Fawad S. Niazi Geosystems Engineering Division Civil & Environmental Engineering Georgia Institute...

26
Fawad S. Niazi Geosystems Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010 Spatial Variability of CPT Data and Soil Parameters at NGES, Texas A&M www.clu-in.org Niazi et al. 2010 0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 Tip q t (M Pa) Depth (m ) 0.0 0.1 0.2 0.3 Sleeve f s (M Pa)

description

Spatial Variability of CPT Data and Soil Parameters at NGES, Texas A&M. Fawad S. Niazi Geosystems Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010. www.clu-in.org. Niazi et al. 2010. Scope of Study. - PowerPoint PPT Presentation

Transcript of Fawad S. Niazi Geosystems Engineering Division Civil & Environmental Engineering Georgia Institute...

Page 1: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Fawad S. Niazi

Geosystems Engineering DivisionCivil & Environmental Engineering

Georgia Institute of TechnologyApril 27, 2010

Spatial Variability of CPT Data and Soil Parameters at NGES, Texas A&M

www.clu-in.org Niazi et al. 2010

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Tip qt (MPa)

Dep

th (m

)

0.0 0.1 0.2 0.3

Sleeve fs (MPa)

Page 2: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

2

• Spatial variability of CPT readings for horizontal & vertical variability in soil profiles (all soundings, each 10 cm depth): Mean, min, max Moment statistics (variance, skewness, kurtosis) Residuals of principal comp. analysis of CPT readings (space and

depth) Test of normality (χ2 test)

• Comparison of measured and evaluated soil unit weight, gt

LS regression, correlation coefficient LS, principal component and reduced major axis regression Higher order regression and residuals analysis

Scope of Study

Page 3: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

3

qc

u2fs

Vs

• Site characterization:

Conventional boring/sampling methods

Lab investigations on disturbed samples

• Cone penetration test:

Fast, economical, and continuous data

up to 4 separate readings in one sounding

Soil parameter interpretation

Ic, gt, OCR, p', Ko, su, ', DR, Gmaxqc, fs, u2, Vs

Cone Penetration Test – a Hybrid Method

Page 4: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Tip qt (MPa)

Dep

th (m

)

0.0 0.1 0.2 0.3

Sleeve fs (MPa)0 1 2 3 4

Porewater u2 (MPa)0 100 200 300 400 500

Shear Wave Vs (m/s)

qt

fs

u2

VS

Typical Cone Penetration Sounding

4

Page 5: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

National Geotechnical Experimentation SiteRiverside Campus, Texas A&M University

GeotechnicalExperimentation Site

College StationTexas A&M University

Page 6: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Location of Clay and Sand Sites onRiverside Campus, Texas A&M University

Clay Site

Sand Site

Page 7: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Field Investigations at NGES Clay Site, Texas A&M University

1997• Twelve MCPT• Six CPT• Three SCPT

Testing Program1977 to 1995• Nine CPT1995 to 1996• Three CPTu

CPT: 10 cm2 Cone Penetration TestCPTu: Piezocone Penetration TestMCPT: 2 cm2 Mini Cone Penetration TestSCPT: 15 cm2 Seismic Piezocone Penetration TestBH: Borehole

15 mClay Control

27

26 12252423

33212919

2817161514

613

18

3031

22

32

20

N

15

7 2

15

1611

10

34

8

9

CPTCPTuMCPTSCPTBH

Legend

Page 8: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Horizontal Variability of Tip Resistance Profiles

0 3 6 9 12 15 18-18

-15

-12

-9

-6

-3

0

Tip Resistance, qc (MPa)

Dep

th (m

)

Mean+1 S.D.-1 S.D.

-1 0 1 2 3 4 5Skewness

0 3 6 9 1215 18Kurtosis

0 20 40 60 80 100Chi2 Value

Critical χ2 Value = 11.08

Page 9: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Spatial Variability Trend of Tip Resistance Profilesfor 33 CPT Soundings

02468

10121416

Tip

Res

ista

nce,

qc (M

Pa) Spatial Variability Trend of Tip Resistance w.r.t Distance from Clay Control

Mean+1 S.D.-1 S.D.

