FE of Composites

download FE of Composites

of 62

Transcript of FE of Composites

  • 8/13/2019 FE of Composites

    1/62

    Universitat de Girona

    DESIGN AND ANALYSIS OF COMPOSITES

    WITH FINITE ELEMENTS

    N. Blanco, D. Trias

    February 2012

  • 8/13/2019 FE of Composites

    2/62

  • 8/13/2019 FE of Composites

    3/62

    Contents

    1 Constitutive equations for transversely isotropic materials 1

    1.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2 Laminate theory 17

    2.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    2.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    3 Hygro-thermal effects 33

    3.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    3.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    4 Failure criteria 43

    4.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    4.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    5 Micromechanics 55

    5.1 Example: Modeling a periodic RVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    5.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    iii

  • 8/13/2019 FE of Composites

    4/62

  • 8/13/2019 FE of Composites

    5/62

    Chapter 1

    Constitutive equations for

    transversely isotropic materials

    1.1 Examples

    Example 1.1. Write a computer program to evaluate the compliance and stiffness matrices in

    terms of the engineering properties for an orthotropic material. Consider a 3D analysis.

    Solution to Example 1.1. Both the stiffness and compliance matrix for an orthotropic material

    have 12 non-zero terms and need to be defined by means of 9 independent properties: E11,E22,

    E33,12,13,23,G23,G13and G12. Next, we present the solution implemented using the symbolic

    calculation capabilities of MATLABTM. Execute the program and observe that the stiffness matrix

    is much more complicated than the flexibility matrix.

    %

    % DACFE. Solution to Example 1.1%

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc

    % Orthotropic material need 9 constants:

    % E11, E22, E33, nu12, nu13, nu23, G12, G13, G23

    syms E11 E22 E33 nu12 nu13 nu23 G12 G13 G23

    % Compute orthotropic properties

    nu21 = nu12*E22/E11;

    nu31 = nu13*E33/E11;

    nu32 = nu23*E33/E22;

    % Compute S and CS = [1/E11 -nu21/E22 -nu31/E33 0 0 0;

    -nu12/E11 1/E22 -nu32/E33 0 0 0;

    -nu13/E11 -nu23/E22 1/E33 0 0 0;

    0 0 0 1/G23 0 0;

    0 0 0 0 1/G13 0;

    0 0 0 0 0 1/G12];

    C = inv(S);

    pretty(S)

    pretty(C)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.m

    Example 1.2. Write a computer program to evaluate the compliance and stiffness matrices in

    terms of the engineering properties for an orthotropic material. Consider plane stress analysis.

    1

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex101.m
  • 8/13/2019 FE of Composites

    6/62

    2 Disseny i Anlisi de Compsits amb Elements Finits

    Solution to Example 1.2. Both the stiffness and compliance matrix for an orthotropic material

    under plane stress conditions have 5 non-zero terms and need to be defined by 4 independent

    properties: E11,E22,12 andG12. Next, we present the solution implemented using the symbolic

    calculation capabilities of MATLABTM. Execute the program and observe that the stiffness matrix

    is much more complicated than the flexibility matrix.

    %

    % DACFE. Solution to Example 1.2

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc

    % Plane stress orthotropic material

    % need 4 constants:

    % E11, E22, nu12, G12

    syms E11 E22 nu12 G12

    % Compute orthotropic properties

    nu21 = nu12*E22/E11;

    % Compute S and Q

    S = [1/E11 -nu21/E22 0;

    -nu12/E11 1/E22 0;

    0 0 1/G12];

    Q = inv(S);

    pretty(S)

    pretty(Q)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.m

    Example 1.3. Write a computer program to evaluate the compliance and stiffness matrices of a

    CFRP with the following properties and assume that the material is transversely isotropic.

    E11= 190 GPa E22= 50 GPa G12= 74 GPa

    12= 0.24 23= 0.42

    Solution to Example 1.3. The stiffness and compliance matrices for a transversely isotropic

    material have 12 non-zero terms and need to be defined by 5 independent properties: E11, E22,

    12,23andG12. The resultingSandCmatrices are

    [S] =

    0.0053 0.0013 0.0013 0 0 0

    0.0013 0.02 0.0084 0 0 00.0013 0.0084 0.02 0 0 0

    0 0 0 0.0568 0 0

    0 0 0 0 0.0135 0

    0 0 0 0 0 0.0135

    GPa1

    [C] =

    200.48 21.83 21.83 0 0 0

    21.83 63.09 27.81 0 0 0

    21.83 27.87 63.09 0 0 0

    0 0 0 17.61 0 0

    0 0 0 0 74 0

    0 0 0 0 0 74

    GPa

    Next, we present the solution implemented in MATLABTM.

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex102.m
  • 8/13/2019 FE of Composites

    7/62

    Chapter 1. Constitutive equations for transversely isotropic materials 3

    %

    % DACFE. Solution to Example 1.3

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc

    % The parameters are: E11,E22,nu12,nu23,G12prop = [190,50,0.24,0.42,74]

    % Transversaly isotropic need 5 constants:

    % E11, E22=E33, nu12=nu13, nu23, G12=G13, G23=E22/(2*(1+nu23))

    % Extract and compute transversally isotropic properties

    E11 = prop(1);

    E22 = prop(2);

    E33 = E22;

    nu12 = prop(3);

    nu21 = nu12*E22/E11;

    nu13 = nu12;

    nu31 = nu21;

    nu23 = prop(4);

    nu32 = nu23*E33/E22;

    G12 = prop(5);G13 = G12;

    G23 = E22/(2*(1+nu23));

    % Compute S and C

    S = [1/E11 -nu21/E22 -nu31/E33 0 0 0;

    -nu12/E11 1/E22 -nu32/E33 0 0 0;

    -nu13/E11 -nu23/E22 1/E33 0 0 0;

    0 0 0 1/G23 0 0;

    0 0 0 0 1/G13 0;

    0 0 0 0 0 1/G12]

    C = inv(S)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_

    files/T1/DACFE_

    Ex103a.m

    The previous code can be modified so the material properties are read from an ASCII file

    and the computed matrices are written in another ASCII file. This MATLABTM code can be

    implemented as follows:

    %

    % DACFE. Alternative solution to Example 1.3

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc

    % Material-file identification

    n_file = DACFE_Ex103_CFRP % file name

    % Open I/O files

    fidinp = fopen([n_file,.dat],r);

    fidout = fopen([n_file,_CS_123.dat],w);

    % Read properties input file

    prop = fscanf(fidinp,%g)

    % Transversaly isotropic need 5 constants:

    % E11, E22=E33, nu12=nu13, nu23, G12=G13, G23=E22/(2*(1+nu23))

    % Extract and compute transversally isotropic properties

    E11 = prop(1);

    E22 = prop(2);

    E33 = E22;

    nu12 = prop(3);

    nu21 = nu12*E22/E11;

    nu13 = nu12;

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103a.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103a.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103a.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103a.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103a.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103a.m
  • 8/13/2019 FE of Composites

    8/62

    4 Disseny i Anlisi de Compsits amb Elements Finits

    nu31 = nu21;

    nu23 = prop(4);

    nu32 = nu23*E33/E22;

    G12 = prop(5);

    G13 = G12;

    G23 = E22/(2*(1+nu23));

    % Compute S and CS = [1/E11 -nu21/E22 -nu31/E33 0 0 0;

    -nu12/E11 1/E22 -nu32/E33 0 0 0;

    -nu13/E11 -nu23/E22 1/E33 0 0 0;

    0 0 0 1/G23 0 0;

    0 0 0 0 1/G13 0;

    0 0 0 0 0 1/G12]

    C = inv(S)

    % Write solution in file

    %fprintf(fidout,%10s\n,SIFFNESS MATRIX);

    for row=1:6

    fprintf(fidout,%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\n,...

    C(row,1),C(row,2),C(row,3),C(row,4),C(row,5),C(row,6));

    end

    %fprintf(fidout,%10s\n,COMPLIANCE MATRIX);

    for row=1:6

    fprintf(fidout,%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\n,...

    S(row,1),S(row,2),S(row,3),S(row,4),S(row,5),S(row,6));

    end

    fclose(fidinp);

    fclose(fidout);

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.m

    Example 1.4. Construct the[a]rotation matrix for a rotation = 30 around thez-axis. Computethe[T] and[T]in 3D space.

    Solution to Example 1.4. The[a=30]rotation matrix around z-axis is

    [a=30] =

    cos sin 0 sin cos 0

    0 0 1

    =

    3

    2

    1

    2 0

    12

    3

    2 0

    0 0 1

    Considering the general expression for the coordinates transformation of the second order

    stress tensorij =aipajqpq (1.1)

    The following algorithm is used to obtain a 6 6 transformation matrix [T] in contracted

    notation as

    = T (1.2)

    If 3 and 3 theni = j andp = q, so

    T =aipaip= a2ip (1.3)

    If 3 and > 3 then i = j butp = q, and taking into account that switching p by qyields

    the same value of= 9p q, we have

    T=aipaiq+ aiqaip = 2aipaiq (1.4)

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex103b.m
  • 8/13/2019 FE of Composites

    9/62

    Chapter 1. Constitutive equations for transversely isotropic materials 5

    If >3,theni =j , but we want only one stress, say ij, notji because they are numerically

    equal. In fact= ij =ji with = 9 ij. If in addition 3thenp = qand we get

    T =aipajp (1.5)

    When >3 and >3,i =j andp =qso we get

    T =aipajq + aiqajp (1.6)

    which completes the derivation ofT. Expanding (1.3-1.6) we get

    [T] =

    l21 m21 n

    21 2m1n1 2l1n1 2l1m1

    l22 m22 n

    22 2m2n2 2l2n2 2l2m2

    l23

    m23

    n23

    2m3n3 2l3n3 2l3m3l2l3 m2m3 n2n3 m2n3+ n2m3 l2n3+ n2l3 l2m3+ m2l3l1l3 m1m3 n1n3 m1n3+ n1m3 l1n3+ n1l3 l1m3+ m1l3l1l2 m1m2 n1n2 m1n2+ n1m2 l1n2+ n1l2 l1m2+ m1l2

    (1.7)

    Next, there is the solution implemented using MATLABTM.

    %

    % DACFE. Solution to Example 1.4

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc

    % Rotation angle around z-axis

    theta = 30/180*pi

    % Compute transformation matrix (Clokwise rotation of 12 respect to xy)

    a = [cos(theta) sin(theta) 0;

    -sin(theta) cos(theta) 0;0 0 1];

    for i1=1:3

    for j1=1:3

    if i1==j1

    alpha=i1;

    else

    alpha=9-i1-j1;

    end

    for p1=1:3

    for q1=1:3

    if p1==q1

    beta=p1;

    else

    beta=9-p1-q1;end

    if (alpha3)

    T(alpha,beta)=a(i1,p1)*a(j1,q1)+a(i1,q1)*a(j1,p1);

    end

    end

    end

    end

    end

    TTg = inv(T)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.m

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex104.m
  • 8/13/2019 FE of Composites

    10/62

    6 Disseny i Anlisi de Compsits amb Elements Finits

    Example 1.5. Write a computer program to transform the stiffness and compliance matrices

    from material coordinates, [C123] and [S123], to another coordinate system, [Cxyz ] and [Sxyz ], by

    a rotation of 90, 30 and -30 around the z-axis. The data, [C123] and[S123], should be read froma file. The output, [Cxyz ] and [Sxyz ], should be written to another file. Use the same material

    properties as in Example1.3.

