 1 0 1 00 0 0 0 0

1 1 0 1 0

0 0 0 0 0

e ethermale e

e e

 x x

e e

 y ye e e e

e e

 x x

e e

 y y

F K F d 

F u

F u  A E k  

F u

F u

⎧ ⎫ ⎧ ⎫

− −⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎢ ⎥−⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩ ⎭

ε 

{ ' } [ ]{ }

e e e

d T d =

{ ' } [ ]{ }e e e

F T F =

( )[ ]{ } { ' } [ ' ][ ]{ }

e e e e e e

thermalT F F K T d  + =

( )

( )

[ ]{ }

{ } [ ] { ' } [ ] [ ' ][ ]{ }

eethermal

e e T e e T e e e

thermal

K F 

F T F T K T d  + =

Element equations with thermal effects

Page 41: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 41/55

CCOORRNNEELLLL U N I V E R S I T Y 41

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Element equations with thermal effects

( )

( )

[ ]{ }

{ } [ ] { ' } [ ] [ ' ][ ]{ }

eethermal

e e T e e T e e e

thermal

K F 

F T F T K T d  + =

( )

( ) 2 21

( ) 2 21

( )0( ) 2

2

( )

2

{ }{ }

cos cos sin cos cos sin cos

sin sin cos sin sin cos sin

cos cos sin cos

sin

eethermal

e e e e e e e e x

e e e e e e e e y

e e e ee e e e

 x

ee

 y

F F 

F   A E k  

⎧ ⎫ ⎧ ⎫− − −⎪ ⎪ ⎪ ⎪

− − −⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ − −⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

φ φ φ φ φ φ φ  

φ φ φ φ φ φ φ  ε 

φ φ φ 

φ  

( ) ( )

( )

1

( )

1

2 ( )

2

2 2 ( )

2

[ ]

cos sin cos

sin cos sin sin cos sin

e e

e

 x

e

 y

e e e e e

 x

e e e e e e e

 y

K  d 

u

u

u

u

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪

⎢ ⎥ ⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥− −⎣ ⎦ ⎩ ⎭

φ φ φ φ  

φ φ φ φ φ φ  

( )

cos sin 0 0

sin cos 0 0[ ]

0 0 cos sin

0 0 sin cos

e e

e ee

e e

e e

⎡ ⎤⎢ ⎥−⎢ ⎥= ⎢ ⎥

⎢ ⎥⎢ ⎥−⎣ ⎦

φ φ 

φ φ 

φ φ 

φ φ 

Use:

Finally we obtain:

(for 2D trusses)

Element equations with thermal effects

Page 42: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 42/55

CCOORRNNEELLLL U N I V E R S I T Y 42 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Element equations with thermal effects

What do you need to do to account for thermal effects in truss analysis?

For each truss element that is heated, simply add to the element force, thefollowing extra term

You will need to define at which truss elements thermal effects take place and foreach of them read the values and

0 0

{ }

cos

sin,

cos

sin

ethermal

e

e

e e e e e e

e

e

  A E where T  

φ 

φ ε ε α 

φ 

φ 

⎧ ⎫−⎪ ⎪−⎪ ⎪

= Δ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

eα  .e

T Δ

Principle of minimum potential energy

Page 43: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 43/55

CCOORRNNEELLLL U N I V E R S I T Y 43 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Principle of minimum potential energy

• An alternative equivalent approach to solvingmany structural problems is the principle of

minimum potential energy.

From all the possible compatible displacements of a structure, the one that 

minimizes the total potential energy is the exact solution.

Potential energyfor givendisplacements

= Strain energyfor these givendisplacements

- Work done by externalloads on these givendisplacements

Principle of minimum potential energy

Page 44: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 44/55

CCOORRNNEELLLL U N I V E R S I T Y 44 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Principle of minimum potential energy

• Let us see this principle applied to the truss

problems discussed earlier.

{ }

'( ) '( ) '( ) '( )

1 1 2 2

( / )

,

1( )

2

min

e

e e e e

d  e

e e e e e e e e

  x x x x

 External Work  Elastic strain energy density

work volume

PE PE U W  

PE dV F u F uσ ε Ω

= −

= − +

Assemblyprocess

Principle of minimum potential energy

Page 45: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 45/55

CCOORRNNEELLLL U N I V E R S I T Y 45 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Principle of minimum potential energy

• Lets apply this principle to one trusselement. We need to minimize with respect

to the nodal displacements (local

coordinates) Recall that:'( ) '( )1 2, .e e x xu u

'

2 1'

,

e ee e e e x x

e

u u E 

 L

ε σ ε −

= =

 

2 '( ) '( ) '( ) '( )

1 1 2 2

'

2 '( ) '( ) '( ) '( )2 1

1 1 2 2

'

1

2

'1( )

2

e

ee

e e e e e e e e

  x x x x

e ee e e e e e x x

  x x x xe

 A dx

PE E dV F u F u

u u  E dV F u F u

 L

ε Ω

Ω

= − − =

−− −

Principle of minimum potential energy

Page 46: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 46/55

CCOORRNNEELLLL U N I V E R S I T Y 46 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Principle of minimum potential energy

