Fault Calculation Steps

download Fault Calculation Steps

of 100

Transcript of Fault Calculation Steps

  • 7/30/2019 Fault Calculation Steps

    1/100

    Fault CalculationsandSelection ofProtective Equipment

    Wednesday, March 22, 2006

    8:00AM 3:00PM

    Seminole Electric Cooperative, Inc.

    16313 North Dale Mabry Hwy.

    Tampa, Florida

    Ralph Fehr, Ph.D., P.E.University of South Florida TampaSenior Member, [email protected]

  • 7/30/2019 Fault Calculation Steps

    2/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 2

    Symmetrical Components

  • 7/30/2019 Fault Calculation Steps

    3/100

    Most power systems are designed as

    balanced systems.

    Due to the symmetry of the problem, a

    single-phase equivalent approach can be

    taken to simplify the calculation process.

    When the voltage and current behavior is

    calculated for one of the phases, the

    behaviors on the other two can be

    determined using principles of symmetry.

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 3

  • 7/30/2019 Fault Calculation Steps

    4/100

    But when the system phasors are not balanced,the single-phase equivalent approach cannot

    be taken.

    This means that either

    1. a three-phase solution must be found,

    or

    2. the unbalanced phasors must be resolved

    into balanced components so the single-phase

    equivalent method can be used.

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 4

  • 7/30/2019 Fault Calculation Steps

    5/100

    Charles Fortescues Theory of Symmetrical

    Components, first published in 1918, proves

    that any set of unbalanced voltage or current

    phasors belonging to a three-phase system canbe resolved into three sets of components,

    each of which is balanced.

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 5

  • 7/30/2019 Fault Calculation Steps

    6/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 6

    A

    ICI

    BI

  • 7/30/2019 Fault Calculation Steps

    7/100

    Physical Example ofVector Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 7

  • 7/30/2019 Fault Calculation Steps

    8/100

    F

    d

    M = F d

    Calculation of Moment

    Moment = Force Perpendicular Distance

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 8

  • 7/30/2019 Fault Calculation Steps

    9/100

    Calculation of Moment

    d

    F

    M F d

    Moment = Force Perpendicular Distance

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 9

  • 7/30/2019 Fault Calculation Steps

    10/100

    Calculation of Moment

    M = FV d

    Moment = Force Perpendicular Distance

    d

    VF F

    HF

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 10

  • 7/30/2019 Fault Calculation Steps

    11/100

    Calculation of Moment

    d

    VF F

    HF

    FV = F cos

    FH = F sin

    FH + FV = F

    =

    V

    H1

    F

    Ftan

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 11

  • 7/30/2019 Fault Calculation Steps

    12/100

    Application of SymmetricalComponents to a Three-PhasePower System

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 12

  • 7/30/2019 Fault Calculation Steps

    13/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 13

    AICI

    BI

  • 7/30/2019 Fault Calculation Steps

    14/100

    A-B-C Sequencing

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 14

    I B

    I CAI

  • 7/30/2019 Fault Calculation Steps

    15/100

    A-C-B Sequencing

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 15

    II

    B

    CI

    A

  • 7/30/2019 Fault Calculation Steps

    16/100

    Fortescues theory shows that three sets of

    balanced components are required to represent

    any unbalanced set of three-phase phasors.

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 16

  • 7/30/2019 Fault Calculation Steps

    17/100

    Positive Sequence Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 17

    I A1

    C1I

    B1I

  • 7/30/2019 Fault Calculation Steps

    18/100

    Negative Sequence Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 18

    A2IB2I

    C2I

  • 7/30/2019 Fault Calculation Steps

    19/100

    Zero Sequence Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 19

    A0IB0I

    C0I

  • 7/30/2019 Fault Calculation Steps

    20/100

    The constraint equations for the symmetrical

    components require the sum of the three

    components for each unbalanced phasor toequal the unbalanced phasor itself.