    Solution to Example 1.5. Both the stiffness and compliance matrices for a transversally isotropic

    material 12 non-zero terms and need to be defined by 5 independent properties. The resulting

    stiffness and compliance matrices are 66 as the transformation matrices must be. However, as

    a consequence of the transformation, the resulting stiffness and compliance matrices have more

    than 12 non-zero terms and there coupling between normal stress and shear strains and vice

    versa.

    [Cxyz ] =

    180.4 7.56 23.34 0 0 21.51

    8.56 111.7 26.36 0 0 37.98

    23.34 26.36 63.09 0 0 2.6170 0 0 31.70 24.42 0

    0 0 0 24.42 59.9 0

    21.51 37.98 2.62 0 0 59.73

    GPa

    [Sxyz ] =

    0.0063 0.0014 0.003 0 0 0.0033

    0.0014 0.0136 0.0066 0 0 0.0095

    0.003 0.0066 0.02 0 0 0.0062

    0 0 0 0.046 0.0187 0

    0 0 0 0.0187 0.0243 0

    0.0033 0.0095 0.0062 0 0 0.0242

    GPa1

    Next, we present the solution implemented using the calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 1.5

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc

    % Run first CManaEx103.m with the same material-file identification

    % The theta value is the last value in the material-file

    % Material-file identification

    n_file = DACFE_Ex103_CFRP % file name

    % Rotation angle in degrees around Z-axis

    theta_deg = 30;

    theta = theta_deg*pi/180;

    % Open I/O files

    fidinp = fopen([n_file,_CS_123.dat],r);

    fidout = fopen([n_file,_CS_xyz.dat],w);

    % Read properties input file

    prop = (fscanf(fidinp,%g %g %g %g %g %g,[6 inf]))

    % First 6x6 data are C matrix

    % Second 6x6 data are S matrix

    % next escalar is theta in radians

    % Extract C and S in material coordinate system

    C_123=prop(1:6,:)

    S_123=prop(7:12,:)

  • 8/13/2019 FE of Composites

    11/62

    Chapter 1. Constitutive equations for transversely isotropic materials 7

    % Compute transformation matrix (Clokwise rotation of 12 respect to xy)

    a = [cos(theta) sin(theta) 0;

    -sin(theta) cos(theta) 0;

    0 0 1];

    for i1=1:3

    for j1=1:3

    if i1==j1alpha=i1;

    else

    alpha=9-i1-j1;

    end

    for p1=1:3

    for q1=1:3

    if p1==q1

    beta=p1;

    else

    beta=9-p1-q1;

    end

    % te(alpha,beta)=0

    if (alpha3)

    T(alpha,beta)=a(i1,p1)*a(j1,q1)+a(i1,q1)*a(j1,p1);

    end

    end

    end

    end

    end

    % Compute C and S in new coordiante system

    C_xyz=inv(T)*C_123*inv(T)

    % First method (using T_gamma)

    S_xyz=(T)*S_123*(T)

    % Second method (invert C matrix)

    S_xyz=inv(C_xyz)

    % Write solution file

    %fprintf(fidout,%10s\n,SIFFNESS MATRIX);

    for row=1:6

    fprintf(fidout,%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\n,...

    C_xyz(row,1),C_xyz(row,2),C_xyz(row,3),C_xyz(row,4),C_xyz(row,5),C_xyz(row,6));

    end

    %fprintf(fidout,%10s\n,COMPLIANCE MATRIX);

    for row=1:6

    fprintf(fidout,%10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\t %10.4e\n,...

    S_xyz(row,1),S_xyz(row,2),S_xyz(row,3),S_xyz(row,4),S_xyz(row,5),S_xyz(row,6));

    end

    fclose(fidinp);

    fclose(fidout);

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.m

    Example 1.6. Write a computer program to evaluate the stiffness matrices of a unidirectional

    CFRP T300/5208 lamina when the reinforcement is oriented according to 0, 30 and 90. Con-sider plane stress. The elastic properties of the material are: E11 = 181 GPa, E22 = 10.3 GPa,

    G12 = 7.17 GPa and12 = 0.28.

    Solution to Example 1.6. Both the transformed stiffness and compliance matrix for a transver-

    sally isotropic material under plane stress conditions have 5 non-zero terms and need to be

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex105.m
  • 8/13/2019 FE of Composites

    12/62

    8 Disseny i Anlisi de Compsits amb Elements Finits

    defined by 5 independent properties. So resulting stiffness and compliance matrices are3 3as

    the transformation matrices must be.

    The obtained stiffness matrices for the considered orientations are

    [Q]0

    = Q =

    181.81 2.90 0

    2.90 10.35 00 0 7.17

    GPa

    [Q]90=

    10.35 2.90 02.90 181.81 0

    0 0 7.17

    GPa

    [Q]30=

    109.38 32.46 54.1932.46 56.66 20.0554.19 20.05 36.74

    GPa

    Observe that a rotation of 90 is equivalent to interchange the matrix terms 11 and 22 and

    there is no coupling between normal and shear stress and strain. However, when the rotation isof30, all the terms in the matrix are different to zero and there is coupling between normaland shear stress and strain. Next, we present the solution implemented using the calculation

    capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 1.6

    %

    % J.A. Mayugo, N. Blanco

    clear all;close all; clc;

    % Transversaly isotropic under plane stress

    % only 4 material constants are needed

    % E11 (MPa), E22 (MPa), nu12, G12 (MPa), angle ()

    prop=[181000, 10300, 0.28, 7170, -30];

    E11 = prop(1);

    E22 = prop(2);

    nu12 = prop(3);

    nu21 = nu12*E22/E11;

    G12 = prop(4);

    theta = prop(5)*pi/180;

    % Calculation of the compliance and stiffness matrices

    S=zeros(3,3);

    S(1,1)=1/E11;

    S(1,2)=-nu12/E11;

    S(2,1)=S(1,2);

    S(2,2)=1/E22;

    S(3,3)=1/G12;

    Q=inv(S);

    % Calculation of the stress transformation matrix

    m=cos(theta);

    n=sin(theta);

    T=zeros(3,3);

    T(1,1)=m^2;

    T(1,2)=n^2;

    T(1,3)=2*m*n;

    T(2,1)=n^2;

    T(2,2)=m^2;

    T(2,3)=-2*m*n;

    T(3,1)=-m*n;

    T(3,2)=m*n;

    T(3,3)=m^2-n^2;

  • 8/13/2019 FE of Composites

    13/62

    Chapter 1. Constitutive equations for transversely isotropic materials 9

    % Calculation of the strain transformation matrix (T_gamma)

    Tg=(inv(T));

    % Calculation of the transformed stiffness and compliance matrices

    Qb=inv(T)*Q*Tg

    Sb=inv(Qb)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.m

    Example 1.7. Based on the program used in Ex.1.6, write a computer program to calculate the

    resulting stresses in the lamina coordinates and the resulting strains in the global coordinates.

    Consider the unidirectional lamina used in Ex.1.6when the reinforcement is oriented at45 andthe applied stress is xx = 5 MPa,yy = -6.5 MPa andxy = -2.5 MPa. Consider plane stress.

    Solution to Example 1.7. The resulting stress and strain tensors when the reinforcement is

    oriented at45 and the applied stress is xx = 5 MPa,yy = -6.5 MPa and xy = -2.5 MPa are

    112212

    =

    3.25

    1.75

    5.75

    MPa,

    xxyyxy

    =

    478.1

    323.8

    195.6

    106

    Next, we present the solution implemented using the calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 1.7

    %

    % J.A. Mayugo, N. Blanco

    clear all;close all; clc;

    % Transversaly isotropic under plane stress

    % only 4 material constants are needed

    % E11 (MPa), E22 (MPa), nu12, G12 (MPa), angle ()

    prop=[181000, 10300, 0.28, 7170, 45];

    % Applied stress in the global coordinates system

    % sigma_xx (MPa), sigma_yy (MPa), sigma_xy (MPa)

    sigma_xyz=[5, -6.5, -2.5];

    E11 = prop(1);

    E22 = prop(2);

    nu12 = prop(3);

    nu21 = nu12*E22/E11;

    G12 = prop(4);

    theta = prop(5)*pi/180;

    % Calculation of the compliance and stiffness matrices

    S=zeros(3,3);

    S(1,1)=1/E11;

    S(1,2)=-nu12/E11;

    S(2,1)=S(1,2);

    S(2,2)=1/E22;

    S(3,3)=1/G12;

    Q=inv(S);

    % Calculation of the stress transformation matrix

    m=cos(theta);

    n=sin(theta);

    T=zeros(3,3);

    T(1,1)=m^2;

    T(1,2)=n^2;

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex106.m
  • 8/13/2019 FE of Composites

    14/62

    10 Disseny i Anlisi de Compsits amb Elements Finits

    T(1,3)=2*m*n;

    T(2,1)=n^2;

    T(2,2)=m^2;

    T(2,3)=-2*m*n;

    T(3,1)=-m*n;

    T(3,2)=m*n;

    T(3,3)=m^2-n^2;

    % Calculation of the strain transformation matrix (T_gamma)

    Tg=(inv(T));

    % Calculation of the transformed stiffness and compliance matrices

    Qb=inv(T)*Q*Tg

    Sb=inv(Qb)

    % Calculation of stress and strain in the lamina coordinate system

    sigma_123=T*sigma_xyz

    epsilon_123=S*sigma_123

    % Calculation of the strain in the global coordinate system

    % epsilon_xyz=Sb*sigma_xyz

    epsilon_xyz=inv(Tg)*epsilon_123

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.m

    Example 1.8. Using computer program created in Ex.1.6, calculate the strains in the global

    coordinates of the unidirectional lamina when the applied stress is xx = 1 MPa. What can be

    concluded after the resulting strains?

    Solution to Example 1.8. The resulting strains when the applied stress is xx = 1 MPa are

    xx

    yyxy

    = 59.75

    9.9945.78

    106

    From the resulting strains, it can be observed that for an off-axis lamina the normal and shear

    stresses and strains are no longer uncoupled. In fact, a normal stress produces a shear strain

    and vice versa.

