feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and...

290
Risk Measures and Optimal Portfolio Selection (with applications to elliptical distributions) Jan Dhaene § Emiliano A. Valdez Tom Hoedemakers § § Katholieke Universiteit Leuven, Belgium University of New South Wales, Sydney, Australia Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 1/278

Transcript of feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and...

Page 1: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

Risk Measures and Optimal Portfolio Selection(with applications to elliptical distributions)

Jan Dhaene§

Emiliano A. Valdez‡

Tom Hoedemakers§

§ Katholieke Universiteit Leuven, Belgium‡University of New South Wales, Sydney, Australia

� �� � ��� � � � � � �� �� � �� � � �� � � � � �� �� �� � � � � � � �� �

� �� � � �� � � �� � �� � � � ! � � "� � � � �

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 1/278

Page 2: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

Table of Contents:1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-482 Comonotonicity and Optimal Portfolio Selection............................................ pp. 49-883 Elliptical Distributions - An Introduction........................................................ pp. 89-1034 Tail Conditional Expectations for Elliptical Distributions.............................. pp. 104-1195 Bounds for Sums of Non-Independent Log-Elliptical Random Variables.... pp. 120-1426 Capital Allocation and Elliptical Distributions.............................................. pp. 143-1597 Convex Bounds for Scalar Products of Random Variables (With Applications to Loss

Reserving and Life Annuities).................................................................... pp. 160-278

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 2/278

Page 3: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

#$% & '() * # *+ ,) - *. /) % *) %

Lecture No. 1Solvency Capital, Risk Measures andComonotonicity

Jan Dhaene

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 3/278

Page 4: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

012 3 456 7 0 78 96 : 7; <6 2 76 2

Risk measures

• Risk : random future loss.• Risk Measure: mapping from the set of quantifiable risks to

the real line:X → ρ(X).

• Actuarial examples:◦ premium principles,◦ technical provisions (liabilities),◦ solvency capital requirements.

• In sequel: ρ(X) measures the ”upper tails” of the d.f.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 4/278

Page 5: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

=>? @ ABC D = DE FC G DH IC ? DC ?

Insurance company risk taxonomy

• Financial risks:◦ asset risks (credit risks, market risks),◦ liability risks (non-cathastrophic risks, catastrophic

risks).• Operational risks:◦ business risks,◦ event risks.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 5/278

Page 6: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

JKL M NOP Q J QR SP T QU VP L QP L

Required vs. available capital

• Required capital : required assets ρ(X) minus liabilitiesL(X), to ensure that obligations can be met:

K(X) = ρ(X)− L(X).

• Different kinds of capital :◦ regulatory capital: you must have,◦ rating agency capital: you are expected to have,◦ economic capital: you should have,◦ available capital: you actually have.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 6/278

Page 7: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

WXY Z [\] ^ W ^_ `] a ^b c] Y ^] Y

Required vs. available capital

• Parameters:◦ default probability,◦ time horizon,◦ run-off vs. wind-up vs. going concern,◦ valuation of liabilities: mark-to-model,◦ valuation of assets: mark-to-market.

• Total balance sheet capital approach:

ρ(X) = L(X) +K(X).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 7/278

Page 8: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

def g hij k d kl mj n ko pj f kj f

The quantile risk measure

• Quantiles:

Qp(X) = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1).

F (x)X

Q (X)

1

p

p x

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 8/278

Page 9: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

qrs t uvw x q xy zw { x| }w s xw s

The quantile risk measure

• Determining the required capital by

K(X) = Q0.99(X)− L(X),

we have

K(X) = inf {K | Pr [X > L(X) +K] ≤ 0.01} .

• Qp(X) = F−1X (p) = V aRp(X).

• Meaningful when only concerned about ”frequency ofdefault” and not ”severity of default”.

• Does not answer the question ”how bad is bad?”

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 9/278

Page 10: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

~�� � ��� � ~ �� �� � �� �� � �� �

Tail Value-at-Risk and Conditional Tail Expectation

• Tail Value-at-Risk :

TV aRp(X) =1

1− p

∫ 1

pQq(X) dq, p ∈ (0, 1).

• Determining the required capital by

K(X) = TV aR0.99(X)− L(X),

we define ”bad times” if X in ”cushion”[Q0.99(X), TV aR0.99(X)].

• Conditional Tail Expectation:

CTEp(X) = E [X | X > Qp(X)] , p ∈ (0, 1) .

• CTEp = expectation of the top (1− p)% losses.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 10/278

Page 11: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

��� � ��� � � �� �� � �� �� � �� �

Relations between risk measures

• Expected Shortfall :

ESFp(X) = E[(X −Qp(X))+

], p ∈ (0, 1).

• ESFp(X) = expectation of shortfall in case required capitalK(X) = Qp(X)− L(X).

• Relations:

TV aRp(X) = Qp(X) +1

1− pESFp(X),

CTEp(X) = Qp(X) +1

1− FX(Qp(X))ESFp(X),

CTEp(X) = TV aRFX(Qp(X))(X).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 11/278

Page 12: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

��� � ��� � � �  ¡� ¢ �£ ¤� � �� �

Relations between risk measures

• When FX is continuous:

CTEp(X) = TV aRp(X).

F (x)X

Q (X)

1

p

p xTVaR (X)p

ESF (X)p

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 12/278

Page 13: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¥¦§ ¨ ©ª« ¬ ¥ ¬­ ®« ¯ ¬° ±« § ¬« §

Normal random variables

• Let X ∼ N(µ, σ2

).

• Quantiles:Qp(X) = µ+ σ Φ−1 (p) .

where Φ denotes the standard normal distribution function.• Expected Shortfall :

ESFp(X) = σ Φ′ (Φ−1 (p))− σ Φ−1 (p) (1− p) .

• Conditional Tail Expectation:

CTEp(X) = µ+ σΦ′ (Φ−1 (p)

)

1− p .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 13/278

Page 14: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

²³´ µ ¶·¸ ¹ ² ¹º »¸ ¼ ¹½ ¾¸ ´ ¹¸ ´

Lognormal random variables

• Let lnX ∼ N(µ, σ2

).

• Quantiles:

Qp(X) = eµ+σ Φ−1(p).

• Expected Shortfall :

ESFp(X) = eµ+σ2/2 Φ(σ − Φ−1(p)

)

−eµ+σ Φ−1(p) (1− p) .

• Conditional Tail Expectation:

CTEp(X) = eµ+σ2/2 Φ(σ − Φ−1(p)

)

1− p .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 14/278

Page 15: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¿ÀÁ Â ÃÄÅ Æ ¿ ÆÇ ÈÅ É ÆÊ ËÅ Á ÆÅ Á

Risk measures and ordering of risks

• Ordering of risks:◦ Stochastic dominance:

X ≤st Y ⇔ FX(x) ≥ FY (x) for all x.

◦ Stop-loss order:

X ≤sl Y ⇔ E[(X − d)+] ≤ E[(Y − d)+] for all d.

◦ Convex order:

X ≤cx Y ⇔ X ≤sl Y and E[X] = E[Y ].

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 15/278

Page 16: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÌÍÎ Ï ÐÑÒ Ó Ì ÓÔ ÕÒ Ö Ó× ØÒ Î ÓÒ Î

Risk measures and ordering of risks

• Stochastic dominance vs. ordered quantiles:

X ≤st Y ⇔ Qp(X) ≤ Qp(Y ) for all p ∈ (0, 1).

• Stop-loss order vs. ordered TVaR’s:

X ≤sl Y ⇔ TV aRp(X) ≤ TV aRp(Y ) for all p ∈ (0, 1).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 16/278

Page 17: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÙÚÛ Ü ÝÞß à Ù àá âß ã àä åß Û àß Û

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 18: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

æçè é êëì í æ íî ïì ð íñ òì è íì è

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 19: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

óôõ ö ÷øù ú ó úû üù ý úþ ÿù õ úù õ

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 20: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � ��� � � � � � �� �� � �� �

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 21: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� ��� � � � �� � �� �� � �� �

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 22: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� �� ! � ! " # $ !% & � ! �

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 23: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

'( )* +,- . ' . / 0- 1 .2 3- ) .- )

Comonotonicity

• A set S ⊂ Rn is comonotonic⇔for all x and y in S either x ≤ y or x ≥ y holds.

• A comonotonic set is a “thin” set.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 17/278

Page 24: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

45 67 89: ; 4 ; < =: > ;? @: 6 ;: 6

Comonotonicity

• A random vector (X1, . . . , Xn) is comonotonic⇔(X1, . . . , Xn) has a comonotonic support.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 18/278

Page 25: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

AB CD EFG H A H I JG K HL MG C HG C

Comonotonicity

• A random vector (X1, . . . , Xn) is comonotonic⇔(X1, . . . , Xn) has a comonotonic support.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 18/278

Page 26: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

NO PQ RST U N U V WT X UY ZT P UT P

Comonotonicity

• A random vector (X1, . . . , Xn) is comonotonic⇔(X1, . . . , Xn) has a comonotonic support.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 18/278

Page 27: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

[\ ]^ _`a b [ b c da e bf ga ] ba ]

Comonotonicity

• A random vector (X1, . . . , Xn) is comonotonic⇔(X1, . . . , Xn) has a comonotonic support.

• Comonotonicity is very strong positive dependencystructure.

• Comonotonic r.v.’s are not able to compensate each other.• (Y c

1 , . . . , Ycn ) is the ‘comonotonic counterpart’ of (Y1, . . . , Yn).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 18/278

Page 28: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

hi jk lmn o h o p qn r os tn j on j

Characterizations of comonotonicity

• Notations:◦ U : uniformly distributed on the (0, 1).◦ X = (X1, . . . , Xn) .

• Comonotonicity of a random vector :X is comonotonic

⇔ Xd=(F−1

X1(U), . . . , F−1

Xn(U))

⇔ There exists a r.v. Z, and non-decreasing functions

f1, . . . , fn such that Xd= (f1(Z), · · · , fn(Z)),

⇔ Pr [X ≤ x] = min {FX1(x1), FX2

(x2), . . . , FXn(xn)}.

• The Fréchet bound :Pr [Y ≤ x] ≤ min {FY1

(x1), FY2(x2), . . . , FYn

(xn)}.The upper bound is reachable in the class of randomvectors with given marginals.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 19/278

Page 29: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

uv wx yz{ | u | } ~{ � |� �{ w |{ w

Comonotonicity and correlation

• Corr[X,Y ] = 1⇒ (X,Y ) is comonotonic.• The class of all random couples with given marginals◦ always contains comonotonic couples,◦ does not always contain perfectly correlated couples.

• Risk sharing schemes:

X =

{Z, Z ≤ dd, Z > d,

Y =

{0, Z ≤ dZ − d, Z > d.

X and Y are comonotonic, but not perfectly correlated.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 20/278

Page 30: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Comonotonic bounds for sums of dependent r.v.’s

• Theorem: For any (X1, X2, . . . , Xn) and any Λ, we have

n∑

i=1

E [Xi | Λ] ≤cx

n∑

i=1

Xi ≤cx

n∑

i=1

F−1Xi

(U).

• Notations:◦ S =

∑ni=1Xi.

◦ Sl =∑n

i=1E [Xi | Λ] = lower bound.◦ Sc =

∑ni=1 F

−1Xi

(U) = comonotonic upper bound.

• If all E [Xi | Λ] are↗ functions of Λ,then Sl is a comonotonic sum.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 21/278

Page 31: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Risk measures and comonotonicity

• Additivity of risk measures of comonotonic sums:

Qp(

n∑

i=1

Xci ) =

n∑

i=1

Qp(Xi).

TV aRp(n∑

i=1

Xci ) =

n∑

i=1

TV aRp(Xi).

• Sub-additivity of risk measures: Any risk measure that◦ preserves stop-loss order◦ is additive for comonotonic risks

is sub-additive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).• Examples:◦ TailVaRp is sub-additive.◦ CTEp, Qp and ESFp are NOT sub-additive.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 22/278

Page 32: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� ��  ¡¢ £ � £ ¤ ¥¢ ¦ £§ ¨¢ � £¢ �

Distortion risk measures

• Expectation of a r.v.:

E[X] = −∫ 0

−∞[1− FX(x)] dx+

∫ ∞

0FX(x) dx,

with FX(x) = Pr[X > x].

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 23/278

Page 33: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

©ª «¬ ­®¯ ° © ° ± ²¯ ³ °´ µ¯ « °¯ «

Distortion risk measures

F (x)X

x

I

II

1

0

E[X] = I − II

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 24/278

Page 34: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¶· ¸¹ º»¼ ½ ¶ ½ ¾ ¿¼ À ½Á ¼ ¸ ½¼ ¸

Distortion risk measures

• Expectation of a r.v.:

E[X] = −∫ 0

−∞[1− FX(x)] dx+

∫ ∞

0FX(x) dx,

with FX(x) = Pr[X > x].• Distortion function:g : [0, 1]→ [0, 1] is a distortion function⇔ g is↗, g(0) = 0 and g(1) = 1.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 25/278

Page 35: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÃÄ ÅÆ ÇÈÉ Ê Ã Ê Ë ÌÉ Í ÊÎ ÏÉ Å ÊÉ Å

Distortion risk measures: g(x) concave⇒ g(x) ≥ x

1

0 x1

g(x)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 26/278

Page 36: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÐÑ ÒÓ ÔÕÖ × Ð × Ø ÙÖ Ú ×Û ÜÖ Ò ×Ö Ò

Distortion risk measures

• Expectation of a r.v.:

E[X] = −∫ 0

−∞[1− FX(x)] dx+

∫ ∞

0FX(x) dx,

with FX(x) = Pr[X > x].• Distortion function:g : [0, 1]→ [0, 1] is a distortion function⇔ g is↗, g(0) = 0 and g(1) = 1.

• Distortion risk measure:

ρg[X] = −∫ 0

−∞

[1− g

(FX(x)

)]dx+

∫ ∞

0g(FX(x)

)dx.

ρg[X] = “distorted expectation” of X.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 27/278

Page 37: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÝÞ ßà áâã ä Ý ä å æã ç äè éã ß äã ß

Distortion risk measures: g(x) ≥ x

F (x)X

g(F (x))X

x

II

1

0

E[X] = I − (II+II')

ρ [X] = (I+I') − II ≥ E[X]g

I'

II'

I

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 28/278

Page 38: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

êë ìí îïð ñ ê ñ ò óð ô ñõ öð ì ñð ì

Examples of distortion risk measures

• Expectation: X → E[X].

g(x) = x, 0 ≤ x ≤ 1.

1

0 x1

g(x)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 29/278

Page 39: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

÷ø ùú ûüý þ ÷ þ ÿ �ý � þ� �ý ù þý ù

Examples of distortion risk measures

• The quantile risk measure: X → Qp(X).

g(x) = I (x > 1− p) , 0 ≤ x ≤ 1.

1

0 x1

g(x)

1−p

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 30/278

Page 40: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � � � � � � � �� � � � �

Examples of distortion risk measures

• Tail Value-at-Risk : X → TV aRp(X).

g(x) = min

(x

1− p, 1), 0 ≤ x ≤ 1.

1

0 x1

g(x)

1−p

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 31/278

Page 41: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Examples of distortion risk measures

• Conditional Tail Expectation: X → CTEp(X).is NOT a distortion risk measure.

• Expected Shortfall : X → ESFp(X).is NOT a distortion risk measure.

• Stoch. dominance vs. ordered distortion risk measures:

X ≤st Y ⇔ ρg[X] ≤ ρg[Y ] for all distortion functions g.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 32/278

Page 42: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� ! "#$ % � % & '$ ( %) *$ %$

The Wang transform risk measure

• Problems with TVaRp:◦ no incentive for taking actions that increase the

distribution function for outcomes smaller than Qp,◦ accounts for the ESF⇒ does not adjust for extreme

low-frequency, high severity losses.• The Wang transform risk measure :

X → ρgp(X), 0 < p < 1,

with

gp(x) = Φ[Φ−1(x) + Φ−1(p)

], 0 ≤ x ≤ 1.

offers a possible solution.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 33/278

Page 43: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

+, -. /01 2 + 2 3 41 5 26 71 - 21 -

The Wang transform risk measure

• Examples:◦ if X is normal: ρgp

(X) = Qp(X).◦ if X is lognormal: ρgp

(X) = QΦ[Φ−1(p)+ σ

2 ](X).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 34/278

Page 44: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

89 :; <=> ? 8 ? @ A> B ?C D> : ?> :

Properties of distortion risk measures

• Additivity for comonotonic risks:

ρg [Xc1 +Xc

2 + . . .+Xcn] =

n∑

i=1

ρg(Xi).

• Positive homogeneity : for any a > 0,

ρg[aX] = aρg[X].

• Translation invariance:

ρg[X + b] = ρg[X] + b.

• Monotonicity :

X ≤ Y ⇒ ρg[X] ≤ ρg[Y ].

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 35/278

Page 45: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

EF GH IJK L E L M NK O LP QK G LK G

Concave distortion risk measures

• Concave distortion risk measures:◦ ρg(·) is a concave distortion risk measure if g is concave.◦ TV aRp(·) is concave, Qp(·) not.

• SL-order vs. ordered concave distortion risk measures:

X ≤sl Y ⇔ ρg[X] ≤ ρg[Y ] for all concave g.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 36/278

Page 46: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

RS TU VWX Y R Y Z [X \ Y] ^X T YX T

The Beta distortion risk measure

• Problem with TVaRp: For any concave g, ρg stronglypreserves stop-loss order⇔ g is strictly concave.⇒ TV aRp does not strongly preserve stop-loss order.

• The Beta distribution: (a > 0, b > 0)

Fβ(x) =1

β (a, b)

∫ x

0ta−1 (1− t)b−1 dt, 0 ≤ x ≤ 1.

• The Beta distortion risk measure:

X → ρFβ(X).

ρFβstrictly preserves stop-loss order provided 0 < a ≤ 1,

b ≥ 1 and a and b are not both equal to 1.• A PH-transform risk measure: Wang (1995).a = 0.1 and b = 1.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 37/278

Page 47: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

_` ab cde f _ f g he i fj ke a fe a

Sub-additivity of risk measures

• Merging decreases the ‘insolvency risk’ :

(X + Y − ρ [X]− ρ [Y ])+ ≤ (X − ρ [X])+ + (Y − ρ [Y ])+

◦ Sub-additivity is allowed to some extent.• Concave distortion risk measures are sub-additive:

ρg [X + Y ] ≤ ρg [X] + ρg [Y ] .

◦ Qp is not sub-additive,◦ TV aRp is sub-additive.

• Optimality of TV aRp:

TV aRp(X) = min {ρg(X) | g is concave and ρg ≥ Qp} .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 38/278

Page 48: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

lm no pqr s l s t ur v sw xr n sr n

Axiomatic characterization of risk measures

• A risk measure is "Artzner-coherent” if it is sub-additive,monotone, positive homogeneous and translation invariant.◦ Qp is not ”coherent”.◦ Concave distortion risk measures are ”coherent”.

• The Dutch risk measure:

ρ(X) = E [X] + E[(X − E [X])+

].

ρ(X) is coherent, but not comonotonic-additive⇒ ρ(X) is NOT a distortion risk measure.

• Coherent or not?Markowitz (1959): “We might decide that in one context onebasic set of principles is appropriate, while in anothercontext a different set of principles should be used.”

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 39/278

Page 49: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

yz {| }~� � y � � �� � �� �� { �� {

Distortion risk measures for sums of dependent r.v.’s

• Approximations for sums of dependent r.v.’s:S =

∑ni=1Xi with given marginals, but unknown copula.

Sl =n∑

i=1

E [Xi | Λ] ≤cx S ≤cx

n∑

i=1

F−1Xi

(U) = Sc

• Approximations for ρg[S]: (if all E [Xi | Λ] are↗ in Λ)

ρg [Sc] =

n∑

i=1

ρg [Xi] ,

ρg

[Sl]

=n∑

i=1

ρg [E (Xi | Λ)] .

• If g is concave: ρg

[Sl]≤ ρg [S] ≤ ρg [Sc] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 40/278

Page 50: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Application: provisions for future payment obligations

• Problem description◦ Consider a payment obligation of 1 per year, due at

times 1, 2, ..., 20,◦ Let e−Y (i) be the discount factor over [0, i]:

e−Y (i) ≡ e−(Y1+Y2+...+Yi).

◦ Assume the yearly returns Yj are i.i.d. and normaldistributed with parameters µ = 0.07 and σ = 0.1.

◦ The stochastic provision is defined by

S =

20∑

i=1

e−(Y1+Y2+...+Yi).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 41/278

Page 51: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Provisions for future payment obligations

• Convex bounds for S =∑20

i=1 e−Y (i)

Let Λ =∑20

i=1 Yi∑20

j=i e−jµ and ri = corr [Λ, Y (i)] > 0.