    IA = IA0 + IA1 + IA2

    IB = IB0 + IB1 + IB2

    IC = IC0 + IC1 + IC2

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 20

  • 7/30/2019 Fault Calculation Steps

    21/100

    The a operator

    a 23

    21 j+ = 1 /120

    a2 = 1 /240 a3 = 1 /360

    j2 = 1 /180 = 1 j3 = 1 /270 = j j4 = 1 /360 = 1

    Recall the j operator

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 21

  • 7/30/2019 Fault Calculation Steps

    22/100

    Using the a operator and the symmetry of the

    sequence components, we can develop asingle-phase equivalent circuit to greatly

    simplify the analysis of the unbalanced system.

    We will start by expressing the sequencecomponents in terms of a single phases

    components. We will use Phase A as the phase

    for developing the single-phase equivalent.

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 22

  • 7/30/2019 Fault Calculation Steps

    23/100

    Positive Sequence Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 23

    B1I

    A1I

    I C1

    1= I

    = a I1

    = a I 12

  • 7/30/2019 Fault Calculation Steps

    24/100

    Negative Sequence Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 24

    I A2 = I 2I B2 = a I2

    2C2 = a II 2

  • 7/30/2019 Fault Calculation Steps

    25/100

    Zero Sequence Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 25

    A0I = I 0= IB0I 0

    = II C0 0

  • 7/30/2019 Fault Calculation Steps

    26/100

    Recall the original constraint equations:

    IA = IA0 + IA1 + IA2

    IB = IB0 + IB1 + IB2

    IC = IC0 + IC1 + IC2

    Rewrite them using the a operator

    to take advantage of the symmetry:

    IA = I0 + I1 + I2

    IB = I0 + a2 I1 + a I2

    IC = I0 + a I1 + a2 I2

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 26

  • 7/30/2019 Fault Calculation Steps

    27/100

    Unbalanced Phasors and their Symmetrical Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 27