    Example 1.9. Generate the ANSYSTM input file to simulate and analyse a rectangular bar 100

    mm long, 10 mm high and 10 mm wide. The bar is encastred in one end and subjected to a

    longitudinal tension of 1000 MPa at the other end. The material is an anisotropic material with

    the elastic properties summarised in the following stiffness matrix:

    [C] =

    118890 5210 5180 540 8370 465505210 88770 5350 8100 30 45910

    5180 5350 20840 8740 9480 30

    540 8100 8740 25780 24710 4540

    8370 30 9480 24710 33660 3820

    46550 45910 30 4540 3820 50750

    MPa

    Solution to Example 1.9. To conduct the analysis, first it is necessary to use the elastic anisotropic

    linear behaviour and define the elastic properties of the material. To do so, it must be taken into

    account that some finite element programs do follow a different ordering of the constitutive

    equations and the different terms of the constitutive matrices must be reordered. For instance,

    ANSYSTM and ABAQUSTM interchange the order of the shear terms with respect each other and

    with respect the ordering considered in this course. Table 1.1summarises the conventions in the

    notation used in this course (Standard), ANSYSTM and ABAQUSTM.

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex107.m
  • 8/13/2019 FE of Composites

    15/62

    Chapter 1. Constitutive equations for transversely isotropic materials 11

    Table 1.1: Convention in the contracted notation for different FE programs and Standard.

    Contracted Standard ANSYSTM ABAQUSTM

    1 11 11 11

    2 22 22 223 33 33 33

    4 23 12 12

    5 13 23 13

    6 12 13 23

    According to the ANSYSTM convention, the previous stiffness matrix of the considered mate-

    rial is transformed to:

    [C] =

    118890 5210 5180 46550 540 8370

    5210 88770 5350 45910 8100 30

    5180 5350 20840 30 8740 9480

    46550 45910 30 50750 4540 3820

    540 8100 8740 4540 25780 24710

    8370 30 9480 3820 24710 33660

    MPa

    The ANSYSTM command sequence for this example is listed below. You can either type these

    commands on the command window, or you can type them on a file, then, on the command

    window enter /input, file, ext.

    FINISH

    /CLEAR

    /TITLE, Anisotropic material

    !3D anisotropic bar

    /PREP7

    !Parameters

    P=1000 !applied pressure

    l=100 !length

    h=10 !height

    w=10 !width

    !Elements and options

    ET,1,SOLID185 !element type: 8-node anisotropic brick

    TB,ANEL,1,1,21,0 !table material properties

    !anisotropic-elastic,material 1, 1 temperature,

    !21 properties, stiffness matrix

    !TBTEMP,0 !temperature material table

    !material properties table: D11,D12,D13,D14,D15,D16

    !D22,D23,D24,D25,D26,D33,

    !D34,D35,D36,D44,D45,D46,

    !D55,D56,D66

    !Terms must be entered according to ANSYS convention

    TBDATA,,118890,5210,5180,46550,540,-8370

    TBDATA,,88770,5350,45910,-8100,30,20840

    TBDATA,,-30,-8740,-9480,50750,-4540,-3820

    TBDATA,,25780,24710,33660

    !Geometry

    BLOCK,0,l,0,h,0,w !3D block x1,x2,y1,y2,z1,z2

    !Mesh

    LESIZE,all,h/4 !element size

    VMESH,ALL !mesh geometry

  • 8/13/2019 FE of Composites

    16/62

    12 Disseny i Anlisi de Compsits amb Elements Finits

    FINISH

    /SOLU

    !Boundary conditions

    DA,5,ALL,0 !encastred area 5

    !Apply loads

    SFA,6,1,PRES,-P !apply pressure area 6

    /PBC,ALL !to show BCs when solve

    SOLVE

    FINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    PLNSL,U,Z,2,1 !vertical displacement

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.dat

    Once the problem has been simulated, it can be observed that although the bar is loaded uni-

    axially, it also deflects in the two transversal directions. Indeed, its the deflection is higher in oneof the transversal directions than in the longitudinal direction, even if the applied load is longitu-

    dinal. Moreover, shear deformations appear on the bar. Obviously, none of these effects would be

    present if the bar was made of an equivalent isotropic material. The resulting displacements and

    strains obtained for the anisotropic bar are compared to those of a bar made of isotropic material

    withE= 41000 MPa and= 0.3. The comparison is established in Table1.2.

    Table 1.2: Comparison of the resulting displacements and strains of an anisotropic and isotropic

    encastred bars subjected to uniaxial tension.

    Anisotropic Isotropic

    Component Displacement Strain Displacement Strain

    (mm) (, ) (mm) (, )

    xx 2.45 0.026 2.44 0.024

    yy -3.53 0.02 0 0

    zz 0.725 -0.014 0 0

    xy - -0.046 - 0

    yz - -0.014 - 0

    xz - 0.01 - 0

    Example 1.10. Generate the ANSYSTM input file to simulate and analyse the rectangular bar

    considered in Ex. 1.9but made of an orthotropic material with the following mechanical proper-

    ties:E11= 118560 MPa E22= 54100 MPa E33= 12050 MPa

    G12= 15320 MPa G23= 4720 MPa G13= 6080 MPa

    12= 0.2 23= 0.381 13= 0.324

    Compare the resulting displacements and strains with those obtained when the material is

    rotated 30 around the z-axis.

    Solution to Example 1.10. The ANSYSTM command sequence for this example when the ma-

    terial is rotated 30 around the z-axis is listed below. You can either type these commands on thecommand window, or you can type them on a file, then, on the command window enter /input,

    file, ext.

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex109.dat
  • 8/13/2019 FE of Composites

    17/62

    Chapter 1. Constitutive equations for transversely isotropic materials 13

    FINISH

    /CLEAR

    /TITLE, Orthotropic material

    !3D orthotropic bar

    /PREP7

    !Parameters

    P=1000 !applied pressure

    l=100 !length

    h=10 !height

    w=10 !width

    ang=30 !orientation angle

    !Elements and options

    ET,1,SOLID185 !element type: 8-node brick

    !Material properties

    MP,EX,1,118560

    MP,EY,1,54100

    MP,EZ,1,12050

    MP,GXY,1,15320

    MP,GYZ,1,4720

    MP,GXZ,1,6080

    MP,PRXY,1,0.2

    MP,PRYZ,1,0.381

    MP,PRXZ,1,0.324

    !Geometry

    BLOCK,0,l,0,h,0,w !3D block x1,x2,y1,y2,z1,z2

    !Define material orientation

    LOCAL,11,0,0,0,0,ang,0,0 !local coord. syst., origin, 30deg Z

    ESYS,11 !use coord. syst. for elements

    !Mesh

    LESIZE,all,h/4 !element size

    VMESH,ALL !mesh geometry

    CSYS,0 !original coord. syst.

    FINISH

    /SOLU

    !Boundary conditions

    DA,5,ALL,0 !encastred area 5

    !Apply loads

    SFA,6,1,PRES,-P !apply pressure area 6

    /PBC,ALL !to show BCs when solve

    SOLVE

    FINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    PLNSL,U,Z,2,1 !vertical displacement

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.dat

    Once the problem has been simulated, it can be observed that although the bar is loaded

    uniaxially, it also deflects in the y-direction when the material is rotated. Moreover, there are

    shear deformations on the bar in the xy-plane. None of these effects appear when the material is

    oriented according to the directions of the bar. A comparison is established in Table1.3.

    Example 1.11.Generate the ANSYSTM input file to simulate and analyse the transverally isotropic

    material considered in Ex. 1.6. Assume a rectangular plate 100 mm long, 100 mm wide and 1

    mm thick subjected to uniaxial loading. The reinforcement is in the xy-plane and oriented with

    respect the x-axis. Assume that23= 0.42.

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex110.dat
  • 8/13/2019 FE of Composites

    18/62

    14 Disseny i Anlisi de Compsits amb Elements Finits

    Table 1.3: Comparison of the resulting displacements and strains of an orthotropic encastred bar

    subjected to uniaxial tension with different material orientations.

    Orthotropic 30 Orthotropic 0

    Component Displacement Strain Displacement Strain(mm) (, ) (mm) (, )

    xx 1.75 0.017 0.843 0.0085

    yy -1.355 -0.009 0 -0.0017

    zz 0 -0.004 0 -0.0027

    xy - -0.012 - 0

    yz - 0 - 0

    xz - 0 - 0

    Solution to Example 1.11. The ANSYSTM

    command sequence for this example when the ma-terial is rotated 45 around the z-axis is listed below. You can either type these commands on thecommand window, or you can type them on a file, then, on the command window enter /input,

    file, ext.

    FINISH

    /CLEAR

    /TITLE, Transversally isotropic material

    !3D transversally isotropic plate

    /PREP7

    !Parameters

    P=1 !applied stress

    l=100 !length

    w=100 !width

    h=1 !thickness

    !Elements and options

    ET,1,SOLID185 !element type: 8-node brick

    !Material properties

    MP,EX,1,181000

    MP,EY,1,10300

    MP,EZ,1,10300

    MP,GXY,1,7170

    MP,GYZ,1,3627

    MP,GXZ,1,7170

    MP,PRXY,1,0.28

    MP,PRYZ,1,0.42

    MP,PRXZ,1,0.28

    !Geometry

    BLOCK,0,l,0,w,0,h !3D block x1,x2,y1,y2,z1,z2

    !Define material orientation

    LOCAL,11,0,0,0,0,45,0,0 !local coord. syst., origin, 45deg Z

    ESYS,11 !use coord. syst. for elements

    !Mesh

    LESIZE,all,h*5 !element size

    VMESH,ALL !mesh geometry

    CSYS,0 !original coord. syst.

    FINISH

    /SOLU

    !Boundary conditions

    NSEL,S,LOC,X,0

    D,ALL,UX

  • 8/13/2019 FE of Composites

    19/62

    Chapter 1. Constitutive equations for transversely isotropic materials 15

    NSEL,S,LOC,X,0

    NSEL,R,LOC,Y,0

    NSEL,R,LOC,Z,0

    D,ALL,ALL

    NSEL,S,LOC,X,0

    NSEL,R,LOC,Y,wNSEL,R,LOC,Z,0

    D,ALL,UZ

    NSEL,ALL

    !Apply loads

    SFA,6,1,PRES,-P !apply pressure area 6

    /PBC,ALL !to show BCs when solve

    SOLVE

    FINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    RSYS,11 !plot results local coord. systPLNSL,U,Y,2,1 !vertical displacement

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.dat

    The resulting strains in the x-y-z coordinate system when the applied stress is xx = 1 MPa

    are summarised next. The resulting strains in the 1-2-3 coordinate system are also included for

    comparison. From the resulting strains, it can be observed that for an off-axis lamina the normal

    and shear stresses and strains are no longer uncoupled. In fact, a normal stress produces a shear

    strain and vice versa.

    xxyyxy

    = 59.7

    9.99

    45.8

    106, 112212

    = 1.99

    47.8

    69.7

    106

    1.2 Problems

    Problem 1.1. Using the same procedure as in Ex. 1.1and1.2, obtain the mathematical expres-

    sions for the stiffness and compliance matrices of a transversally isotropic material in 3D and

    plane stress analysis. Show all work in a report.