ThenSl ≤cx S ≤cx S

c

where

Sl =n∑

i=1

e−E[Y (i)]−ri σY (i) Φ−1(U)+ 1

2(1−r2

i )σ2Y (i) ,

Sc =

n∑

i=1

e−E[Y (i)]+ σY (i) Φ−1(U).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 42/278

Page 52: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

 ¡ ¢£ ¤¥¦ §   § ¨ ©¦ ª §« ¬¦ ¢ §¦ ¢

Provisions for future payment obligations

• Provision (or total capital requirement)◦ The provision for this series of future obligations is set

equal to ρg[S]

◦ Approximate ρg[S] by

ρg [Sc] =n∑

i=1

ρg [Xi] ,

ρg

[Sl]

=

n∑

i=1

ρg [E (Xi | Λ)] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 43/278

Page 53: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

­® ¯° ±²³ ´ ­ ´ µ ¶³ · ´¸ ¹³ ¯ ´³ ¯

Provisions for future payment obligations

• The Quantile-provision principle: ρg[S] = Qp[S]

6 8 10 12 14 16 18 20

5 10

15

20

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 44/278

Page 54: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

º» ¼½ ¾¿À Á º Á  ÃÀ Ä ÁÅ ÆÀ ¼ ÁÀ ¼

Provisions for future payment obligations

• The CTE-provision principle: ρg[S] =TVaRp[S]

p TVARp[Sl] ‘TVARp[S]’ TVARp[S

c]

0.950 17.24 17.26 18.610.975 18.45 18.50 20.140.990 20.03 20.10 22.160.995 21.22 21.30 23.690.999 23.98 24.19 27.29

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 45/278

Page 55: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÇÈ ÉÊ ËÌÍ Î Ç Î Ï ÐÍ Ñ ÎÒ ÓÍ É ÎÍ É

Theories of choice under risk

• Expected utility theory :◦ von Neumann & Morgenstern (1947).◦ Prefer loss X over loss Y if

E [u(w −X)] ≥ E [u(w − Y )] ,

◦ u(x) = utility of wealth-level x,↗ function of x.◦ Risk aversion: u is concave.

• Yaari’s dual theory of choice under risk :◦ Yaari (1987).◦ Prefer loss X over loss Y if

ρf [w −X] ≥ ρf [w − Y ] ,

◦ f(q) = distortion function.◦ Risk aversion: f is convex.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 46/278

Page 56: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÔÕ Ö× ØÙÚ Û Ô Û Ü ÝÚ Þ Ûß àÚ Ö ÛÚ Ö

Compare theories of choice under risk

• Transformed expected wealth levels:

E[w −X] =

∫ 1

0Q1−q(w −X) dq,

E[u(w −X)] =

∫ 1

0u [Q1−q(w −X)] dq,

ρf [w −X] =

∫ 1

0Q1−q(w −X) df(q).

• Ordering of risks:◦ In both theories, stochastic dominance reflects

common preferences of all decision makers.◦ In both theories, stop-loss order reflects

common preferences of all risk-averse decision makers.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 47/278

Page 57: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

áâ ãä åæç è á è é êç ë èì íç ã èç ã

References (see www.kuleuven.ac.be/insurance)

• Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002a). “Theconcept of comonotonicity in actuarial science and finance:Theory” , Insurance: Mathematics & Economics, vol. 31(1),3–33.

• Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002b). “Theconcept of comonotonicity in actuarial science and finance:Applications”, Insurance: Mathematics & Economics, vol.31(2), 133–161.

• Dhaene, Vanduffel, Tang, Goovaerts, Kaas, Vyncke (2003).“Capital requirements, risk measures and comonotonicity”

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 48/278

Page 58: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

îï ðñ òóô õ î õ ö ÷ô ø õù úô ð õô ð

Lecture No. 2Comonotonicity and Optimal PortfolioSelection

Jan Dhaene

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 49/278

Page 59: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ûü ýþ ÿ� � � û � � � � � �� � � ý � � ý

Introduction

• Strategic portfolio selection:For a given savings and/or consumption pattern over agiven time horizon, identify the best allocation of wealthamong a basket of securities.

• The ’Terminal Wealth’ problem:◦ Saving for retirement.◦ A loan with an amortization fund with random return.

• The ’Reserving’ problem:◦ The ’after retirement’ problem.◦ Technical provisions.◦ Capital requirements.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 50/278

Page 60: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� � � � � � � � �� � �� �� ��

Introduction

• The ’Buy and Hold’ strategy :◦ Keep the initial quantities constant.◦ A static strategy.

• The ’Constant Mix’ strategy :◦ Keep the initial proportions constant.◦ A dynamic strategy.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 51/278

Page 61: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � � !� � �� �

Comonotonicity

• Notations:◦ U : uniformly distributed on (0, 1).◦ X = (X1, . . . , Xn) .

◦ F−1X (p) = Qp [X] = VaRp [X]= inf {x ∈ R | FX(x) ≥ p} .

• Comonotonicity of a random vector :X is comonotonic⇔ there exist non-decreasing functionsf1, . . . , fn and a r.v. Z such that

Xd= [f1(Z), . . . , fn(Z)] .

• Comonotonicity: very strong positive dependency structure.• Comonotonic r.v.’s cannot be pooled.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 52/278

Page 62: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

"# $% &'( ) " ) * +( , )- .( $ )( $

Comonotonic bounds for sums of dependent r.v.’s

• Theorem:For any X and any Λ, we have

n∑

i=1

E [Xi | Λ] ≤cx

n∑

i=1

Xi ≤cx

n∑

i=1

F−1Xi

(U).

• Notations:◦ S =

∑ni=1Xi.

◦ Sl =∑n

i=1 E [Xi | Λ] = lower bound.◦ Sc =

∑ni=1 F

−1Xi

(U) = comonotonic upper bound.

• If all E [Xi | Λ] are increasing functions of Λ,then Sl is a comonotonic sum.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 53/278

Page 63: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

/0 12 345 6 / 6 7 85 9 6: ;5 1 65 1

Performance of the comonotonic approximations

• Local comonotonicity :Let B(τ) be a standard Wiener process.The accumulated returns

exp [µτ + σ B(τ)] ,

exp [µ (τ + ∆τ) + σ B (τ + ∆τ)]

will be ’almost comonotonic’.• The continuous perpetuity :

S =

∫ ∞

0exp [−µτ − σ B(τ)] dτ

has a reciprocal Gamma distribution.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 54/278

Page 64: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

<= >? @AB C < C D EB F CG HB > CB >

Numerical illustration: µ = 0.07 and σ = 0.1.

10 15 20 25 30

1015

2025

3035

Circles: Plot of (Qp[S], Qp[Sl])

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 55/278

Page 65: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

IJ KL MNO P I P Q RO S PT UO K PO K

Numerical illustration

p Qp[Sl] Qp[S] Qp[S

c]

0.95 23.62 23.63 25.90

0.975 26.09 26.13 29.34

0.99 29.37 29.49 34.08

0.995 31.90 32.10 37.86

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 56/278

Page 66: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

VW XY Z[\ ] V ] ^ _\ ` ]a b\ X ]\ X

The Black-Scholes setting

• 1 risk-free and m risky assets:

dP 0(t)

P 0(t)= r dt

dP i(t)

P i(t)= µi dt+

d∑

j=1

σij dWj(t)

with(W 1(τ), . . . , W d(τ)

):

independent standard Brownian motions.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 57/278

Page 67: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

cd ef ghi j c j k li m jn oi e ji e

The Black-Scholes setting

• Equivalent formalism:

dP 0(t)

P 0(t)= r dt

dP i(t)

P i(t)= µi dt+ σi dB

i(t)

with(B1(τ), . . . , Bm(τ)

)

correlated standard Brownian motions.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 58/278

Page 68: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

pq rs tuv w p w x yv z w{ |v r wv r

The Black-Scholes setting

• Return of asset i in year k:

P i(k) = P i(k − 1) eY ik

• Y ik normal distributed with

E[Y i

k

]= µi −

1

2σ2

i and Var[Y i

k

]= σ2

i

• Independence over the different years:

k 6= l⇒ Y ik and Y j

l are independent.

• Dependence within each year: Cov[Y i

k , Yjk

]= (Σ)ij

• Assumptions: µ6=r1 and Σ is positive definite.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 59/278

Page 69: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

}~ �� ��� � } � � �� � �� �� � �� �

Investment strategies

• Constant mix strategies:

π (t) = (π1, π2, . . . , πm)

withπi = fraction invested in risky asset i,

1−m∑

i=1

πi = fraction invested in riskfree asset.

◦ Fractions time-independent.◦ Dynamic trading strategies.◦ Requires continuously rebalancing.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 60/278

Page 70: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Investment strategies

• The portfolio return process: Merton (1971).◦ P (t) = price of one unit of (π1, π2, . . . , πm).

dP (t)

P (t)= µ (π) t+ σ (π) dB(t)

with B(τ) a standard Brownian motion and

µ (π) = r + πT ×(µ− r 1

), σ2 (π) = πT × Σ× π

◦ Yearly portfolio returns: P (k) = P (k − 1) eYk(π)

◦ The Yk (π) are i.i.d. normal with

E [Yk (π)] = µ (π)− 1

2σ2 (π) , Var [Yk (π)] = σ2 (π)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 61/278

Page 71: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � �  � ¡ �¢ £� � �� �

Markowitz mean-variance analysis

• The mean-variance efficient frontier :

maxπ

µ (π) subject to σ (π) = σ

is obtained for the portfolio

πσ = σΣ−1 ·

(µ− r1

)√(

µ− r1)T · Σ−1 ·

(µ− r1

)

with

µ (πσ) = r + σ

√(µ− r1

)T · Σ−1 ·(µ− r1

)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 62/278

Page 72: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¤¥ ¦§ ¨©ª « ¤ « ¬ ­ª ® «¯ °ª ¦ «ª ¦

Markowitz mean-variance analysis: r < µ(π(m)

)

π(m)

σ(π)

µ(π)

r

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 63/278

Page 73: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

±² ³´ µ¶· ¸ ± ¸ ¹ º· » ¸¼ ½· ³ ¸· ³

Markowitz mean-variance analysis: r < µ(π(m)

)

π(m)

σ(π)

µ(π)

r

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 63/278

Page 74: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¾¿ ÀÁ ÂÃÄ Å ¾ Å Æ ÇÄ È ÅÉ ÊÄ À ÅÄ À

Markowitz mean-variance analysis: r < µ(π(m)

)

π(m)

σ(π)

µ(π)

r

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 63/278

Page 75: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ËÌ ÍÎ ÏÐÑ Ò Ë Ò Ó ÔÑ Õ ÒÖ ×Ñ Í ÒÑ Í

Markowitz mean-variance analysis: r < µ(π(m)

)

π(t)

π(m)

σ(π)

µ(π)

r

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 63/278

Page 76: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ØÙ ÚÛ ÜÝÞ ß Ø ß à áÞ â ßã äÞ Ú ßÞ Ú

Markowitz mean-variance analysis

• The Capital Market Line and the Sharpe ratio:

µ (πσ) = r +

(µ(π(t))− r

σ(π(t)))σ.

• Two Fund Separation Theorem:

πσ =

(µ (πσ)− rµ(π(t))− r

)π(t).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 64/278

Page 77: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

åæ çè éêë ì å ì í îë ï ìð ñë ç ìë ç

Saving and terminal wealth

• Problem description:◦ α0, α1, . . . , αn: positive savings at times 0, 1, 2, . . . , n.◦ Investment strategy : π(t) = (π1, π2, . . . , πm).◦ Wealth at time j:

Wj (π) = Wj−1 (π) eYj(π) + αj

with W0 (π) = α0.◦ What is the optimal investment strategy π∗?◦ Depends on ’target capital’ and ’probability level’.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 65/278

Page 78: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

òó ôõ ö÷ø ù ò ù ú ûø ü ùý þø ô ùø ô

Approximating Terminal Wealth

• Terminal wealth Wn(π):

Wn (π) =

n∑

i=0

αi eYi+1(π)+Y2(π)+···+Yn(π) =

n∑

i=0

Xi

• The comonotonic upper bound for Wn (π):

W cn (π) =

n∑

i=0

F−1Xi

(U)

• A comonotonic lower bound for Wn (π):

W ln (π) =

n∑

i=0

E

Xi |

n∑

j=1

Yj (π)

j−1∑

k=0

αk e−k µ(π)

• Convex ordering: W ln(π) ≤cx Wn(π) ≤cx W c

n(π)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 66/278

Page 79: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÿ� �� ��� � ÿ � � �� � �� � �� �

Optimal investment strategies

• Terminal wealth Wn (π):

Wn (π) =

n∑

i=0

αi eYi+1(π)+Yi+2(π)+···+Yn(π)

• Utility Theory : Von Neumann & Morgenstern (1947).

maxπ

E [u (Wn (π))]

• Yaari’s dual theory of choice under risk : Yaari (1987).

maxπ

Ef [Wn (π)]

where◦ Ef is determined with f (Pr (Wn (π) > x)),◦ convexity of f corresponds with ‘risk aversion’.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 67/278

Page 80: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� ��� � � � � �� � �� �� � �� �

Optimal investment strategies

• Reduced optimization problem:

◦ For σ (π1) = σ (π2) and µ (π1) < µ (π2) , we have that

Wn (π1) ≤st Wn (π2) .

◦ Hence,

maxπ

E [u (Wn (π))] = maxσ

E [u (Wn (πσ))]

andmax

πEf [Wn (π)] = max

σEf [Wn (πσ)] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 68/278

Page 81: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � ! "� # $ %� � � �

The Target Capital

• Distorted expectations: for

f(x) =

{0 : x ≤ p1 : x > p,

the distorted expection Ef [Wn (π)] reduces to

Q1−p [Wn (π)] = sup {x | Pr [Wn ( π) > x] ≥ p} .

• Problem: d.f. of Wn (π) too cumbersome to work with◦ curse of dimensionality◦ dependencies

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 69/278

Page 82: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

&' () *+, - & - . /, 0 -1 2, ( -, (

Maximizing the Target Capital, for a given p

• Optimal investment strategy : π∗ follows from

maxπ

Q1−p [Wn (π)]

• Approximation:the approximation πl for π∗ follows from

maxσ

Q1−p

[W l

n (πσ)]

with

Q1−p

[W l

n(πσ)]

=

n∑

i=0

αie(n−i)[µ(πσ)− 1

2r2

i (πσ)σ2]−√

n−i ri(πσ)σΦ−1(p)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 70/278

Page 83: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

34 56 789 : 3 : ; <9 = :> ?9 5 :9 5

Numerical illustration

• Available assets:◦ 1 riskfree asset with r = 0.03◦ 2 risky assets with

µ1 = 0.06, σ1 = 0.10

µ2 = 0.10, σ2 = 0.20

andCorr

[Y 1

k , Y2k

]= 0.5

• The tangency portfolio:

π(t) =

(5

9,4

9

), µ

(π(t))

=7

90, σ

(π(t))

=

√43

2700

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 71/278

Page 84: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

@A BC DEF G @ G H IF J GK LF B GF B

Numerical illustration

• Yearly savings: α0 = . . . = α39 = 1

• Terminal wealth:

W40 (π) =39∑

i=0

eYi+1(π)+Y2(π)+···+Y40(π)

• Optimal investment strategy :

maxπ

Q0.05 [W40 (π)]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 72/278

Page 85: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

MN OP QRS T M T U VS W TX YS O TS O

Numerical illustration

70

75

80

85

90

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.05

-qua

ntile

targ

et c

apita

l

Q0.05 [Wn (πσ)] as a function of the proportion invested in π(t)

dots: Q0.05 [W sn (πσ)], solid: Q0.05

Z

W ln (πσ)

[

, dashed: Q0.05 [W cn (πσ)]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 73/278

Page 86: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

\] ^_ `ab c \ c d eb f cg hb ^ cb ^

Numerical illustration

• Minimizing the savings effort per unit of Target Capital :The optimal investment strategy π is defined as the one thatminimizes α (π) in

Q1−p

[α (π)

39∑

i=0

eYi+1(π)+Y2(π)+···+Y40(π)

]= 1.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 74/278

Page 87: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ij kl mno p i p q ro s pt uo k po k

Numerical illustration

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

p

min

imal

sav

ings

am

ount

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

optimal risky proportion

Solid line (left scale): minimal yearly savings amount as a function of p.Dashed line (right scale): optimal proportion invested in the tangency portfolio.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 75/278

Page 88: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

vw xy z{| } v } ~ �| � }� �| x }| x

Other optimization criteria

• Maximizing the Target Capital for a given probability level p:

maxπ

CLTE1−p [Wn (π)]

withCLTE1−p[X] = E [X | X < Q1−p[X]]

• Maximizing p for a given Target Capital K:

maxπ

Pr [Wn (π) > K]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 76/278

Page 89: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Provisions for future liabilities

• Problem description:◦ α1, . . . , αn: positive payments, due at times 1, . . . , n.◦ R0 = initial provision established at time 0.◦ Investment strategy : π (t) = (π1, π2, . . . , πm).◦ Provision at time j :

Rj (R0, π) = Rj−1 (R0, π) eYj(π) − αj

with R0 (R0, π) = R0.◦ What is the optimal investment strategy π∗?◦ Answer depends on ‘initial provision’ R0 and

‘probability level’ p.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 77/278

Page 90: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

The stochastic provision

• Definition:

S (π) =n∑

i=1

αi e−(Y1(π)+Y2(π)+···+Yi(π)).

• Relation:

Rn (R0, π) = (R0 − S (π)) e(Y1(π)+···+Yn(π)).

• An investment strategy π is only acceptable ifPr [Rn (R0, π) ≥ 0] is ”large enough”.

• Relation:

Pr [Rn (R0, π) ≥ 0] = Pr [S (π) ≤ R0] .

• PROBLEM: d.f. of S (π) too cumbersome to work with.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 78/278

Page 91: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �  ¡¢£ ¤ � ¤ ¥ ¦£ § ¤¨ ©£ � ¤£ �

Comonotonic approximations for S (π)

• The comonotonic upper bound for S (π):

S (π) ≤cx Sc (π) .

• A comonotonic lower bound for S (π):

◦ Sl (π) = E

[S (π)

∣∣∣∣∑n

j=1 Yj (π)∑n

k=j αk e−k[µ(π)−σ2(π)]

].

◦ Sl ≤cx S (π).◦ Sl (π) is a comonotonic sum.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 79/278

Page 92: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ª« ¬­ ®¯° ± ª ± ² ³° ´ ±µ ¶° ¬ ±° ¬

Optimal investment strategies

• The Initial Provision:◦ Definition:

R0 (π) = Eg [S (π)]

where S (π) is the Stochastic Provision.◦ Eg[·] is a ‘distortion risk measure’.◦ If g is concave, then Eg[·] is a ‘coherent’ risk measure.

• The optimal investment strategy : (π∗, R∗0) follows from

R∗0 = min

πEg [S (π)]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 80/278

Page 93: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

·¸ ¹º »¼½ ¾ · ¾ ¿ À½ Á ¾Â ý ¹ ¾½ ¹

Reduced optimization problem

• For σ (π1) = σ (π2) and µ (π1) < µ (π2) , we have that

S (π2) ≤st S (π1) .

• Hence,min

πEg [S (π)] = min

σEg [S (πσ)] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 81/278

Page 94: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÄÅ ÆÇ ÈÉÊ Ë Ä Ë Ì ÍÊ Î ËÏ ÐÊ Æ ËÊ Æ

Minimizing the Initial Provision, for a given p

• The p - quantile provision principle:

If investment strategy = π, then

R0(π) = Qp [S (π)] = inf {x | Pr [Rn (x, π) ≥ 0] ≥ p} .

• Optimal strategy : (π∗, R∗0) follows from

R∗0 = min

πQp [S (π)] .

• Approximation: (πl, Rl0) follows from

Rl0 = min

σQp

[Sl (πσ)

].

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 82/278

Page 95: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÑÒ ÓÔ ÕÖ× Ø Ñ Ø Ù Ú× Û ØÜ Ý× Ó Ø× Ó

Numerical illustration

• Available assets:◦ 1 riskfree asset with r = 0.03◦ 2 risky assets with

µ1 = 0.06, σ1 = 0.10

µ2 = 0.10, σ2 = 0.20

andCorr

[Y 1

k , Y2k

]= 0.5

• The tangency portfolio:

π(t) =

(5

9,4

9

), µ

(π(t))

=7

90, σ

(π(t))

=

√43

2700

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 83/278

Page 96: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

Þß àá âãä å Þ å æ çä è åé êä à åä à

Numerical illustration

• Yearly consumptions: α1 = . . . = α40 = 1.

• Stochastic provision:

S (π) =

40∑

i=1

e−(Y1(π)+Y2(π)+···+Yi(π)).

• Optimal investment strategy :

R∗0 = min

πQp [S (π)] .

• Approximation:

Rl0 = min

σQp [S (πσ)] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 84/278

Page 97: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ëì íî ïðñ ò ë ò ó ôñ õ òö ÷ñ í òñ í

Numerical illustration

17

18

19

20

21

22

23

0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00p

min

imal

res

erve

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3optim

al risky proportion

Solid line (left scale): minimal initial provision Rl0 as a function of p.

Dashed line (right scale): optimal proportion invested in the tangency portfolio.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 85/278

Page 98: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

øù úû üýþ ÿ ø ÿ � �þ � ÿ� �þ ú ÿþ ú

Other optimization criteria

• Minimizing the Initial Provision, given p:

R∗0 = min

πCTEp [S (π)]

withCTEp[X] = E [X | X > Qp[X]] .

• Maximizing p for a given Initial Provision R0:

p∗ = maxπ

Pr [Rn (R0, π) > 0] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 86/278

Page 99: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � � � � � �� � �� �� � �� �

Generalizations

• Investment restrictions: are taken into account by redefiningthe set of efficient portfolios.

• Yaari’s dual theory : The ‘final wealth problem’ can be solvedfor general distorted expectations.

• Distortion risk measures: The initial provision can bedefined in terms of general distortion risk measures.

• Stochastic sums: ‘How to avoid outliving your money?’• Positive and negative payments: ‘The savings - retirement

problem’.• Other distributions: Lévy-type or Elliptical-type distributions

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 87/278

Page 100: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Some references (www.kuleuven.ac.be/insurance)

[1] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002a).The concept of comonotonicity in actuarial science and finance:Theory.Insurance: Mathematics & Economics, vol. 31(1), 3–33.

[2] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002b).The concept of comonotonicity in actuarial science and finance:Applications.Insurance: Mathematics & Economics, vol. 31(2), 133–161.