    I A

    I 1

    I 2

    0I

    CI

    a I1

    2a I 2

    I 0

    BI0I

    2a I1a I

    2

  • 7/30/2019 Fault Calculation Steps

    28/100

    =

    2

    1

    0

    2

    2

    C

    B

    A

    I

    II

    aa1

    aa1111

    I

    II

    =

    2

    1

    0

    2

    2

    1

    2

    2

    C

    B

    A

    1

    2

    2

    I

    I

    I

    aa1

    aa1

    111

    aa1

    aa1

    111

    I

    I

    I

    aa1

    aa1

    111

    =

    C

    B

    A

    1

    2

    2

    2

    1

    0

    I

    I

    I

    aa1

    aa1

    111

    I

    I

    I

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 28

  • 7/30/2019 Fault Calculation Steps

    29/100

    =

    C

    B

    A

    1

    2

    2

    2

    1

    0

    I

    I

    I

    aa1

    aa1

    111

    I

    I

    I

    =

    C

    B

    A

    2

    2

    2

    1

    0

    I

    I

    I

    aa1

    aa1

    111

    3

    1

    I

    I

    I

    ( )CBA0 III3

    1I ++=

    ( )C2BA1 IaIaI31I ++=

    ( )CB2A2 IaIaI3

    1I ++=

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 29

  • 7/30/2019 Fault Calculation Steps

    30/100

    ( )CBA0 III3

    1I ++=

    ( )C2

    BA1 IaIaI3

    1

    I ++=

    ( )CB2A2 IaIaI3

    1I ++=

    Summary of Symmetrical Components

    Transformation Equations

    IA = I0 + I1 + I2

    IB = I0 + a2 I1 + a I2

    IC = I0 + a I1 + a2 I2

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 30

  • 7/30/2019 Fault Calculation Steps

    31/100

    Workshop #1Symmetrical Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 31

    Ia = 0.95 /328

    Ib = 1.03 /236

    Ic = 0.98 /92

    Find I0, I1, and I2

    I0 = 0.7 /300

    I1 = 1.2 /10

    I2 = 0.3 /167

    Find Ia, Ib, and Ic

  • 7/30/2019 Fault Calculation Steps

    32/100

    Workshop #1Symmetrical Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 32

    Ia = 0.95 /328

    Ib = 1.03 /236

    Ic = 0.98 /92

    Find I0, I1, and I2

    I0 = 0.1418 /297

    I1 = 0.9634 /339

    I2 = 0.1622 /191

    Ia

    cI

    bI

    I1I2

    I0

    a I1

    a I22 I0

    1a I2

    2a II0

  • 7/30/2019 Fault Calculation Steps

    33/100

    Workshop #1Symmetrical Components

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 33

    I0 = 0.7 /300I1 = 1.2 /10

    I2 = 0.3 /167

    Find Ia, Ib, and Ic

    I1

    2

    0

    I

    I

    Ia

    Ic

    a I1

    2a I2

    I0

    I0

    1a I2

    2a I

    Ia = 1.2827 /345

    Ib = 2.0209 /271

    Ic = 0.5749 /112

  • 7/30/2019 Fault Calculation Steps

    34/100

    Electrical Characteristics ofthe Sequence Currents

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 34

  • 7/30/2019 Fault Calculation Steps

    35/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 35

    O

    y DA

    x

    I

    L

  • 7/30/2019 Fault Calculation Steps

    36/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 36

    I

    t

  • 7/30/2019 Fault Calculation Steps

    37/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 37

    Bottom Wire

    Top WireMiddle Wire

    t = T

    I

    t

  • 7/30/2019 Fault Calculation Steps

    38/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 38

    O

    I0

    D

    A

    LI0

    0I

  • 7/30/2019 Fault Calculation Steps

    39/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 39

    3 I

    0I

    0

    0I

    I0

    O

    DA

    L

  • 7/30/2019 Fault Calculation Steps

    40/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 40

    O3 I

    0I D

    0 A

    LI0

    0I

    VN = (3 I0) ZN

    VN = I0 (3 Z(3 ZNN))

  • 7/30/2019 Fault Calculation Steps

    41/100

    The Delta-Wye Transformer

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 41

  • 7/30/2019 Fault Calculation Steps

    42/100

    Ic

    Ia

    Ib

    IA

    IC

    IB

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 42

    Assume Ia = 1 /0o, Ib = 1 /240

    o, and Ic = 1/120o.

    Ic

    Ia

    Ib

    Ic

    Ia

    Ib

    IB = Ib Ic = 1 /240o 1 /120o = /270o3

    IC = Ic Ia = 1 /120o 1 /0o = /150o3

    The Delta-Wye Transformer

    IA

    IB

    IC

    Ia

    Ib

    IcIA = Ia Ib = 1 /0

    o 1 /240o = /30o3

  • 7/30/2019 Fault Calculation Steps

    43/100

    Workshop #2Non-Standard Delta-Wye Transformer

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 43

    Given that Ia = 1/0o, Ib = 1/240

    o, and Ic = 1/120o, find IA, IB, and IC.

    Ib

    aI

    cI

    BI

    AI

    CI

  • 7/30/2019 Fault Calculation Steps

    44/100

    IC aI

    IA

    IB

    cI

    bI

    Ib

    cII acI

    bII a

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 44

    Workshop #2Non-Standard Delta-Wye Transformer

    Ia = 1/0o

    Ib = 1/240o

    Ic = 1/120o

    IA = Ia Ic = 1/0o 1/120o

    = /330o3

    IB = Ib Ia = 1/240o 1/0o

    = /210o3

    IC = Ic Ib = 1/120o 1/240o

    = /90o3Ia

    Ib

    Ic

    IA

    IC

    IB

  • 7/30/2019 Fault Calculation Steps

    45/100

    Sequence Networks

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 45

  • 7/30/2019 Fault Calculation Steps

    46/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 46

    T1 T2

    T3

    M1 M2

    M3

    GUtilityXn

    1

    2

    One-Line Diagram

    Positive Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    47/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 47

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    Utility M1 M2 M3G

    Positive-Sequence Reference Bus

    Positive-Sequence Reactance Diagram

    Positive-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    48/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 48

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    Positive-Sequence Reactance Diagram

    M3M1

    1

    T1 M2 T2

    Utility G

    Positive-Sequence Reference Bus

    Positive-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    49/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 49

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    Positive-Sequence Reactance Diagram