' '1 2 1 2

'

2 '( ) '( ) '( ) '( )2 1

1 1 2 2

, ' , '

'1( )

2min min

e e e e  x x x x

e ee e e e e e e e x x

  x x x xeu u u u

u uPE E A L F u F u

 L

−= − −

• Take partial derivatives of wrt :ePE '

1 2, 'e e

 x xu u

' '( )

1 2 1

1

0 ( ' ) 0

'

e e ee e e

  x x xe e

 x

PE E Au u F 

u L

∂= ⇒ − − =

∂' '( )

2 1 2

2

0 ( ' ) 0'

e e ee e e

  x x xe e

 x

PE E Au u F 

u L

∂= ⇒ − − =

'( ) '( )( ) ( )

1 1'( ) ( ) ( ) '( )

2 2

e ee e

 x xe e e e

 x x

F uk k 

F k k u

⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪⇒ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

These are the same Eqs as those obtained with the direct method!

Principle of minimum potential energy

Page 47: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 47/55

CCOORRNNEELLLL U N I V E R S I T Y 47 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

• In general (not just for mechanicsproblems!), the principle of minimum

potential energy takes the following form:

or after assembly:

• Note that the mimimization gives us the

familiar solution:

Principle of minimum potential energy

( ) ( ) ( )

{ } { }

1{ } [ ]{ } { } { }

2min min

e e T e e T  

d d e e

PE d K d d F  ⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

{ } { }

1{ } [ ]{ } { } { }

2min min

T T 

d d 

d K d d F  

PE 

⎛ ⎞= −⎜ ⎟

⎝ ⎠

[ ]{ } { }K d F =

Principle of minimum potential energy

Page 48: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 48/55

CCOORRNNEELLLL U N I V E R S I T Y 48 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Principle of minimum potential energy

• We will not use this method to repeat the trusscalculations.

• However, it will be our starting point for computingthe stiffness of beam elements (lecture 4).

• The method of minimum potential energy can beapplied to many problems not related to mechanics – however there are many problems where thistechnique is not applicable.

• After discussing beam bending problems, we will

need to look for more powerful (`unfortunately’ alsomore mathematical) methods (weak (Galerkin)formulations).

Revisiting the 2-node truss element

Page 49: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 49/55

CCOORRNNEELLLL U N I V E R S I T Y 49 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Revisiting the 2-node truss element

• Up to now we used the direct method to express the nodal loads vs.

nodal displacements for the 2-node truss element.• Let us linearly interpolate the displacement of any point x’ in the

element in terms of the nodal displacements:

 

 

( ) ( )1 2

'( )

'( ) '( ) '( ) ( ) ( )11 2 '( )

2

' ' ' '(1 ) [1 , ] [ ] { }

e e

e

e e e e e x  x x xe e e e e

 x basis functionsmatrix N N 

 Nodaldisplacements

element basis functions

u  x x x xu u u N d    L L L L u

⎧ ⎫= − + = − =⎨ ⎬

⎩ ⎭

• The strain in this 2-node element can nowbe computed as follows:

'

'

ee x

du

dxε  =

' ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

[ ]{ }[ ]{ } [ ]{ } [ ]{ }

' ' '

e e e e

e e e e e e e x x

du d N d dN  u N d d B d  

dx dx dxε = ⇒ = = = ≡

 

'( ) '( ) '( )( ) ( )( ) 1 2 11 2

'( )

2

1 1 1 1[ ] [ , ] [ , ] [ , ]

' '

e e ee ee e x x x

e e e e ee

 xGradient of basis functions

matrix

u u udN dN   B

dx dx L L L L Luε 

⎧ ⎫ −= = − ⇒ = − =⎨ ⎬

⎩ ⎭

• This is exactly the sameapproximation we usedbefore (constant strain

element)

'( )e

 xu

Revisiting the 2-node truss element

Page 50: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 50/55

CCOORRNNEELLLL U N I V E R S I T Y 50 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Revisiting the 2-node truss element

• Let us use these interpolation formulas , to

express the potential energy in a format that will become very familiaras we proceed forward in this course.

• For now these calculations are identical to our earlier approach! Indeed:

{ } { } 

{ } { }

2 '( ) '( ) '( ) '( )

1 1 2 2

( ) ( ) '( ) '( ) '( ) '( )

1 1 2 2

'

( ) ( )

[ ]

1

2

1[ ] [ ]

2

1[ ] [ ]2

e

ee

T ee

e

e

e e e e e e e e

  x x x x

T e e T e e e e e e e e

  x x x x

 A dx

T e e T e e e e

K   Element stiffness

matrix

PE E dV F u F u

d B E B d dV F u F u

d B E B dV d  

ε ε 

ε Ω

Ω

Ω

= − − =

− − =

⎡ ⎤

= −⎢ ⎥⎣ ⎦

'( ) '( ) '( ) '( )

1 1 2 2

e e e e

  x x x xF u F u−

'( ) ( ) ( )[ ]{ }

e e eu N d = ( ) ( )