[3] Dhaene, Vanduffel, Goovaerts, Kaas, Vyncke (2004).Comonotonic approximations for optimal portfolio selectionproblems. (forthcoming)

[4] Dhaene, Vanduffel, Tang, Goovaerts, Kaas, Vyncke (2003).Risk measures and comonotonicity. (submitted)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 88/278

Page 101: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� !" " # " $ % &' () * ( # � &' + *, -

. ( ' # &/ " $0 " 1 1, ) , 23 " 4" 1 * -

Lecture No. 3Elliptical Distributions - An Introduction

Emiliano A. Valdez

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 89/278

Page 102: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

56 78 8 9 8 :; 6 <= >? @ > 9 5 <= A @B C

D >6 = 9 <E 8 :F 8 G GB ? 6 B HI 6 8 J8 G @6 C

Elliptical Distributions

• This family coincides with the family of symmetricdistributions in the univariate case (e.g. normal, Student-t)and can be characterized using either:◦ characteristic generator◦ density generator

• References:

◦ Landsman and Valdez (2003) “Tail Conditional Expectationsfor Elliptical Distributions”, North American Actuarial Journal.

◦ Valdez and Dhaene (2004) “Bounds for Sums ofNon-Independent Log-Elliptical Random Variables”, work inprogress.

◦ Valdez and Chernih (2003) “Wang’s Capital AllocationFormula for Elliptically-Contoured Distributions”, Insurance:Mathematics & Economics.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 90/278

Page 103: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

KL MN N O N PQ L RS TU V T O K RS W VX Y

Z TL S O R[ N P\ N ] ]X U L X ^_ L N `N ] VL Y

Why Elliptical Distributions?

• Provides a rich class of multivariate distributions that shareseveral tractable properties of the multivariate normal.◦ Student t, Laplace, Logistic, etc.◦ Linear combinations of components of multivariate

elliptical is again elliptical (Important for modelling yearlyreturns, and for constructing the conditioning variable.)

• Allows more flexibility to model multivariate extremes andother forms of non-normal dependency structures.◦ Fat extremes, tail dependence.◦ Some studies show that light tailness of normal show its

inadequacies to model extreme credit default events.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 91/278

Page 104: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ab cd d e d fg b hi jk l j e a hi m ln o

p jb i e hq d fr d s sn k b n tu b d vd s lb o

Some Notation

• Consider an n-dimensional random vector

X = (X1, X2, ..., Xn)T .

◦ Distribution function:FX (x1, x2, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)

◦ Density function:

fX (x1, x2, ..., xn) =∂nFX (x1, x2, ..., xn)

∂x1 · · · ∂xn

◦ Characteristic function:ϕX (t) = E

[exp

(iXT t

)]= E [exp (i

∑nk=1Xktk)]

◦ Moment generating function:MX (t) = E

[exp

(XT t

)]= ϕX (−it)

◦ Covariance matrix: Cov (X) = (Cov (Xi, Xj)) fori, j = 1, ..., n

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 92/278

Page 105: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

wx yz z { z |} x ~� �� � � { w ~� � �� �

� �x � { ~� z |� z � �� � x � �� x z �z � �x �

Multivariate Normal Family

• It is well-known that the joint density of a multivariate normalX is given by

fX (x) =cn√|Σ|

exp

[−1

2(x− µ)T

Σ−1 (x− µ)

].

• The normalizing constant is given by cn = (2π)−n/2.• Its characteristic function is

ϕX (t) = exp(itTµ−1

2tTΣt

)

= exp(itTµ

)exp

(−1

2tTΣt

)

• And its covariance is

Cov (X) = Σ.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 93/278

Page 106: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �� � � �� � � �  ¡ � � ¢� � �� �

Multivariate Normal - continued

• Define the characteristic generator as

ψ (t) = e−t

and density generator as

gn (u) = e−u

• The density can then be written as

fX (x) =cn√|Σ|

gn

[−1

2(x− µ)T

Σ−1 (x− µ)

]

and its characteristic function as

ϕX (t) = exp(itTµ

)ψ(

12t

TΣt).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 94/278

Page 107: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

£¤ ¥¦ ¦ § ¦ ¨© ¤ ª« ¬­ ® ¬ § £ ª« ¯ ®° ±

² ¬¤ « § ª³ ¦ ¨´ ¦ µ µ° ­ ¤ ° ¶· ¤ ¦ ¸¦ µ ®¤ ±

Class of Elliptical Distributions

• X has multivariate elliptical distribution, X v En(µ,Σ,ψ), ifchar. function can be expressed as

ϕX (t) = exp(itTµ)ψ(

12t

TΣt)

for some column-vector µ, n× n positive-definite matrix Σ.

• If density exists, it has the form

fX (x) =cn√|Σ|

gn

[1

2(x− µ)T

Σ−1 (x− µ)

],

for some function gn (·) called the density generator.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 95/278

Page 108: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¹º »¼ ¼ ½ ¼ ¾¿ º ÀÁ ÂÃ Ä Â ½ ¹ ÀÁ Å ÄÆ Ç

È Âº Á ½ ÀÉ ¼ ¾Ê ¼ Ë ËÆ Ã º Æ ÌÍ º ¼ μ Ë Äº Ç

Elliptical Distributions - continued

• The normalizing constant cn can be explicitly determined bytransforming into polar coordinates and we have

cn =Γ (n/2)

(2π)n/2

[∫ ∞

0xn/2−1gn(x)dx

]−1

.

• Thus, we see the condition∫ ∞

0xn/2−1gn(x)dx <∞

guarantees gn as density generator.• Note that for a given characteristic generator ψ, the density

generator g and/or the normalizing constant c may dependon the dimension of the random vector X.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 96/278

Page 109: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÏÐ ÑÒ Ò Ó Ò ÔÕ Ð Ö× ØÙ Ú Ø Ó Ï Ö× Û ÚÜ Ý

Þ ØÐ × Ó Öß Ò Ôà Ò á áÜ Ù Ð Ü âã Ð Ò äÒ á ÚÐ Ý

Some Properties

• If mean exists, it will be

E (X) = µ.

• If covariance exists, it will be

Cov (X) = −ψ′ (0)Σ.

• Let A be some m× n matrix of rank m ≤ n and b somem-dimensional column-vector. Then

AX + b ∼ Em

(Aµ+ b,AΣAT , gm

).

• Define the sum S = X1 +X2 + · · ·+Xn = eTX, where e isa column vector of ones with dimension n. Then

S ∼ En

(eTµ, eTΣe, g1

).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 97/278

Page 110: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

åæ çè è é è êë æ ìí îï ð î é å ìí ñ ðò ó

ô îæ í é ìõ è êö è ÷ ÷ò ï æ ò øù æ è úè ÷ ðæ ó

Multivariate Student-t Family

• Density generator: gn (u) =(1 + u

kp

)−pwhere parameter

p > n/2 and kp is some constant.

• Density: fX (x) = cn√|Σ|

[1 + (x−µ)T

Σ−1(x−µ)

2kp

]−p

• Normalizing constant: cn = Γ(p)Γ(p−n/2)(2πkp)

−n/2

• If p = (n+m) /2 where n, m are integers, and kp = m, weget the traditional form of the multivariate Student t withdensity:

fX (x) =Γ(

n+m2

)

(πm)n/2Γ(

m2

)√|Σ|

[1 +

(x− µ)TΣ−1 (x− µ)

m

]−(n+m

2 )

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 98/278

Page 111: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ûü ýþ þ ÿ þ � �ü �� �� � � ÿ û �� � ��

�ü � ÿ �� þ �� þ � � ü � �� ü þ �þ �ü

Generalized Student-t Distribution

• Density: fX (x) = 1

σ√

2kpB(1/2,p−1/2)

[1 + (x−µ)2

2kpσ2

]−p, where

B (·, ·) is the beta function.• For p > 3/2, usually kp = (2p− 3)/2 becaue it leads to the

important property that V ar (X) = σ2.• For 1/2 < p ≤ 3/2, variance does not exist and kp = 1/2.

• Note for example in the case where p = 1, we havestandard Cauchy distribution:

fX (x) =1

σπ

[1 +

(x− µ)2

σ2

]−1

.

It is well-known that mean and variance for this distributiondoes not exist.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 99/278

Page 112: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

�� � � �! � �" � # #� � � � $% � � &� # �� �

Density Functions of GST - Figure 1

-4 -3 -2 -1 0 1 2 3 4x

0.0

0.1

0.2

0.3

0.4

0.5

f(x)

p = 0.75

p = 1

p = 2.5

p = 5

normal

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 100/278

Page 113: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

'( )* * + * ,- ( ./ 01 2 0 + ' ./ 3 24 5

6 0( / + .7 * ,8 * 9 94 1 ( 4 :; ( * <* 9 2( 5

Multivariate Logistic Family

• Density generator: g (u) = e−u

(1+e−u)2

• Density:

fX (x) =cn√|Σ|

exp[−1

2 (x− µ)TΣ−1 (x− µ)

]

{1 + exp

[−1

2 (x− µ)TΣ−1 (x− µ)

]}2

• Normalizing constant:

cn = (2π)−n/2

∞∑

j=1

(−1)j−1 j1−n/2

−1

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 101/278

Page 114: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

=> ?@ @ A @ BC > DE FG H F A = DE I HJ K

L F> E A DM @ BN @ O OJ G > J PQ > @ R@ O H> K

Multivariate Exponential Power Family

• Density generator: g (u) = e−rus , for r, s > 0

• Density:

fX (x) =cn√|Σ|

exp{−r

2

[(x− µ)T

Σ−1 (x− µ)]s}

• Normalizing constant:

cn =sΓ (n/2)

(2π)n/2 Γ (n/2s)rn/2s

• When r = s = 1, this reduces to multivariate normal. Whens = 1/2 and r =

√2, we have Double Exponential or

Laplace distributions.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 102/278

Page 115: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ST UV V W V XY T Z[ \] ^ \ W S Z[ _ ^` a

b \T [ W Zc V Xd V e e` ] T ` fg T V hV e ^T a

Bivariate Densities - Figure 2

Normal

Normal Student t

Logistic Laplace

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 103/278

Page 116: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ij kl l m l no j pq rs t r m i pq u tv w

x rj q m py l nz l { {v s j v |} j l ~l { tj w

Lecture No. 4Tail Conditional Expectations for EllipticalDistributions

Emiliano A. Valdez

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 104/278

Page 117: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �� � � �� � � � �� � � �� � �� �

Introduction

• Developing a standard framework for risk measurement isbecoming increasingly important.

• This paper is about a risk measure called tail conditionalexpectations and their explicit forms for the family ofelliptical distributions.

• This family coincides with the family of symmetricdistributions in the univariate case (e.g. normal, Student-t)and can be characterized using either:

◦ characteristic generator◦ density generator

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 105/278

Page 118: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� ��   � � � �� ¡  ¢ £

¤ �� � � �¥ � �¦ � § §¢ � � ¢ ¨© � � ª� §  � £

Introduction - continued

• We introduce the notion of a cumulative generator whichplays a key role in computing tail conditional expectations.

• We extended the ideas into the multivariate frameworkallowing us to decompose the total of the tail conditionalexpectations into its various constituents.

◦ decomposing the total into an allocation formula

• Landsman and Valdez (2003)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 106/278

Page 119: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

«¬ ­® ® ¯ ® °± ¬ ²³ ´µ ¶ ´ ¯ « ²³ · ¶¸ ¹

º ´¬ ³ ¯ ²» ® °¼ ® ½ ½¸ µ ¬ ¸ ¾¿ ¬ ® À® ½ ¶¬ ¹

Risk Measure

• A risk measure ϑ is a mapping from the space of randomvariables L to the set of real numbers: ϑ : X ∈ L→ R.

• Some useful properties of a risk measure:

1. Monotonicity: X1 ≤ X2 with probability1 =⇒ ϑ (X1) ≤ ϑ (X2) .

2. Homogeneity: ϑ (λX) = λϑ (X) for any non-negative λ.

3. Subadditivity: ϑ (X1 +X2) ≤ ϑ (X1) + ϑ (X2) .

4. Translation Invariance: ϑ (X + α) = ϑ (X) + α for anyconstant α.

• Some consequences:

ϑ (0) = 0; a ≤ X ≤ b =⇒ a ≤ ϑ (X) ≤ b; ϑ (X − ϑ (X)) = 0.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 107/278

Page 120: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÁÂ ÃÄ Ä Å Ä ÆÇ Â ÈÉ ÊË Ì Ê Å Á ÈÉ Í ÌÎ Ï

Ð ÊÂ É Å ÈÑ Ä ÆÒ Ä Ó ÓÎ Ë Â Î ÔÕ Â Ä ÖÄ Ó ÌÂ Ï

The Tail Conditional Expectation

• Notation: X : loss random variable; FX (x) : distributionfunction; FX (x) = 1− FX (x): tail function; xq : q-thquantile with FX (xq) = 1− q

• The tail conditional expectation (TCE) is

TCEX (xq) = E (X |X > xq ) .

• Other names used: tail-VAR, conditional VAR• Value-at-risk: xq = Qq (X)

• Expected Shortfall: E[(X − xq)+

]= ESFq (X)

• Relationships:

TCEX (xq) = xq+E (X − xq |X > xq ) = xq+1

1− qE[(X − xq)+

]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 108/278

Page 121: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

×Ø ÙÚ Ú Û Ú ÜÝ Ø Þß àá â à Û × Þß ã âä å

æ àØ ß Û Þç Ú Üè Ú é éä á Ø ä êë Ø Ú ìÚ é âØ å

TCE for Univariate Elliptical

• Let X ∼ E1

(µ, σ2, g

)so that density fX (x) = c

σg[

12

(x−µσ

)2]

where c is the normalizing constant.

• Since X is elliptical distribution, the standardized randomvariable Z = (X − µ) /σ will have a standard ellipticaldistribution function FZ (z) = c

∫ z−∞ g

(12u

2)du, with mean 0

and variance σ2Z = 2c

∫∞0 u2g

(12u

2)du = −ψ′(0), if they

exist.

• Define the cumulative density generator:

G (x) = c

∫ x

0g (u) du

and denote G (x) = G (∞)−G (x) .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 109/278

Page 122: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

íî ïð ð ñ ð òó î ôõ ö÷ ø ö ñ í ôõ ù øú û

ü öî õ ñ ôý ð òþ ð ÿ ÿú ÷ î ú � �î ð �ð ÿ øî û

- continued

• The tail conditional expectation of X is

TCEX (xq) = µ+ λ · σ2

where λ is λ =

1

σG( 1

2z2

q)

F X(xq)=

1

σG( 1

2z2

q)

F Z(zq)and zq = (xq − µ) /σ.

• Moreover, if the variance of X exists, then 1σ2

ZG(

12z

2)

hasthe sense of a density of another spherical random variableZ∗ and λ has the form

λ =

1

σfZ∗(zq)

FZ (zq)σ2

Z .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 110/278

Page 123: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � � � � � � � � � � � �� �

� �� � � � � �� � � �� � � �� � � �� � �� �

Some Examples

• Normal Distribution:

λ =

1

σϕ (zq)

1− Φ (zq)

where ϕ (·) and Φ (·) denote respectively the density anddistribution functions of a standard normal distribution.Notice that Z∗ is simply the standard normal variable Z.

• Student-t:

λ =

√2p−52p−3 · fZ

(√2p−52p−3zq; p− 1

)

FZ (zq; p)

only for the case where p > 5/2. Here, Z∗ is simply ascaled GST with parameter p− 1.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 111/278

Page 124: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � ! "# $ " � � ! % $& '

( "� ! � ) � �* � + +& # � & ,- � � .� + $� '

Examples - continued

• Logistic:

λ =

[1

2

1(√

2π)−1

+ ϕ (zq)

] 1

σϕ (zq)

FZ (zq)

which resembles that of a normal distribution, but with acorrection factor.

• Exponential Power:

λ =1

FZ (zq)

1√2Γ (1/(2s))σ

{Γ (1/s)− Γ

[r

(1

2z2q

)s

; 1/s

]}

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 112/278

Page 125: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

/0 12 2 3 2 45 0 67 89 : 8 3 / 67 ; :< =

> 80 7 3 6? 2 4@ 2 A A< 9 0 < BC 0 2 D2 A :0 =

GST - Figure

p

lam

bda

1.0 1.5 2.0 2.5 3.0 3.5 4.0

24

68

10

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 113/278

Page 126: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

EF GH H I H JK F LM NO P N I E LM Q PR S

T NF M I LU H JV H W WR O F R XY F H ZH W PF S

TCE for the Marginals

• Let X ∼En (µ,Σ,gn). Denote the (i, j) element of Σ by σij

so that Σ = ‖σij‖ni,j=1.

• Let FZ (z) = c1∫ z0 g1

(12x

2)dx be the standard d.f.

corresponding to this elliptical family andG (x) = c1

∫ x0 g1 (u) du be its cumulative generator.

• The formula for computing TCEs for each component of X

is expressed as

TCEXk(xq) = µk + λk · σ2

k

where λk =

1

σkG( 1

2z2

k,q)

F Z(zk,q), zk,q =

xq − µk

σk, or λk =

1

σkfZ∗ (zq)

F Z(zq)σ2

Z ,

if σ2Z <∞.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 114/278

Page 127: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

[\ ]^ ^ _ ^ `a \ bc de f d _ [ bc g fh i

j d\ c _ bk ^ `l ^ m mh e \ h no \ ^ p^ m f\ i

Sums of Elliptical Risks

• The tail conditional expectation of the sum S

TCES (xq) = µS + λS · σ2S

where

µS = eTµ =n∑

k=1

µk, σ2S = eTΣe =

n∑

i,j=1

σij ,

and

λS =

1

σSG(

12z

2S,q

)

FZ (zS,q)

with zS,q =µS − xq

σS.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 115/278

Page 128: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

qr st t u t vw r xy z{ | z u q xy } |~ �

� zr y u x� t v� t � �~ { r ~ �� r t �t � |r �

Portfolio Risk Decomposition

• TCE allows for natural decomposition of the total loss:

TCES (xq) =

n∑

k=1

E (Xk |S > xq ) .

• This is not in general equivalent to the sum of the tailconditional expectations of the individual components since

TCEXk(xq) 6= E (Xk |S > xq ) .

• Instead, we denote this as TCEXk|S (xq) = E (Xk |S > xq ),the contribution to the total risk attributable to risk k.

• It can be interpreted as follows: in case of a disaster asmeasured by an amount at least as large as the quantile ofthe total loss distirbution, this refers to the average amountthat would be due to the presence of risk k.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 116/278

Page 129: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �� � � �� � � � �� � � �� � �� �

Theorem on Risk Decomposition

• Let X = (X1, X2, ..., Xn)T ∼ En (µ,Σ, gn) such thatcondition

∫∞0 g1(x)dx <∞ holds and let S = X1 + · · ·+Xn.

• Then the contribution of risk Xk, 1 ≤ k ≤ n, to the total TCE

TCEXk|S (xq) = µk + λS · σkσSρk,S ,

for k = 1, 2, ..., n, where ρk,S =σk,S

σkσSand λS =

1

σSG 1

2z2

S,q

F Z(zS,q).

• Notice that if we take the sum of TCEXk|S (xq), we have

n∑

k=1

TCEXk|S (xq) = µS + λS

n∑

k=1

σkσSρk,S︸ ︷︷ ︸σk,S

= µS + λS · σ2S

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 117/278

Page 130: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �    ¡   ¢£ � ¤¥ ¦§ ¨ ¦ ¡ � ¤¥ © ¨ª «

¬ ¦� ¥ ¡ ¤­   ¢®   ¯ ¯ª § � ª °± �   ²  ¯ ¨� «

Multivariate Normal Case

• Panjer (2002) demonstrated that in the case of amultivariate normal random vector i.e. X ∼ Nn (µ,Σ), wehave

E (Xk |S > xq ) = µk +

1

σSϕ(

xq−µσS

)

1− Φ(

xq−µσS

)

σ2

k

(1 + ρk,−k

σ−k

σk

),

where they have used the negative subscript −k to refer tothe sum of all the risks excluding the kth risk, that is,S−k = S −Xk.

• Therefore, according to this notation, we have

ρk,−kσ−k

σk=

σk,−k

σkσ−k

σ−k

σk=σk,−k

σ2k

=Cov (Xk, S −Xk)

σ2k

=σk,S

σ2k

−1.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 118/278

Page 131: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

³´ µ¶ ¶ · ¶ ¸¹ ´ º» ¼½ ¾ ¼ · ³ º» ¿ ¾À Á

 ¼´ » · ºÃ ¶ ¸Ä ¶ Å ÅÀ ½ ´ À ÆÇ ´ ¶ ȶ Å ¾´ Á

Multivariate Normal - continued

• Thus, our formula for risk decomposition becomes

E (Xk |S > xq ) = µk +

1

σSϕ(

xq−µσS

)

1− Φ(

xq−µσS

)

σkσSρk,S

which gives the case of multivariate normal.

• This confirms the formula above for risk decompositionwhich holds for multivariate elliptical distributions includingmultivariate normal distributions.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 119/278

Page 132: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÉÊ ËÌ Ì Í Ì ÎÏ Ê ÐÑ ÒÓ Ô Ò Í É ÐÑ Õ ÔÖ ×

Ø ÒÊ Ñ Í ÐÙ Ì ÎÚ Ì Û ÛÖ Ó Ê Ö ÜÝ Ê Ì ÞÌ Û ÔÊ ×

Lecture No. 5Bounds for Sums of Non-IndependentLog-Elliptical Random Variables

Emiliano A. Valdez

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 120/278

Page 133: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ßà áâ â ã â äå à æç èé ê è ã ß æç ë êì í

î èà ç ã æï â äð â ñ ñì é à ì òó à â ôâ ñ êà í

Introduction

• This paper is about finding bounds for sums ofnon-independent log-elliptical random variables.