    2

    T3 M3

    Positive-Sequence Reference Bus

    1

    T1 M2M1 T2

    Utility G

    Negative-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    50/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 50

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    Negative Sequence Reactance Diagram

    2

    T3 M3

    Positive-Sequence Reference Bus

    1

    T1 M2M1 T2

    Utility G

    Negative

    Negative-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    51/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 51

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    Negative Sequence Reactance Diagram

    2

    T3 M3

    1

    T1 M2M1 T2

    Utility G

    Negative-Sequence Reference Bus

    Zero-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    52/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 52

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    Zero Sequence Reactance Diagram

    2

    T3 M3

    1

    T1 M2M1 T2

    Utility G

    Negative-Sequence Reference BusZero

    +3Xn

    Adjust Topology

    Zero-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    53/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 53

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    q g

    M3

    2

    1

    T3

    Zero-Sequence Reference Bus

    M1T1

    Utility

    M2 T2

    GXn

    + 3 Xn

    Zero-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    54/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 54

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    q g

    M3

    2

    1

    T3

    Zero-Sequence Reference Bus

    M1T1

    Utility

    M2 T2

    GXn

    + 3 Xn

    Connection AlterationConnection Alteration

    Gr.Gr. WyeWye NoneNone

    WyeWye OpenOpen CktCkt..

    Delta OpenDelta Open CktCkt. AND. AND

    Short to Ref. BusShort to Ref. Bus

    Zero-Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    55/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 55

    T1 T2

    T3

    M1 M2

    M3

    GUtility Xn

    1

    2

    q g

    + 3 Xn

    2

    T3

    1

    T1 M1 M2 T2

    M3

    Zero-Sequence Reference Bus

    UtilityG

    Xn

  • 7/30/2019 Fault Calculation Steps

    56/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 56

    Workshop #3Sequence Networks

    Draw the positive-,

    negative-, and

    zero-sequence

    networks for the

    one-line diagram

    on the left.

    T2

    G

    Xn

    M2

    Xn

    1

    M1

    2

    T3

    Utility

    T1

  • 7/30/2019 Fault Calculation Steps

    57/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 57

    Workshop #3Sequence Networks

    Positive-Sequence Reference Bus

    2

    T1

    1

    T3

    M1 T2

    Utility G

    M2

  • 7/30/2019 Fault Calculation Steps

    58/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 58

    Workshop #3Sequence Networks

    T3 M2

    2

    Utility

    T1

    1

    M1 T2

    Negative-Sequence Reference Bus

    G

  • 7/30/2019 Fault Calculation Steps

    59/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 59

    Workshop #3Sequence Networks

    Zero-Sequence Reference Bus

    1

    T1

    Utility

    2

    T3

    M1 T2

    M2

    G

    +3Xn

    Xn+3Xn

  • 7/30/2019 Fault Calculation Steps

    60/100

    Thevenin Reduction ofSequence Networks

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 60

    P iti S R t Di

  • 7/30/2019 Fault Calculation Steps

    61/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 61

    Positive-Sequence Reactance Diagram

    Bus 1 Thevenin

    Equivalent

    Bus 2 Thevenin

    Equivalent

    [(T1+Utility) M1 M2 (T2+G)] (T3+M3)

    M3 {T3+ [(T1+Utility) M1 M2 (T2+G)]}2

    T3 M3

    Positive-Sequence Reference Bus

    1

    T1 M2M1 T2

    Utility G

  • 7/30/2019 Fault Calculation Steps

    62/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 62

    Positive-Sequence Reactance Diagram

    Thevenin

    Equivalent

    X1

    +

    Pre-faultVoltage

    FaultLocation

    N ti S R t Di

  • 7/30/2019 Fault Calculation Steps

    63/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 63

    Negative-Sequence Reactance Diagram

    Bus 1 Thevenin

    Equivalent

    Bus 2 Thevenin

    Equivalent

    [(T1+Utility) M1 M2 (T2+G)] (T3+M3)