012345

Skew

ness

0369

1215

Kur

tosi

s

20 30 40 50 60 700

100200300400

Chi

2 Val

ue

Distance from Clay Control (m)

Critical χ2 Value = 11.08

Page 10: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Horizontal Variability of Sleeve Friction Profiles

0 0.2 0.4 0.6 0.8 1-18

-15

-12

-9

-6

-3

0

Sleeve Friction, fs (MPa)

Dep

th (m

)

Mean+1 S.D.-1 S.D.

-1 0 1 2 3 4 5Skewness

0 3 6 9 12 15 18Kurtosis

0 20 40 60 80100Chi2 Values

Critical χ2 Value = 11.08

Page 11: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

00.10.20.30.40.50.60.70.8

Slee

ve F

rictio

n, f s (M

Pa) Spatial Variability Trend of Sleeve Friction w.r.t Distance from Clay Control

Mean+1 S.D.-1 S.D.

00.5

11.5

22.5

Skew

ness

0369

1215

Kur

tosi

s

20 30 40 50 60 700

60120180240300

Chi

2 Val

ue

Distance from Clay Control (m)

Critical χ2 Value = 11.08

Spatial Variability Trend of Sleeve Friction Profilesfor 33 CPT Soundings

Page 12: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Residuals of Principal Comp. Analysis of qt at 0.16 m

-1 0 1 2 3 4 5Skewness

0 3 6 9 1215 18Kurtosis

0 20 40 60 80 100Chi2 Value

0 3 6 9 12 15 18-18

-15

-12

-9

-6

-3

0

Tip Resistance, qc (MPa)

Dep

th (m

)

Mean+1 S.D.-1 S.D. Critical χ2 Value = 11.08

-5 0 50

1

2

3

4

5

6

7

8

Synthetic

Freq

uenc

y

Hist. of Res. 0.16 m Depth

-5 0 50

1

2

3

4

5

6

7

8

Actual

Hist. of Res. 0.16 m Depth

20 30 40 50 60 70-5

-4

-3

-2

-1

0

1

2

3Res. of PC Analysis Horiz. Var. at 0.16 m depth

Distance from clay control (meters)

Reg.

Res

idua

ls o

f Tip

Res

ista

nce

Page 13: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Residuals of Principal Comp. Analysis of qt at 10.56 m

-1 0 1 2 3 4 5Skewness

0 3 6 9 1215 18Kurtosis

0 20 40 60 80 100Chi2 Value

0 3 6 9 12 15 18-18

-15

-12

-9

-6

-3

0

Tip Resistance, qc (MPa)

Dep

th (m

)

Mean+1 S.D.-1 S.D. Critical χ2 Value = 11.08

20 30 40 50 60 70-1.5

-1

-0.5

0

0.5

1

1.5Res. of PC Analysis Horiz. Var. at 10.56 m depth

Distance from clay control (meters)

Reg

ress

ion

Res

idua

ls o

f Tip

Res

ista

nce

-2 0 20

1

2

3

4

5

Synthetic

Freq

uenc

y

Hist. of Res. 10.56 m Depth

-2 0 20

1

2

3

4

5

6

7

Actual

Hist. of Res. 10.56 m Depth

Page 14: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Residuals of Principal Comp. Analysis ofTip Resistance at CPT4

0 2 4 6 8 10 12 14-35

-30

-25

-20

-15

-10

-5

0

5

10Res. of PC Analysis: Vert. Var. of Tip Resis. CPT4

Depth (meters)

Reg

ress

ion

Res

idua

ls o

f Tip

Res

ista

nce

012345

Skew

ness

0369

1215

Kur

tosi

s

20 30 40 50 60 700

100200300400

Chi

2 Val

ue

Distance from Clay Control (m)

Critical χ2 Value = 11.08

-40 -20 0 200

5

10

15

20

25

30

35

40

Synthetic

Freq

uenc

yHist. of Res. at CPT4

-40 -20 0 200

20

40

60

80

100

120

Actual

Hist. of Res. at CPT4

Page 15: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Residuals of Principal Comp. Analysis ofTip Resistance at MCPT13