• Extends the ideas developed in◦ “The Concept of Comonotonicity in Actuarial Science

and Finance: Theory” IME, Dhaene, et al.◦ “The Concept of Comonotonicity in Actuarial Science

and Finance: Applications” IME, Dhaene, et al.

• These papers considered bounds for the log-normalrandom variables.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 121/278

Page 134: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

õö ÷ø ø ù ø úû ö üý þÿ � þ ù õ üý � �� �

� þö ý ù ü� ø ú �ø � �� ÿ ö � � ö ø ø � �ö �

Outline of Talk

• Comonotonicity

• Convex Upper and Lower Bounds

• Elliptical, Spherical, and Log-Elliptical Distributions

• Extension to Log-Elliptical Distributions

• The Results for Log-Normal Distributions

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 122/278

Page 135: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� � � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �� � � �� � � � �� � � � � �� �

Sums of Dependent Random Variables

• Consider an insurance portfolio X = (X1, X2, · · · , Xn)T

◦ Xi : claim amount of policy i at the end of the period.◦ Assumption: all Xi are i.i.d.

• Introduction of stochastic financial aspects in actuarialmodels reveals the necessity of determining distributions ofsums of dependent random variables.

• Assumption that the Xi are mutually independent◦ is often approximately,◦ leads to easier mathematics,◦ but is sometimes violated.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 123/278

Page 136: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

!" #$ $ % $ &' " () *+ , * % ! () - ,. /

0 *" ) % (1 $ &2 $ 3 3. + " . 45 " $ 6$ 3 ," /

- continued

• Individual risks Xi may be influenced by the sameeconomic/physical environment:◦ catastrophes (storms, explosions, etc.) cause an

accumulation of claims;◦ weather conditions in automobile;◦ fire insurance;◦ pension fund; and◦ lifetimes of a couple.

• The independence assumption probably underestimates:◦ the deviation of the aggregate risk,◦ the probability of large claims,◦ the expected shortfall.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 124/278

Page 137: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

78 9: : ; : <= 8 >? @A B @ ; 7 >? C BD E

F @8 ? ; >G : <H : I ID A 8 D JK 8 : L: I B8 E

Ordering of Random Variables

• Upper and lower tails◦ E (X − d)+= surface above the d.f., from d on.◦ E (d−X)+= surface below the d.f., from −∞ to d.

• Convex order: X ≤cx Y

◦ ⇔ the upper tails as well as the lower tails of Y eclipsethe respective tails of X.• → Extreme values are more likely to occur for Y than

for X.◦ ⇔ E (X) = E (Y ) and E [u (−X)] ≥ E [u (−Y )] for all

non-decreasing concave functions u.• → Common preferences of risk averse decision

makers between rv’s with equal means.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 125/278

Page 138: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

MN OP P Q P RS N TU VW X V Q M TU Y XZ [

\ VN U Q T] P R^ P _ _Z W N Z `a N P bP _ XN [

- continued

• Sufficient condition:◦ E (X) = E (Y ) and the d.f.’s only cross once, (finally,FY ≤ FX )

◦ ⇒ X ≤cx Y.

• Convexity order and moments:◦ X ≤cx Y ⇒ E (X) = E (Y )◦ X ≤cx Y ⇒ V ar (X) ≤ V ar (Y ).

◦ X ≤cx Y and V ar (X) = V ar (Y )⇒ Xd= Y .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 126/278

Page 139: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

cd ef f g f hi d jk lm n l g c jk o np q

r ld k g js f ht f u up m d p vw d f xf u nd q

Comonotonicity

• Suppose X has joint d.f. F . Well-known Frechet bounds:

max

[n∑

k=1

Fk (xk)− (n− 1) , 0

]≤ FX (x)

≤ min [F1 (x1) , ..., Fn (xn)] .

• Hoeffding (1940) and Frechet (1951).

• X is comonotonic if its joint distribution is the Frechet upperbound:

FX (x) = min [F1 (x1) , ..., Fn (xn)] .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 127/278

Page 140: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

yz {| | } | ~� z �� �� � � } y �� � �� �

� �z � } �� | ~� | � �� � z � �� z | �| � �z �

Comonotonicity - continued

• Comonotonicity is very strong positive dependencystructure.

• Comonotonic rv’s are not able to compensate each other,they cannot be used as ”hedge” against each other.

• Quantiles, distribution functions, and tails of sums ofcomonotonic random variables follow immediately from therespective quantities of the marginals.

◦ Notation: (Xc1, · · · , Xc

n).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 128/278

Page 141: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �  � ¡ ¡� � � � ¢£ � � ¤� ¡ �� �

Bounds for Sums

• COMONOTONIC UPPER BOUND:◦ Define the comonotonic vector corresponding to X by

Xc = (Xc1, ..., X

cn)T where Xc

k = F−1k (U) .

◦ Sum: Sc = Xc1 + · · ·+Xc

n.

• IMPROVED UPPER BOUND:◦ Define the random vector corresponding to X by

Xu = (Xu1 , ..., X

un)T where Xu

k = F−1Xk|Λ (U).

◦ Sum: Su = Xu1 + · · ·+Xu

n .

• LOWER BOUND:◦ Define the vector corresponding to X by

Xl =(X l

1, ..., Xln

)T where X lk = E (Xk |Λ) .

◦ Sum: Sl = X l1 + · · ·+X l

n.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 129/278

Page 142: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¥¦ §¨ ¨ © ¨ ª« ¦ ¬­ ®¯ ° ® © ¥ ¬­ ± °² ³

´ ®¦ ­ © ¬µ ¨ ª¶ ¨ · ·² ¯ ¦ ² ¸¹ ¦ ¨ º¨ · °¦ ³

Bounds for Sums - continued

• We have the following bounds:

Sl ≤cx S ≤cx Su ≤cx S

c

• Proofs can be found in:◦ Tchen (1980)◦ Dhaene, Wang, Young & Goovaerts (1997)◦ Müller (1997); and◦ Kaas, Dhaene, Goovaerts (2000).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 130/278

Page 143: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

»¼ ½¾ ¾ ¿ ¾ ÀÁ ¼ ÂÃ ÄÅ Æ Ä ¿ » ÂÃ Ç ÆÈ É

Ê Ä¼ à ¿ ÂË ¾ ÀÌ ¾ Í ÍÈ Å ¼ È ÎÏ ¼ ¾ о Í Æ¼ É

Class of Elliptical Distributions

• Y v En(µ,Σ,φ) if c.f. can be expressed as

ϕY (t) = exp(itTµ) · φ(tTΣt

)

for some scalar function φ and where Σ is given byΣ = AAT for some matrix A(n×m).

• Density: fY (y) = cn√|Σ|gn

[(y − µ)T

Σ−1 (y − µ)], for some

function gn (·) called density generator.

• Normalizing constant: cn = Γ(n/2)πn/2

[∫∞0 zn/2−1gn(z)dz

]−1.Condition

∫∞0 zn/2−1gn(z)dz <∞ guarantees gn as density

generator.

• Kelker (1970); Fang, et al. (1990).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 131/278

Page 144: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÑÒ ÓÔ Ô Õ Ô Ö× Ò ØÙ ÚÛ Ü Ú Õ Ñ ØÙ Ý ÜÞ ß

à ÚÒ Ù Õ Øá Ô Öâ Ô ã ãÞ Û Ò Þ äå Ò Ô æÔ ã ÜÒ ß

Some Properties

• Mean: E (Y) = µ.

• Covariance: Cov (Y) = −φ′ (0)Σ.

• Y ∼En (µ,Σ, φ) , iff for anyb(n× 1),bTY ∼E1

(bTµ,bTΣb,φ

).

• Marginals are also elliptical with the same characteristicgenerator:,

Yk ∼ E1

(µk,σ

2k, φ).

• For any matrix B (m× n), any vector c (m× 1) and anyrandom vector Y ∼ En (µ,Σ, φ), we have that

BY + c ∼ Em

(Bµ+ c,BΣBT , φ

).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 132/278

Page 145: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

çè éê ê ë ê ìí è îï ðñ ò ð ë ç îï ó òô õ

ö ðè ï ë î÷ ê ìø ê ù ùô ñ è ô úû è ê üê ù òè õ

Independence and Elliptical

• Any multivariate elliptical distribution with mutuallyindependent components must necessarily be multivariatenormal, see Kelker (1970).

• Let Y ∼En(µ,Σ, φ) with mutually independent componentsYk. Assume that the expectations and variances of the Yk

exist and that var (Yk) > 0. Then it follows that Y ismultivariate normal.

• Thus, it follows that the joint distribution of mutuallyindependent elliptical random variables is not elliptical,unless all the marginals are normal.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 133/278

Page 146: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ýþ ÿ� � � � � �þ �� �� � � � ý �� � �

� �þ � � � � �� � � � � þ �� þ � �� � �þ �

Spherical Distributions

• Z is spherical with c.g. φ if Z ∼En (0n, In,φ).• Notation: Sn (φ) for En (0n, In,φ).

• Z ∼Sn (φ) iff E[exp

(itTZ

)]= φ

(tT t).

• Suppose m-dim vector Y is such that Y d= µ+AZ, for some

µ(n× 1), some matrix A(n×m) and some m-dim ellipticalvector Z ∼Sm (φ). Then Y ∼En (µ,Σ,φ) where Σ = AAT .

• Z ∼Sn (φ) iff for any n-dim vector a,

aTZ√aTa∼S1 (φ) .

• Any component Zi of Z has a S1 (φ) distribution.

• Density: fZ (z) = cg(zT z

).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 134/278

Page 147: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � � !

" �� � � �# � �$ � % % � � &' � � (� % �� !

Conditional Distributions

• Conditional distributions of bivariate Normal is againNormal.

• GENERALIZATION OF RESULT TO ELLIPTICAL:◦ Let Y ∼ En (µ,Σ, φ) with d.g. gn (·). Define Y and Λ to

be linear combinations of Y, i.e. Y = αTY andΛ = βTY, for some αT = (α1, α2, . . . , αn) andβT = (β1, β2, . . . , βn). Then,(Y,Λ) ∼ E2

(µ(Y,Λ),Σ(Y,Λ), φ

).

◦ Also, given Λ = λ, Y has a univariate ellipticaldistribution:

Y |Λ = λ ∼ E1

(µY + r (Y,Λ) σY

σΛ(λ− µΛ) ,(

1− r (Y,Λ)2)σ2

Y , φa

), for some

char. gen. φa (·) depending on a = (λ− µΛ)2 /σ2Λ.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 135/278

Page 148: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

)* +, , - , ./ * 01 23 4 2 - ) 01 5 46 7

8 2* 1 - 09 , .: , ; ;6 3 * 6 <= * , >, ; 4* 7

Log-Elliptical Distributions

• X is multivariate log-elliptical with parameters µ and Σ iflog X is elliptical:

log X ∼ En (µ,Σ, φ) .

• Notation: log X ∼ En (µ,Σ, φ) as X ∼ LEn (µ,Σ, φ) .

• When µ = 0n and Σ = In, we write X ∼ LSn (φ) .

• If Y ∼ En (µ,Σ, φ) and X = exp (Y), thenX ∼ LEn (µ,Σ, φ).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 136/278

Page 149: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

?@ AB B C B DE @ FG HI J H C ? FG K JL M

N H@ G C FO B DP B Q QL I @ L RS @ B TB Q J@ M

Some Properties

• If density of X ∼ LEn (µ,Σ, φ) exists, then density ofY = log X also exists with

fX (x) =c√|Σ|

(n∏

k=1

x−1k

)· g[(log x− µ)T

Σ−1 (log x− µ)],

see Fang et al. (1990).• Any marginal of a log-elliptical distribution is again

log-elliptical.• MEANS:

E (Xk) = eµkφ(−σ2

k

).

• COVARIANCES:

Cov (Xk, Xl) = e(µk+µl)·{φ[− (σk + σl)

2]− φ

(−σ2

k

)φ(−σ2

l

)}.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 137/278

Page 150: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

UV WX X Y X Z[ V \] ^_ ` ^ Y U \] a `b c

d ^V ] Y \e X Zf X g gb _ V b hi V X jX g `V c

Some Risk Measures

• Let X ∼ LE1

(µ,σ2, φ

)and Z ∼ S1 (φ) with density fZ(x).

◦ Quantile:

F−1X (p) = exp

(µ+ σF−1

Z (p)), 0 < p < 1,

◦ Expected Shortfall:

E[(X − d)+

]= eµφ

(−σ2

)FZ∗

(µ−log d

σ

)− dFZ

(µ−log d

σ

)

◦ Tail Conditional Expectation:

E[X∣∣X > F−1

X (p)]

=eµ

1− pφ(−σ2

)FZ∗

(F−1

Z (1− p))

where the density of Z∗ is given by fZ∗(x) = fZ(x)eσx

φ(−σ2) .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 138/278

Page 151: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

kl mn n o n pq l rs tu v t o k rs w vx y

z tl s o r{ n p| n } }x u l x ~� l n �n } vl y

Non-Independent Log-Elliptical Risks

• Payments: α1, ..., αn

• Rates of return: Yi (i− 1, i) , i = 1, 2, . . . , n.

• Define Y (i) = Y1 + · · ·+ Yi, the sum of the first i elementsof Y.

◦ Xi = exp [−Y (i)].

• Present Value:S =

∑ni=1 αi exp [− (Y1 + · · ·+ Yi)] =

∑ni=1Xi

• Assume return vector Y ∼ En (µ,Σ, φ) with parameters µand Σ.◦ Then X = (X1, ..., Xn)T is log-elliptical.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 139/278

Page 152: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �� � � �� � � � �� � � �� � �� �

- continued

• We know Y (i) ∼ E1

(µ (i) ,σ2 (i) , φ

)with

µ (i) =i∑

k=1

µk and σ2 (i) =i∑

k=1

i∑

l=1

σkl.

• Conditioning rv: Λ =∑n

i=1 βiYi

• Using the property of elliptical, Λ ∼ E1

(µΛ,σ

2Λ, φ

)where

µΛ =n∑

i=1

βiµi and σ2Λ =

n∑

i,.j=1

βiβjσij .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 140/278

Page 153: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � ��  ¡ ¢   � � �� £ ¢¤ ¥

¦  � � � �§ � �¨ � © ©¤ ¡ � ¤ ª« � � ¬� © ¢� ¥

The Bounds

• COMONOTONIC UPPER BOUND:Sc =

∑ni=1 αi exp

[−µ (i) + σ (i)F−1

Z (U)]

• IMPROVED UPPER BOUND:

Su =

n∑

i=1

αi exp

[−µ (i)− ri σ (i)F−1

Z (U) +√

1− r2i σ (i) F−1Z (V )

]

• LOWER BOUND:

Sl =n∑

i=1

αie[−µ(i)−ri σ(i) F−1

Z (U)] · φa

(−σ2 (i)

(1− r2i

))

where U and V are mutually indep. U(0, 1) rv’s, Z ∼ S1 (φ),

and ri =ik=1

nl=1 βlσkl

σ(i)σΛ.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 141/278

Page 154: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

­® ¯° ° ± ° ²³ ® ´µ ¶· ¸ ¶ ± ­ ´µ ¹ ¸º »

¼ ¶® µ ± ´½ ° ²¾ ° ¿ ¿º · ® º ÀÁ ® ° ° ¿ ¸® »

Sums of Log-Normal RV’s

In the case of log-Normal, we have the results from Dhaene, etal. (2002):

Sl =n∑

i=1

αi e−E[Y (i)]−ri σY (i) Φ−1(U)+ 1

2(1−r2

i )σ2Y (i) ,

Su =

n∑

i=1

αie−E[Y (i)]−ri σY (i) Φ−1(U)+

√1−r2

i σY (i) Φ−1(V ),

Sc =n∑

i=1

αi e−E[Y (i)]+σY (i) Φ−1(U).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 142/278

Page 155: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÃÄ ÅÆ Æ Ç Æ ÈÉ Ä ÊË ÌÍ Î Ì Ç Ã ÊË Ï ÎÐ Ñ

Ò ÌÄ Ë Ç ÊÓ Æ ÈÔ Æ Õ ÕÐ Í Ä Ð Ö× Ä Æ ØÆ Õ ÎÄ Ñ

Lecture No. 6Capital Allocation and EllipticalDistributions

Emiliano A. Valdez

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 143/278

Page 156: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÙÚ ÛÜ Ü Ý Ü Þß Ú àá âã ä â Ý Ù àá å äæ ç

è âÚ á Ý àé Ü Þê Ü ë ëæ ã Ú æ ìí Ú Ü îÜ ë äÚ ç

Introduction

• Why do we need to allocate capital?◦ Redistribute capital cost equitably◦ Division of capital provides division of risks across

business units◦ Allocation of expenses, prioritizing capital budgeting

projects◦ Fair assessment of manager performance

• This paper examines what constitutes a fair allocation andstudies Wang’s allocation within this fair allocation principleand then extends to class of elliptical distributions.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 144/278

Page 157: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ïð ñò ò ó ò ôõ ð ö÷ øù ú ø ó ï ö÷ û úü ý

þ øð ÷ ó öÿ ò ô� ò � �ü ù ð ü �� ð ò �ò � úð ý

Fair Allocation

• Let XT = (X1, X2, ..., Xn) denote the vector of losses.

• Define an allocation A to be a mapping A : XT → Rn suchthat A

(XT)

= (K1,K2, ...,Kn)T where∑ni=1Ki = K = ρ (Z) .

• Each component Ki of allocation is viewed as the i-th lineof business contribution to total capital.

• Because allocation must also reflect the fact that each lineoperates in the presence of other lines, the notation

A (Xi |X1, ..., Xn ) = Ki

is well-suited for this purpose.• Notice also that the requirement

∑ni=1Ki = ρ (Z) is

sometimes called the “full allocation” requirement.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 145/278

Page 158: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � � � �� � � � � � �� �

� �� �� � � � � �� � � � �� � � �� � �� �

What constitutes a fair allocation?

• Let N = {1, 2, ..., n} be the set of the first n positive integers.An allocation A is said to be a fair allocation if:◦ No Undercut: For any subset M ⊆ N , we have∑

i∈M A (Xi |X1, ..., Xn ) ≤ ρ(∑

i∈M Xi

).

◦ Symmetry: Let N ∗ = N − {i1, i2} . If M ⊂ N∗ (strictsubset) with |M | = m, XT

m = (Xj1 , ..., Xjm) and if

A(Xi1

∣∣XTm, Xi1 , Xi2

)= A

(Xi2

∣∣XTm, Xi1 , Xi2

)for every

M ⊂ N∗, then we must have Ki1 = Ki2 .◦ Consistency: For any subset M ⊆ N with |M | = m, let

XTn−m =

(Xj1 , ..., Xjn−m

)for all jk ∈ N −M where

k = 1, ..., n−m. Then we have

i∈M

A (Xi |X1, ..., Xn ) = A

(∑

i∈M

Xi

∣∣∣∣∣∑

i∈M

Xi,XTn−m

).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 146/278

Page 159: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � ! � "# $% & $ � � "# ' &( )

* $� # � "+ � , � - -( % � ( ./ � � 0� - &� )

Relative Allocation

• This gives the allocation to the i-th line of business as

A(Xi|X1, · · · , Xn) = ρ(Z)ρ (Xi)

ρ (X1) + · · ·+ ρ (Xn).

• Simple and appealing, but not a fair allocation.• Consider 3 indep. risks X1, X2, and X3 with meanE (Xi) = 0 and variances V ar (Xi) = σ2 (Xi) for i = 1, 2, 3.

Define the risk measure ρ (Xi) = F−1i (1− α) · σ (Xi) .

• Now suppose a life company has four lines each facing risksX1, −X1, X2, and X3 so that total risk is Z = X2 +X3.Consider the subset M consisting of the risks{X1,−X1, X2} and observe thatρ(∑

i∈M Xi

)= ρ(X2) = F−1

2 (1− α) · σ (X2).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 147/278

Page 160: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

12 34 4 5 4 67 2 89 :; < : 5 1 89 = <> ?

@ :2 9 5 8A 4 6B 4 C C> ; 2 > DE 2 4 F4 C <2 ?

Relative Allocation - continued

• Because∑

i∈M

A (Xi |X1,−X1, X2, X3 )

= ρ(X2 +X3)ρ (X1) + ρ(−X1) + ρ(X2)

ρ (X1) + ρ(−X1) + ρ(X2) + ρ(X3),

the “no undercut” cannot be satisfied unless the risks havesymmetric distributions.

• The “consistency” property is also not satisfied because

A

(∑

i∈M

Xi

∣∣∣∣∣∑

i∈M

Xi, X3

)= A (X2 |X2, X3 )

= ρ(X2 +X3)ρ(X2)

ρ(X2) + ρ(X3)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 148/278

Page 161: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

GH IJ J K J LM H NO PQ R P K G NO S RT U

V PH O K NW J LX J Y YT Q H T Z[ H J \J Y RH U

Relative Allocation - continued

• Hence

i∈M

A (Xi |X1,−X1, X2, X3 ) 6= A

(∑

i∈M

Xi

∣∣∣∣∣∑

i∈M

Xi, X3

).

• However, it can be shown that the “symmetry” property issatisfied for this allocation formula. Consider for examplethe case where A (X1 |X1,−X1, X2 ) = A (X2 |X1,−X1, X2 )and it is straightforward to show that in this caseρ (X1) = ρ (X2) so that

A (X1 |X1,−X1, X2, X3 ) = A (X2 |X1,−X1, X2, X3 )

and symmetry is satisfied.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 149/278

Page 162: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

]^ _` ` a ` bc ^ de fg h f a ] de i hj k

l f^ e a dm ` bn ` o oj g ^ j pq ^ ` r` o h^ k

Covariance-Based Allocation

• The allocation formula is based onA(Xi|X1, · · · , Xn) = λiρ(Z) where λT = (λ1, ..., λn) denotesa vector of weights that add up to one so that full allocationis satisfied.