    M3 {T3+ [(T1+Utility) M1 M2 (T2+G)]}2

    T3 M3

    1

    T1 M2M1 T2

    Utility G

    Negative-Sequence Reference Bus

  • 7/30/2019 Fault Calculation Steps

    64/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 64

    Negative-Sequence Reactance Diagram

    Thevenin

    Equivalent

    Location

    X2

    Fault

    _

    Zero Sequence Reactance Diagram

  • 7/30/2019 Fault Calculation Steps

    65/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 65

    Zero-Sequence Reactance Diagram

    + 3 Xn

    2

    T3

    1

    T1 M1 M2 T2

    M3

    Zero-Sequence Reference Bus

    UtilityG

    Xn

    Bus 1 Thevenin

    Equivalent

    Bus 2 Thevenin

    Equivalent

    T1

    T3 + T1

  • 7/30/2019 Fault Calculation Steps

    66/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 66

    Zero-Sequence Reactance Diagram

    Thevenin

    Equivalent

    X0

    FaultLocation

    0

  • 7/30/2019 Fault Calculation Steps

    67/100

    Types of Fault Calculations

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 67

  • 7/30/2019 Fault Calculation Steps

    68/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 68

    First-Cycle or Momentary

    First-cycle fault calculations are done to determine

    the withstand strength requirement of the systemcomponents at the location of the fault.

    It is the maximum amplitude of the fault current

    ever expected (worst case).

    It requires use of the subtransient reactances of

    rotating machines, and includes induction motors.

  • 7/30/2019 Fault Calculation Steps

    69/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 69

    Contact-Parting or Clearing

    Contact-parting fault calculations are done to

    determine the interrupting rating of the protectivedevices at the location of the fault.

    It is a reduced amplitude of the fault current

    anticipated at clearing time (worst case).

    It requires use of the transient reactances of

    rotating machines, and excludes induction motors.

  • 7/30/2019 Fault Calculation Steps

    70/100

    Short-Circuit FaultCalculations

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 70

  • 7/30/2019 Fault Calculation Steps

    71/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 71

    Three-Phase Fault

  • 7/30/2019 Fault Calculation Steps

    72/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 72

    Line-to-Ground Fault

  • 7/30/2019 Fault Calculation Steps

    73/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 73

    Double Line-to-Ground Fault

  • 7/30/2019 Fault Calculation Steps

    74/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 74

    Line-to-Line Fault

  • 7/30/2019 Fault Calculation Steps

    75/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 75

    Workshop #4Short-Circuit Fault Calculations

    The Thevenin-equivalent sequence reactances at agiven bus are:

    X1 = 0.032 p.u.

    X2 = 0.029 p.u.

    X0 = 0.024 p.u.

    Find the fault currents at that bus for a (1) three-phase,

    (2) line-to-ground, (3) double line-to-ground, and (4) line-

    to-line fault.

    The base current is 1.5 kA.

  • 7/30/2019 Fault Calculation Steps

    76/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 76

    Workshop #4Short-Circuit Fault Calculations

    Three-Phase Fault

    IA = 31.25 /-90o p.u. = 46.9 /-90o kA

    IB = 31.25 /150o p.u. = 46.9 /150o kA

    IC = 31.25 /30o p.u. = 46.9 /30o kA

  • 7/30/2019 Fault Calculation Steps

    77/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 77

    Workshop #4Short-Circuit Fault Calculations

    Line-to-Ground Fault

    IA = 35.29 /-90o p.u. = 52.9 /-90o kA

    IB = 0

    IC = 0

  • 7/30/2019 Fault Calculation Steps

    78/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 78

    Workshop #4Short-Circuit Fault Calculations

    Double Line-to-Ground Fault

    I0 = 12.124 /90o p.u.

    I1 = 22.157 /-90o p.u.

    I2 = 10.033 /90o p.u.

    IA = 0

    IB = 33.29 /147o p.u. = 49.9 /147o kA

    IC = 33.29 /33o p.u. = 49.9 /33o kA

  • 7/30/2019 Fault Calculation Steps

    79/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 79

    Workshop #4Short-Circuit Fault Calculations

    Line-to-Line Fault

    I0 = 0

    I1 = 16.39 /-90o p.u.

