FE Thermodynamics Review 2011

download FE Thermodynamics Review 2011

of 31

Transcript of FE Thermodynamics Review 2011

  • 8/12/2019 FE Thermodynamics Review 2011

    1/31

  • 8/12/2019 FE Thermodynamics Review 2011

    2/31

    Definitions

    System

    collection

    of

    matter

    which

    we

    are

    interestedinstudying.

    Surroundings everythingoutsideofthesystem.

    Universe system+surroundings.

    Puresubstance itschemicalcomposition

    remainsthesameregardlessofphase. Intensiveproperty thermodynamicpropertyindependentofthesystemmass. Independentproperty astandaloneproperty

    thatcanbeusedtoidentifythestateofasystem.

  • 8/12/2019 FE Thermodynamics Review 2011

    3/31

    Definitions(cont.)

    Statepostulateforapuresubstance takestwoindependentintensivepropertiestofixitsstate. Closedsystem massdoesnotcrossthesystem

    boundaries,butheatandworkcancrossthesystemboundaries

    Opensystem masscrossesthesystem

    boundaries,heatandworkcanalsocrossthesystemboundaries

    Steadyflow opensystemwithnomass

    accumulation Unsteadyflow opensystemwith massaccumulation

    Signconvention:Heatintosystemispositive.Workoutofsystemispositive.

  • 8/12/2019 FE Thermodynamics Review 2011

    4/31

    GeneralExamTakingPhilosophy Youshouldprepareandworktogetthe

    correctanswerwheneverpossible.

    However,onthoseproblemsyougetstuckon,rememberthatwronganswers arenoworsethannoanswer.

    Therefore,firsttrytoeliminateunreasonableanswerstoimprovetheoddsofguessing

    right. Thenmakeyourbestguess.

    Ifyoudonthavetimetoeliminatewronganswers,pickyourfavoriteletterandguess.

  • 8/12/2019 FE Thermodynamics Review 2011

    5/31

    Problem1.Whatisthemassofaircontainedinaroom

    20mx40m

    x3m

    atstandard

    conditions?

    Standardconditionsmayvarydependingonwhat

    organizationisdefining

    them.

    Itisgenerally,

    P=1atm =101kPa atsealevel, T=25oC=298K Assume: airisanidealgas

    Youaregiventheuniversalgasconstantas

    Ru

    =8.314kJ/kmol K,whereR=Ru /M,M=molecularweightfortheparticulargasof

    interest.

  • 8/12/2019 FE Thermodynamics Review 2011

    6/31

    Problem1(cont.)

    IdealgasLaw:PV=mRT

    m=PV/RT

    R=[8.314kJ/kmol K]/[29kg/kmol]=0.287kJ/kgKV=[20x40x3]m3

    =2400m3

    Therefore,

    m=[(101)kPa(2400)m3]/[(0.287)kJ/kgK(298)K]m=2834kg

  • 8/12/2019 FE Thermodynamics Review 2011

    7/31

    Problem2 Findthevolumeoccupiedby20kg

    ofsteamat0.4MPa,400o

    C

    UsesteamtablesprovidedinyourFEbooklet

    Atthispointyoudonotknowwhethertousethesaturatedmixturetableorthe

    superheatedsteam

    table,

    sothat

    must

    first

    be

    determined.

    Recallthevapordomeassociatedwiththe

    saturationconditionsforwater(seenext

    slide)

  • 8/12/2019 FE Thermodynamics Review 2011

    8/31

    Temperaturevs.volumeand

    Pressurevs.volumediagrams

    P

  • 8/12/2019 FE Thermodynamics Review 2011

    9/31

    SaturationTable

    Problem2(cont.)

    Temperature

    columnonlygoesto374oC,whichisthe

    criticalpointfor

    water(apexofthevapordome).

    Therefore,you

    mustusethe

    superheatedvapor

    tableforProblem2

  • 8/12/2019 FE Thermodynamics Review 2011

    10/31

    Superheated

    VaporTable

    Problem2(cont.)

    At0.4MPa,400oCv=0.7726m3

    /kg

    V=mv

    =(20)kg(0.7726)m3/kg

    V=15.45

    m3

  • 8/12/2019 FE Thermodynamics Review 2011

    11/31

  • 8/12/2019 FE Thermodynamics Review 2011

    12/31

    LinearInterpolationforProblem3

    Sinceittakestwoindependentintensivepropertiestofixthestateofapuresubstance,inthecaseofproblem3,thestate2isfixedsinceweknowthe

    pressureandspecific

    volume.However,sincethetablesarenottabulatedinroundnumbersofspecific

    volume,wemustinterpolatebetweentwovaluesthatbracketthespecificvolume

    given.