• To determine these weights λi, we minimize the followingquadratic loss function

E[((X− µ)− λ (Z − µZ))T

W ((X− µ)− λ (Z − µZ))]

where the weight-matrix W is assumed to be positivedefinite. Differentiating with respect to λ and equating tozero yields

λi =E [(Xi − µi) (Z − µZ)]

E[(Z − µZ)2

] =Cov (Xi, Z)

V ar (Z), for i = 1, 2, ..., n.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 150/278

Page 163: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

st uv v w v xy t z{ |} ~ | w s z{ � ~� �

� |t { w z� v x� v � �� } t � �� t v �v � ~t �

Is the Covariance Principle Fair?

• The capital allocation formula based on the covarianceprinciple satisfies the three properties of a fair allocation:

◦ no undercut,

◦ symmetry, and

◦ consistency.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 151/278

Page 164: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � � � � �� � �� �

� �� � � �� � �� � � �� � � � �� � � �� � �� �

Wang’s Capital Decomposition Formula

• Preserving the notation used by Wang (2002), denote theexpectation of Xi,Q by

Hλ[Xi, Z] = E (Xi,Q) =E[X · exp (λZ)]

E[exp (λZ)]

and the expectation of the aggregate loss ZQ by

Hλ[Z,Z] = E (ZQ) =E[Z · exp (λZ)]

E[exp (λZ)].

This exactly gives the Esscher transform of Z.• Price of a random payment Xi traded in the market isHλ[Xi, Z] so that one can think of the differenceρ (Xi) = E (Xi,Q)− E (Xi) = Hλ [Xi, Z]− E (Xi) as the riskpremium.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 152/278

Page 165: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�  ¡¢ ¢ £ ¢ ¤¥   ¦§ ¨© ª ¨ £ � ¦§ « ª¬ ­

® ¨  § £ ¦¯ ¢ ¤° ¢ ± ±¬ ©   ¬ ²³   ¢ ´¢ ± ª  ­

- continued

• For the aggregate payment Z, its risk premium is given byρ (Z) = ρ (

∑ni=1Xi) = Hλ [Z,Z]− E (Z) .

• It is rather straightforward to show ρ (Xi) = Cov(Xi,exp(λZ))E[exp(λZ)]

and ρ (Z) = Cov(Z,exp(λZ))E[exp(λZ)] .

• Wang proposes computing the allocation of capital toindividual business unit i based on the following formula:

Ki = Hλ [Xi, Z]− E (Xi) .

• Assuming an aggregate capital of K for the insurancecompany as a whole, the parameter λ can be computedusing

K = Hλ[Z,Z]− E (Z) .

• For i = 1, 2, ..., n, it can readily be shown that K =∑n

i=1Ki.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 153/278

Page 166: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

µ¶ ·¸ ¸ ¹ ¸ º» ¶ ¼½ ¾¿ À ¾ ¹ µ ¼½ Á À Ã

Ä ¾¶ ½ ¹ ¼Å ¸ ºÆ ¸ Ç Ç ¿ ¶  ÈÉ ¶ ¸ ʸ Ç À¶ Ã

Multivariate Normal

• If X1, ..., Xn follow a multivariate normal, we have thatWang’s allocation method reduces to the covariancemethod.

• Some straightforward calculation yields the results:

E(ZeλZ

)= exp

(λµZ +

λ2σ2Z

2

)· (µ+ λσ2

Z)

E(Xie

λZ)

= exp

(λµZ +

λ2σ2Z

2

)· (µi + λσi,Z)

• Then it follows that K = λσ2Z and Ki = λσi,Z which is clearly

equivalent to the covariance method.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 154/278

Page 167: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ËÌ ÍÎ Î Ï Î ÐÑ Ì ÒÓ ÔÕ Ö Ô Ï Ë ÒÓ × ÖØ Ù

Ú ÔÌ Ó Ï ÒÛ Î ÐÜ Î Ý ÝØ Õ Ì Ø Þß Ì Î àÎ Ý ÖÌ Ù

Some Notation and Assumptions

• Suppose X ∼En (µ,Σ,gn) and e = (1, 1, ..., 1)T .• Assume density generator gn exists.• Define

Z = X1 + · · ·+Xn =

n∑

k=1

Xk = eTX

which is the sum of elliptical risks. We know thatZ ∼ E1

(eTµ, eTΣe, g1

).

• Denote by µZ = eTµ =∑n

j=1 µj andσ2

Z = eTΣe =∑n

i,j=1 σij .

• Define the tail generator by

Tn (u) =

∫ ∞

1

2u2

cngn (x) dx.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 155/278

Page 168: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

áâ ãä ä å ä æç â èé êë ì ê å á èé í ìî ï

ð êâ é å èñ ä æò ä ó óî ë â î ôõ â ä öä ó ìâ ï

Two Useful Lemmas

• Let X ∼ En (µ,Σ, gn) . Then for 1 ≤ i ≤ n, the vectorXi,Z = (Xi, Z)T has an elliptical distribution with the samegenerator, i.e., Xi,Z ∼ E2

(µi,Z ,Σi,Z , g2

), where

µi,Z=(µi,∑n

j=1 µj

)T, Σi,Z =

(σ2

i σi,Z

σi,Z σ2Z

), and

σ2i = σii, σi,Z =

∑nj=1 σij , σ

2Z =

∑nj,k=1 σjk.

• Let X ∼En (µ,Σ,gn) and assume condition for existence ofdensity generator holds. Let T be the tail generator asdefined above and associated with Z. Then

Hλ [Xi, Z] = µi+λρi,ZσiσZexp (λµZ)

MZ (λ)

∫ ∞

−∞Tn (w) exp (λσZw) dw

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 156/278

Page 169: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

÷ø ùú ú û ú üý ø þÿ �� � � û ÷ þÿ � �� �

� �ø ÿ û þ� ú ü �ú � � ø � � ø ú �ú �ø �

Wang’s Allocation for Elliptical

• Let X ∼En (µ,Σ,gn) and assume conditions for existence ofdensity generator and |ψ′ (0)| <∞ hold. Then Wang’scapital allocation formula can be expressed as

Ki = −λψ′ (0) ρi,ZσiσZ

• The result immediately follows from the previous lemma:

Ki = Hλ [Xi, Z]− E (Xi)

= λρi,ZσiσZ1

MZ (λ)

∫ ∞

−∞exp [λ (µZ + σZw)]Tn (w) dw

= λρi,ZσiσZ1

MZ (λ)

[−ψ′ (0)MZ (λ)

]

= −λψ′ (0) ρi,ZσiσZ .

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 157/278

Page 170: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � � � �� � �� �� � � � �� � �� �

� �� � � �� � �� � � �� � � � ! � � "� � �� �

Panjer’s Example

• Panjer (2002) example to illustrate the capital allocation.• Insurer has 10 lines of business is faced with risks

represented by vector XT = (X1, ..., X10) where each Xi

represents the P.V. of losses over a specified time horizon.

• The estimated covariance structure, Σ, (in millions-squared)is given by [see paper for variance matrix] and theestimated mean vector µT (in millions) is given by

(25.69, 37.84, 0.85, 12.70, 0.15, 24.05, 14.41, 4.49, 4.39, 9.56) .

• The resulting allocation KT is given by

(2.72, 12.55, 0.08, 1.92, 0.37, 6.27, 2.51,−0.70,−0.30, 1.89) ,

expressed in millions, with total capital equal to 27.31 million.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 158/278

Page 171: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

#$ %& & ' & () $ *+ ,- . , ' # *+ / .0 1

2 ,$ + ' *3 & (4 & 5 50 - $ 0 67 $ & 8& 5 .$ 1

Graph of Allocation

0% 10% 20% 30% 40% 50%

Percentage of Allocation

1

2

3

4

5

6

7

8

9

10

Line

of B

usin

ess

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 159/278

Page 172: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

9:; < =>? @ 9 @A B? C @D E? ; @? ;

Lecture No. 7Convex Bounds for Scalar Products ofRandom Variables (With Applications toLoss Reserving and Life Annuities)

Tom Hoedemakers

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 160/278

Page 173: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

FGH I JKL M F MN OL P MQ RL H ML H

Outline

• Introduction to comonotonicity• Comonotonic bounds for dependent random variables• Generalization to scalar products of random variables• Discounting with Gaussian returns• Moments based approximations• Part I Applications: Life Annuities• Part II Applications: Loss Reserving

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 161/278

Page 174: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

STU V WXY Z S Z[ \Y ] Z^ _Y U ZY U

Convex order and comonotonic risks

• Convex order: Consider two random variables X and Y .Then X is said to precede Y in the convex order sense,notation X ≤cx Y , if and only if

E[X] = E[Y ] and E[(X − d)+] ≤ E[(Y − d)+] ∀ d

• Property: X ≤cx Y ⇒ Var[X] ≤ Var[Y ]

• Comonotonicity: very strong positive dependence structure→ each two possible outcomes (x1, · · · , xn) and (y1, · · · , yn)

of ~X = (X1, · · · , Xn) are ordered componentwise

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 162/278

Page 175: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

`ab c def g ` gh if j gk lf b gf b

Comonotonicity

Characterizations: ~X is comonotonic if any of the followingconditions holds:

1. For U ∼ Uniform(0, 1) we have

~Xd= (F−1

X1(U), F−1

X2(U), . . . , F−1

Xn(U)),

2. ∃ a random variable Z and non-decreasing functionsf1, f2, . . . , fn, (or non-increasing functions) such that

~Xd= (f1(Z), f2(Z), . . . , fn(Z)),

3. For the n-variate cdf we have

F ~X(~x) = min{FX1(x1), FX2

(x2), . . . , FXn(xn)}, ∀ ~x ∈ R

n.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 163/278

Page 176: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

mno p qrs t m tu vs w tx ys o ts o

Quantiles and stop-loss premiums

• Notations:

Φ = cdf of N(0, 1)

FX(x) = Pr[X ≤ x]FX(x) = 1− FX(x)

(x− d)+ = max(x− d, 0)

• Quantiles:

F−1X (p) = inf{x ∈ R | FX(x) ≥ p}, p ∈ (0, 1).

• Stop-loss premiums:

E[(X − d)+] =

∫ ∞

dFX(x)dx, −∞ < d <∞.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 164/278

Page 177: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

z{| } ~�� � z �� �� � �� �� | �� |

Quantiles and stop-loss premiums

• Relations:◦ 1

2Var[X] =∫ +∞−∞ {E[(X − t)+]− (E[X]− t)+} dt,

◦ if X ≤cx Y , thus E[(Y − t)+] ≥ E[(X − t)+] for all t, then

1

2{Var[Y ]− Var[X]} =

∫ +∞

−∞{E[(Y − t)+]− E[(X − t)+]} dt.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 165/278

Page 178: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

��� � ��� � � �� �� � �� �� � �� �

Comonotonic bounds for sums of dependent r.v.’s

• General result: (Kaas et al., 2000)Let U be a uniform(0,1) random variable. For any randomvector ~X = (X1, X2, · · · , Xn) with marginal cdf’sFX1

, FX2, · · · , FXn

, we have

n∑

i=1

E[Xi|Λ] ≤cx

n∑

i=1

Xi ≤cx

n∑

i=1

F−1Xi

(U)

• Notations:◦ S =

∑ni=1Xi.

◦ Sl =∑n

i=1 E[Xi|Λ] =lower bound.◦ Sc =

∑ni=1 F

−1Xi

(U) =comonotonic upper bound.

• If all E[Xi|Λ] are↗ functions of Λ, then S l is a comonotonicsum.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 166/278

Page 179: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

��� � ��� � � �� �� � ��  � � �� �

Comonotonic sums

• Kaas et al. (2000):◦ The quantile function is additive for comonotonic risks

F−1Sc (p) =

n∑

i=1

F−1Xi

(p), p ∈ (0, 1)

◦ In case of strictly increasing and continuous marginals,the cdf FSc(x) is uniquely determined by

F−1Sc (FSc (x)) =

n∑

i=1

F−1Xi

(FSc (x)) = x,

(F−1

Sc (0) < x < F−1Sc (1)

)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 167/278

Page 180: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¡¢£ ¤ ¥¦§ ¨ ¡ ¨© ª§ « ¨¬ ­§ £ ¨§ £

Comonotonic sums

• Dhaene et al. (2002):◦ Let (X1, . . . , Xn) denote a comonotonic vector with

strictly increasing marginal distributions and letSc = X1 + · · ·+Xn. Then the stop-loss premium of Sc

can be computed as follows:

E[(Sc − d)+] =

n∑

i=1

E[(Xi − F−1

Xi(FSc (d))

)+

],

(F−1

Sc (0) < d < F−1Sc (1)

)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 168/278

Page 181: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

®¯° ± ²³´ µ ® µ¶ ·´ ¸ µ¹ º´ ° µ´ °

Lower bound S l =∑n

i=1 E[Xi|Λ]: comonotonic

If Λ is such that all gi(Λ) = E[Xi|Λ] are non-decreasing andcontinuous functions of Λ

F−1Sl (p) =

n∑

i=1

F−1E[Xi|Λ](p) =

n∑

i=1

F−1gi(Λ)(p)

=

n∑

i=1

E[Xi|Λ = F−1Λ (p)], p ∈ (0, 1)

If the cdf’s of gi(Λ) are strictly increasing and continuous

E[(Sl − d)+] =n∑

i=1

E

[(E [Xi | Λ]− F−1

E[Xi|Λ] (FS`(d)))

+

]

=n∑

i=1

E[(

E [Xi | Λ]− E[Xi | Λ = F−1

Λ (FS`(d))])

+

]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 169/278

Page 182: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

»¼½ ¾ ¿ÀÁ Â » ÂÃ ÄÁ Å ÂÆ ÇÁ ½ ÂÁ ½

Lower bound S l =∑n

i=1 E[Xi|Λ]: not comonotonic

FSl(x) =

∫ +∞

−∞Pr

[n∑

i=1

E[Xi | Λ] ≤ x|Λ = λ

]dFΛ(λ)

E[(Sl − d)+] =

∫ +∞

−∞

(n∑

i=1

E [Xi | Λ = λ]− d)

+

dFΛ (λ)

If FΛ is strictly↗ and continuous: Define U as followsU ≡ FΛ(Λ) ∼ Unif(0, 1), then U = u⇔ Λ = F−1

Λ (u), ∀ 0 < u < 1

FSl(x) =

∫ 1

0Pr

[n∑

i=1

E[Xi | Λ] ≤ x|U = u

]du

E[(Sl − d)+] =

∫ 1

0

(n∑

i=1

E[Xi | Λ = F−1

Λ (u)]− d)

+

du

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 170/278

Page 183: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÈÉÊ Ë ÌÍÎ Ï È ÏÐ ÑÎ Ò ÏÓ ÔÎ Ê ÏÎ Ê

Moments based approximations

• Convex order relation: S l ≤cx S ≤cx Sc

E[(Sl − d)+] ≤ E[(S − d)+] ≤ E[(Sc − d)+]

E[Sl] = E[S] = E[Sc]

Var(Sl) ≤ Var(S) ≤ Var(Sc).

• Define the random variable Sm by its stop-loss premiums

E[(Sm−d)+] = zE[(Sl−d)+]+(1−z)E[(Sc−d)+], 0 ≤ z ≤ 1,

⇓E[Sm] = zE[Sl] + (1− z)E[Sc] = E[S]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 171/278

Page 184: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÕÖ× Ø ÙÚÛ Ü Õ ÜÝ ÞÛ ß Üà áÛ × ÜÛ ×

Moments based approximations

• By taking the (right-hand) derivative we find

FSm(x) = zFSl(x) + (1− z)FSc(x), 0 ≤ z ≤ 1

→ the d.f. of the approximation can be calculated fairlyeasily

• Determine z such that Sm is as close as possible to S. InVyncke et al. (2004) z is chosen as

z =Var(Sc)−Var(S)

Var(Sc)−Var(Sl)

This choice doesn’t depend on the retention d and it leadsto equal variances

Var[Sm] = Var[S]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 172/278

Page 185: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

âãä å æçè é â éê ëè ì éí îè ä éè ä

Generalization to scalar products

• Consider sums of the form: S = X1Y1 +X2Y2 + . . .+XnYn

with ~X = (X1, X2, . . . , Xn) and ~Y = (Y1, Y2, . . . , Yn)assumed to be mutually independent

• One can take Vj = XjYj and apply the techniques for sumsof dependent random variables→ not practical !◦ it is not always easy to find the marginal distributions ofVj

◦ it is usually very difficult to find a suitable conditioningrandom variable Λ, which will be a good approximationto the whole scalar product, taking into account theriskiness of the random vector ~X and ~Y simultaneously.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 173/278

Page 186: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ïðñ ò óôõ ö ï ö÷ øõ ù öú ûõ ñ öõ ñ

Generalization to scalar products

Lemma 1 Assume that ~X = (X1, . . . , Xn), ~Y = (Y1, . . . , Yn) and~Z = (Z1, . . . , Zn) are non-negative random vectors and that ~X ismutually independent of the vectors ~Y and ~Z.If for all possible outcomes x1, . . . , xn of ~X:

n∑

i=1

xiYi ≤cx

n∑

i=1

xiZi,

then the corresponding scalar products are ordered in theconvex order sense, i.e.

n∑

i=1

XiYi ≤cx

n∑

i=1

XiZi.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 174/278

Page 187: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

üýþ ÿ ��� � ü � � �� � �� �� þ �� þ

Generalization to scalar products

Proof. Let φ be a convex function. By conditioning on ~X andtaking the assumptions into account, we find that

E[φ( n∑

i=1

XiYi

)]= E ~X

[E[φ( n∑

i=1

XiYi

)| ~X]]

≤ E ~X

[E[φ( n∑

i=1

XiZi

)| ~X]]

= E[φ( n∑

i=1

XiZi

)]

holds for any convex function φ.�

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 175/278

Page 188: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � � � �� � �� �� � �� �

Generalization to scalar products

• General result: Let U and V be two uniform(0,1) r.v.’s.Assume that the vectors ~X = (X1, X2, . . . , Xn) and~Y = (Y1, Y2, . . . , Yn) are mutually independent. Then

n∑

i=1

E[Xi|Γ]E[Yi|Λ] ≤cx

n∑

i=1

XiYi ≤cx

n∑

i=1

F−1Xi

(U)F−1Yi

(V )

with

{Γ a r.v. independent of ~Y and Λ

Λ a r.v. independent of ~X and Γ

• Notations:◦ S =

∑ni=1XiYi.

◦ Sl =∑n

i=1 E[Xi|Γ]E[Yi|Λ] =lower bound.◦ Sc =

∑ni=1 F

−1Xi

(U)F−1Yi

(V ) =comonotonic upper bound.Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 176/278

Page 189: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� �! "� � �� �

Generalization to scalar products: (Proof.)

1.∑n

i=1XiYi ≤cx∑n

i=1 F−1Xi

(U)F−1Yi

(V )

• For all possible outcomes (x1, x2, . . . , xn) of ~X:∑ni=1 xiYi ≤cx

∑ni=1 F

−1xiYi

(V ) =∑n

i=1 xiF−1Yi

(V )Lemma=⇒ ∑n

i=1XiYi ≤cx∑n

i=1XiF−1Yi

(V )

• The same reasoning can be applied to show that∑ni=1XiF

−1Yi

(V ) ≤cx∑n

i=1 F−1Xi

(U)F−1Yi

(V )

2.∑n

i=1 E[Xi|Γ]E[Yi|Λ] ≤cx∑n

i=1XiYi

• ∑ni=1 E[Xi|Γ]E[Yi|Λ] ≤cx

∑ni=1XiE[Yi|Λ]

• ∑ni=1XiE[Yi|Λ] ≤cx

∑ni=1XiYi

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 177/278

Page 190: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

#$ %& '() * # * + ,) - *. /) % *) %

How to deal with two-dimensionality?

• Assume that X =∑n

i=1 fi(Θ)gi(V )

V ∼ Unif(0, 1) and independent of θfi non-decreasinggi non-negative and non-decreasing

• Distribution function: 3-step calculation:

1. F−1X|Θ=θ(p) =

∑ni=1 fi(θ)gi(p)

2. Obtain FX|Θ=θ from∑n

i=1 fi(θ)gi

(FX|Θ=θ (y)

)= y;

3. Compute FX(y) =∫∞−∞ FX|Θ=θ(y)dFΘ(θ)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 178/278

Page 191: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

01 23 456 7 0 7 8 96 : 7; <6 2 76 2

How to deal with two-dimensionality?

• Convex bounds:◦ In the case of the upper bound one can always use the

described procedure. Indeed, notice that Θ = U ,fi(u) = F−1

Xi(u) and gi(p) = F−1

Yi(p) for which the

conditions are naturally satisfied.◦ In the case of the lower bound one takes Θ = Λ,fi(γ) = E[Xi | Γ = γ] and gi(p) = E[Yi | Λ = F−1

Λ (p)]

• In general:The conditions of the previous slide are not always satisfied!However, in our applications they are satisfied.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 179/278

Page 192: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

=> ?@ ABC D = D E FC G DH IC ? DC ?

Stop-loss premia for scalar products of r.v.’s

Upper bound: E[(Sc − d)+]:

1. Consider the comonotonic sum

Sc|U=u =n∑

i=1

F−1Xi

(u)F−1Yi

(V )

2. Apply the basic theorem for stop-loss premia

3. Condition on U : ⇒ E[(Sc − d)+] = E[E[(Sc − d)+|U ]

]=

∫ 1

0

n∑

i=1

F−1Xi

(u)E[(Yi − F−1

Yi

(FSc|U=u(d)

))+

]du

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 180/278

Page 193: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

JK LM NOP Q J Q R SP T QU VP L QP L

Stop-loss premia for scalar products of r.v.’s

Lower bound: E[(Sl − d)+]:

1. Assume that Γ and Λ can be chosen in such a way that forany fixed γ ∈ supp(Γ) all componentsE[Xi|Γ = γ]E[Yi|Λ = λ] are non-decreasing (or equivalentlynon-increasing) in λ.