    Problem 1.2. Calculate the [S] matrix and the [C] matrices in the material coordinate system

    (1-2-3) of a 3D braided carbon-carbon composite material that can be considered as transversely

    isotropic. The engineering elastic properties of the material are:

    E11= 200 GPa E22= E33= 100

    G12= G13= 50 GPa 12= 0.2 23= 0.3

    Show all work in a report.

    Problem 1.3. At a particular point of a component made with the material considered in Problem

    1.2, the fibre directionx1 is oriented with = 30 and = 60 (see Figure1.1). Calculate the[S]

    matrix in global coordinate system (x-y-z). Show all work in a report.

    Problem 1.4. Compute the [C] matrix for next material for different rotations around 1-axis.

    Verify numerically if the material is or not transversally isotropic. Show all work in a report.E11= 145.9 GPa E22= E33= 13.3 GPa G12= G13= 4.39 GPa

    G23= 4.53 GPa 23= 0.470 12= 13= 0.263

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T1/DACFE_Ex111.dat
  • 8/13/2019 FE of Composites

    20/62

    16 Disseny i Anlisi de Compsits amb Elements Finits

    Figure 1.1: Fibre orientation with respect the global coordinate system

    Problem 1.5. Consider a similar plate to that simulated in Ex. 1.11 but 50 mm long, 50 mm

    wide and 5 mm thick. The plate is made of glass-reinforced Polyester, which can be consideredtransversally isotropic, and is subjected to a uniaxial tensile stressxx = 50 MPa. Use a FE script

    to determine the orientation of the reinforcement, in the xy-plane, if the resulting strains in the

    material coordinate system are:

    112212

    =

    116

    3484

    5054

    106

    The elastic properties of the material are: E11 = 19981 MPa, E22 = 11389 MPa, G12 = 3789

    MPa,12 = 0.274 and23= 0.3. Show all work in a report.

  • 8/13/2019 FE of Composites

    21/62

    Chapter 2

    Laminate theory

    2.1 Examples

    Example 2.1. Write a computer program to evaluate the transformed compliance and stiffnessmatrices in terms of the engineering properties for a composite laminate made of two trans-

    versely isotropic laminae. Consider plane stress analysis.

    Solution to Example 2.1. The plane stress 33 stiffness and compliance matrices for a com-

    posite laminate can have 9 non-zero terms and need to be defined by 4 independent properties:

    E11, E22, 12 and G12 per lamina material. Next, we present the solution implemented using

    the symbolic calculation capabilities of MATLABTM. Execute the program and observe that the

    resulting stiffness matrix is much more complicated than the flexibility matrix.

    %

    % DACFE. Solution to Example 2.1

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % Transversely isotropic material need 4 constants:

    % E1, E2, nu12, G12

    syms E1_1 E2_1 nu12_1 G12_1

    syms E1_2 E2_2 nu12_2 G12_2

    % The angles for both laminae are also required

    syms theta_1 theta_2

    % Compute S and Q

    S_1 = [1/E1_1 -nu12_1/E1_1 0;

    -nu12_1/E1_1 1/E2_1 0;

    0 0 1/G12_1];

    Q_1 = inv(S_1);

    S_2 = [1/E1_2 -nu12_2/E1_2 0;

    -nu12_2/E1_2 1/E2_2 0;

    0 0 1/G12_2];

    Q_2 = inv(S_2);

    % Compute transformation matrices T and Tgamma

    T_1 = [(cos(theta_1))^2 (sin(theta_1))^2 2*cos(theta_1)*sin(theta_1);

    (sin(theta_1))^2 (cos(theta_1))^2 -2*cos(theta_1)*sin(theta_1);

    2*

    cos(theta_1)*

    sin(theta_1) -2*

    cos(theta_1)*

    sin(theta_1) (cos(theta_1))^2-(sin(theta_1))^2];

    T_2 = [(cos(theta_2))^2 (sin(theta_2))^2 2*cos(theta_2)*sin(theta_2);

    (sin(theta_2))^2 (cos(theta_2))^2 -2*cos(theta_2)*sin(theta_2);

    2*cos(theta_2)*sin(theta_2) -2*cos(theta_2)*sin(theta_2) (cos(theta_2))^2-(sin(theta_2))^2];

    17

  • 8/13/2019 FE of Composites

    22/62

    18 Disseny i Anlisi de Compsits amb Elements Finits

    T_1gamma = simplify((inv(T_1)).);

    T_2gamma = simplify((inv(T_2)).);

    % Compute transformed stiffness and compliance matrices

    Qb_1 = inv(T_1)*Q_1*T_1gamma

    Qb_2 = inv(T_2)*Q_2*T_2gamma

    Sb_1 = inv(Qb_1)

    Sb_2 = inv(Qb_2)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.m

    Example 2.2. Write a computer program to obtain the 3D compliance and stiffness matrices of

    a [0/20/-20/90]s laminate in terms of the apparent engineering properties. Also obtain the value

    of the nine apparent properties for the considered laminate. All the laminae are 1 mm thick and

    are made of unidirectional T300/5208 carbon-epoxy: E11= 181 GPa,E22= 10.3 GPa,12 = 0.28,

    23= 0.42 andG12 = 7.17 GPa.Solution to Example 2.2. Both the stiffness and compliance matrix for an orthotropic material

    have 12 non-zero terms and need to be defined by 9 independent properties: E11, E22, E33, 12,

    13, 23, G23, G13 and G12. The global stiffness matrix of the laminate is obtained by adding the

    global stiffness matrices of the layers multiplied by the thickness ratio. The global compliance

    matrix is obtained inverting the global stiffness matrix.

    [C] =

    122.9 13.19 5.16 0 0 0

    13.19 57.31 5.29 0 0 0

    5.16 5.29 12.64 0 0 0

    0 0 0 4.72 0 0

    0 0 0 0 6.08 0

    0 0 0 0 0 15.31

    GPa

    [S] =

    8.4 1.7 2.7 0 0 0

    1.7 18.5 7 0 0 0

    2.7 7 83.1 0 0 0

    0 0 0 211.9 0 0

    0 0 0 0 164.6 0

    0 0 0 0 0 65.3

    106 GPa1

    Taking into account the following expressions that relate the stiffness matrix terms with the

    apparent propertiesExx= 1/S11 Gyz = 1/S44 xy = S12/S11Eyy = 1/S22 Gzx = 1/S55 yz = S23/S22Ezz = 1/S33 Gxy = 1/S66 zx = S31/S33

    the apparent properties of the considered laminate are

    Exx= 118560 MPa Gyz = 4720 MPa xy = 0.2

    Eyy = 54090 MPa Gzx = 6077MPa yz = 0.381

    Ezz = 12028 MPa Gxy = 15314 MPa zx = 0.033

    Next, we present the solution implemented using the calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 2.2

    %

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex201.m
  • 8/13/2019 FE of Composites

    23/62

    Chapter 2. Laminate theory 19

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % Transversely isotropic material need 5 constants:

    % E1, E2, nu12, nu23, G12 (MPa)

    Mat(1,:)=[181000, 10300, 0.28, 0.42, 7170];

    [n_mat,n_prop]=size(Mat);

    % The lamina need to define material, angle and thickness

    % mat, theta, t

    L(1,:)=[1, 0, 1.5];

    L(2,:)=[1, 20, 1.5];

    L(3,:)=[1, -20, 1.5];

    L(4,:)=[1, 90, 1.5];

    L(5,:)=[1, 90, 1.5];

    L(6,:)=[1, -20, 1.5];

    L(7,:)=[1, 20, 1.5];

    L(8,:)=[1, 0, 1.5];

    n_lam=size(L,1);

    % Compute S and Q

    for i=1:n_lam;

    i_mat=L(i,1);

    S(1,1,i)=1/Mat(i_mat,1);

    S(1,2,i)=-Mat(i_mat,3)/Mat(i_mat,1);

    S(1,3,i)=-Mat(i_mat,3)/Mat(i_mat,1);

    S(2,1,i)=S(1,2,i);

    S(2,2,i)=1/Mat(i_mat,2);

    S(2,3,i)=-Mat(i_mat,4)/Mat(i_mat,2);

    S(3,1,i)=S(1,3,i);

    S(3,2,i)=S(2,3,i);

    S(3,3,i)=S(2,2,i);

    S(4,4,i)=2*(1+Mat(i_mat,4))/Mat(i_mat,2);

    S(5,5,i)=1/Mat(i_mat,5);

    S(6,6,i)=S(5,5,i);

    C(:,:,i)=inv(S(:,:,i));

    end;

    % Compute transformation matrices T and Tgamma

    for i=1:n_lam;

    theta=L(i,2)*pi/180;

    m=cos(theta);

    n=sin(theta);

    T(1,1,i)=m^2;

    T(1,2,i)=n^2;

    T(1,6,i)=2*m*n;

    T(2,1,i)=n^2;

    T(2,2,i)=m^2;

    T(2,6,i)=-2*m*n;

    T(3,3,i)=1;

    T(4,4,i)=m;

    T(4,5,i)=-n;

    T(5,4,i)=n;

    T(5,5,i)=m;

    T(6,1,i)=-m*n;

    T(6,2,i)=m*n;

    T(6,6,i)=m^2-n^2;

    Tg(:,:,i)=(inv(T(:,:,i)));

    % Compute stiffness and compliance transformed matrices

    Sb(:,:,i)=inv(Tg(:,:,i))*S(:,:,i)*T(:,:,i);

    Cb(:,:,i)=inv(Sb(:,:,i));

    end;

    % Compute apparent stiffness and compliance matrices

  • 8/13/2019 FE of Composites

    24/62

    20 Disseny i Anlisi de Compsits amb Elements Finits

    t_lam=0;

    for i=1:n_lam;

    t_lam=t_lam+L(i,3);

    end;

    C_lam=zeros(6,6);

    for i=1:n_lam;

    C_lam=C_lam+L(i,3)/t_lam*Cb(:,:,i);end;

    S_lam=inv(C_lam)

    C_lam

    % Obtain apparent engineering properties

    Exx=1/S_lam(1,1)

    Eyy=1/S_lam(2,2)

    Ezz=1/S_lam(3,3)

    Gyz=1/S_lam(4,4)

    Gzx=1/S_lam(5,5)

    Gxy=1/S_lam(6,6)

    nuxy=-S_lam(1,2)/S_lam(1,1)

    nuyz=-S_lam(2,3)/S_lam(2,2)

    nuzx=-S_lam(3,1)/S_lam(3,3)

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.m

    Example 2.3. Based on the procedure employed in Ex. 2.2,write a computer program to evalu-

    ate the transformed compliance and stiffness matrices of the two transversely isotropic laminae

    of a laminate. Both laminae are made of unidirectional T300/5208 CFRP (the elastic properties

    of the material are listed in Ex.2.2). The top layer is 1 mm thick and oriented at 45. The bottomlayer is 2 mm thick and oriented at 0. Make the program general enough so it can be used withdifferent laminates. Considerer plane stress analysis.

