Fatigue failure.ppt

download Fatigue failure.ppt

of 15

Transcript of Fatigue failure.ppt

  • 8/19/2019 Fatigue failure.ppt

    1/37

     Ken Youssefi  MAE dept., SJSU 1

    It has been recognized that a meta sub!ectedto a repetiti"e or fuctuating stress #i fai at a

    stress much o#er than that re$uired to cause

    faiure on a singe appication of oad. %aiures

    occurring under conditions of d&namic oadingare caed fatigue failures. 

    Fatigue Failure

    %atigue faiure is characterized b& three stages

    Crack Initiation

    Crack Propagation

    Final Fracture

  • 8/19/2019 Fatigue failure.ppt

    2/37

     Ken Youssefi  MAE dept., SJSU '

    Jac( hammer component,

    sho#s no &ieding before

    fracture.

    )rac( initiation site

    %racture zone

    *ropagation zone, striation 

  • 8/19/2019 Fatigue failure.ppt

    3/37

     Ken Youssefi  MAE dept., SJSU +

    - cran( shaft fatigue faiure due to c&cic bending and torsiona stresses

    %racture area)rac( initiation site

    *ropagation

    zone, striations

  • 8/19/2019 Fatigue failure.ppt

    4/37

     Ken Youssefi  MAE dept., SJSU /

    0' *orsche timing pue& 

    )rac( started at the fiet

  • 8/19/2019 Fatigue failure.ppt

    5/37

     Ken Youssefi  MAE dept., SJSU 2

    1.34in. diameter stee pins from

    agricutura e$uipment.

    Materia5 AISI6SAE /1/3 o#

    ao# carbon stee

    %racture surface of a faied bot. 7he

    fracture surface e8hibited beach mar(s,

    #hich is characteristic of a fatigue faiure. 

  • 8/19/2019 Fatigue failure.ppt

    6/37

     Ken Youssefi  MAE dept., SJSU 9

    7his ong term fatigue crac( in a high $uait& component too( a

    considerabe time to nuceate from a machining mar( bet#een the spider

    arms on this high& stressed surface. :o#e"er once initiated propagation

    #as rapid and acceerating as sho#n in the increased spacing of the ;beach

    mar(s; on the surface caused b& the ad"ancing fatigue crac(.

    bic&ce cran( spider arm 

  • 8/19/2019 Fatigue failure.ppt

    7/37 Ken Youssefi  MAE dept., SJSU <

    =ear tooth faiure

    )ran( shaft

  • 8/19/2019 Fatigue failure.ppt

    8/37 Ken Youssefi  MAE dept., SJSU

    Hawaii, Aloha Flight 243, a Boeing 737, an upper part of the plane's cabin

    area rips off in mid-flight !etal fatigue was the cause of the failure 

  • 8/19/2019 Fatigue failure.ppt

    9/37 Ken Youssefi  MAE dept., SJSU 0

    )up and )one

    >impes>u Surface

    Incusion at the bottom of the dimpe

    >uctie

    Fracture Surface Characteristics

    Shin&

    =rain ?oundar& crac(ing

    ?ritte Intergranuar 

    Shin&

    )ea"age fractures

    %at

    ?ritte 7ransgranuar 

    ?eachmar(s

    Striations @SEM

    Initiation sites

    *ropagation zone

    %ina fracture zone

    %atigue

    Mode of fracture Typical surface characteristics

  • 8/19/2019 Fatigue failure.ppt

    10/37 Ken Youssefi  MAE dept., SJSU 13

    Fatigue Failure – Type of Fluctuating Stresses

    σa =

    σmax 

      σmin

    2

     Aternating stress

    Mean stress

    σm =

    σmax 

      σmin

    2

    B

  • 8/19/2019 Fatigue failure.ppt

    11/37 Ken Youssefi  MAE dept., SJSU 11

    Fatigue Failure, S-N Curve

    7est specimen geometr& for C.C. Moore

    rotating beam machine. 7he surface is

    poished in the a8ia direction. A constant

    bending oad is appied. 