    Lookingatthesuperheatedwatertable,wenoticethatforapressureof0.4MPa,the

    specificvolumeisbracketedbetweenthetemperaturesof800oCand900oC.Wenote

    theinternalenergiesforthesetemperatures.Thenextstepistosetupalinear

    relationshipbetweenthesevaluesandsolveforthedesiredinternalenergycorrespondingtotheknownspecificvolume.

    u2

    =3793.2

    kJ/kg

    P bl 4 H h h t i d d t l t l

  • 8/12/2019 FE Thermodynamics Review 2011

    13/31

    Problem4 Howmuchheatisneededtocompletelyvaporize100kgofwaterfrom temperatureT1

    =20 oCifthe

    pressureismaintainedataconstantP=200kPaabsolute?

    T

    v

    P=200kPa

    1

    2

    Solution:

    TheprocessisshownintheTvdiagramdrawnonthe

    left.State1beginsasacompressedliquidandstate2isshownasasaturatedvapor.Theprocessfollowsa

    lineofconstantpressure(asindicatedintheproblem

    statement).Sincewedonothaveaccesstoa

    compressedliquidtableforthisexam,youhaveto

    makeanassumptionregardingthepropertyselection

    forstate1.Sincethewaterisinitiallyintheliquidstate,

    weconsiderittobelargelyincompressible.Therefore,

    wecannotaddmuchinternalenergytothewaterby

    compressingit.However,asmalltemperatureincreaseinthewaterdoescontributetothewaterinternal

    energy.Therefore,wewillassumethatduetoliquid

    incompressibility,wecanusethepropertyofthe

    saturatedliquid,evaluatedatthisinitialtemperature,torepresentstate1oftheliquid.

  • 8/12/2019 FE Thermodynamics Review 2011

    14/31

    P bl 5 C l l h k d b i i d

  • 8/12/2019 FE Thermodynamics Review 2011

    15/31

    Problem5 Calculatetheworkdonebyapistoncontainedwithinacylinderwithairif2m3

    istripledwhilethe

    temperature

    is

    maintained

    at

    a

    constant

    T=30oC.TheinitialpressureisP1

    =400kPaabsolute.

    1

    2

    Solution:

    Assumeair

    isanideal

    gas.

    PV

    =mRT

    V1

    =2m3

    ;V2

    =3V1

    =6m3

    P=mRT/V

    Work,

    but Therefore,

    P bl 6 H h k i i i

  • 8/12/2019 FE Thermodynamics Review 2011

    16/31

    Problem6 Howmuchworkisnecessarytocompressairinan

    insulatedcylinderfrom0.2m3

    to0.01m3?

    UseT1

    =20oCandP1

    =100kPaabsolute.

    Solution:

    Assume:

    Idealgas

    Useabsolutetemperature

    Isentropicprocess

    T1

    =20oC=293K

    ConstantcvoAdiabaticprocess(insulatedcontainer)

    1st

    Law(closedsystem)

    Q=U+W= m(u)+W

    W=mcvo

    (T2

    T

    1

    ); W/m=w=cvo

    (T2

    T

    1

    )

    Isentropicrelationships

    T1

    v1k1

    =T2

    v2k1

    wherek=1.4(forair)

    T2

    =T1

    {v1

    /v2

    }k1

    =T1

    {V1

    /V2

    }k1

    =(293)K{(0.2)/(0.01)}1.41

    =971K

    w=(0.719)kJ/kgK(971 293)K=487kJ/kg

  • 8/12/2019 FE Thermodynamics Review 2011

    17/31

    Problem7 A10cmthickslabofwood(kwood

    =0.2W/mK)is3mhigh

    and10mlong.Calculatetheheattransferrateifthetemperatureis

    25oContheinsideand 20oContheoutside.Neglectconvection.

    q

    Tin

    =25oCTout

    =-20oC

    woodSolution:

    Assume:conductionheattransferonly

    A=LW=(10)m(3)m=30m2

    q=

    kA(dT/dx)~

    kA(T/x)

    q=(0.2)W/mK(30)m2

    (20 25)

    oC/(0.1)m

    q=270W

    Problem 8 The surface of the glass in a 1 2 m x 0 8 m

  • 8/12/2019 FE Thermodynamics Review 2011

    18/31

    Problem8

    Thesurfaceoftheglassina1.2mx 0.8m

    skylightismaintainedat20oCandtheoutsideairtemperature

    is 20oC.Estimatetheheatlossratebyconvectionwhenthe

    convectivecoefficientish=12W/m2 K.skylight

    Solution:

    Assumeconvectiveheattransferonly

    q=hA(Ts

    T

    )

    q=(12)W/m2

    K(1.2)m(0.8)m[20 (20)]oC

    q=460.8W

    Problem 9 A 2 cm diameter heating element located within an

  • 8/12/2019 FE Thermodynamics Review 2011

    19/31

    Problem9

    A2cmdiameterheatingelementlocatedwithinan

    ovenismaintainedat1000oCandtheovenwallsareat500oC.Ifthe

    elementemissivityis0.85,estimatetherateofheatlossfromthe

    2mlongelement.

    qSolution:

    Assumeradiationheattransferonly

    Useabsolutetemperatures,

    Treattheovenwallsaslargesurroundings.

    Ts

    =1000oC=1273K;Tsur

    =500oC=773K

    q=

    A(Ts

    4

    Tsur

    4

    ); where A=dL(circumferencial

    area)

    q=(0.85)(5.67x108

    )W/m2

    K4

    ()(0.02)m(2)m[(1273)4

    (773)4]K4

    q = 13,742W=13.7kW

  • 8/12/2019 FE Thermodynamics Review 2011

    20/31

    Problem10

    RefrigerantR134aexpandsthroughavalve

    fromapressureof800kPatoapressureof100kPa.Whatis

    thefinalquality?

    1

    2

    Expansionvalve

    Solution:

    Thereisnotableofthermodynamicdatafor134a

    containedwithinyourFEbook.Thereforeyoumust

    usethePressure Enthalpydiagramprovided(see

    subsequentpages).Thisdiagramismuchlikethe

    Temperature volumediagramforwaterinthatthe

    apexofthedomeisthecriticalpoint(CP).Thesolid

    linecorrespondingtosaturatedliquidisontheleftandthatassociatedwiththesaturatedvaporisonthe

    right.

    1st

    Law(SteadyFlow,expansionvalve),

    h1

    =h2

    Wecommonlyuseexpansionvalvesinvaporcompressionrefrigeratorstomovefrom

    thehighpressureandtemperatureportionofthecycletothelowpressureand

    temperatureportionofthecycle.State1istypicallyconsideredtobeinasaturated

    liquidstate.PleaseseeFEbookforlistofcommonlyusedsteadyflowdevicesandtheir

    associatedmodelingequations.

  • 8/12/2019 FE Thermodynamics Review 2011

    21/31

    Problem10(cont.)

    Solution(cont.)

    h1

    =hf

    =244kJ/kg=h2

    FromthePvs.hplot(nextpage),findthequality(thesearethecurvesemanatingfromthecriticalpoint)

    x=0.37

    P E th l di f R

  • 8/12/2019 FE Thermodynamics Review 2011

    22/31

    Pressure EnthalpydiagramforR 134a

  • 8/12/2019 FE Thermodynamics Review 2011

    23/31

    Problem11 Whatistheminimumpumppowerrequiredto

    increasethepressureofwaterfrom2kPato6MPawithamass

    flowrateof10kg/s?

    pump

    1

    2Solution:

    1st

    Law(pumps,isentropicorreversiblesteadyflow)

    Use

    the

    saturation

    table

    for

    water

    to

    find

    vf

    .

    vf

    =0.001002m3/kg

    w= (0.001002)m3/kg(6000 2)kPa

    w=

    6.0kJ/kg;

  • 8/12/2019 FE Thermodynamics Review 2011

    24/31

  • 8/12/2019 FE Thermodynamics Review 2011

    25/31

    Problem13 Aheatpumpdelivers20,000kJ/hrwithq

    1.39

    kW

    electrical

    input.

    Calculate

    the

    COP.Solution:

    Aheatpumpislikearefrigerator.Itdifferentinthatincludesaspecial4wayvalvethat

    allows

    the

    user

    to

    switch

    the

    functions

    of

    the

    heat

    exchangers

    for

    the

    heating

    season

    (winter)andthecoolingseason(summer).Unlessotherwisestatedintheproblem

    statement,theheatpumpisusuallyconsideredtobeintheheatingmodeforthese

    analyses.Intheheatingmode,thatwhichwedesireisQH

    .Therefore,theCOPisdefined

    asfollows.