    Solution to Example 2.3. The plane stress 33 stiffness and compliance matrices for a com-posite laminate can have 9 non-zero terms and need to be defined by 4 independent properties:

    E11,E22,12 andG12 per lamina material.

    [Q]1 =

    181810 2900 02900 10350 0

    0 0 7170

    MPa, [S]1 =

    5.5 1.5 01.5 97.1 0

    0 0 139.5

    106 GPa1

    [Q]2 =

    56658 42318 42866

    42318 56658 42866

    42866 42866 46591

    MPa, [S]2 =

    59.7 10 45.8

    10 59.7 45.8

    45.8 45.8 105.7

    106 GPa1

    Next, we present the solution implemented using the symbolic calculation capabilities of

    MATLABTM.

    %

    % DACFE. Solution to Example 2.3

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % Transversely isotropic material need 4 constants:

    % E1, E2, nu12, G12 (MPa)

    Mat(1,:)=[181000, 10300, 0.28, 7170];

    [n_mat,n_prop]=size(Mat);

    % The lamina need to define material, angle and thickness

    % mat, theta, t

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex202.m
  • 8/13/2019 FE of Composites

    25/62

    Chapter 2. Laminate theory 21

    L(1,:)=[1, 0, 2];

    L(2,:)=[1, 45, 1];

    n_lam=size(L,1);

    % Compute S and Q

    for i=1:n_lam;

    i_mat=L(i,1);S(1,1,i)=1/Mat(i_mat,1);

    S(1,2,i)=-Mat(i_mat,3)/Mat(i_mat,1);

    S(2,1,i)=S(1,2,i);

    S(2,2,i)=1/Mat(i_mat,2);

    S(3,3,i)=1/Mat(i_mat,4);

    Q(:,:,i)=inv(S(:,:,i));

    end;

    % Compute transformation matrices T and Tgamma

    for i=1:n_lam;

    theta=L(i,2)*pi/180;

    m=cos(theta);

    n=sin(theta);

    T(1,1,i)=m^2;

    T(1,2,i)=n^2;

    T(1,3,i)=2*m*n;

    T(2,1,i)=n^2;

    T(2,2,i)=m^2;

    T(2,3,i)=-2*m*n;

    T(3,1,i)=-m*n;

    T(3,2,i)=m*n;

    T(3,3,i)=m^2-n^2;

    Tg(:,:,i)=(inv(T(:,:,i)));

    % Compute stiffness and compliance transformed matrices

    Sb(:,:,i)=inv(Tg(:,:,i))*S(:,:,i)*T(:,:,i);

    Qb(:,:,i)=inv(Sb(:,:,i));

    end;

    Qb,Sb

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.m

    Example 2.4. Extend the computer program generated in Ex. 2.3 to calculate the constitutive

    matrix of the laminate considered in the same example. Make the program general enough so it

    can be used with different laminates.

    Solution to Example 2.4. The constitutive matrix of a laminate is determined as a function of

    the in-plane stiffness matrix[A], the coupling matrix[B]and the bending stiffness matrix[D]. For

    the calculation of the[A],[B]and [D]matrices, the transformed stiffness matrix of each lamina of

    the laminate have to be first evaluated. The[A],[B]and [D]matrices for the considered laminate

    are

    [A] =

    420.3 48.11 42.8748.11 77.35 42.87

    42.87 42.87 60.93

    103 N/mm

    [B] =

    125.2 39.42 42.87

    39.42 46.31 42.87

    42.87 42.87 39.42

    103 N

    [D] =

    273.5 49.22 46.4449.22 73.45 46.44

    46.44 46.44 58.84

    103 Nmm

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex203.m
  • 8/13/2019 FE of Composites

    26/62

    22 Disseny i Anlisi de Compsits amb Elements Finits

    Next, we present the solution implemented using the symbolic calculation capabilities of

    MATLABTM.

    %

    % DACFE. Solution of Example 2.4

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    clear all,close all, clc;

    % Transversely isotropic material need 4 constants:

    % E1, E2, nu12, G12 (MPa)

    Mat(1,:)=[181000, 10300, 0.28, 7170];

    [n_mat,n_prop]=size(Mat);

    % The lamina need to define material, angle and thickness

    % mat, theta, t

    L(1,:)=[1, 0, 2];

    L(2,:)=[1, 45, 1];

    n_lam=size(L,1);

    % Compute S and Q

    for i=1:n_lam;

    i_mat=L(i,1);

    S(1,1,i)=1/Mat(i_mat,1);

    S(1,2,i)=-Mat(i_mat,3)/Mat(i_mat,1);

    S(2,1,i)=S(1,2,i);

    S(2,2,i)=1/Mat(i_mat,2);

    S(3,3,i)=1/Mat(i_mat,4);

    Q(:,:,i)=inv(S(:,:,i));

    end;

    % Compute transformation matrices T and Tgamma

    for i=1:n_lam;

    theta=L(i,2)*pi/180;

    m=cos(theta);

    n=sin(theta);

    T(1,1,i)=m^2;

    T(1,2,i)=n^2;

    T(1,3,i)=2*m*n;

    T(2,1,i)=n^2;

    T(2,2,i)=m^2;

    T(2,3,i)=-2*m*n;

    T(3,1,i)=-m*n;

    T(3,2,i)=m*n;

    T(3,3,i)=m^2-n^2;

    Tg(:,:,i)=(inv(T(:,:,i)));

    % Compute stiffness and compliance transformed matrices

    Sb(:,:,i)=inv(Tg(:,:,i))*S(:,:,i)*T(:,:,i);

    Qb(:,:,i)=inv(Sb(:,:,i));

    end;

    % Laminate constitutive matrix (ABD)

    % Location of the bounds of the laminae and laminates midplane

    TH=0;

    Z=zeros(n_lam+1,1);

    for i=1:n_lam;

    TH=TH+L(i,3);

    end;

    th=TH/2;

    TH=0;

    Z(1)=-th;

    for i=1:n_lam;

  • 8/13/2019 FE of Composites

    27/62

    Chapter 2. Laminate theory 23

    TH=TH+L(i,3);

    Z(i+1)=TH-th;

    end;

    % Compute A matrix

    A=zeros(3,3);

    for i=1:n_lam;

    for j=1:3;for k=1:3;

    A(j,k)=A(j,k)+Qb(j,k,i)*(Z(i+1)-Z(i));

    end;

    end;

    end;

    % Compute B matrix

    B=zeros(3,3);

    for i=1:n_lam;

    for j=1:3;

    for k=1:3;

    B(j,k)=B(j,k)+Qb(j,k,i)*(Z(i+1)^2-Z(i)^2)*(1/2);

    end;

    end;

    end;

    % Compute D matrix

    D=zeros(3,3);

    for i=1:n_lam;

    for j=1:3;

    for k=1:3;

    D(j,k)=D(j,k)+Qb(j,k,i)*(Z(i+1)^3-Z(i)^3)*(1/3);

    end;

    end;

    end;

    A,B,D

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.m

    Example 2.5. Use the computer program generated in Ex. 2.4to compare the[A], [B] and[D]

    matrices of the following cross-ply laminates: [90/02/90]s, [0/902/0]s, [0/90/0/90]s, [902/02]s and

    [02/902]s. Consider the same material as in Ex. 2.2and a ply thickness of 0.125 mm.

    Solution to Example 2.5. Taking into account that the five laminates considered are cross-ply

    laminates, only the transformed stiffness matrices for laminae at 0 and 90 are required:

    [Q]0= 181.81 2.90 02.90 10.35 0

    0 0 7.17

    GPa

    [Q]90=

    10.35 2.90 02.90 181.81 0

    0 0 7.17

    GPa

    The five cross-ply laminates have the same number of 0 and 90 plies with the same proper-ties. Therefore, the in-plane behaviour will be the same for the five laminates and the in-plane

    stiffness matrix[A] will be exactly the same for the five laminates

    [A] =

    96079 2897 02897 96079 0

    0 0 7170

    N/mm

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex204.m
  • 8/13/2019 FE of Composites

    28/62

    24 Disseny i Anlisi de Compsits amb Elements Finits

    The five stacking sequences considered are symmetric. Therefore, the coupling matrix [B]

    will be zero for the five laminates.

    [B] = [0]N

    As the five laminates are cross-ply laminates, the terms D16 = D61 and D26 = D62 of the

    [D]matrix are zero. Thus, there is no coupling between bending moments and plate twisting or

    torque and plate curvatures. The resulting[D] matrices for the five laminates are

    [90/02/90]s= [D] =

    6667 241.4 0241.4 9346 0

    0 0 597.5

    Nmm

    [0/902/0]s= [D] =

    9346 241.4 0241.4 6667 0

    0 0 597.5

    Nmm

    [0/90/0/90]s= [D] = 10686 241.4 0241.4 5327 0

    0 0 597.5

    Nmm

    [902/02]s= [D] =

    2648 241.4 0241.4 13365 0

    0 0 597.5

    Nmm

    [02/902]s= [D] =

    13365 241.4 0241.4 2648 0

    0 0 597.5

    Nmm

    Example 2.6. Consider a simply supported composite plate 1000 mm long, 1000 mm wide and 5

    mm thick. The plate is made of unidirectional T300/5208 plies (0.125 mm thick) with a cross-ply

    stacking sequence and is loaded in compression with an edge loadNxx = -1 N/mm (Nyy =Nxy =

    Mxx =Myy = Mxy =Vyz =Vxz = 0). Generate the[A], [B],[D] and[H] matrices to simulate and

    calculate the centre deflection of the plate with ANSYSTM for [020/9020], [04/904]5 and [02/902]10

    stacking sequences.

    Solution to Example 2.6. For the three stacking sequences considered, the total thickness of

    material with the reinforcement oriented at 0 and 90 is always the same. Thus, the [A] matrixdoes not vary.

    [A] =

    480.4 14.48 014.48 480.4 0

    0 0 35.85

    103 N/mm

    The three cross-ply laminates considered are not symmetric. Therefore, the [B] matrices

    are not zero and different for every stacking sequence. The coupling between moments and

    in-plane deformation, and vice versa, is less important when differently oriented plies are more

    distributed.

    [020/9020] = [B] =

    535.8 0 0

    0 535.8 0

    0 0 0

    103 N

    [04/904]5= [B] =

    107.2 0 00 107.2 0

    0 0 0

    103 N

  • 8/13/2019 FE of Composites

    29/62

    Chapter 2. Laminate theory 25

    [02/902]10= [B] =

    53.58 0 00 53.58 0

    0 0 0

    103 N

    For the three stacking sequences, the thickness of material with the reinforcement oriented

    at 0 and 90 is the same. Thus, the [D]matrix does not vary.

    [D] =

    1001 30.2 030.2 1001 0

    0 0 74.7

    103 Nmm

    Similarly, the[H]matrix does not vary and is the same for the three laminates considered.