    Motor 

    Doad

    Cotating beam machine appies fu& re"erse bending stress

    7&pica testing apparatus, pure bending

  • 8/19/2019 Fatigue failure.ppt

    12/37 Ken Youssefi  MAE dept., SJSU 1'

    Fatigue Failure, S-N Curve

    Finite life Infinite life

    F 13+ G 13+

    S′e

     H endurance imit of the specimenSe′

  • 8/19/2019 Fatigue failure.ppt

    13/37 Ken Youssefi  MAE dept., SJSU 1+

    Relationship Between ndurance !i"it

    and #lti"ate Strength

    Stee

    Se =′

    3.2Sut

    133 (si

     200 ksi

    Sut > 1400 MPa

    Stee

    3./Sut

    Se =′

    Sut 

  • 8/19/2019 Fatigue failure.ppt

    14/37 Ken Youssefi  MAE dept., SJSU 1/

    Relationship Between ndurance !i"it and

    #lti"ate Strength

     Auminum ao&s

    Se =′

    3./Sut

    10 (si

    1+3 M*a

    Sut 

  • 8/19/2019 Fatigue failure.ppt

    15/37 Ken Youssefi  MAE dept., SJSU 12

    Correction Factors for Speci"en$s ndurance !i"it 

     H endurance imit of the specimen @infinite ife G 139Se

    %or materias e8hibiting a (nee in the S4 cur"e at 139 c&ces

     H endurance imit of the actua component @infinite ife G 139Se

     N

    S Se

    139

    13+

     H fatigue strength of the specimen @infinite ife G 2813Sf 

     H fatigue strength of the actua component @infinite ife G 2813Sf 

    %or materias that do not e8hibit a (nee in the S4 cur"e, the infinite

    ife ta(en at 2813 c&ces

     N

    S Sf 

    281313+

  • 8/19/2019 Fatigue failure.ppt

    16/37 Ken Youssefi  MAE dept., SJSU 19

    Correction Factors for Speci"en$s ndurance !i"it 

    Se = Cload   C size  C surf Ctemp  Crel  (Se′

    Doad factor, Cload  

    *ure bending Cload  = 1

    *ure a8ia Cload  = 0.7

    )ombined oading Cload  = 1

    *ure torsion Cload  = 1 if von Mises stess is use!" use

    0.#77 if von Mises stess is N$% use!.

  • 8/19/2019 Fatigue failure.ppt

    17/37 Ken Youssefi  MAE dept., SJSU 1<

    Correction Factors for Speci"en$s ndurance !i"it 

    Size factor, C size

    Darger parts fai at o#er stresses than smaer parts. 7his is

    main& due to the higher probabiit& of fa#s being present in

    arger components. 

    %or soid round cross section

    d   3.+ in. @ mm C size = 1

    3.+ in. F d   13 in. C size = .86&(d )'0.0&7

    mm F d   '23 mm C size = 1.18&(d )'0.0&7

    If the component is arger than 13 in., use C size = .6 

  • 8/19/2019 Fatigue failure.ppt

    18/37 Ken Youssefi  MAE dept., SJSU 1

    Correction Factors for Speci"en$s ndurance !i"it 

    %or non rotating components, use the 02 area approach to cacuate

    the e$ui"aent diameter. 7hen use this e$ui"aent diameter in thepre"ious e$uations to cacuate the size factor.

    d e"ui#  H @ A02

    3.3

  • 8/19/2019 Fatigue failure.ppt

    19/37 Ken Youssefi  MAE dept., SJSU 10

    Correction Factors for Speci"en$s ndurance !i"it 

    surface factor, C surf 

    7he rotating beam test specimen has a poished surface. Most

    components do not ha"e a poished surface. Scratches andimperfections on the surface act i(e a stress raisers and reduce

    the fatigue ife of a part. Use either the graph or the e$uation #ith

    the tabe sho#n beo#.

    C surf = A (Sut)b

  • 8/19/2019 Fatigue failure.ppt

    20/37 Ken Youssefi  MAE dept., SJSU '3

    Correction Factors for Speci"en$s ndurance !i"it 

    7emperature factor, Ctemp

    :igh temperatures reduce the fatigue ife of a component. %or

    accurate resuts, use an en"ironmenta chamber and obtain the

    endurance imit e8perimenta& at the desired temperature.

    %or operating temperature beo# /23 o) @/3 o% the

    temperature factor shoud be ta(en as one.