    I2 = 16.39 /90o p.u.

    IA = 0

    IB = 28.4 /180o p.u. = 42.6 /180o kA

    IC = 28.4 /0o p.u. = 42.6 /0o kA

  • 7/30/2019 Fault Calculation Steps

    80/100

    Open-Circuit FaultCalculations

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 80

  • 7/30/2019 Fault Calculation Steps

    81/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 81

    One-Line-Open Fault

  • 7/30/2019 Fault Calculation Steps

    82/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 82

    Two-Lines-Open Fault

  • 7/30/2019 Fault Calculation Steps

    83/100

    X/R Ratio at Fault Location

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 83

    The X/R ratio at the point of the fault

  • 7/30/2019 Fault Calculation Steps

    84/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 84

    p

    determines the rate of fault current decay.

    The larger the X/R ratio, the more slowly the

    fault current decays.

    Small X/R Large X/R

  • 7/30/2019 Fault Calculation Steps

    85/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 85

    Determination of the X/R ratio requires the

    construction of a positive sequence

    resistance network.

    The X (positive-sequence reactance) and R

    must be determined separately at the fault

    location. Then the resistance is divided into

    the reactance to give the X/R ratio.

    A SINGLE IMPEDANCE DIAGRAM

    COMBINING R AND X CANNOT BE USED! Itwill undercalculate the actual X/R ratio.

  • 7/30/2019 Fault Calculation Steps

    86/100

    Selection of ProtectiveEquipment

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 86

  • 7/30/2019 Fault Calculation Steps

    87/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 87

    Protective devices are always sized for the

    highest possible fault current at the location

    where the device will be installed this is NOT

    always a three-phase fault!!

    RMS symmetrical fault current is used to

    determine all protective device ratings.

    With the exception of power circuit breakers,

    protective devices are sized based on a

    multiplying factor to account for X/R ratios that

    exceed the manufacturers assumptions.

    P Ci it B k

  • 7/30/2019 Fault Calculation Steps

    88/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 88

    Power Circuit Breakers

    Power circuit breakers are specified by a Close-and-

    Latch rating.

    RMS Close-and-Latch rating =

    1.6 RMS symmetrical fault current

    Crest Close-and-Latch rating =

    2.7 RMS symmetrical fault current

    Example: If the maximum fault current is 23.5 kA23.5 kA,the required RMS close-and-latch rating

    is 1.6 23.5 = 37.637.6 kAkARMSRMS

    F d L V lt Ci it B k

  • 7/30/2019 Fault Calculation Steps

    89/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 89

    Fused Low-Voltage Circuit Breakers

    94RXfor251

    1e2MFRX2

    bkrfusedLV ./.

    )//(

    >+=

    Example: Maximum fault current = 27.5 kA27.5 kA

    X/R at fault location = 7.87.8

    1011

    251

    1e2MF

    872

    bkrfusedLV .

    .

    ./

    =+

    =

    So, the fused low-voltage circuit breaker

    must be rated at least 27.5 1.101 = 30.3 kA30.3 kA

  • 7/30/2019 Fault Calculation Steps

    90/100

    Medium Voltage Expulsion Fuses

  • 7/30/2019 Fault Calculation Steps

    91/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 91

    Medium-Voltage Expulsion Fuses

    15RXfor521

    1e2MFRX2

    fuseMV >+=

    /.

    )/(/

    Example: Maximum fault current = 45.8 kA45.8 kA

    X/R at fault location = 21.421.4

    0381

    521

    1e2MF

    4212

    fuseMV .

    .

    ./

    =+

    =

    So, the medium-voltage expulsion fuse must

    be rated at least 45.8 1.038 = 47.6 kA47.6 kA

    Low Voltage Expulsion Fuses

  • 7/30/2019 Fault Calculation Steps

    92/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 92

    Low-Voltage Expulsion Fuses

    94RXfor251

    1e2MFRX2

    fuseLV ./.

    )/(/

    >+=

    Example: Maximum fault current = 38.2 kA38.2 kA

    X/R at fault location = 11.811.8

    1801

    251

    1e2MF

    8112

    fuseLV .