    Problem 14 A thermometer with a wet cloth attached to its bulb

  • 8/12/2019 FE Thermodynamics Review 2011

    26/31

    Problem14

    Athermometerwithawetclothattachedtoitsbulb

    reads20oCwhenairisblowingaroundit.Iftheairhasadrybulb

    temperatureof33oC,whatistherelativehumidityanddewpoint

    temperature?Howmuchwatercouldbecondensedoutofa100m3

    volume?

    Solution:

    YouwillneedtousethepsychrometricchartprovidedinyourFE

    book.Ithasbeencopied

    onthefollowingpages.

    Awetbulbtemperatureof20oCisprovidedintheproblemstatement.Thelines

    correspondingtothewetbulbtemperatureonthepsychrometricchartaredashedand

    movefromtheupperlefttothelowerright(locatethemonthechart).Thedrybulbtemperatureistheabscissaofthepsychrometricchart.Theintersectionbetweenthe

    20oCwetbulbandthe33oCdrybulbtemperaturecorrespondstoarelativehumidityof

    30%(therelativehumiditycurvesmovefromthelowerlefttotheupperrightonthe

    chart).

    Thedewpointtemperatureisthattemperaturewhenwaterbeginstocondense.Since

    theordinateofthepsychrometricchartisthehumidityratio(gramsmoisture/kgdryair),

    whichisproportionaltotheabsolutehumidity.Thedewpointtemperatureisthedry

    bulbtemperaturethatcorrespondstotheintersectionofahorizontallinedrawnthrough

    state1andthesaturationline(correspondingto100%relativehumidity).Thisisadew

    pointtemperatureof~13oC.

  • 8/12/2019 FE Thermodynamics Review 2011

    27/31

    Problem14(cont.)

    Solution(cont.)

    Condensateistakenfromtheairwhenitiscooledtobelowthedewpointtemperature.Theamountofcondensatethatcanberemovedcorrespondstothat

    associatedwiththe

    differenceinthemoisturecontentatthedewpointtemperatureandthatat0oC.Below

    0oC,thephasewillbefrostorice,correspondingtoacrystallization(vapor

    solid)phase

    changeprocess.

    Therefore,

    MassofCondensate=m(2

    1

    ),

    wheremisthemassofdryairand

    isthehumidityratio(takenfrompsychrometricchart)

    Assumingdryairisanidealgas

    m=PV/RT=[(101)kPa(100)m3

    ]/[(287)kJ/kgK(33+273)K]=115kg

    Massofcondensate=(115)kgdryair(9.3 3.7)gmmoisture/kgdryair=644gmmoisture

    P h t i Ch t

  • 8/12/2019 FE Thermodynamics Review 2011

    28/31

    PsychrometricChart

    Problem 15 It is desired to condition 35oC 85% relative humidity

  • 8/12/2019 FE Thermodynamics Review 2011

    29/31

    Problem15

    Itisdesiredtocondition35 C,85%relativehumidity

    airto24oC,50%relativehumidity.If100m3/minairistobe

    conditioned,howmuchenergyisrequiredinthecoolingprocessand

    howmuchintheheatingprocess?

    Solution:

    Onewaytoremovethemoistureistofirstcooltheairtothesaturationcondition(100%

    relativehumidityline)andcontinuethecoolingprocesstoremovemoistureuntilthedesiredhumidityratioisachieved.Therefore,theengineermust

    locatetheinitial(1)and

    final(4)statepointsfirstandthenworkwiththepsychrometricchart(asshownonthe

    followingpages)todeterminetheenergyrequirements.

    Frompsychrometriccharth1

    =110kJ/kgdryair,h2

    =106kJ/kgdryair(seeenthalpyon

    upperleft).Thisisthesensible(nophasechange)coolingpart.

    P bl 15 ( t )

  • 8/12/2019 FE Thermodynamics Review 2011

    30/31

    Problem15(cont.)

    Solution(cont.)

    Sensibleheating

    Fromthecharth3

    =37kJ/kgdryair,h4

    =48kJ/kgdryair

    Latentandsensiblecooling

    TotalCooling=7.62131.4kW=139kW;TotalHeating=21kW

    P h t i Ch t 2

  • 8/12/2019 FE Thermodynamics Review 2011

    31/31

    PsychrometricChart2