    Ctemp = 1 fo  7 /23o) @/3 o% 

  • 8/19/2019 Fatigue failure.ppt

    21/37

     Ken Youssefi  MAE dept., SJSU '1

    Correction Factors for Speci"en$s ndurance !i"it 

    Ceiabiit& factor, Crel 

    7he reiabiit& correction factor accounts for the scatter and

    uncertaint& of materia properties @endurance imit.

  • 8/19/2019 Fatigue failure.ppt

    22/37

     Ken Youssefi  MAE dept., SJSU ''

    Fatigue Stress Concentration Factor, % f 

    E8perimenta data sho#s that the actua stress concentration factor is

    not as high as indicated b& the theoretica "aue, $ t. 7he stress

    concentration factor seems to be sensiti"e to the notch radius and theutimate strength of the materia.

    $ f  H 1 B @$ t  1"otch sensiti"it&

    factor 

  • 8/19/2019 Fatigue failure.ppt

    23/37

     Ken Youssefi  MAE dept., SJSU '+

    Fatigue Stress

    Concentration Factor,

    % f  for Aluminum

  • 8/19/2019 Fatigue failure.ppt

    24/37

     Ken Youssefi  MAE dept., SJSU '/

    &esign process – Fully Reversed !oading for 'nfinite !ife  >etermine the ma8imum aternating appied stress, σ

    a , in terms of

    the size and cross sectiona profie

    Seect materia L S" Sut

    Use the design e$uation to cacuate the size

    Se K 

    a

     =n

    )hoose a safet& factor L n

    >etermine a modif&ing factors and cacuate the endurance

    imit of the component L Se

    >etermine the fatigue stress concentration factor, K f 

    In"estigate different cross sections @profies, optimize for size or #eight

    You ma& aso assume a profie and size, cacuate the aternating stress

    and determine the safet& factor. Iterate unti &ou obtain the desired

    safet& factor 

  • 8/19/2019 Fatigue failure.ppt

    25/37

     Ken Youssefi  MAE dept., SJSU '2

    &esign for Finite !ife

    Sn = a (N)b  equation of the fatigue line

     N

    S

    Se

    13913+

     A

    ?

     N

    S

    Sf 

    281313+

     A

    ?

    *oint ASn = .&Sut

    H 13+*oint A

    Sn = .&Sut

    H 13+

    *oint ?Sn = Sf 

    H 2813*oint ?

    Sn = Se

    H 13

    9

  • 8/19/2019 Fatigue failure.ppt

    26/37

     Ken Youssefi  MAE dept., SJSU '9

    &esign for Finite !ife

    Sn = a (N)b

    og Sn H og a B b og

     App& conditions for point A and ? to find the t#o

    constants aN and bN

    o* .0Sut H o* a B b o* 13+

    o* Se H o* a B b o* 139

    a =(.&Sut

    '

    Se

    b=

    .&Sut

    Se

    1

    + o*

    Sn K fσa = n

    >esign e$uation

    )acuate Sn an! e+a,e Se in the design e$uation

    Sn H Se @

    139O  @

    Se.0Sut

    o*

  • 8/19/2019 Fatigue failure.ppt

    27/37

     Ken Youssefi  MAE dept., SJSU '<

    The ffect of Mean Stress on Fatigue !ife

    Mean stress e8ist if the

    oading is of a repeating orfuctuating t&pe.

    Mean stress

     Aternating

    stress

    σm

    σa

    Se

    SSoderberg ineSut

    =oodman ine

    =erber cur"e

    S Yied ine

  • 8/19/2019 Fatigue failure.ppt

    28/37

     Ken Youssefi  MAE dept., SJSU '

    The ffect of Mean Stress on Fatigue !ife

    Modified (ood"an &iagra"

    Mean stress

     Aternating

    stress

    σm

    σa

    Sut

    =oodman ine

    SYied ine

    S

    Se

    Safe zone)

    Th ff t f M St F ti !if

  • 8/19/2019 Fatigue failure.ppt

    29/37

     Ken Youssefi  MAE dept., SJSU '0

    ' S,

    The ffect of Mean Stress on Fatigue !ife

    Modified (ood"an &iagra"

