FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference...

18
Introduction Eigenmode Analysis FDFD The Finite-Difference Frequency-Domain Method Hans-Dieter Lang Friday, December 14, 2012 ECE 1252 – Computational Electrodynamics Course Project Presentation University of Toronto H.-D. Lang FDFD 1/18

Transcript of FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference...

Page 1: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

FDFDThe Finite-Difference Frequency-Domain Method

Hans-Dieter Lang

Friday, December 14, 2012ECE 1252 – Computational Electrodynamics

Course Project Presentation

University of Toronto

H.-D. Lang FDFD 1/18

Page 2: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

The Finite-Difference Frequency-Domain Method

Contents

Derivation of the FDFD algorithm

Eigenmode analysis

Examples

H.-D. Lang FDFD 2/18

Page 3: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

Introduction

Starting position

Maxwell’s equations in phasor form

∇×E = −𝑗𝜔𝜇H

∇×H = 𝑗𝜔𝜀E+ J

Wave equations (frequency domain)

(∇2 + 𝑘2)E = 𝑗𝜔𝜇J

Discretization of space

H.-D. Lang FDFD 3/18

Page 4: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

Introduction

1D FDFD

Maxwell’s equations in phasor form

∇×E = −𝑗𝜔𝜇H

∇×H = 𝑗𝜔𝜀E+ J

k=x−−−−−−−−−−→E=y𝐸𝑦 ,H=z𝐻𝑧

𝜕𝑥𝐸𝑦 = −𝑗𝜔𝜇𝐻𝑧

𝜕𝑥𝐻𝑧 = −𝑗𝜔𝜀𝐸𝑦 − 𝐽𝑦

Finite differences in space

𝐸𝑖+1𝑦 − 𝐸𝑖

𝑦

Δ𝑥= −𝑗𝜔𝜇𝐻𝑖+1/2

𝑧

𝐻𝑖+1/2𝑧 −𝐻

𝑖−1/2𝑧

Δ𝑥= −𝑗𝜔𝜀𝐸𝑖

𝑦 − 𝐽 𝑖𝑦

𝑖 =

𝐸1=0

1

𝐸2

2

𝐸3

3

𝐸4

4

𝐸5

5

𝐸6

6

𝐻1

1.5

𝐻2

2.5

𝐻3

3.5

𝐻4

4.5

𝐻5

5.5Δ𝑥

H.-D. Lang FDFD 4/18

Page 5: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

FDFD

1D FDFDFinite differences in space

𝐸𝑖+1𝑦 − 𝐸𝑖

𝑦

Δ𝑥= −𝑗𝜔𝜇𝐻𝑖+1/2

𝑧

𝐻𝑖+1/2𝑧 −𝐻

𝑖−1/2𝑧

Δ𝑥= −𝑗𝜔𝜀𝐸𝑖

𝑦 − 𝐽 𝑖𝑦

Matrix form⎡⎢⎢⎢⎢⎢⎢⎣1 0 0 0 . . .

1/Δ𝑥 𝑗𝜔𝜇 −1/Δ𝑥 0 . . .0 1/Δ𝑥 𝑗𝜔𝜀 −1/Δ𝑥

0 0 1/Δ𝑥 𝑗𝜔𝜇. . .

......

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣𝐸1

𝐻1

𝐸2

𝐻2...

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣00

−𝐽20...

⎤⎥⎥⎥⎥⎥⎦

𝑖 =

𝐸1=0

1

𝐸2

2

𝐸3

3

𝐸4

4

𝐸5

5

𝐸6

6

𝐻1

1.5

𝐻2

2.5

𝐻3

3.5

𝐻4

4.5

𝐻5

5.5

H.-D. Lang FDFD 5/18

Page 6: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

FDFD

1D FDFD

Matrix form⎡⎢⎢⎢⎢⎢⎢⎣1 0 0 0 . . .

1/Δ𝑥 𝑗𝜔𝜇 −1/Δ𝑥 0 . . .0 1/Δ𝑥 𝑗𝜔𝜀 −1/Δ𝑥

0 0 1/Δ𝑥 𝑗𝜔𝜇. . .

......

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣𝐸1

𝐻1

𝐸2

𝐻2...

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣00

−𝐽20...