-4 -2 0 20

5

10

15

20

25

Synthetic

Freq

uenc

yHist. of Res. at MCPT13

-4 -2 0 20

5

10

15

20

25

30

Actual

Hist. of Res. at MCPT13

0 2 4 6 8-4

-3

-2

-1

0

1

2Res. of PC Analysis: Vert. Var. of Tip Resis. MCPT13

Depth (meters)

Reg

ress

ion

Res

idua

ls o

f Tip

Res

ista

nce

012345

Skew

ness

0369

1215

Kur

tosi

s

20 30 40 50 60 700

100200300400

Chi

2 Val

ue

Distance from Clay Control (m)

Critical χ2 Value = 11.08

Page 16: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Results of Horizontal Variability Study0 – 1.1 m

4.9 – 8.7 m

10.5 – 13.6 m

0 0.2 0.4 0.6 0.8 1-18

-15

-12

-9

-6

-3

0

Sleeve Friction, fs (MPa)

Dep

th (m

)

Mean+1 S.D.-1 S.D.

0 3 6 9 12 15 18-18

-15

-12

-9

-6

-3

0

Tip Resistance, qc (MPa)

Dep

th (m

)

Mean+1 S.D.-1 S.D.

Page 17: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

1997• Twelve MCPT• Six CPT• Three SCPT

Testing Program1977 to 1995• Nine CPT1995 to 1996• Three CPTu

CPT: 10 cm2 Cone Penetration TestCPTu: Piezocone Penetration TestMCPT: 2 cm2 Mini Cone Penetration TestSCPT: 15 cm2 Seismic Piezocone Penetration TestBH: Borehole

15 mClay Control

27

26 12252423

33212919

2817161514

613

18

3031

22

32

20

N

15

7 2

15

1611

10

34

8

9

CPTCPTuMCPTSCPTBH

Legend

A

A’

Results of Vertical Variability Study

Page 18: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

18

• gt = Total unit weight (kN/m3)

• gw = Unit weight of water (kN/m3)

• qt = Cone tip resistance (kPa)

• fs = Sleeve friction (kPa)

• z = Depth (m)

• vo’ = Effective vertical overburden stress (kPa)

• atm = Atmospheric pressure (kPa)

Correlations: CPT Readings and Soil Unit Weight, gt

18 18.5 19 19.5 20 20.517.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5g

t = 1.95 g

w (

vo I/

atm)0.06 (f

s/

atm)0.06

y = 0.7522x + 4.7613

r = 0.8504

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

18 18.5 19 19.5 20 20.517.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5g

t (kN/m3) = 11.46 + 0.33 log(z) + 3.10 log(f

s) + 0.70 log(q

t)

y = 1.0880x - 0.9792

r = 0.8165

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

Mayne et al. 2010

Page 19: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Measured and Evaluated Soil Unit Weight Profiles

10 15 20 25 30

gt (kN/m3) = 11.46 + 0.33 log(z) + 3.10 log(fs) + 0.70 log(qt)

Total Unit Weight, gt (kN/m3)

MeasuredEvaluated MeanEvaluated MinimumEvaluated Maximum

10 15 20 25 30-18

-16

-14

-12

-10

-8

-6

-4

-2

0

gt = 1.95 gw (vo I/atm)0.06 (fs/atm)0.06

Total Unit Weight, gt (kN/m3)

Dep

th (m

)

MeasuredEvaluated MeanEvaluated MinimumEvaluated Maximum

Page 20: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

17 18 19 20 21 22 2312

14

16

18

20

22

24

26

gt = 1.95 g

w (

vo I/

atm)0.06 (f

s/

atm)0.06

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

17 18 19 20 21 22 2312

14

16

18

20

22

24

26

gt (kN/m3) = 11.46 + 0.33 log(z) + 3.10 log(f

s) + 0.70 log(q

t)