    .

    ./

    =+

    =

    So, the low-voltage expulsion fuse must be

    rated at least 38.2 1.180 = 45.1 kA45.1 kA

    Current Limiting Fuses

  • 7/30/2019 Fault Calculation Steps

    93/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 93

    Current-Limiting Fuses

    10RXfor441

    1e2MFRX2

    fuseitinglimcurrent >+=

    /.

    )/(/

    Example: Maximum fault current = 58.4 kA58.4 kA

    X/R at fault location = 16.216.2

    0661

    441

    1e2MF

    2162

    fuseitinglimcurrent .

    .

    ./

    =+

    =

    So, the current-limiting fuse must be rated at

    least 58.4 1.066 = 62.3 kA62.3 kA

    Workshop #5P t ti D i S ifi ti

  • 7/30/2019 Fault Calculation Steps

    94/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 94

    Workshop #5Protective Device Specification

    1. Find both the RMS Close-and-Latch rating and the

    Crest Close-and-Latch rating required for apower circuit breaker to be installed on a bus

    where the maximum fault current is 32.9 kA.

    2. Find the required interrupting rating for a molded-

    case circuit breaker installed on a bus with a

    maximum fault current of 46.5 kA and an X/R ratio

    of 14.

    Workshop #5P t ti D i S ifi ti

  • 7/30/2019 Fault Calculation Steps

    95/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 95

    Workshop #5Protective Device Specification

    3. Find the required interrupting rating for a medium-

    voltage fuse installed on a bus with a maximumfault current of 46.5 kA and an X/R ratio of 18.

    4. Find the required interrupting rating for a low-

    voltage fuse installed on a bus with a maximum

    fault current of 64.8 kA and an X/R ratio of 12.

    5. Find the required interrupting rating for a current-limiting fuse installed on a bus with a maximum

    fault current of 27.3 kA and an X/R ratio of 8.

    Workshop #5Protective Device Specification

  • 7/30/2019 Fault Calculation Steps

    96/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 96

    Workshop #5Protective Device Specification

    2.

    46.5 kA 1.111 = 51.7 kA

    ( )1.111

    2.29

    1e2MF

    /14

    bkrcasemolded =+

    =

    1. Close-and-LatchRMS = 32.9 kA 1.6 = 52.6 kA

    Close-and-LatchCrest= 32.9 kA 2.7 = 88.8 kA

    Workshop #5Protective Device Specification

  • 7/30/2019 Fault Calculation Steps

    97/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 97

    Workshop #5Protective Device Specification

    4.

    64.8 kA 1.182 = 76.6 kA

    1.1821.25

    1e2MF

    12/2

    fuseLV =+

    =

    1.0211.52

    1e2

    MF

    18/2

    fuseMV=

    +=

    3.

    46.5 kA 1.021 = 47.5 kA

    Workshop #5Protective Device Specification

  • 7/30/2019 Fault Calculation Steps

    98/100

    IEEE Fault Calculation Seminara March 2006a Ralph Fehr, Ph.D., P.E.a 98

    Workshop #5Protective Device Specification

    Since X/R 10, no multiplying factor is used.Required Interrupting Rating = 27.3 kA

    10X/Rfor1.44

    1e2MF(X/R)/2

    fuselimitingcurrent >+=

    5.

  • 7/30/2019 Fault Calculation Steps

    99/100

    Fault CalculationsandSelection ofProtective Equipment

    http://http://web.tampabay.rr.com/usfpower/fehr.htmweb.tampabay.rr.com/usfpower/fehr.htm

    which includes a link toAlex McEacherns Power Quality Teaching Toy

    Dont forget the power engineering resources mentioned in this course:

  • 7/30/2019 Fault Calculation Steps

    100/100

    Fault CalculationsandSelection ofProtective Equipment

    Thank you!Seminole Electric Cooperative, Inc.

    16313 North Dale Mabry Hwy.Tampa, Florida

    Ralph Fehr, Ph.D., P.E.University of South Florida TampaSenior Member, [email protected]