2. The vector(E[X1|Γ = γ]E[Y1|Λ], . . . ,E[Xn|Γ = γ]E[Yn|Λ]

)is

comonotonic

3. Apply the basic theorem for stop-loss premia

4. Condition on Γ⇒ E[(S l − d)+] = E[E[(Sl − d)+|Γ]] =

∫ 1

0

n∑

i=1

E[Xi|Γ = F−1Γ (u)]E

[(E[Yi|Λ]− F−1

E[Yi|Λ]

(FSl|Γ=F−1

Γ (u)(d)))

+

]du

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 181/278

Page 194: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

WX YZ [\] ^ W ^ _ `] a ^b c] Y ^] Y

Gaussian returns

• Suppose that one invests the value 1 at time 0. Then at timet it accumulates to the random value eY (t). The collection ofr.v.’s {Y (t)}t≥0 is called a stochastic return process.

• We assume that the return process Y (t) is Gaussian, i.e.such that (Y (t1), Y (t2), . . . , Y (tn)) is normally distributed∀ 0 < t1 < t2 < ... < tn.

• Note that any Gaussian process is determinedunequivocally by its mean and covariance functions:m(t) = E[Y (t)] and c(s, t) = Cov(Y (s), Y (t)).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 182/278

Page 195: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

de fg hij k d k l mj n ko pj f kj f

Two examples

• The Black & Scholes model:

Y (t) = µt+ σBt

with Bt: Brownian motion process.

E[Y (t)] = µt

Cov(Y (s), Y (t)) = σ2 min(s, t)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 183/278

Page 196: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

qr st uvw x q x y zw { x| }w s xw s

Two examples

• The Ornstein-Uhlenbeck process:

Y (t) = µt+X(t)

with dX(t) = −aX(t)dt+ σdBt

E[Y (t)] = µt

Cov(Y (s), Y (t)) =σ2

2a

(exp(−a|t− s|)− exp(−a(t+ s))

)

=⇒ in both cases: Cov(Y (s), Y (t)) > 0 for any t, s > 0.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 184/278

Page 197: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

~� �� ��� � ~ � � �� � �� �� � �� �

Two examples

t

Y(t)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

a) The Ornstein-Uhlenbeck process: a=0

t

Y(t)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

b) The Ornstein-Uhlenbeck process: a=0.02

t

Y(t)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

c) The Ornstein-Uhlenbeck process: a=0.1

t

Y(t)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

d) The Ornstein-Uhlenbeck process: a=0.5

Figure1: Typical paths for the Ornstein-Uhlenbeck process with the mean parameter

µ = 0.05, volatility parameter σ = 0.07 and different values of parameter a.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 185/278

Page 198: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Two examples

Remark:

• For a = 0 the Ornstein-Uhlenbeck process degenerates toan ordinary Brownian motion with drift and is equivalent tothe Black & Scholes setting.

• When a > 0, the process Y (t) has no independentincrements any more. Moreover, it becomes mean reverting.

• ⇒ a measures how strong the process Y (t) is attracted byits mean function.(a = 0: no attraction⇒ increments are independent)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 186/278

Page 199: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � �   ¡� ¢ �£ ¤� � �� �

Discounting with Gaussian returns

DS =n∑

i=1

Xie−Y (i)

• ~Y = (Y (1), Y (2), . . . , Y (n)) ∼ N(~µ,Σ) with

~µ = (µ1, . . . , µn) = (E[Y (1)],E[Y (2)], . . . ,E[Y (n)])

Σ = [σij ]1≤i,j≤n =[Cov(Y (i), Y (j))

]1≤i,j≤n

(σii will be denoted by σ2i )

• ~X = (X1, X2, . . . , Xn): a vector of non-negative r.v.’s

↪→ DS: discounted value of future benefits Xi with returnprocess described by one of the well-known Gaussian models

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 187/278

Page 200: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¥¦ §¨ ©ª« ¬ ¥ ¬ ­ ®« ¯ ¬° ±« § ¬« §

Discounting with Gaussian returns: convex bounds

DSc =n∑

i=1

F−1Xi

(U)F−1e−Y (i)(V )

=

n∑

i=1

F−1Xi

(U)e−µi+σiΦ−1(V ),

DSl =n∑

i=1

E[Xi|Γ]E[e−Y (i)|Λ],

-U and V are independent Unif(0, 1) r.v.’s-Γ is independent of Λ and ~Y

-Λ is independent of Γ and ~X

Remark: the quality of the lower bound heavily depends on thechoice of the conditioning random variables!

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 188/278

Page 201: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

²³ ´µ ¶·¸ ¹ ² ¹ º »¸ ¼ ¹½ ¾¸ ´ ¹¸ ´

Discounting with Gaussian returns: CDF DSc

1. Suppose that U = u is fixed⇒ conditional quantiles:

F−1DSc|U=u(p) =

n∑

i=1

F−1Xi

(u)e−µi+σiΦ−1(p);

2. F−1DSc|U=u(p) is continuous and strictly↗ ∀ u⇒ FDSc|U=u(y)

can be computed as a solution of

n∑

i=1

F−1Xi

(u)e−µi+σiΦ−1(FDSc|U=u(y)) = y;

3. The cumulative distribution function of DSc can be nowderived as

FDSc(y) =

∫ 1

0FDSc|U=u(y)du.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 189/278

Page 202: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¿À ÁÂ ÃÄÅ Æ ¿ Æ Ç ÈÅ É ÆÊ ËÅ Á ÆÅ Á

Discounting with Gaussian returns: stop-loss premia

Lemma 2 Let X be a lognormal random variable of the formαeZ with Z ∼ N(E[Z], σZ) and α ∈ R. Then the stop-losspremium with retention d equals for αd > 0

E[(X − d)+] = sign (α) eµ+ σ2

2 Φ(sign (α) b1)− dΦ(sign (α) b2),

where

µ = ln |α|+ E[Z] σ = σZ

b1 =µ+ σ2 − ln |d|

σb2 = b1 − σ

The cases αd < 0 are trivial.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 190/278

Page 203: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÌÍ ÎÏ ÐÑÒ Ó Ì Ó Ô ÕÒ Ö Ó× ØÒ Î ÓÒ Î

Discounting with Gaussian returns: SL DSc

E[(e−Y (i) − du,i)+] = e−µi+σ2

i2 Φ(b(1)u,i

)− du,iΦ

(b(2)u,i

),

with

du,i = F−1exp(−Y (i))

(FDSc|U=u(d)

)= e−µi+σiΦ−1(FDSc|U=u(d))

b(1)u,i = −µi+σ2

i −ln(du,i)σi

, b(2)u,i = b

(1)u,i − σi

E[(DSc − d)+] =

∫ 1

0

n∑

i=1

F−1Xi

(u)E[(e−Y (i) − du,i)+]du

=n∑

i=1

e−µi+1

2σ2

i

∫ 1

0F−1

Xi(u)Φ

(σi − Φ−1(FDSc|U=u(d))

)du

−d(1− FDSc(d)).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 191/278

Page 204: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÙÚ ÛÜ ÝÞß à Ù à á âß ã àä åß Û àß Û

A comonotonic approximation for cumulative returns

• The exact random variable

S =n∑

i=1

αie−Y (i)

• Approximation: replace

[Y (1), Y (2), . . . , Y (n)]

by[Y (1)c, Y (2)c, . . . , Y (n)c]

where the◦ marginals are the same,◦ copula is replaced by the comonotonic copula.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 192/278

Page 205: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

æç èé êëì í æ í î ïì ð íñ òì è íì è

The best comonotonic approximation

• The exact random variable

S = E[S|S] =n∑

i=1

αiE[e−Y (i)|S]

• Approximation: replace S by

S = E[S|Λ] =n∑

i=1

αiE[e−Y (i)|Λ]

or equivalent, replace [Y (1), Y (2), . . . , Y (n)] by

[Y (1)l, Y (2)l, . . . , Y (n)l]

where the marginals are replaced and the copula isreplaced by the comonotonic copula.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 193/278

Page 206: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

óô õö ÷øù ú ó ú û üù ý úþ ÿù õ úù õ

Choice of the conditioning variable: return component

a) ⇒ choose Λ such that Λ ≈ S ( Var(S) ≈ Var(S l) )

Λ =

n∑

i=1

βiY (i)

• Taylor based (Kaas et al., 2000): βi = αie−µi

→ Λ: linear transformation of a first order approximation to S

S =n∑

i=1

αie−µi+(Y (i)+µi) ≈

n∑

i=1

αie−µi (1 + Y (i) + µi)

≈ C +n∑

i=1

αie−µiY (i),

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 194/278

Page 207: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � ��� � � � � � �� �� � �� �

Choice of the conditioning variable: return component

• Maximal variance (Vanduffel et al., 2004): βi = αie−µi+

1

2σ2

i

→ the first order approximation of Var(S`) is maximized

Var(Sl) ≈

n∑

i=1

n∑

j=1

αiαje−µi−µj+

12(σ2

i +σ2j )(rirjσiσj)

=

n∑

i=1

n∑

j=1

αiαje−µi−µj+

12(σ2

i +σ2j )

(Cov[Y (i),Λ]Cov[Y (j),Λ]

Var(Λ)

)

=(Cov(

∑ni=1 αie

µi+12σ2

i Y (i),Λ))2

Var(Λ)

= (Corr(n∑

i=1

αi eµi+

12σ2

i Y (i),Λ))2Var(n∑

i=1

αie−µi+

12σ2

i Y (i)).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 195/278

Page 208: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� ��� � � � �� � �� �� � �� �

Choice of the conditioning variable: return component

b) ⇒ based on the standardized logarithm of the geometricaverage G = (

∏ni=1 αie

−Y (i))1/n (Nielsen and Sandman,2002)

Λ =ln G− E[ln G]√

Var[ln G]=

∑ni=1(µi − Y (i))√

Var(∑n

i=1 Y (i))

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 196/278

Page 209: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� �� ! � ! " # $ !% & � ! �

Discounting with Gaussian returns: lower bound DS l

• Λ =∑n

i=1 βiY (i) ⇒ Y (i)|Λ = λ ∼ N(µi,λ, σ2i,λ)

µi,λ = µi + Cov(Y (i),Λ)Var(Λ) (λ− E[Λ]) and σ2

i,λ = σ2i −

Cov(Y (i),Λ)2

Var[Λ]

=⇒ DSl =n∑

i=1

E[Xi|Γ]E[e−Y (i)|Λ]

=

n∑

i=1

E[Xi|Γ]e−µi,Λ+σ2

i,Λ

2

=n∑

i=1

E[Xi|Γ]e−µi+1

2σ2

i (1−r2i )−σiriΦ−1(U),

with U ∼ Unif(0, 1)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 197/278

Page 210: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

'( )* +,- . ' . / 0- 1 .2 3- ) .- )

Discounting with Gaussian returns: lower bound DS l

and correlations given by

ri = Corr(Y (i),Λ) =Cov(Y (i),Λ)√

Var[Y (i)]√

Var[Λ].

• Note that when the βi’s and Xi’s are non-negative, also theri’s are non-negative and the r.v. DS l is (given a valueΓ = γ) the sum of the components of a comonotonic vector.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 198/278

Page 211: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

45 67 89: ; 4 ; < =: > ;? @: 6 ;: 6

Discounting with Gaussian returns: CDF DS l

1. The conditional quantiles (given Γ = γ) can be computed as

F−1DSl|Γ=γ(p) =

n∑

i=1

E[Xi|Γ = γ]e−µi+1

2σ2

i (1−r2i )+σiriΦ−1(p);

2. The conditional distribution function is computed as thesolution of

n∑

i=1

E[Xi|Γ = γ]e−µi+1

2σ2

i (1−r2i )+σiriΦ−1(FDSl|Γ=γ(y)) = y;

3. Finally, the cumulative distribution function of DS l can bederived as

FDSl(y) =

∫ 1

0FDSl|Γ=F−1

Γ (u)(y)du.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 199/278

Page 212: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

AB CD EFG H A H I JG K HL MG C HG C

Discounting with Gaussian returns: SL DS l

E[(

E[e−Y (i)|Λ]− dγ,i

)+

]= e−µi+

1

2σ2

i Φ(b(1)γ,i

)− dγ,iΦ

(b(2)γ,i

),

with

dγ,i = F−1E[e−Y (i)|Λ]

(FDSl|Γ=γ(d)

)= e−µi+

12 σ2

i (1−r2i )+σiriΦ

−1(FDSl|Γ=γ

(d))

b(1)γ,i =

−µi+12 σ2

i (1−r2i )+σ2

i r2i −ln(dγ,i)

σiri, b

(2)γ,i = b

(1)γ,i − σiri

E[Sl − d]+ =

∫ 1

0

n∑

i=1

E[Xi|Γ = F−1Γ (u)]E

[(E[e−Y (i)|Λ]− dγ,i

)+

]du

=

n∑

i=1

e−µi+1

2σ2

i

∫ 1

0E[Xi|Γ = F−1

Γ (u)]

×Φ(riσi − Φ−1(FDSl|Γ=γ(d))

)du− d(1− FDSl(d))

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 200/278

Page 213: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

NO PQ RST U N U V WT X UY ZT P UT P

Discounting with Gaussian returns

Model Variable Formula

B-SM E[Y (i)] = µi iµ

Var[Y (i)] = σ2i iσ2

Var[Λ] = σ2Λ

∑nj=1 jβ

2j σ

2 +∑

1≤j<k≤n 2jβjβkσ2

Cov[Y (i),Λ]∑n

j=1 min(i, j)βjσ2

O-UM E[Y (i)] = µi iµ

Var[Y (i)] = σ2i

σ2

2a (1− e−2ia)

Var[Λ] = σ2Λ

σ2

2a

(∑nj=1 β

2j (1− e−2ja)+

+∑

1≤j<k≤n 2βjβk(e−(k−j)a − e−(j+k)a)

)

Cov[Y (i),Λ] σ2

2a

∑nj=1 βj(e

−|i−j|a − e−(i+j)a)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 201/278

Page 214: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

[\ ]^ _`a b [ b c da e bf ga ] ba ]

Moments based approximations

How to calculate the variances of DSc and DSl?

In general: X =n∑

i=1

fi(U)gi(V )

−fi and gi : non-negative functions−U and V : independent standard uniform r.v.’s

• DSc: fi(U) = F−1Xi

(U) and gi(V ) = F−1e−Y (i)(V )

• DSl: fi(U) = E[Xi|Γ

]and gi(V ) = E

[e−Y (i)|Λ

]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 202/278

Page 215: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

hi jk lmn o h o p qn r os tn j on j

Moments based approximations

Var[X]

= E[Var[X|U ]] + Var[E[X|U ]]

=

∫ 1

0VarV

[ n∑

i=1

gi(u)fi(V )]du

+

∫ 1

0

(EV

[ n∑

i=1

gi(u)fi(V )])2

du−(∫ 1

0EV

[ n∑

i=1

gi(u)fi(V )]du

)2

.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 203/278

Page 216: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

uv wx yz{ | u | } ~{ � |� �{ w |{ w

Moments based approximations

S =∑n

i=1 αigi(V )

for any vector of non-negative numbers (α1, α2, . . . , αn)

• The upper bound: gi(V ) = e−µi+σiΦ−1(V )

⇒ Var[Sc] =n∑

i=1

n∑

j=1

αiαje−µi−µj+

σ2i +σ2

j

2

(eσiσj − 1

)

• The lower bound: gi(V ) = e−µi+1

2σ2

i (1−r2i )+σiriΦ−1(V )

⇒ Var[Sl] =

n∑

i=1

n∑

j=1

αiαje−µi−µj+

σ2i +σ2

j

2

(erirjσiσj − 1

).

E[S] = E[Sc] = E[Sl] =∑n

i=1 αie−µi+

1

2σ2

i

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 204/278

Page 217: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Part I Applications

Life Annuities

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 205/278

Page 218: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Stochastic returns in life insurance

• Traditionally actuaries have used deterministic interest ratesin life insurance;

• However the investment risk, unlike the insurance risk,cannot be diversified with an increase in the number ofpolicies;

• In this approach conservative assumptions for the technicalinterest rate aim to protect against poor investments resultsin some periods;

• A risk-based approach however requires to take the randomnature of returns into account;

• However, then there are no closed-form expressions fortraditional actuarial functions;

• We show how to apply the comonotonicity theory to get veryaccurate approximations of typical present value functionsin life annuity business.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 206/278

Page 219: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� ��  ¡¢ £ � £ ¤ ¥¢ ¦ £§ ¨¢ � £¢ �

Decrements

• Life annuity: a series of periodic payments where eachpayment will actually be made only if a designated life isalive at the time the payment is due

• Notation:◦ T : total lifetime with limiting age ω◦ Tx: future lifetime of (x) (a person aged x years)• Gx(t) = Pr[Tx ≤ t] = tqx, t ≥ 0 (G−1

x (1) = ω − x)• Gx(t) = Pr[Tx > t] = tpx, t ≥ 0

◦ Kx = bTxc: curtate future lifetime of (x)• Pr(Kx = k) = Pr(k ≤ Tx < k + 1) = k+1qx − kqx =

k|qx, k = 0, 1, . . .

◦ T (j)x : future lifetime of the j-th insured (assumed to be

mutually independent)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 207/278

Page 220: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

©ª «¬ ­®¯ ° © ° ± ²¯ ³ °´ µ¯ « °¯ «

Three types of life annuities

• The present value of a single whole life annuityimmediate paying αi at the end of year i:

Spolicyx =

Kx∑

i=1

αie−Y (i) =

bω−xc∑

i=1

αiI(Tx>i)e−Y (i)

• The present value of a homogeneous portfolio of N0

whole life annuity contracts paying at the end of year i afixed amount αi: (Ni: # survivals in year i)

Sportfoliox =

bω−xc∑

i=1

αi

(I(T

(1)x >i) + . . .+ I(T

(N0)x >i)

)e−Y (i)

=

bω−xc∑

i=1

αiNie−Y (i),

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 208/278

Page 221: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¶· ¸¹ º»¼ ½ ¶ ½ ¾ ¿¼ À ½Á ¼ ¸ ½¼ ¸

Three types of life annuities

• Consider a portfolio of N0 homogeneous life annuitycontracts. From the Law of Large Numbers for sufficientlylarge N0:

bω−xc∑

i=1

αiNie−Y (i) = N0

bω−xc∑

i=1

αiNi

N0e−Y (i)

≈ N0

bω−xc∑

i=1

αi ipxe−Y (i)

.

=⇒ in the case of large portfolios of life annuities it sufficesto compute risk measures of an ‘average’ portfolio:

Saveragex =

bω−xc∑

i=1

αi ipxe−Y (i)

= E[Spolicyx |Y (1), · · · , Y (bω − xc)]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 209/278

Page 222: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÃÄ ÅÆ ÇÈÉ Ê Ã Ê Ë ÌÉ Í ÊÎ ÏÉ Å ÊÉ Å

The Gompertz-Makeham law

• Force of mortality at age ξ:

µξ = α+ βcξ

-α > 0: constant component→ capturing accident hazard-βcξ: variable component→ capturing the hazard of aging(β > 0, c > 1)

• Survival probability:

tpx = Pr(Tx > t) = exp

(−∫ x+t

xµξdξ

)= stgcx+t−cx

,

where s = exp(−α) and g = exp(− β

log c

)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 210/278

Page 223: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÐÑ ÒÓ ÔÕÖ × Ð × Ø ÙÖ Ú ×Û ÜÖ Ò ×Ö Ò

The Gompertz-Makeham law

• Denote by T ′x the future lifetime of (x) from the Gompertz

family with force of mortality µ′ξ = βcξ

• Txd= min(T ′

x, E/α) and E ∼ exp(1)

Pr(min(T ′x, E/α) > t) = Pr(T ′

x > t) Pr(E > αt)

= exp

(−∫ x+t

x

µ′ξdξ

)e−αt

= exp

(−∫ x+t

x

µξdξ

)

= Pr(Tx > t).

Simulation from Makeham’s law :(a) Generate G from the Gompertz’s law by the inversion method(b) Generate E from the exp(1) distribution(c) Retain T = min(G,E/α)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 211/278

Page 224: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÝÞ ßà áâã ä Ý ä å æã ç äè éã ß äã ß

Personal finance problem

• Suppose that (x) disposes a lump sum L.What is the amount that (x) can yearly consume to bealmost sure (i.e. sure with a sufficiently high probability e.g.p = 99%) that the money will not be run out before death?A solution to the latter problem is crucial to determine thefair value of future liabilities and the solvency margin.

• Notice that the presented methodology is appropriate notonly in the case of large portfolios when the limitingdistribution can be used on the basis of the law of largenumbers but also for portfolios of average size (e.g.1000-5000) which are typical for the life annuity business.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 212/278

Page 225: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

êë ìí îïð ñ ê ñ ò óð ô ñõ öð ì ñð ì

Single life annuity: CDF upper bound SLAcx

• Xi = I(Tx>i) ∼ Bern(ipx)⇒ F−1Xi

(p) =

{1 for p > iqx

0 for p ≤ iqx.