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

Least Square Regression, Correlation Coefficient,

95% Confidence Bounds

r = -0.2999 r = -0.2508

Page 21: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

1997• Twelve MCPT• Six CPT• Three SCPT

Testing Program1977 to 1995• Nine CPT1995 to 1996• Three CPTu

CPT: 10 cm2 Cone Penetration TestCPTu: Piezocone Penetration TestMCPT: 2 cm2 Mini Cone Penetration TestSCPT: 15 cm2 Seismic Piezocone Penetration TestBH: Borehole

15 mClay Control

27

26 12252423

33212919

2817161514

613

18

3031

22

32

20

N

15

7 2

15

1611

10

34

8

9

CPTCPTuMCPTSCPTBH

Legend

Results of Vertical Variability Study

Page 22: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

18 18.5 19 19.5 20 20.517.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5g

t (kN/m3) = 11.46 + 0.33 log(z) + 3.10 log(fs) + 0.70 log(qt)

y = 1.0880x - 0.9792

r = 0.8165

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

18 18.5 19 19.5 20 20.517.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5g

t = 1.95 g

w (

vo I/

atm)0.06 (f

s/

atm)0.06

y = 0.7522x + 4.7613

r = 0.8504

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

Least Square Regression, Correlation Coefficient,

95% Confidence Bounds

p = 0.0001 p = 0.0002

Page 23: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

18 18.5 19 19.5 20 20.5 2118

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

gt = 1.95 g

w (

vo I/

atm)0.06 (f

s/

atm)0.06

Raw DataPrincipal Component RegressionLeast Square RegressionReduced Major Axis Regression

18 18.5 19 19.5 20 20.5 2118

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

gt (kN/m3) = 11.46 + 0.33 log(z) + 3.10 log(f

s) + 0.70 log(q

t)

Raw DataPrincipal Component RegressionLeast Square RegressionReduced Major Axis Regression

Least Squares, Principal ComponentAnd Reduced Major Axis Regression

Analyses

Page 24: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

18 18.5 19 19.5 20 20.518

19

20

21

22

23

y = 0.2x3 - 11.4x2 + 209.1x - 1256.1

Measured gt (kN/m3)

Eval

uate

d g t (k

N/m

3 )

gt = 1.95 g

w (

vo I/

atm)0.06 (f

s/

atm)0.06

Raw Data3rd Order LS Regression95% Confidence Bounds

18 18.5 19 19.5 20 20.5-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Total Unit Weight, gt (kN/m3)

Res

idua

ls

Residuals of 3rd Order Regression

18 18.5 19 19.5 20 20.518

19

20

21

22

23

y = 0.7x3 - 40.8x2 + 765.3x - 4761.8

Measured gt (kN/m3)

Eval

uate

d g t (k

N/m

3 )

gt (kN/m3) = 11.46 + 0.33 log(z) + 3.10 log(f

s) + 0.70 log(q

t)

Raw Data3rd Order LS Regression95% Confidence Bounds

18 18.5 19 19.5 20 20.5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Total Unit Weight, gt (kN/m3)

Res

idua

ls

Residuals of 3rd Order Regression

Higher Order Regression Analysis

Page 25: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

25

•Horizontal and vertical variability of CPT readings for better site characterization

•CPT-based relationship for evaluating soil unit weight

Conclusions

18 18.5 19 19.5 20 20.517.5

18

18.5

19

19.5

20

20.5

21

21.5

22

22.5g

t = 1.95 g

w (

vo I/

atm)0.06 (f

s/

atm)0.06

y = 0.7522x + 4.7613

r = 0.8504

Measured Unit Weight (kN/m3)

Eval

uate

d U

nit W

eigh

t (kN

/m3 )

Raw DataFitted LS95% Confidence Bounds

Mayne et al. 2010

Page 26: Fawad S. Niazi Geosystems  Engineering Division Civil & Environmental Engineering Georgia Institute of Technology April 27, 2010

Fawad S. Niazi

Geosystems Engineering DivisionCivil & Environmental Engineering

Georgia Institute of TechnologyApril 27, 2010

Spatial Variability of CPT Data and Soil Parameters at NGES, Texas A&M

www.clu-in.org Niazi et al. 2010

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Tip qt (MPa)

Dep

th (m

)

0.0 0.1 0.2 0.3

Sleeve fs (MPa)