[ ]{ }e e e

 B d ε  =

 0 0

1

1 11 1[ ] [ ] [ ] [ ] [ ] ' [ , ] '

1 1 1

e e

e

e

 L L e eee e T e e e e T e e e e e

e e e

e k 

 A E  LK B E B dV B E B A dx E A dx

  L L L

 LΩ

⎡ ⎤−⎢ ⎥ −⎡ ⎤

= = = − =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦

∫ ∫ ∫

Truss analysis with displacement constraints

Page 51: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 51/55

CCOORRNNEELLLL U N I V E R S I T Y 51

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss analysis with displacement constraints

• Up to this point, we imposed essential boundary conditions

in terms of prescribed x - or y - nodal displacements. How

about if the support is inclined as in the figure below:

• Here, we don’t know the displacements at node 1 but we

know the relation between u 1x and u 1y . In general we writethese constrains on our nodal degrees of freedom as:Cd=q.

For this problem, the constraint is thatthere is no normal displacement

at the support 1

Truss analysis with displacement constraints

Page 52: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 52/55

CCOORRNNEELLLL U N I V E R S I T Y 52 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss analysis with displacement constraints

• Note that at node 1 we don’t have essential boundary

conditions – we have a displacement constraint.

• To solve this problem we use the principle of minimumpotential energy with the constraint Cd=q :

• Here, we enforce the constraint using Lagrange multipliers.

Find d and λ such that

{ }int

inint

1min { } [ ]{ } { } { } { } ([ ]{ } { })

2

T T T 

d  Lagrange Constramultiplier Potential energyenforcingof unconstra ed the constrasystem

  L d K d d F C d q= − + −

λ 

Truss analysis with displacement constraints

Page 53: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 53/55

CCOORRNNEELLLL U N I V E R S I T Y 53 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Truss analysis with displacement constraints

• λ is the Lagrange multiplier that enforces the constraint – itis nothing else but the reaction force at node 1 (normal tothe support!)

• Minimization is now performed with respect to both d and λ.

Find d and λ such that

0

T  d F K C 

qC 

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⇒⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ λ 

{ }

int

inint

1min { } [ ]{ } { } { } { } ([ ]{ } { })2

T T T 

d  Lagrange Constramultiplier Potential energyenforcingof unconstra ed the constrasystem

  L d K d d F C d q= − + −

λ 

Apply essential boundary conditionsand then solve for {dF} and λ

(here, reaction force at node 1)

Displacement constraints: Implementation

Page 54: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 54/55

CCOORRNNEELLLL U N I V E R S I T Y 54 

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/7/2009) 

Displacement constraints: Implementation

• How do you implement this in the MatLab

libraries of HW1?

• Introduce the constraints in the InputData.m and thenmodify the stiffness and load vectors in the NodalSoln.m.

• Apply the essential boundary conditions first before you

augment the reduced global equations (Kf) with theLagrange multiplier.

% Read information for constraints

C = zeros(1,neq-length(debc)); %The dimension of C is neq minus the% prescribed DOF via essential BCs% Here there is only one constraint

C(1) = sin(pi/6); C(2) = cos(pi/6);q = 0;

InputData.m

1 1sin 30 cos 30 0 x y

u u+ =

Displacement constraints: NodalSoln.m

Page 55: FEM Zabaras DirectMethod-TrussAnalysis

8/9/2019 FEM Zabaras DirectMethod-TrussAnalysis

http://slidepdf.com/reader/full/fem-zabaras-directmethod-trussanalysis 55/55

CCOORRNNEELLLLMAE 4700 FE Analysis for Mechanical & Aerospace Design

Displacement constraints: NodalSoln.mfunction [d, rf, lambda] = NodalSoln(K, R, debc, ebcVals, C, q)

% K=global stiffness, R=global force, debc=degrees of freedom with specified values, ebcVals=specified displacements

dof = length(R); % Extract the total degreess-of-freedom

df = setdiff(1:dof, debc); % Sets the difference between two sets of indices, i.e. the global degrees of freedom minus the% degrees of freedom with prescribed essential boundary conditions

Kf = K(df, df); % Remove eqs. corresponding to prescribed displacements

Rf = R(df) - K(df, debc)*ebcVals; % Modify the remaining load vector to account for the essential boundary conditions

[m n] = size(C); % Extract number of constraints

Kf = [Kf C'; % Augment global equations with the Lagrange multipliersC zeros(m)];

Rf = [Rf;q]; % Augment load vector

dfVals = Kf\Rf; % Solve the linear system of equations. Here for simplicity, we use Gauss elimination.

d = zeros(dof,1); % Restore the solution vector (i.e. include back the nodes with prescribed displacements).d(debc) = ebcVals; % Use the originally established ordering of the nodes.d(df) = dfVals(1:(length(dfVals)-m));

rf = K(debc,:)*d - R(debc); % Calculate the reaction vector at nodes with prescribed displacements

lambda = dfVals((length(dfVals)-m+1):length(dfVals)); % Calculate Langrange multipliers (reactions at nodes with constraints)

0

T  d F K C 

qC  λ 

⎛ ⎞⎛ ⎞ ⎛ ⎞=

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