SLAcx =

∞∑

i=1

F−1Xi

(U)F−1αie−Y (i)(V ) =

bF−1Tx

(U)c∑

i=1

F−1αie−Y (i)(V )

FSLAcx(y) =

bω−xc∑

k=1

k|qxFSLAcx|Kx=k(y)

-conditional quantiles: F−1SLAc

x|Kx=k(p) =k∑

i=1

αie−µi+sign(αi)σiΦ

−1(p)

-conditional df:k∑

i=1

αi exp(−µi + sign(αi)σiΦ

−1(FSLAcx|Kx=k(y))

)= y

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 213/278

Page 226: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

÷ø ùú ûüý þ ÷ þ ÿ �ý � þ� �ý ù þý ù

Single life annuity: SL upper bound SLAcx

E[(SLAcx − d)+] = EKx

[E[(SLAc

x − d)+ |Kx

]]

=

bω−xc∑

k=1

k|qx( k∑

i=1

E[(αie−Y (i) − dk,i)+]

),

with dk,i = αi exp(−µi + sign(αi)σiΦ

−1(FSck(d))

)

E[(SLAcx − d)+] =

bω−xc∑

k=1

k|qx

k∑

i=1

αi e−µi+

σ2i2 Φ

[sign(αi)σi − Φ−1(FSc

k(d))

]− d

(1− FSc

k(d))

(SLAcx|Kx=k

not= Sc

k)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 214/278

Page 227: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � � � � � � � �� � � � �

Single life annuity: CV lower bound SLAlx

• Γ = Tx ⇒ E[I(Tx>i)|Tx] = I(Tx>i)

• Λ?a) Λ(a) =

∑bω−xci=1 αi ipxe

−µi+1

2σ2

i Y (i)→ first orderapproximation to the PV of the limiting portfolio

b) Λ(M) := Λj0 with

j0 = arg maxj{Var(SLAl,j

x ), j = 1, . . . , bω − xc}

-SLAl,jx =

∑Kx

i=1 E[αie−Y (i)|Λj ]

-Λj =∑j

i=1 αie−µi+

1

2σ2

i Y (i)

SLAlx|Kx=k =

k∑

i=1

αie−µi+

12 σ2

i (1−r2i )−σiriΦ

−1(V )

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 215/278

Page 228: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Single life annuity: CDF lower bound SLAlx

SLAlx =

Kx∑

i=1

E[αie−Y (i)|Λ]

FSLAlx(y) =

bω−xc∑

k=1

k|qxFSLAlx|Kx=k(y)

-conditional quantiles: F−1SLAl

x|Kx=k(p) =

k∑

i=1

αie−µi+

12 σ2

i (1−r2i )+σiriΦ

−1(p)

-conditional df:k∑

i=1

αi exp

(−µi +

1

2σ2

i (1− r2i ) + σiriΦ−1(FSLAl

x|Kx=k(y))

)= y

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 216/278

Page 229: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� ! "#$ % � % & '$ ( %) *$ %$

Single life annuity: SL lower bound SLAlx

E[(SLAlx − d)+] = EKx

[E

[(SLAl

x − d)

+|Kx

]]

=

bω−xc∑

k=1

k|qx

(k∑

i=1

E

[(E[αie

−Y (i)|Λ]− dk,i

)+

])

with dk,i = αi exp(−µi + 1

2σ2i (1− r2i ) + σiriΦ

−1(FSLAlx|Kx=k(d))

)

E[(SLAlx − d)+] =

bω−xc∑

k=1

k|qx

k∑

i=1

αi e−µi+

σ2i2 Φ

[riσi − Φ−1

(FSl

k(d))]− d

(1− FSl

k(d))

(SLAlx|Kx=k

not= Sl

k)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 217/278

Page 230: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

+, -. /01 2 + 2 3 41 5 26 71 - 21 -

Single life annuity: an alternative approximation

• Take as conditioning variable:

ΛKx=

Kx∑

i=1

αie−µi+

1

2σ2

i Y (i)

• The lower bound is then given by

bω−xc∑

k=1

k|qx

k∑

i=1

αie−µi+

1

2σ2

i (1−r2i,k)−σiri,kΦ−1(Uk),

with◦ correlations: ri,k = Cov(Y (i),Λk)√

Var[Y (i)]√

Var[Λk]

◦ {Uk}k=1,...,bω−xc ∼ Unif(0, 1)⇒ multidimensional lowerbound

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 218/278

Page 231: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

89 :; <=> ? 8 ? @ A> B ?C D> : ?> :

Single life annuity: an alternative approximation

A new approximation based upon this lower bound:

◦ SLAclx =

bω−xc∑

k=1

k|qx

k∑

i=1

αie−µi+

1

2σ2

i (1−r2i,k)−σiri,kΦ−1(U)

• The “comonotonic upper bound of the lower bound”• SLAcl

x 6≤cx SLAx

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 219/278

Page 232: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

EF GH IJK L E L M NK O LP QK G LK G

A numerical illustration: Quantiles

-Return process: Black & Scholes model µ = 0.05, σ = 0.1-Mortality process: Makeham’s model, 65 years, males withcoefficients Belgian analytical life table MR:(m : a = 1000266.63, s = 0.999441703848, g = 0.999733441115, c = 1.101077536030)-Monte-Carlo (MC) simulation: 500× 100 000 paths-Payments: αi = 1 ∀i

p SLAl65 SLAcl

65 SLAc65 MC (s.e.× 103)

0.995 27.5124 27.6700 30.2983 27.6933 (6.324)

0.975 22.2495 22.2875 23.6574 22.2839 (2.816)

0.95 19.9565 19.9713 20.8754 19.9731 (1.896)

0.90 17.5905 17.5972 18.0797 17.5969 (1.420)

0.75 14.1741 14.1887 14.1867 14.1887 (0.978)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 220/278

Page 233: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

RS TU VWX Y R Y Z [X \ Y] ^X T YX T

A numerical illustration: QQ-plot

0 5 10 15 20 25

05

1015

2025

30

QQ-plot of the quantiles of SLAl65 (◦), SLAcl

65 (4) and SLAc65 (�)

versus those of ‘SLA65’ (MC).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 221/278

Page 234: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

_` ab cde f _ f g he i fj ke a fe a

A numerical illustration: Stop-loss premia

d SLAl65 SLAcl

65 SLAc65 MC (s.e.× 104)

0 11.0944 11.0944 11.0944 11.0937 (9.43)

5 6.3715 6.3756 6.3792 6.3748 (8.67)

10 2.5956 2.6071 2.6900 2.6068 (5.89)

15 0.7151 0.7201 0.8629 0.7201 (0.34)

20 0.1628 0.1664 0.2536 0.1668 (0.21)

25 0.0357 0.0379 0.0758 0.0382 (0.10)

30 0.0080 0.0091 0.0239 0.0093 (0.02)

35 0.0019 0.0023 0.0081 0.0024 (0.004)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 222/278

Page 235: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

lm no pqr s l s t ur v sw xr n sr n

Homogeneous portfolio of life annuities

PLAx =

bω−xc∑

i=1

αi

(I(T

(1)x >i) + . . .+ I(T

(N0)x >i)

)e−Y (i)

=

bω−xc∑

i=1

αiNie−Y (i),

=

N0∑

j=1

SLA(j)x

=

N0∑

j=1

bω−xc∑

i=1

αiI(T(j)x >i)e

−Y (i)

Ni ∼ binomial(N0, ipx)⇒ difficult to deal with !

−→ Normal Power Approximation (NPA)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 223/278

Page 236: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

yz {| }~� � y � � �� � �� �� { �� {

Homogeneous portfolio of life annuities: NPA

Approximate the distribution of Ni by the NPA Ni

FNi(x) = Φ

(− 3

γNi

+

√9

γ2Ni

+6(x− µNi

)

γNiσNi

+ 1

)

with

µNi= E[Ni] = N0 ipx

σ2Ni

= Var[Ni] = N0 ipxiqx

γNi=

E[Ni − µNi]3

σ3Ni

=1− 2ipx√N0 ipxiqx

The p-th quantile of Ni:

F−1Ni

(p) = µNi+ σNi

Φ−1(p) +γNi

σNi

6

((Φ−1(p))2 − 1

)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 224/278

Page 237: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

homogeneous portfolio of life annuities: convex bounds

• The upper bound is straightforward, from

PLAcx|U=u =

bω−xc∑

i=1

αiF−1Ni

(u)e−µi+sign(αi)σiΦ−1(V )

• Conditioning variables of the lower bound◦ Γ = Ni0 → the number of policies-in-force in the year i0

E[Ni|Ni0 = n0] = i−i0px+i0n0 for i ≥ i0

E[Ni|Ni0 = n0](Bayes)

=

N0∑

k=n0

kPr(Ni0 = n0|Ni = k)Pr(Ni = k)

Pr(Ni0 = n0)

=

N0∑

k=n0

k

(N0 − n0

k − n0

)ip

k−n0x

i0−iqk−n0x+i iq

N0−kx

i0qN0−n0x

for i < i0

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 225/278

Page 238: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

homogeneous portfolio of life annuities: convex bounds

• Conditioning variables of the lower bound◦ Γ : take for simplicity Γ = N1 ⇒ E[Ni|N1] = i−1px+1N1

◦ Λ =∑bω−xc

i=1 αi ipxe−µi+

1

2σ2

i Y (i)

• The lower bound is then straightforward, from

PLAlx|U=u =

bω−xc∑

i=1

αi i−1px+1F−1N1

(u)e−µi+1

2σ2

i (1−r2i )−σiriΦ−1(V )

• Moments based approximation PLAmx

Var[PLAx] = E[Var[PLAx|~Y ]] + Var[E[PLAx|~Y ]]

= N0E[Var[SLAx|~Y ]] +N20 Var[E[SLAx|~Y ]]

= N0Var[SLAx] + (N20 −N0)Var[E[SLAx|~Y ]]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 226/278

Page 239: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

 ¡ ¢£ ¤¥¦ §   § ¨ ©¦ ª §« ¬¦ ¢ §¦ ¢

A numerical illustration: Quantiles

-Return process: Black & Scholes model µ = 0.05, σ = 0.1-Mortality process: Makeham’s model MR, 65 years, males-Portfolio: 1000 policies-Payments: αi = 1 ∀i

p PLAl65 PLAm

65 PLAc65 MC (s.e.)

0.995 20209 20250 22620 20242 (22.09)

0.975 17252 17272 18722 17276 (8.80)

0.95 15937 15951 17029 15947 (8.15)

0.90 14565 14574 15290 14568 (5.08)

0.75 12574 12577 12821 12577 (3.90)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 227/278

Page 240: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

­® ¯° ±²³ ´ ­ ´ µ ¶³ · ´¸ ¹³ ¯ ´³ ¯

A numerical illustration: QQ-plot

6000 8000 10000 12000 14000 16000 18000 20000

5000

1000

015

000

2000

0

QQ-plot of the quantiles of PLAl65 (◦), PLAm

65 (4) and PLAc65 (�)

versus those of ‘PLA65’ (MC).

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 228/278

Page 241: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

º» ¼½ ¾¿À Á º Á  ÃÀ Ä ÁÅ ÆÀ ¼ ÁÀ ¼

A numerical illustration: Stop-loss premia

d PLAl65 PLAm

65 PLAc65 MC (s.e.)

0 11094 11094 11094 11098 (2.11)

5000 6094 6094 6095 6098 (2.10)

10000 1608 1610 1793 1611 (1.95)

15000 153.7 155.3 278.4 155.3 (1.78)

20000 10.23 10.57 36.02 10.67 (1.26)

25000 0.680 0.734 4.816 0.743 (0.09)

30000 0.051 0.059 0.711 0.036 (0.02)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 229/278

Page 242: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÇÈ ÉÊ ËÌÍ Î Ç Î Ï ÐÍ Ñ ÎÒ ÓÍ É ÎÍ É

Part II Applications

Loss Reserving

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 230/278

Page 243: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÔÕ Ö× ØÙÚ Û Ô Û Ü ÝÚ Þ Ûß àÚ Ö ÛÚ Ö

Loss Reserving: general framework

• Stochastic liability payments: Li ≥ 0 at times i = 1, 2, . . . , n(modified by certain forces that influence the liability over time)

• Lti = Lt−1

i RLt, t = 1, . . . , i

◦ Lti : amount of liability expressed in money values of

time t◦ RLt = 1 + rLt

◦ rLt : inflation of claim costs over interval (t− 1, t]

• At = At−1RAt

◦ At : holding of assets of value At at time t◦ RAt = 1 + rAt

• Assume RXt (X = A,L) follows CAPM:

rXt = rFt + βX∆t + εXt

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 231/278

Page 244: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

áâ ãä åæç è á è é êç ë èì íç ã èç ã

Loss Reserving: general framework

• rXt = rFt + βX∆t + εXt

◦ ∆t = rMt − rFt (distribution independent of t)◦ rFt: risk-free rate in period t◦ rMt: periodic increase in value of the economy wide

portfolio of assets◦ βX : CAPM beta associated with X◦ εXt ∼ i.i.d. and E[εXt] = 0 and Var(εXt) := ω2

X

◦ εAt, εLt,∆t independent• Assume RXt ∼ i.i.d logN(µX , σ

2X) and L0

s ∼ logN(ν0s, τ20s)

• L0s and RXt independent ∀s, t,X

• ρ = Corr(logRAt, logRLt) and κ(rs) = Corr(logL0r , logL0

s)

• RX = E[RXt] = exp(µX + 12σ

2X)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 232/278

Page 245: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

îï ðñ òóô õ î õ ö ÷ô ø õù úô ð õô ð

Discounted loss reserve

Discounted loss reserve:

V =

n∑

i=1

Vi =

n∑

i=1

LttR

−1A (t)

=n∑

i=1

L0tRL(t)R−1

A (t)

• RX(i) = RX1 + · · ·+RXi ∼ logN(iµX , iσ2X)

=⇒ Vi ∼ logN(α(i), δ2(i))

◦ α(i) = ν0i + i(µL − µA)

◦ δ2(i) = τ20i + i(σ2

L + σ2A − 2ρσLσA)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 233/278

Page 246: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ûü ýþ ÿ� � � û � � � � � �� � � ý � � ý

Loss Reserving: general framework

Three relevant values of the loss reserve:• ∑n

i=1 E[L0i ] : CAPM-based economic value of the liability

• E[V ] : expected value of the discounted liability cash-flows

• F−1V (p) : 100p% confidence loss reserve

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 234/278

Page 247: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� � � � � � � � �� � �� �� ��

Convex bounds discounted loss reserve

V =n∑

i=1

Vi :not=

n∑

i=1

eZi

V l :=n∑

i=1

E[Vi|Λ] ≤cx V ≤cx Vc :=

n∑

i=1

F−1Vi

(U)

Qp[Vl] =

n∑

i=1

eE[Zi]+1

2(1−r2

i )σ2Zi

+riσZiΦ−1(p), p ∈ (0, 1)

Qp[Vc] =

n∑

i=1

eE[Zi]+σZiΦ−1(p), p ∈ (0, 1)

E[V ] = E[V l] = E[V c] =n∑

i=1

eE[Zi]+1

2σ2

Zi

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 235/278

Page 248: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � � !� � �� �

Convex bounds discounted loss reserve

Λ =∑n

i=1 βiZi with βi = exp(E[Zi] +12σ

2Zi

)

E[Zi] = ν0i + log

(RL

RA

(1 + (β2

Aσ2M + ω2

A)/R2A

1 + (β2Lσ

2M + ω2

L)/R2L

)1/2)i

Var(Zi) = σ2Zi

= τ20i + iσ2

The variability of the discounting structure

σ2 not= σ2

L + σ2A − 2ρσLσA is given by

log

{[1 + (β2

Aσ2M + ω2

A)/R2A][1 + (β2

Lσ2M + ω2

L)/R2L]

[1 + βAβLσ2M/RARL]2

}

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 236/278

Page 249: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

"# $% &'( ) " ) * +( , )- .( $ )( $

Convex bounds discounted loss reserve

The correlation between Zi and Λ is given by

ri =Cov(Zi,Λ)

σZsσΛ

=

∑nk=1 βk

(σ2 min(i, k) + η(i,k)

)

σZi

√∑nk=1

∑nl=1 βkβl(σ2 min(k, l) + η(k,l))

withη(k,s) = Cov

(logL0

k, logL0s

)= κ(ks)τ0kτ0s

Note that if the liability cash-flows are independentη(k,s) = τ2

0kI(k=s) and I(.) the indicator function.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 237/278

Page 250: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

/0 12 345 6 / 6 7 85 9 6: ;5 1 65 1

Moment matching vs. convex bounds

Security margin for confidence level p (Taylor, 2004):

SMp[V ]not= (Qp[V ]/E[V ])− 1

LB not=

SMp[V l] − SMp[V MC ]

SMp[V MC ]×100% and LN not

=SMp[V LN ] − SMp[V MC ]

SMp[V MC ]×100%,

(MC: Monte Carlo simulation - LN: lognormal moment matching)

Stochastic liability cash-flow structure: (n = 30)-ν0i = −4.46 for i = 1, . . . , 30

τ0i =

5% s ≤ 5; 10% 5 < i ≤ 15; 15% 15 < i ≤ 25

20% 25 < i ≤ 28; 25% 28 < i ≤ 30 .

-∑30

i=1 E[Li] = 100% and E[L0i ] = 35.51%

- ωL = 10% and ωA = 5%Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 238/278

Page 251: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

<= >? @AB C < C D EB F CG HB > CB >

Moment matching vs. convex bounds

p = 0.975 σM = 0.05 σM = 0.10 σM = 0.15 σM = 0.20 σM = 0.25 σM = 0.30

LB −0.19% −0.15% −0.23% −0.16% −0.11% −0.17%

LN −4.94% −3.92% −3.17% −2.49% −1.95% −1.56%

MC 0.4390 0.5250 0.6528 0.8103 0.9924 1.1970

s.e.(×105) (0.15) (0.29) (0.41) (0.69) (1.22) (3.78)

σM = 0.25 p = 0.995 p = 0.975 p = 0.95 p = 0.90 p = 0.80 p = 0.70 p = 0.60

LB −0.93% −0.04% −0.02% −0.18% −0.03% −0.6% +0.86%

LN −3.94% +3.78% +7.22% +11.29% +19.68% +53.46% −15.50%

MC 4.4521 2.2264 1.4998 0.8814 0.3508 0.0761 −0.1069

s.e.(×105) (37.63) (2.99) (7.44) (2.79) (0.78) (0.27) (0.08)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 239/278

Page 252: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

IJ KL MNO P I P Q RO S PT UO K PO K

Loss Reserving: overview

3 categories of reserves in non-life:

1. Reserves with respect to unexpired or unearned exposure- Unearned Premium Reserve (UPR)- Additional Unexpired Risk Reserve (AURR): correction onUPR if loss ratio higher than expected

2. Catastrophe Reserves(Also ‘claims equalisation reserves’; ‘adverse deviationreserves’, ‘fluctuation reserves’, ...)↪→ To smooth the influence of perils such as hurricanes,floods, earthquakes, ... on the result

3. Reserves with respect to earned exposures (loss reserves)- Outstanding claims reserves (‘also case reserves’): forreported losses that are not yet settled- IBNR: Incurred But Not Reported

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 240/278

Page 253: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

VW XY Z[\ ] V ] ^ _\ ` ]a b\ X ]\ X

IBNR reserves

The settlement of claims is always subject to delay: as well inclaim settlement as in claim reporting.• Outstanding Claims Reserves (delay in settlement)

- lengths of delays vary according to the class of business(short / long tail)- regulation in general demands the use of individualestimates with respect to all known outstanding claims atthe accounting date and hardly tolerates the use of over-allstatistical methods- a ‘case reserve’ reflects the expected ultimate settlementvalue of a claim as established by the claims handling staff

• IBNR (delay in reporting)- requires a statistical treatment based on past experienceand expected trends

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 241/278

Page 254: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

cd ef ghi j c j k li m jn oi e ji e

IBNR reserves

For an insurance company, the ability to estimate its lossreserves correctly is of great importance:

- a correct view of the liabilities on the balance sheet- premium calculation- solvency- ...

=⇒ Actuarial loss reserving methods (also ‘IBNR techniques’):to estimate the loss reserves statistically on aggregated data

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 242/278

Page 255: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

pq rs tuv w p w x yv z w{ |v r wv r

IBNR reserves

• Traditionally: claims are aggregated and displayed in arun-off triangle

• Using a triangle simply avoids us having to introducecomplicated notation to cope with all possible situations

• We assume that we have the following set of incrementalclaims data {Yij : i = 1, . . . , t; j = 1, . . . , s− i+ 1}

• Most claims reserving methods usually assume that t = s

• We consider annual development and assume that the timeit takes for the claims to be completely paid is fixed andknown

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 243/278

Page 256: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

}~ �� ��� � } � � �� � �� �� � �� �

Run-off triangle

Accident Development yearyear 1 2 · · · j · · · t− 1 t

1 Y11 Y12 · · · Y1j · · · Y1,t−1 Y1t

2 Y21 Y22 · · · Y2j · · · Y2,t−1

... · · · · · · · · · · · · · · ·i Yi1 · · · · · · Yij

... · · · · · · · · ·t Yt1

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 244/278

Page 257: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

Three directions

Fundamental influences (exogenous factors) in the direction of:• Accident Year

- changes in underwriting conditions (premium / coverage)- changes in the size of the portfolio

• Development Year- development pattern characteristics for short tail / long tailbusiness- changes in the claim handling procedures changes in thefinalization of the claims

• Calendar Year- monetary inflation- changes in jurisprudence

Remark: Accident years and development years mostlyassumed to be independent; calendar year trends operate onboth development years and accident years

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 245/278

Page 258: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � �  � ¡ �¢ £� � �� �

Lognormal models

Zij = log Yij = ηij + εij ηij = (X~β)ij

εij ∼ i.i.d N(0, σ2)

1. Transform the incremental claims by taking their logarithm

2. Fit a model to the transformed values using ordinaryLS-regression analysis

3. Obtain estimates for the parameters in the linear predictorand the process variance

4. Fitted values (on a log scale) are obtained by forming theappropriate sum of estimates

5. Fitted values (on an untransformed scale) are NOT given byYij = exp(ηij)

↪→ This gives an estimate of the median!