⎤⎥⎥⎥⎥⎥⎦Solve the linear system

Ax = b ⇒ x = A−1b

∙ Direct inversion x=A\b∙ Least-square, iterative methods etc.

H.-D. Lang FDFD 6/18

Page 7: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

FDFD

PML for FDFD

Similar to FDTD

𝑗𝜔𝜀𝐸𝑖+1𝑦

𝑗𝜔𝜇𝐻 𝑖+1/2𝑧

inside PML−−−−−−−→

(𝑗𝜔 +

𝜎2𝑖+1

𝜀

)𝜀𝐸𝑖+1

𝑦(𝑗𝜔 +

𝜎2𝑖𝜀

)𝜇𝐻 𝑖+1/2

𝑦

Gradual increase in conductivity 𝜎2𝑖

Empirical 𝜎max, different from FDTD [2, 3]

Anisotropic for >1D

H.-D. Lang FDFD 7/18

Page 8: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

FDFD

PML for FDFD

No PML: shorted TL, VSWR→ ∞

0 20 40 60 80 100 120 140 160 180 200

−0.1−0.05

00.05

0.1

Cell number

Fiel

d am

plitu

de (a

.u.)

0 20 40 60 80 100 120 140 160 180 200

−0.1−0.05

00.05

0.1

Cell number

Fiel

d am

plitu

de (a

.u.)

With PML: VSWR→1

0 20 40 60 80 100 120 140 160 180 200−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Re(E)Im(E)Abs(E)Re(H)Im(H)Abs(H)

H.-D. Lang FDFD 8/18

Page 9: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

FDFD

PML for FDFD

|Γ| = VSWR− 1

VSWR+ 1

0 1 2 3 4 5−120

−110

−100

−90

−80

−70

−60

Frequency (GHz)

|s11

| in

dB

Nabs=5Nabs=10Nabs=16

Used parameters: 𝑙 = 300mm, 𝑅 = exp(−12), exp(−14), exp(−16) and 𝑝 = 4, 6, 8

H.-D. Lang FDFD 9/18

Page 10: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

Why FDFD?

FDFD vs. FDTDWhy frequency domain?

∙ Resonator characteristics (high 𝑄 → long simulation time)∙ Eigenmodes direct∙ Dispersive media

FDFD characteristics, No stability issues, Direct eigenmode analysis/ Solver less general/ Boundary conditions are more difficult to apply∙ PML even more important∙ Similar numerical dispersion issues

FDTD: Broadband, FDFD: Narrow- (single) band

H.-D. Lang FDFD 10/18

Page 11: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

Examples

Dispersive mediaTime vs. frequency domainDifferent measurementsExample: Lorentz media

0 1000 2000 3000 4000 5000 6000

−0.1

0

0.1

0.2

0.3

0.4

Timestep n=9701

0 100 200 300 400 500−5

0

5x 10−7

Lorentz media Lorentz media

FDTD: 6000 cells FDFD: 500 cells

H.-D. Lang FDFD 11/18

Page 12: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

Frequency Domain ConsiderationsExamples

Examples

Dispersive media

Reflection coefficient |Γ(𝜔)| of Lorentz media interface

0 0.5 1 1.5 2 2.5 3x 1016

0

0.2

0.4

0.6

0.8

1s1

1 (li

near

)

Frequency (Hz)

FDTD: s=0.9FDTD: s=1analyticFDFD

∙ FDTD: 8192 values/10 s → frequency band∙ FDFD: 40 values/2.6 s → specific frequencies

H.-D. Lang FDFD 12/18

Page 13: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

IntroductionExamples

Eigenmode Analysis

Eigenmode analysis

∇×E = −𝑗𝜔𝜇H

∇×H = 𝑗𝜔𝜀E⇒

[0 1

𝑗𝜀 ∇×− 1

𝑗𝜇 ∇× 0

] [EH

]= 𝜔0

[EH

]

Resonator-𝑄 from resonance frequency 𝜔0

𝑄 =Re𝜔0

2 Im𝜔0=

𝜔′0

2𝜔′′0

Propagation constant 𝛽(𝜔) (2.5D eigenmode analysis)

E = E0(𝑥, 𝑦) e𝑗𝛽𝑧 ⇒ 𝛽2

[𝐸𝑥

𝐸𝑦

]=

(𝜕2𝑥 + 𝜕2

𝑦 + 𝜔2𝜀𝜇) [𝐸𝑥

𝐸𝑦

]

H.-D. Lang FDFD 13/18

Page 14: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

IntroductionExamples

Examples

Eigenmode analysis in 1DDipole resonancesProblem size: 100 cells (𝑙 = 150mm), 𝑡sim < 0.01 s

10 20 30 40 50 60 70 80 90 100−0.2

−0.1

0

0.1

0.2

Cell number

Fiel

d am

plitu

de (a

.u.)