    [H] =

    22.5 0

    0 22.5

    103 N/mm

    As the geometry, the load and the material configuration are symmetric with respect the x

    and y axis, only a quarter of the plate is simulated. The ANSYSTM command sequence for thecross-ply plate is listed below. You can either type these commands on the command window, or

    you can type them on a file, then, on the command window enter /input, file, ext.

    FINISH

    /CLEAR

    /TITLE, Composite plate

    !3D composite laminate ABDH

    /PREP7

    !Parameters

    P=1 !applied load in N/mm

    l=1000 !length

    w=1000 !width

    h=5 !thickness

    !Elements and options

    ET,1,SHELL99,,2 !element type: 8-node laminated shell

    !keyopt(2)=2 to enter ABDH matrices 6x6

    !Material properties through ABDH matrices [0_20/90_20]

    R,1,480400,14480,0,0,0,0 !mat1,A11,A12,0,A16,0,0

    RMODIF,1,7,480400,0,0,0,0 !mat1,loc7,A22,0,A26,0,0

    RMODIF,1,16,35850,0,0 !mat1,loc16,A66,0,0

    RMODIF,1,19,22500,0 !mat1,loc19,H44,0

    RMODIF,1,21,22500 !mat1,loc21,H55

    RMODIF,1,22,-535.8e+3,0,0,0,0,0 !mat1,loc22,B11,B12,0,B16,0,0

    RMODIF,1,28,535.8e+3,0,0,0,0 !mat1,loc28,B22,0,B26,0,0

    RMODIF,1,37,0,0,0 !mat1,loc37,B66,0,0

    RMODIF,1,43,1001e+3,30.2e+3,0,0,0,0 !mat1,loc43,D11,D12,0,D16,0,0

    RMODIF,1,49,1001e+3,0,0,0,0 !mat1,loc49,D22,0,D26,0,0

    RMODIF,1,58,74.7e+3,0,0 !mat1,loc58,D66,0,0

    RMODIF,1,77,h !mat1,loc77,average thickness

    !Uncomment for laminate [0_4/90_4]_5

    !RMODIF,1,22,-107.2e+3,0,0,0,0,0 !mat1,loc22,B11,B12,0,B16,0,0

    !RMODIF,1,28,107.2e+3,0,0,0,0 !mat1,loc28,B22,0,B26,0,0

    !Uncomment for laminate [0_2/90_2]_10

    !RMODIF,1,22,-53.58e+3,0,0,0,0,0 !mat1,loc22,B11,B12,0,B16,0,0

    !RMODIF,1,28,53.58e+3,0,0,0,0 !mat1,loc28,B22,0,B26,0,0

    !Geometry

    RECTNG,0,l/2,0,w/2 !rectangle x1,x2,y1,y2

    !Mesh

    LESIZE,ALL,h*5 !element size

  • 8/13/2019 FE of Composites

    30/62

    26 Disseny i Anlisi de Compsits amb Elements Finits

    AMESH,ALL !mesh geometry

    FINISH

    /SOLU

    !Boundary conditions

    DL,2,1,UZ,0 !simply supported

    DL,3,1,UZ,0

    DL,1,1,SYMM !symmetryDL,4,1,SYMM

    !Apply load

    SFL,2,PRES,P !apply pressure on line 2 in N/mm

    /PBC,ALL !to show BCs when solve

    SOLVE

    FINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    PLNSOL,U,Z,2,1 !vertical displacement

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_

    files/T2/DACFE_

    Ex206.dat

    After the simulation, the resulting centre deflection for the [020/9020] plate is 154.7m, 15.2

    m for the [04/904]5 case and 7.5m for the [02/902]10 plate. As the bending-extension coupling

    diminishes when the plies are more distributed, as the terms of matrix [B] do, the resulting

    deflection is smaller for the later case, even if the thickness of the plate is the same. Actually,

    changing from [020/9020] to [04/904]5 reduces the deflection to one tenth.

    Observe that if the plate is simulated in this way (defining the [A],[B],[D]and[H]matrices),

    the stress-state in the material cannot be obtained.

    Example 2.7. Consider the same simply supported composite plate as in Ex. 2.6with the same

    load. Generate the ANSYSTMprogram to simulate and calculate the centre deflection of the plate

    for the same three stacking sequences but defining the ply sequence into the program.

    Solution to Example 2.7. In order to simplify the definition of the laminates in ANSYSTM, all

    groups of plies with the same orientation are modelled as one ply with the total thickness of

    the group. Thus, the [020/9020] stacking sequence with 0.125 mm plies is modelled as a [0/90]

    stacking sequence with 0.125 20 mm plies and similarly for the other two stacking sequences.

    As in the previous example, the geometry, the load and the material configuration are sym-

    metric with respect the x andy axis and only a quarter of the plate is simulated. The ANSYSTM

    command sequence for the cross-ply plate is listed below. You can either type these commands

    on the command window, or you can type them on a file, then, on the command window enter/input, file, ext.

    FINISH

    /CLEAR

    /TITLE, Composite plate

    !3D composite plate ABDH-LSS

    /PREP7

    !Parameters

    P=1 !applied load in N/mm

    l=1000 !length

    w=1000 !width

    h=5 !thickness

    lt=0.125 !layer thickness

    !Elements and options

    ET,1,SHELL181 !element type: 8-node laminated shell

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex206.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex206.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex206.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex206.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex206.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex206.dat
  • 8/13/2019 FE of Composites

    31/62

    Chapter 2. Laminate theory 27

    !Material properties for the T300/5208 UD lamina

    MP,EX,1,181000

    MP,EY,1,10300

    MP,EZ,1,10300

    MP,GXY,1,7170

    MP,GYZ,1,3627

    MP,GXZ,1,7170

    MP,PRXY,1,0.28MP,PRYZ,1,0.42

    MP,PRXZ,1,0.28

    !Section properties for the laminate (up to 250 layers)

    !Laminate #1: [0_20/90_20]

    SECTYPE,1,SHELL !section type: shell

    SECDATA,lt*20,1,0 !layer thickness, material and orientation

    SECDATA,lt*20,1,90

    SECOFFSET,MID !nodes on mid-thickness of elements

    !Laminate #2: [0_4/90_4]_5

    SECTYPE,2,SHELL !section type: shell

    SECDATA,lt*4,1,0 !layer thickness, material and orientation

    SECDATA,lt*4,1,90

    SECDATA,lt*4,1,0SECDATA,lt*4,1,90

    SECDATA,lt*4,1,0

    SECDATA,lt*4,1,90

    SECDATA,lt*4,1,0

    SECDATA,lt*4,1,90

    SECDATA,lt*4,1,0

    SECDATA,lt*4,1,90

    SECOFFSET,MID !nodes on mid-thickness of elements

    !Laminate #3: [0_2/90_2]_10

    SECTYPE,3,SHELL !section type: shell

    SECDATA,lt*2,1,0 !layer thickness, material and orientation

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECDATA,lt*2,1,0

    SECDATA,lt*2,1,90

    SECOFFSET,MID !nodes on mid-thickness of elements

    !Geometry

    RECTNG,0,l/2,0,w/2 !rectangle x1,x2,y1,y2

    !Mesh

    SECNUM,1 !section type #1

    !SECNUM,2 !uncomment for laminate #2

    !SECNUM,3 !uncomment for laminate #3

    LESIZE,ALL,l/50 !element size

    AMESH,ALL !mesh geometry

    FINISH

    /SOLU

    !Boundary conditions

    DL,2,1,UZ,0 !simply supported

    DL,3,1,UZ,0

  • 8/13/2019 FE of Composites

    32/62

    28 Disseny i Anlisi de Compsits amb Elements Finits

    DL,1,1,SYMM !symmetry

    DL,4,1,SYMM

    !Apply load

    SFL,2,PRES,P !apply pressure on line 2 in N/mm

    /PBC,ALL !to show BCs when solve

    SOLVEFINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    PLNSOL,U,Z,2,1 !vertical displacement

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.dat

    After the simulation, the resulting centre deflection for the [020/9020] plate is 154.4m, 15.2

    m for the [04/904]5 case and 7.5 m for the [02/902]10 plate. As it happened in the previous

    example, the deflection of the plate decreases if the plies are more distributed. In fact, the

    calculated deflections are the same in both cases. However, when the stacking sequence of thelaminate is specified, the stress-state in the material can be obtained.

    Example 2.8. Consider an encastred composite plate subjected toxx = 10 MPa. The plate is

    1000 mm long, 200 mm wide and is made of 0.125 mm T300/5208 unidirectional laminae with

    the following stacking sequence [0/90/60/75]2. Generate the ANSYSTM program to simulate and

    analyse the plate. Obtain the maximum displacements and the in-plane stress components of the

    third and fourth plies (60 and 75) at top and bottom locations according to the laminate (xyz)and ply (1-2-3) coordinate systems.

    Solution to Example 2.8. The ANSYSTM command sequence to simulate the [0/90/60/75]2

    laminated plate is listed below. You can either type these commands on the command window, oryou can type them on a file, then, on the command window enter /input, file, ext.

    FINISH

    /CLEAR

    /TITLE, Composite plate

    !3D composite laminate LSS

    /PREP7

    !Parameters

    P=10 !applied stress

    l=1000 !length

    w=200 !width

    lt=0.125 !layer thickness

    nl=8 !number of layers

    h=lt*nl !plate thickness

    !Elements and options

    ET,1,SHELL181 !element type: 8-node laminated shell

    KEYOPT,1,8,2 !store bottom, mid and top data for all layers

    !Material properties for the T300/5208 UD lamina

    MP,EX,1,181000

    MP,EY,1,10300

    MP,EZ,1,10300

    MP,GXY,1,7170

    MP,GYZ,1,3627

    MP,GXZ,1,7170

    MP,PRXY,1,0.28

    MP,PRYZ,1,0.42

    MP,PRXZ,1,0.28

    !Section properties for the laminate (up to 250 layers)

    !Laminate #1: [0/90/60/75]2

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex207.dat
  • 8/13/2019 FE of Composites

    33/62

    Chapter 2. Laminate theory 29

    SECTYPE,1,SHELL !section type: shell

    SECDATA,lt,1,0 !layer thickness, material and orientation

    SECDATA,lt,1,90

    SECDATA,lt,1,60

    SECDATA,lt,1,75

    SECDATA,lt,1,0

    SECDATA,lt,1,90

    SECDATA,lt,1,60SECDATA,lt,1,75

    SECOFFSET,MID !nodes on mid-thickness of elements

    !Geometry

    RECTNG,0,l,0,w !rectangle x1,x2,y1,y2

    !Mesh

    SECNUM,1 !section type #1

    LESIZE,ALL,w/10 !element size

    AMESH,ALL !mesh geometry

    FINISH

    /SOLU

    !Boundary conditions

    DL,4,1,ALL !encastred line 4

    !Apply load

    SFL,2,PRES,-P*h !apply pressure on line 2 in N/mm

    /PBC,ALL !to show BCs when solve

    SOLVE

    FINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    RSYS,SOLU !lamina coordinate system