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 246/278

Page 259: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¤¥ ¦§ ¨©ª « ¤ « ¬ ­ª ® «¯ °ª ¦ «ª ¦

Lognormal models

Zij = log Yij = ηij + εij ηij = (X~β)ij

εij ∼ i.i.d N(0, σ2)

1. Transform the incremental claims by taking their logarithm

2. Fit a model to the transformed values using ordinaryLS-regression analysis

3. Obtain estimates for the parameters in the linear predictorand the process variance

4. Fitted values (on a log scale) are obtained by forming theappropriate sum of estimates

5. Fitted values (on an untransformed scale) are given byYij = exp(ηij + 1

2 σ2ij) with σ2

ij = σ2(R(X′X)−1R′)

ij+ σ2

X/R: design matrix corresponding to the uppertriangle/square

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 247/278

Page 260: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

±² ³´ µ¶· ¸ ± ¸ ¹ º· » ¸¼ ½· ³ ¸· ³

Linear predictors

Examples• Chain-ladder model

ηij = αi + βj , i+ j ≤ t+ 1

• PTF

ηij = αi +

j−1∑

k=1

βk +

i+j−2∑

t=1

γt, i+ j ≤ t+ 1

• Hoerl curve

ηij = αi + βilog(j) + γij, (j > 0) i+ j ≤ t+ 1

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 248/278

Page 261: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

¾¿ ÀÁ ÂÃÄ Å ¾ Å Æ ÇÄ È ÅÉ ÊÄ À ÅÄ À

Statistical analysis

• Check the model assumptions!- Gauss-Markov conditions of a regression model- Normality for inference

• Goodness-of-Fit- (Adjusted) coefficient of determination and AIC/BIC- Residual plots- Plot of the observed values vs. the fitted values

• Estimation of the parameters by maximum likelihoodmethods- σ2 = 1

n(~Z −X~β)′(~Z −X~β)

- ~β = (X′X)−1X′ ~Z

Remark: σ2 = 1n−p(~Z −X~β)′(~Z −X~β)→ unbiased

estimator of σ2

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 249/278

Page 262: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ËÌ ÍÎ ÏÐÑ Ò Ë Ò Ó ÔÑ Õ ÒÖ ×Ñ Í ÒÑ Í

Lognormal models

• The mean of the IBNR reserve equals

W =

t∑

i=2

t∑

j=t+2−i

e(R~β)ij+

12 σ2(1+(R(X′

X)−1R

′)ij)

• The unique UMVUE of the mean of the IBNR reserve is given by

WU = 0F1

(n− p2

;SSz

4

) t∑

i=2

t∑

j=t+2−i

e(R~β)ij ,

where 0F1(α; z) denotes the hypergeometric function.

• The MLE of the mean of the IBNR reserve:

WM =

t∑

i=2

t∑

j=t+2−i

e(R~β)ij+

12 σ2(1+(R(X′

X)−1R

′)ij)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 250/278

Page 263: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ØÙ ÚÛ ÜÝÞ ß Ø ß à áÞ â ßã äÞ Ú ßÞ Ú

Lognormal models

• Verrall (1991) has considered an estimator similar to WM , but withσ2 replaced with σ2:

WV =

t∑

i=2

t∑

j=t+2−i

e(R~β)ij+

12 σ2(1+(R(X′

X)−1R

′)ij)

• Doray (1996) has considered the following simple estimatorestimator

WD =

t∑

i=2

t∑

j=t+2−i

e(R~β)ij+

12 σ2

⇒ Now we have the order relation

WU < WD < WV ,

which implies that W = E[WU ] < E[WD] < E[WV ]

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 251/278

Page 264: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

åæ çè éêë ì å ì í îë ï ìð ñë ç ìë ç

Generalized Linear Models

1. Random componentf(yij ; θij , φ) = exp {[yijθij − b(θij)] /a(φ) + c(yij , φ)}• f(.) belongs to the exponential family• a(.), b(.) en c(., .) are known functions: a(φ) = φ/wij

• E[Yij ] = µij = b′(θij) and Var[Yij ] = b′′(θij)a(φ) = V (µij)a(φ)

2. Systematic Component

ηij = (X~β)ij = β1Rij,1 + · · ·+ βpRij,p, i, j = 1, . . . , t

3. Link function

ηij = g(µij)

g is a monotone, differentiable function

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 252/278

Page 265: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

òó ôõ ö÷ø ù ò ù ú ûø ü ùý þø ô ùø ô

Generalized Linear Models: link function

• Canonical link→ when g(µij) = θij

↪→ sufficient statistic in ~η (when ~η = ~θ) given by R′~Y

• Logarithmic link→ multiplicative parametric structure +positive fitted values

Distribution Density φ Canonical Mean Variance

link θ(µ) function µ(θ) function V (µ)

N(µ, σ2) 1σ√

2πexp

ÿ

− (y−µ)2

2σ2

σ2 µ θ 1

Poisson(µ) e−µ µy

y!1 log(µ) eθ µ

Gamma(µ, ν) 1Γ(ν)

ÿ

νyµ

� νexp

ÿ− νy

µ

1y

1/µ −1/θ µ2

IG(µ, σ2) y−3/2√

2πσ2exp

ÿ

−(y−µ)2

2yσ2µ2

σ2 1/µ2 (−2θ)−1/2 µ3

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 253/278

Page 266: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � � �� � � �� �

Generalized Linear Models

• Estimation of the parameters by maximum likelihoodmethods (using iteratively reweighted least squares)

• Suppose:response is always positivedata are invariably skew to the rightvariance increases with mean

⇒ no particular distr.

• Quasi-likelihood (Wedderburn, 1974) estimation allows usto model the response variable in a regression contextwithout specifying its distribution. We need only to specifythe link and variance functions to estimate the regressioncoefficients.

• If all the data are positive (greater than 0), identicalparameter estimates are obtained using full orquasi-likelihood.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 254/278

Page 267: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � �� �� � �� �� � �� �

Generalized Linear Models

1. Over-dispersed Poisson model:The incremental claims Yij are distributed as independentover-dispersed Poisson random variables, with

Var[Yij ] = φE[Yij ]

↪→ not only suitable for data consisting exclusively ofpositive integers

⇓quasi-likelihood approach

2. Gamma model:

Var[Yij ] = φ (E[Yij ])2

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 255/278

Page 268: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� � ! " � "# $! % "& '! � "! �

Generalized Linear Models

Log-normal model:

Zij = log(Yij) ∼ N(µij , σ2)

⇓ηij = µij and φ = σ2

↪→ limitation: incremental claim amounts must be positive

Yij = exp(ηij +1

2σ2

ij)ηij=g(µij)←→ Yij = µij = g−1(ηij)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 256/278

Page 269: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

() *+ ,-. / ( /0 1. 2 /3 4. * /. *

Quasi-likelihood equations

When using a logarithmic link function, the quasi-likelihoodequations are given by

t+1−i∑

j=1

eηij =

t+1−i∑

j=1

Yij 1 ≤ i ≤ t;

t+1−j∑

i=1

eηij =

t+1−j∑

i=1

Yij 1 ≤ j ≤ t.

↪→ The sum of the incremental claims in every row and columnhas to be non-negative⇒ problems when modelling incurreddata with a large number of negative incremental claims in thelater stages of development, which is the result of overestimatesof case reserves in the first development years.

⇒Work without GLM-software and without the log-linkSamos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 257/278

Page 270: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

56 78 9:; < 5 <= >; ? <@ A; 7 <; 7

Distribution of ~µ

• R~β ∼MN(R~β,Σ(R~β)) (asymptotically) with

- Σ(R~β) = Σa = {σaij} = R(X′WX)−1R′

- W = diag{w11, · · · , wt1} with wij = Var[Yij ]−1(dµij/dηij)

2

• The function g−1(η11, · · · , ηtt) has a nonzero differential~ψ = (ψ11, · · · , ψtt)

′ at (R~β), where ψij = dµij/dηij

• Delta method:[~µ− ~µ

]d→ N

(0,Σ(~µ)

)

where Σ(~µ) = ~ψ′Σa ~ψ

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 258/278

Page 271: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

BC DE FGH I B IJ KH L IM NH D IH D

Distribution of ~µ

The n−1 bias of ~µ: Cordeiro and McCullagh (1991)

B(~β) = −12Σ

bX′ΣcdFd1,

- Σb = Σ(~β) = {σbij} = (X′WX)−1

- Σc = Σ(U~β) = {σcij} = XΣbX′ (Σc

d = diag{σc11, · · · , σc

t1})- Fd = diag{f11, · · · , ft1} with fij = Var[Yij ]

−1 dµij

dηij

d2µij

dη2ij

- 1 : t(t+ 1)/2× 1 vector of ones

B(R~β) = −12RΣbX′Σc

dFd1

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 259/278

Page 272: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

OP QR STU V O VW XU Y VZ [U Q VU Q

Distribution of ~µ

Because µij = g−1(ηij) = g−1((R~β)ij) and the link function ismonotone and twice differentiable, we can apply a Taylor seriesexpansion of µij around ηij :

µij∼= µij +

dµij

dηij(ηij − ηij) +

1

2

d2µij

dη2ij

(ηij − ηij)2

µij − µij∼= dµij

dηij(ηij − ηij) +

1

2

d2µij

dη2ij

(ηij − ηij)2

E[µij − µij ] ∼=dµij

dηijE[(ηij − ηij)] +

1

2

d2µij

dη2ij

Var(ηij)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 260/278

Page 273: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

\] ^_ `ab c \ cd eb f cg hb ^ cb ^

Distribution of ~µ

In matrix notation

E[~µ− ~µ] ∼= G1E[(~η−~η)] +1

2G2[Var(~η)]

∼= −1

2G1RΣbX′Σc

dFd1 +1

2G2Σ

ad1

- G1 = diag{ψ11, · · · , ψtt} and ψij = dµij/dηij

- G2 = diag{ϕ11, · · · , ϕtt} and ϕij = d2µij/dη2ij

- Σad = diag{σa

11, · · · , σatt}

- 1 : t2 × 1 vector of ones

B(~µ) = 12

{G2Σ

ad1−G1RΣbX′Σc

dFd1}

→ the corrected adjusted values are ~µc = ~µ− B(~µ)

(B(.) = the value of B(.) at (φ, ~µ))

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 261/278

Page 274: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ij kl mno p i pq ro s pt uo k po k

Discounted IBNR reserve: lognormal framework

IBNR reserve

Rdef=

t∑

i=2

t∑

j=t+2−i

e(R~β)ij+εij

εij ∼ i.i.d. N(0, σ2)

(R~β)ij ∼ N((R~β)ij , σ

2(R(X′X)−1R′)

ij

)

⇓Discounted IBNR reserve

Sdef=

t∑

i=2

t∑

j=t+2−i

e(R~β)ij+εij−Y (i+j−t−1)

Y (k) ∼ N((µ+δ2

2)k, δ2k)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 262/278

Page 275: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

vw xy z{| } v }~ �| � }� �| x }| x

Convex bounds discounted IBNR reserve (lognormal)

1. Upper bound

Sc =

t∑

i=2

t∑

j=t+2−i

F−1exp(Wij)

(U)F−1exp(εij)

(V )

=t∑

i=2

t∑

j=t+2−i

exp(E[Wij ] + σWij

Φ−1(U) + σεijΦ−1(V )

)

with Wij = (R~β)ij − Y (i+ j − t− 1)

2. Lower bound

Sl =

t∑

i=2

t∑

j=t+2−i

E[exp(Wij)|Z]E[exp(εij)] (Z normal distributed)

=t∑

i=2

t∑

j=t+2−i

exp(

E[Wij ] + ρijσWijΦ−1(U) +

1

2(1− ρ2

ij)σ2Wij

+1

2σ2

εij

)

with ρij = Corr(Z,Wij)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 263/278

Page 276: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � �� �� � �� �� � �� �

Convex bounds discounted IBNR reserve (lognormal)

• Choice of normal random variable Z?

Z =

t∑

i=2

t∑

j=t+2−i

νijY (i+ j − t− 1)

withνij = exp

((R~β)ij − (i+ j − t− 1)µ

)

• To compute the cdf’s one can use the following result

FXY (z) =

∫ ∞

−∞FY

( zx

)dFX(x) =

∫ 1

0FY

(z

F−1X (u)

)du

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 264/278

Page 277: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � �� �� � �� �� � �� �

Convex bounds discounted IBNR reserve (lognormal)

Upper bound

FSc(z) =

∫ 1

0FN

(log(z)− log(F−1

Sc(u))

)du

with FN (x) the cdf of N(0, σ2) and

Sc =t∑

i=2

t∑

j=t+2−i

exp(F−1

(R~β)ij−Y (i+j−t−1)(U)

)

=t∑

i=2

t∑

j=t+2−i

exp(E[Wij ] + σWij

Φ−1(U))

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 265/278

Page 278: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �  ¡¢£ ¤ � ¤¥ ¦£ § ¤¨ ©£ � ¤£ �

Convex bounds discounted IBNR reserve (lognormal)

Lower bound

F−1sl (p) =

t∑

i=2

t∑

j=t+2−i

F−1E[Vij |Z]E[eεij ]

(p), p ∈ (0, 1)

=

t∑

i=2

t∑

j=t+2−i

E[Vij |Z = F−1Z (1− p)]E[eεij ]

=t∑

i=2

t∑

j=t+2−i

exp(

E[Wij ]− ρijσWijΦ−1(p) +

1

2(1− ρ2

ij)σ2Wij

+1

2σ2

εij

)

(E[eWij |Z]: non-increasing function in Z since ρij ≤ 0)FSl(x)→ solving the equation:

t∑

i=2

t∑

j=t+2−i

exp(

E[Wij ]− ρijσWijΦ−1(FSl

(x)) +1

2(1− ρ2

ij)σ2Wij

+1

2σ2

εij

)= x

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 266/278

Page 279: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ª« ¬­ ®¯° ± ª ±² ³° ´ ±µ ¶° ¬ ±° ¬

Discounted IBNR reserve: GLM framework

IBNR reserve

Rdef=

t∑

i=2

t∑

j=t+2−i

µij

[~µ− ~µ

]d→ N(0, ~ψ′Σa ~ψ)

~µc = ~µ− B(~µ)

⇓Discounted IBNR reserve

Sdef=

t∑

i=2

t∑

j=t+2−i

µije−Y (i+j−t−1)

Y (k) ∼ N((µ+δ2

2)k, δ2k)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 267/278

Page 280: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

·¸ ¹º »¼½ ¾ · ¾¿ À½ Á ¾Â ý ¹ ¾½ ¹

Convex bounds discounted IBNR reserve (GLM)

1. Upper bound

Sc =

t∑

i=2

t∑

j=t+2−i

F−1µij

(U)F−1exp(Vij)

(V )

=t∑

i=2

t∑

j=t+2−i

(µij + B(~µ)ij +

√Σ(~µ)ijΦ

−1(V )

)exp(E[Wij ] + σWij

Φ−1(U))

with Vij = −Y (i+ j − t− 1)

2. Lower bound

Sl =

t∑

i=2

t∑

j=t+2−i

E[µij ]E[exp(Vij)|Z] (Z normal distributed)

=t∑

i=2

t∑

j=t+2−i

(µij + B(~µ)ij

)exp

(E[Wij ] + ρijσWij

Φ−1(U) +1

2(1− ρ2

ij)σ2Wij

)

with ρij = Corr(Z, Vij)

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 268/278

Page 281: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÄÅ ÆÇ ÈÉÊ Ë Ä ËÌ ÍÊ Î ËÏ ÐÊ Æ ËÊ Æ

Convex bounds discounted IBNR reserve (GLM)

• Choice of normal random variable Z?

Z =

t∑

i=2

t∑

j=t+2−i

νijY (i+ j − t− 1)

with

νij =(µij + B(~µ)ij

)exp (−(i+ j − t− 1)δ)

• The computation of the cdf’s is analogous to the lognormalcase

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 269/278

Page 282: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ÑÒ ÓÔ ÕÖ× Ø Ñ ØÙ Ú× Û ØÜ Ý× Ó Ø× Ó

A numerical illustration: dataset

292686 683476 701376 747034 504265 312468 284954 170814 249348 69752

423113 991584 1032142 945156 500205 413863 434622 206319 342383

344386 936335 971651 1104206 575666 416179 359195 246463

308603 830615 864751 981609 504837 372329 353145

338073 884174 895252 927435 647289 391208

322270 927791 980275 952298 577483

387598 1084439 1126376 1035701

385603 1143038 1209301

388795 951100

308586

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 270/278

Page 283: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

Þß àá âãä å Þ åæ çä è åé êä à åä à

A numerical illustration

• Statistical model:

E[Yij ] = µij ,

Var[Yij ] = φµ2ij ,

log(µij) = ηij ,

ηij = αi + βj .

• Return process: Black & Scholes model µ = 0.08, σ = 0.11

• Simulation: 100 000 generated paths

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 271/278

Page 284: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

ëì íî ïðñ ò ë òó ôñ õ òö ÷ñ í òñ í

A numerical illustration: Quantiles

p F−1Sl (p) F−1

S (p) F−1Sc (p)

0.95 17888702 18033971 18926155

0.975 18749885 18923975 20077389

0.99 19809569 19986346 21511663

0.995 20569107 20799492 22551353

0.999 22239104 22410022 24870374

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 272/278

Page 285: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

øù úû üýþ ÿ ø ÿ� �þ � ÿ� �þ ú ÿþ ú

A numerical illustration: QQ-plot

10^7 1.2*10^7 1.4*10^7 1.6*10^7 1.8*10^7 2*10^7

10^7

1.4*

10^7

1.8*

10^7

2.2*

10^7

QQ-plot of the quantiles of Sl (◦) and Sc (�) versus those of S

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 273/278

Page 286: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� �� � � � � � �� � �� �� � �� �

A numerical illustration

FSl FS

year 95% mean st. dev. 95% mean st. dev.

2 102356 85934 9481 103187 85934 9747

3 462847 387251 43602 466609 387251 44775

4 619090 503187 66173 624112 503187 68014

5 1042181 842092 113871 1050345 842092 117188

6 1432744 1142369 164543 1444486 1142369 169224

7 2286615 1815836 266221 2305985 1815836 273721

8 3590200 2864235 410836 3619252 2864235 422643

9 4197088 3312169 499465 4231171 3312169 513473

10 4197710 3264577 524580 4231798 3264577 539321

total 17888702 14217631 2076583 18033971 14217631 2135185

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 274/278

Page 287: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

�� �� ��� � � � � �� � �� �� � �� �

A numerical illustration

• Estimation error→ from the estimation of the vectorparameters β from the data

• Statistical error→ from the stochastic nature of theunderlying model

=⇒ Use bootstrapping to construct statistical confidenceintervals for the bounds incorporating the estimation error !

1. Bootstrap an upper triangle: this involves resampling, withreplacement, from the original residuals and then creating anew triangle of past claims payments using the resampledresiduals together with the fitted values

2. Calculate for each bootstrap sample the desired percentileof the distribution of S l

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 275/278

Page 288: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

� !" #$% & � & ' (% ) &* +% ! &% !

A numerical illustration

QSl(0.95)-distribution based on 5000 bootstrapped run-offtriangles

Distribution of bootstrapped Simulated distribution

95th percentiles of Sl of F−1S (0.95)

1 st percentile 16661827 16333152

2.5 th percentile 16861353 16576586

5 th percentile 17048933 16759301

10 th percentile 17233865 17101271

25 th percentile 17551891 17450048

50 th percentile 17913169 17904390

75 th percentile 18284619 18380651

90 th percentile 18641949 18832716

95 th percentile 18850593 19117307

97.5 th percentile 18999178 19264184

99 th percentile 19187288 19481477

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 276/278

Page 289: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

,- ./ 012 3 , 3 4 52 6 37 82 . 32 .

Some references (www.kuleuven.ac.be/insurance)

[1] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002).The concept of comonotonicity in actuarial science and finance: Theory.Insurance: Mathematics & Economics, vol. 31(1), 3–33.

[2] Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2002).The concept of comonotonicity in actuarial science and finance: Applications.Insurance: Mathematics & Economics, vol. 31(2), 133–161.

[3] Hoedemakers, Beirlant, Goovaerts, Dhaene (2003).Confidence bounds for discounted loss reserves.Insurance: Mathematics & Economics, vol. 33(2), 297-316.

[4] Hoedemakers, Beirlant, Goovaerts, Dhaene (2004).On the distribution of discounted loss reserves using generalized linear models.Scandinavian Actuarial Journal, forthcoming.

[5] Hoedemakers, Darkiewicz, Dhaene, Goovaerts (2004).On the distribution of life annuities with stochastic interest rates.Proceedings of the Eighth International Congress on Insurance: Mathematics andEconomics, Rome.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 277/278

Page 290: feb.kuleuven.be · Table of Contents: 1 Solvency Capital, Risk Measures and Comonotonicity..................................... pp. 3-48 2 Comonotonicity and Optimal Portfolio Selection

9: ;< =>? @ 9 @ A B? C @D E? ; @? ;

Some references (www.kuleuven.ac.be/insurance)

[6] Kaas, Dhaene, Goovaerts (2000).Upper and lower bounds for sums of random variables.Insurance: Mathematics & Economics, vol. 27(2), 151-168.

[7] Vanduffel, Hoedemakers, Dhaene (2004).Comparing approximations for risk measures of sums of non-independentlognormal random variables.North American Actuarial Journal, submitted.

[8] Vyncke, Goovaerts, Dhaene (2004).An accurate analytical approximation for the price of a European-style arithmeticAsian option.Finance (AFFI), to appear.

Samos 2004 Workshop, Risk Measures and Optimal Portfolio Selection, Dhaene/Valdez/Hoedemakers – p. 278/278