10 20 30 40 50 60 70 80 90 100−0.2

−0.1

0

0.1

0.2

Cell number

Fiel

d am

plitu

de (a

.u.)

𝑓GHz =0.97991.95562.93883.91734.8949

𝑓GHz =00.98961.9732.90793.956

H.-D. Lang FDFD 14/18

Page 15: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

IntroductionExamples

Examples

Eigenmode analysis in 2D

Cavity resonator modes

Problem size: 36× 36 cells, (1369× 1369 matrix), 𝑡sim ≈ 6.5 s

10 20 30

10

20

30

0

0.02

0.04

10 20 30

10

20

30

−0.05

0

0.05

10 20 30

10

20

30

−0.05

0

0.05

10 20 30

10

20

30

−0.05

0

0.05

10 20 30

10

20

30

−0.05

0

0.05

10 20 30

10

20

30

−0.04−0.0200.020.040.06

H.-D. Lang FDFD 15/18

Page 16: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

IntroductionExamples

Examples

Eigenmode analysis in 2.5DWaveguide modes (dimensions 𝑎 = 2𝑏)Problem size: 16× 8 cells, 𝑡sim ≈ 0.6 s

2 4 6 8 10 12 140

50

100

150

200

250

Frequency (GHz)

` (ra

d/m

), _

(Np/

m)

` analytic_ analytic` FDFD_ FDFDTEM limitcutoffs

TE10TE20

TE01

TE30

H.-D. Lang FDFD 16/18

Page 17: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

IntroductionExamples

Conclusions

FDFD = FD in space of Maxwell’s equations in phasor formUseful for:

∙ Simulations of dispersive media∙ Eigenmode analysis∙ Simulations of resonators with high 𝑄

Sparsity: Both matrix and literature on FDFD

Steady-state simulation: Everything matters, everywhere!

H.-D. Lang FDFD 17/18

Page 18: FDFD - The Finite-Difference Frequency-Domain Method · A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave

IntroductionEigenmode Analysis

IntroductionExamples

References

[1] Umran S. Inan, Robert A. MarshallNumerical Electromagnetics – The FDTD MethodCambridge University Press 2011

[2] C. M. Rappaport, B. J. McCartinFDFD Analysis of Electromagnetic Scattering in Anisotropic Media Using Unconstrained Triangular MeshesIEEE Transactions on Antennas and Propagation, Vol. 39, No. 3, March 1991

[3] C. M. RappaportPerfectly Matched Absorbing Boundary Conditions Based on Anisotropic Lossy Mapping of SpaceIEEE Microwave and Guided Wave Letters, Vol. 5, No. 3, March 1995

[4] M.-L. Lui, Z. ChengA direct computation of propagation constant using compact 2-D full-wave eigen-based finite-difference frequency-domaintechniqueProceedings of the 1999 International Conference on Computational Electromagnetics and Its Applications (ICCEA ’99), p.78-81, 1999

[5] Y.-J. Zhao, K.-L. Wu, K.-K. M. ChengA Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave StructuresIEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, July 2002

[6] L.-Y. Li, J.-F. MaoAn Improved Compact 2-D Finite-Difference Frequency-Domain Method for Guided Wave structuresIEEE Microwave and Wireless Components Letters, Vol. 13, No. 12, December 2003

[7] Raymond C. RumpfDesign and Optimization of Nano-Optical Elements by Coupling Fabrication to Optical BehaviorPhD Thesis, University of Central Florida, Orlando Florida, 2006

[8] Aliaksandra IvinskayaFinite-Difference Frequency-Domain Method in NanophotonicsPhD Thesis, Department of Photonics Engineering, Technical University of Denmark, Lyngby, 2011

H.-D. Lang FDFD 18/18