    LAYER,1 !specify layer 1 results

    MID !specify midthickness results

    PLNSOL,S,X,2,1 !vertical displacement

    !Obtain results selecting layer and coordinate system

    ESEL,,,,250 !select element #250

    LAYER,3

    RSYS,SOLU

    TOP

    ETABLE,TSXXloc,S,X !write X-stress in table TSXX

    ETABLE,TSYYloc,S,Y

    ETABLE,TSXYloc,S,XY

    BOT

    ETABLE,BSXXloc,S,X

    ETABLE,BSYYloc,S,Y

    ETABLE,BSXYloc,S,XY

    PRETAB,BSXXloc,BSYYloc,BSXYloc,TSXXloc,TSYYloc,TSXYloc !print results table

    RSYS,0

    TOP

    ETABLE,TSXXglb,S,X !write X-stress in table TSXX

    ETABLE,TSYYglb,S,Y

    ETABLE,TSXYglb,S,XY

    BOT

    ETABLE,BSXXglb,S,X

    ETABLE,BSYYglb,S,Y

    ETABLE,BSXYglb,S,XY

    PRETAB,BSXXglb,BSYYglb,BSXYglb,TSXXglb,TSYYglb,TSXYglb !print results table

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.dat

    To specify a particular layer in which the results should be plotted, type LAYER,layer_number

    in the command window, where layer_number should be replaced by desired the number of

    layer. Iflayer_numberis replaced by 0 (default), the bottom surface of the bottom layer and the

    top surface of the top layer are shown. To specify a particular position in the layer where the

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.datftp://amade.udg.edu/amade/mme/DACFE/input_files/T2/DACFE_Ex208.dat
  • 8/13/2019 FE of Composites

    34/62

  • 8/13/2019 FE of Composites

    35/62

    Chapter 2. Laminate theory 31

    Problem 2.3. Based on the procedure of Ex. 2.4, write a computer program to calculate the

    laminae strains of the laminate in the same example according to thexy z coordinate system

    when the following forces and moments are applied:

    Nxx= 1 N/mm Nyy = 10 N/mm Nxy = 20 N/mm

    Mxx= 60 N Myy = 20 N Mxy = 5 N

    Show all work in a report.

    Problem 2.4. Combine the computer program generated in Pb. 2.2 and 2.3 to calculate the

    laminae strains according to the x y z coordinate system of the same laminate when the

    following forces and moments are applied:

    Nxx= 1 N/mm Nyy = 0N/mm Nxy = 0N/mm

    Mxx = 0N Myy = 0 N Mxy = 0 N

    Vxz = 1 N/mm Vyz = 1 N/mm

    Show all work in a report.

    Problem 2.5. Extend the computer program generated in Pb. 2.3 to calculate the laminae

    strains according to the lamina coordinate system in the laminate of Ex. 2.4when the loads and

    moments of Pb. 2.3are applied. Calculate the strains in the bottom, middle and top locations of

    each layer. Show all work in a report.

    Problem 2.6. Extend the computer program generated in the previous problem to obtain the

    stresses in the lamina coordinate system of the previously calculated strains. Show all work in a

    report.

    Problem 2.7.Modify the computer program generated in Ex.2.8to simulate the same plate with

    a stacking sequence [0/90/60/75]s. Calculate the maximum displacements and the in-plane stress

    components of the third and fourth plies (60 and 75) at top and bottom locations according tothe laminate (x y z) and ply (1-2-3) coordinate systems. Show all work in a report.

    Problem 2.8. Modify the computer program generated in Ex. 2.7 to simulate the same plate

    with stacking sequences [0/0/90/90/45/45/-45/-45] and [0/90/45/-45/0/90/45/-45]. Comment on

    the results and justify the deformed shape analysing the matrices you can obtain with MATLAB

    using the code created for Pb. 2.2.

  • 8/13/2019 FE of Composites

    36/62

  • 8/13/2019 FE of Composites

    37/62

    Chapter 3

    Hygro-thermal effects

    3.1 Examples

    Example 3.1. Write a computer program to evaluate the transformed thermal and hygroscopicexpansion coefficients of an orthotropic lamina rotated an angle around thez-axis.

    Solution to Example 3.1. The thermal and hygroscopic coefficients can be written in the form

    of 1 6 vectors. When expressed in the coordinate system of the lamina, the last three therms

    of each vector are zero and only the thermal and hygroscopic coefficients of the material in the

    1-2-3 directions are required. After rotating the coordinate system using matrices [T] and [T],

    the last three terms of each vector might not be zero. Next, we present the solution implemented

    using the symbolic calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 3.1

    %% J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % An orthotropic material needs 3 thermal and hygroscopic expansion coefficients

    syms alfa_1 alfa_2 alfa_3 beta_1 beta_2 beta_3

    % The angle for the lamina is

    syms theta

    alfa=[alfa_1; alfa_2; alfa_3; 0; 0; 0];

    beta=[beta_1; beta_2; beta_3; 0; 0; 0];

    % Compute transformation matrices T and Tgamma

    m=cos(theta);n=sin(theta);

    T=[m^2, n^2, 0, 0, 0, 2*m*n;

    n^2, m^2, 0, 0, 0, -2*m*n;

    0, 0, 1, 0, 0, 0;

    0, 0, 0, m, -n, 0;

    0, 0, 0, -n, m, 0;

    -m*n, m*n, 0, 0, 0, m^2-n 2];

    Tg = simplify((inv(T)).);

    % Compute transformed expansion coefficients

    alfa_xyz=inv(Tg)*alfa

    beta_xyz=inv(Tg)*beta

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.m

    33

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex301.m
  • 8/13/2019 FE of Composites

    38/62

    34 Disseny i Anlisi de Compsits amb Elements Finits

    Example 3.2. Based on the procedure employed in Ex. 3.1, write a computer program to

    evaluate the transformed thermal and hygroscopic expansion coefficients of an unidirectional

    T300/5208 CFRP lamina when the reinforcement is oriented at = 30 around thez-axis. Theexpansion coefficients of the material in the lamina directions are given by: 11 = 0.02 10

    6

    K1, 22= 33= 22.5 106 K1, 11= 0.0and22= 33= 0.5.

    Solution to Example 3.2. As in the previous example, the thermal and hygroscopic coefficients

    can be written in the form of 1 6 vectors. After rotating the coordinate system using matrices

    [T] and [T], the last three terms of each vector might not be zero. In fact, the resulting thermal

    and hygroscopic coefficients for a T300/5208 lamina rotated at 30 are:

    30=

    5.64

    16.89

    22.5

    0

    0

    19.47

    106 K1, 30=

    125

    375

    500

    0

    0

    433

    103

    Next is the solution implemented using the calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 3.2

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % A transversally isotropic material needs 2

    % thermal and hygroscopic expansion coefficients

    % alfa_1, alfa_2, beta_1, beta_2

    prop=[0.02e-6, 22.5e-6, 0.0, 0.5];

    % The angle of the reinforcement is also defined

    theta=30;

    theta=theta*pi/180;

    alfa_1=prop(1,1);

    alfa_2=prop(1,2);

    alfa_3=alfa_2;

    beta_1=prop(1,3);

    beta_2=prop(1,4);

    beta_3=beta_2;

    alfa=[alfa_1; alfa_2; alfa_3; 0; 0; 0];

    beta=[beta_1; beta_2; beta_3; 0; 0; 0];

    % Compute transformation matrices T and Tgamma

    m=cos(theta);

    n=sin(theta);

    T=[m^2, n^2, 0, 0, 0, 2*m*n;

    n^2, m^2, 0, 0, 0, -2*m*n;

    0, 0, 1, 0, 0, 0;

    0, 0, 0, m, -n, 0;

    0, 0, 0, -n, m, 0;

    -m*n, m*n, 0, 0, 0, m^2-n 2];

    Tg=(inv(T));

    % Compute transformed expansion coefficients

    alfa_xyz=inv(Tg)*alfa

    beta_xyz=inv(Tg)*beta

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.m

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex302.m
  • 8/13/2019 FE of Composites

    39/62

  • 8/13/2019 FE of Composites

    40/62

    36 Disseny i Anlisi de Compsits amb Elements Finits

    % Compute transformed expansion coefficients

    alfa_xyz=inv(Tg)*alfa;

    beta_xyz=inv(Tg)*beta;

    % Compute the resulting strains

    eps_T=alfa_xyz*DeltaT

    eps_H=beta_xyz*hr

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.m

    Example 3.4. Extend the computer program generated in Ex. 3.3to calculate the total strains

    of the lamina in thex y z coordinate system at room temperature (22C), a moisture contentof 0.5 % and a cure temperature of 122C when the following stresses are applied: xx = 25MPa,yy = 50 MPa andxy = 20 MPa. Assume plane-stress analysis.

    Solution to Example 3.4. The resulting in-plain strains of the lamina in thexy zcoordinate

    system are:

    xyz =

    4033370

    726

    Next, we present the solution implemented using the calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 3.4

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % A transversally isotropic material needs 4 elastic and 2

    % thermal and hygroscopic expansion coefficients

    % E11, E22, nu12, G12, alfa_1, alfa_2, beta_1, beta_2

    prop=[181000, 10300, 0.28, 7170, 0.02e-6, 22.5e-6, 0.0, 0.5];

    % The angle of the reinforcement is also defined

    theta=30;

    theta=theta*pi/180;

    % Variation of temperature and moisture

    Tc=122;

    Tr=22;

    hr=0.005;

    DeltaT=Tr-Tc;

    % Applied stresses

    sigma=[25, 50, 20];

    E11=prop(1,1);

    E22=prop(1,2);

    nu12=prop(1,3);

    G12=prop(1,4);

    alfa_1=prop(1,5);

    alfa_2=prop(1,6);

    beta_1=prop(1,7);

    beta_2=prop(1,8);

    alfa=[alfa_1; alfa_2; 0];

    beta=[beta_1; beta_2; 0];

    % Compute transformation matrices T and Tgamma

    m=cos(theta);

    n=sin(theta);

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex303.m
  • 8/13/2019 FE of Composites

    41/62

    Chapter 3. Hygro-thermal effects 37

    T=[m^2, n^2, 2*m*n;

    n^2, m^2, -2*m*n;

    -m*n, m*n, m^2-n 2];

    Tg=(inv(T));

    % Compute transformed expansion coefficients

    alfa_xyz=inv(Tg)*alfa;

    beta_xyz=inv(Tg)*beta;

    % Compute the hygro-thermal strains

    eps_T=alfa_xyz*DeltaT

    eps_H=beta_xyz*hr

    % Compute compliance matrices and mechanical strains

    S(1,1)=1/E11;

    S(1,2)=-nu12/E11;

    S(2,1)=S(1,2);

    S(2,2)=1/E22;

    S(3,3)=1/G12;

    Sb=inv(Tg)*S*T;

    eps=Sb*sigma

    eps_tot=eps+eps_T+eps_H

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.m

    Example 3.5. Consider the laminate in Ex. 2.3with the same material properties as in Ex. 3.3.

    The laminate has been cured at 122C and it is at room temperature (22C) with a moisturecontent of 0.5 %. Write a computer program to determine the applied in-plane unit forces and

    unit moments that result in the following total strains at the mid-plane of the laminate: 0xx = 0.5

    %,0yy = 0.25 % and0xy = 0.1 %.

    Solution to Example 3.5. To obtain the previous mid-plane strains (curvatures are assumed tobe zero) in the laminate under the considered conditions, the applied in-plane unit forces and

    unit moments must be:

    N =

    2262

    470

    384

    N/mm, M=

    485

    357

    362

    N

    Next, we present the solution implemented using the calculation capabilities of MATLABTM.

    %

    % DACFE. Solution to Example 3.5

    %

    % J.A. Mayugo, N. Blanco

    clear all,close all, clc;

    % A transversally isotropic material needs 4 elastic and 2

    % thermal and hygroscopic expansion coefficients

    % E11, E22, nu12, G12, alfa_1, alfa_2, beta_1, beta_2

    Mat(1,:)=[181000, 10300, 0.28, 7170, 0.02e-6, 22.5e-6, 0.0, 0.5];

    [n_mat,n_prop]=size(Mat);

    % The lamina need to define material, angle and thickness

    % mat, theta, t

    L(1,:)=[1, 0, 2];

    L(2,:)=[1, 45, 1];

    n_lam=size(L,1);

    % Variation of temperature and moisture

    Tc=122;

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex304.m
  • 8/13/2019 FE of Composites

    42/62

    38 Disseny i Anlisi de Compsits amb Elements Finits

    Tr=22;

    hr=0.005;

    DeltaT=Tr-Tc;

    % Resulting strains

    % Only in-plane strains for the whole laminate

    % the curvatures are assumed to be zeroeps=[0.005; 0.0025; 0.001];

    kappa=[0; 0; 0];

    % Compute S and Q

    for i=1:n_lam;

    i_mat=L(i,1);

    S(1,1,i)=1/Mat(i_mat,1);

    S(1,2,i)=-Mat(i_mat,3)/Mat(i_mat,1);

    S(2,1,i)=S(1,2,i);

    S(2,2,i)=1/Mat(i_mat,2);

    S(3,3,i)=1/Mat(i_mat,4);

    Q(:,:,i)=inv(S(:,:,i));

    end;

    % Compute transformation matrices T and Tgamma

    for i=1:n_lam;

    theta=L(i,2)*pi/180;

    m=cos(theta);

    n=sin(theta);

    T(1,1,i)=m^2;

    T(1,2,i)=n^2;

    T(1,3,i)=2*m*n;

    T(2,1,i)=n^2;

    T(2,2,i)=m^2;

    T(2,3,i)=-2*m*n;

    T(3,1,i)=-m*n;

    T(3,2,i)=m*n;

    T(3,3,i)=m^2-n^2;

    Tg(:,:,i)=(inv(T(:,:,i)));

    % Compute stiffness and compliance transformed matrices

    Sb(:,:,i)=inv(Tg(:,:,i))*S(:,:,i)*T(:,:,i);

    Qb(:,:,i)=inv(Sb(:,:,i));

    end;

    % Laminate constitutive matrix (ABD)

    % Location of the bounds of the laminae and laminates midplane

    TH=0;

    Z=zeros(n_lam+1,1);

    for i=1:n_lam;

    TH=TH+L(i,3);

    end;

    th=TH/2;

    TH=0;

    Z(1)=-th;

    for i=1:n_lam;

    TH=TH+L(i,3);

    Z(i+1)=TH-th;

    end;

    % Compute A matrix

    A=zeros(3,3);

    for i=1:n_lam;

    for j=1:3;

    for k=1:3;

    A(j,k)=A(j,k)+Qb(j,k,i)*(Z(i+1)-Z(i));

    end;

    end;

    end;

  • 8/13/2019 FE of Composites

    43/62

    Chapter 3. Hygro-thermal effects 39

    % Compute B matrix

    B=zeros(3,3);

    for i=1:n_lam;

    for j=1:3;

    for k=1:3;

    B(j,k)=B(j,k)+Qb(j,k,i)*(Z(i+1)^2-Z(i)^2)*(1/2);

    end;

    end;end;

    % Compute D matrix

    D=zeros(3,3);

    for i=1:n_lam;

    for j=1:3;

    for k=1:3;

    D(j,k)=D(j,k)+Qb(j,k,i)*(Z(i+1)^3-Z(i)^3)*(1/3);

    end;

    end;

    end;

    ABD=[A,B;B,D];

    NM_tot=ABD*[eps;kappa];

    % Compute transformed expansion coefficients

    for i=1:n_lam;

    i_mat=L(i,1);

    alfa_123(:,:,i)=[Mat(i_mat,5); Mat(i_mat,6); 0];

    beta_123(:,:,i)=[Mat(i_mat,7); Mat(i_mat,8); 0];

    alfa_xyz(:,:,i)=inv(Tg(:,:,i))*alfa_123(:,:,i);

    beta_xyz(:,:,i)=inv(Tg(:,:,i))*beta_123(:,:,i);

    end;

    % Compute unit hygro-thermal forces and moments

    N_T=zeros(3,1);

    N_H=zeros(3,1);

    M_T=zeros(3,1);

    M_H=zeros(3,1);

    for i=1:n_lam;

    N_T=N_T+Qb(:,:,i)*alfa_xyz(:,:,i)*DeltaT*(Z(i+1)-Z(i));

    N_H=N_H+Qb(:,:,i)*beta_xyz(:,:,i)*hr*(Z(i+1)-Z(i));

    M_T=M_T+Qb(:,:,i)*alfa_xyz(:,:,i)*DeltaT*(Z(i+1)^2-Z(i)^2)*(1/2);

    M_H=M_H+Qb(:,:,i)*beta_xyz(:,:,i)*hr*(Z(i+1)^2-Z(i)^2)*(1/2);

    end;

    % Compute unit mechanical forces and moments

    N=NM_tot(1:3)-N_T-N_H

    M=NM_tot(4:6)-M_T-M_H

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.m

    Example 3.6. Consider an encastred composite plate 1000 mm long and 100 mm. The plate

    is made of 0.125 mm thick T300/5208 unidirectional laminae according to a [016/458] stacking

    sequence. The laminate has been cured at 122C and it is at room temperature (22C). Consid-ering the mechanical and thermal properties of the material used in previous examples, generate

    the ANSYSTM program to simulate the plate and determine the residual stresses present in the

    plate.

    Solution to Example 3.6. As no mechanical loads are applied to the laminate, the resulting

    stresses after the simulation of the plate correspond to the residual stresses generated during

    the manufacturing process when cooling the part from the curing temperature to the room tem-

    perature.

    The ANSYSTM command sequence to simulate the [016/458] laminated plate is listed below.

    You can either type these commands on the command window, or you can type them on a file,

    then, on the command window enter /input, file, ext.

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.mftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex305.m
  • 8/13/2019 FE of Composites

    44/62

    40 Disseny i Anlisi de Compsits amb Elements Finits

    FINISH

    /CLEAR

    /TITLE, Residual stress composite plate

    !Thermal residual stress composite laminate

    /PREP7

    !Parameters

    l=1000 !length

    w=100 !width

    lt=0.125 !layer thickness

    nl=24 !number of layers

    h=lt*nl !plate thickness

    Tc=122 !curing temperature

    Tr=22 !room temperature

    !Elements and options

    ET,1,SHELL181 !element type: 8-node laminated shell

    KEYOPT,1,8,2 !store bottom, mid and top data for all layers

    !Material properties for the T300/5208 UD lamina

    MP,EX,1,181000

    MP,EY,1,10300

    MP,EZ,1,10300

    MP,GXY,1,7170

    MP,GYZ,1,3627

    MP,GXZ,1,7170

    MP,PRXY,1,0.28

    MP,PRYZ,1,0.42

    MP,PRXZ,1,0.28

    MP,ALPX,1,0.02E-6 !thermal expansion coefficients

    MP,ALPY,1,22.5E-6

    MP,ALPZ,1,22.5E-6

    !Section properties for the laminate (up to 250 layers)

    !Laminate #1: [0_16/45_8]

    SECTYPE,1,SHELL !section type: shell

    SECDATA,lt*16,1,0 !layer thickness, material and orientation

    SECDATA,lt*8,1,45

    SECOFFSET,MID !nodes on mid-thickness of elements

    !Geometry

    RECTNG,0,l,0,w !rectangle x1,x2,y1,y2

    !Mesh

    SECNUM,1 !section type #1

    LESIZE,ALL,w/10 !element size

    AMESH,ALL !mesh geometry

    FINISH

    /SOLU

    !Boundary conditions

    DL,4,1,ALL !encastred line 4

    !Apply load

    TUNIF,Tr-Tc !apply constant temperature to nodes

    /PBC,ALL !to show BCs when solve

    SOLVE

    FINISH

    /POST1

    /VIEW,1,1,1,1 !iso-view

    RSYS,SOLU !lamina coordinate system

    LAYER,1 !specify layer 1 results

    MID !specify midthickness results

    PLNSOL,S,X,2,1 !vertical displacement

    !Obtain results selecting layer and coordinate system

    ESEL,,,,500 !select element #250

    LAYER,1

    RSYS,SOLU

  • 8/13/2019 FE of Composites

    45/62

    Chapter 3. Hygro-thermal effects 41

    TOP

    ETABLE,TSXXloc,S,X !write X-stress in table TSXX

    ETABLE,TSYYloc,S,Y

    ETABLE,TSXYloc,S,XY

    BOT

    ETABLE,BSXXloc,S,X

    ETABLE,BSYYloc,S,Y

    ETABLE,BSXYloc,S,XYPRETAB,BSXXloc,BSYYloc,BSXYloc,TSXXloc,TSYYloc,TSXYloc !print results table

    RSYS,0

    TOP

    ETABLE,TSXXglb,S,X !write X-stress in table TSXX

    ETABLE,TSYYglb,S,Y

    ETABLE,TSXYglb,S,XY

    BOT

    ETABLE,BSXXglb,S,X

    ETABLE,BSYYglb,S,Y

    ETABLE,BSXYglb,S,XY

    PRETAB,BSXXglb,BSYYglb,BSXYglb,TSXXglb,TSYYglb,TSXYglb !print results table

    This file can be found at:

    ftp://amade.udg.edu/amade/mme/DACFE/input_files/T3/DACFE_Ex306.dat

    After the simulation, the resulting maximum displacements are x = -0.119 mm, y = 0.658

    mm and z = 94.4 mm. It is observed that even if thermal expansion is an in-plane effect, the

    higher displacement is out-of-plane. This due to the fact that th