    Bσm

    σa

    Sut

    =oodman ine

    S Yied ine

    Safe zone

    4 σm

    )

    S

    Se

    Safe zone

  • 8/19/2019 Fatigue failure.ppt

    30/37

     Ken Youssefi  MAE dept., SJSU +3

    The ffect of Mean Stress on Fatigue !ife

    Modified (ood"an &iagra"

    Bσm

    σa

    Sut

    Safe zone

    4 σm

    )

    S

    Safe zone

    Se

    ' S,

    %inite ife

    Sn1=

    Sut 

    σa   σm

    B

    %atigue,   σm > 0%atigue,   σm ≤ 0

    σa =

    Se

    nf 

    σa + σ

    m =

    S

    n y

    Yied

    σa + σ

    m =

    S

    n y

    Yied

    nf Se

    1=

    Sut 

    σa   σm

    BInfinite ife

    ) l i S C i f )l i

  • 8/19/2019 Fatigue failure.ppt

    31/37

     Ken Youssefi  MAE dept., SJSU +1

     )pplying Stress Concentration factor to )lternating

    and Mean Co"ponents of Stress

    >etermine the fatigue stress concentration factor, $ f , app& direct& to

    the aternating stress L $ f  σa 

    If $ fσmax  < S t-en t-ee is no ie!in* at t-e not,-" use $ fm = $ f

    and mutip& the mean stress b& $ fm L $ fm σm 

    If $ fσmax  > S t-en t-ee is o,a ie!in* at t-e not,-" ateia at t-e

    not,- is stain'-a!ene!. %-e effe,t of stess ,on,entation is e!u,e!.

    )acuate the stress concentration factor for the mean stress using

    the foo#ing e$uation,

    $ fm =

    S $ f  σa

    σm

    nf Se

    1=

    Sut 

    $ f  σa $ fmσmB Infinite ife

    %atigue design e$uation

  • 8/19/2019 Fatigue failure.ppt

    32/37

     Ken Youssefi  MAE dept., SJSU +'

    Co"*ined !oading 

     A four components of stress e8ist,

    σ xa 

    atenatin* ,o+onent of noa stessσ

     xm  mean component of norma stress

    τ8&a  aternating component of shear stress

    τ8&m  mean component of shear stress

    )acuate the aternating and mean principa stresses,

    σ1a, σ2a = @σ/a 62    @σ/a 622

     B @τ/a2

    σ1m, σ2m = @σ/m 62    @σ/m 622 B @τ/m

    2

  • 8/19/2019 Fatigue failure.ppt

    33/37

     Ken Youssefi  MAE dept., SJSU ++

    Co"*ined !oading 

    )acuate the aternating and mean "on Mises stresses,

    σa′ = (σ1a B σ2a 4 σ1aσ2a16' 

    ' '

    σm′ = (σ1m B σ2m 4 σ1mσ2m16' 

    ' '

    %atigue design e$uation

    nf Se

    1

    =Sut 

    σ′a   σ′m

    B Infinite ife

  • 8/19/2019 Fatigue failure.ppt

    34/37

     Ken Youssefi  MAE dept., SJSU +/

    &esign +a"ple

    C1 C'

    13,333 b.

    9P 9P 1'P 

     D H 1.2d d 

    r @fiet radius H .1d

     A rotating shaft is carr&ing 13,333 b force

    as sho#n. 7he shaft is made of stee #ith 

    Sut  = 120 ksi an! S y = &0 ksi. %-e s-aft

    is otatin* at 11#0 + an! -as a

    a,-ine finis- sufa,e. eteine t-e

    !iaete" !" fo 7# inutes ife. se

    safet fa,to of 1.6 an! #0 eiaiit.

    )acuate the support forces, C1 H '233, C' H

  • 8/19/2019 Fatigue failure.ppt

    35/37

     Ken Youssefi  MAE dept., SJSU +2

    &esign +a"ple Assume d  H 1.3 in

    sin* r = .1 an! S ut  = 120 ksi ,

    q @notch sensiti"it& H .2$ f  H 1 B @$ t  1q = 1 B .2@1.< 1 H 1.9

    )acuate the endurance imit

    Cload  = 1 (+ue en!in*)

    Crel  = 1 (#0 e.)

    Ctemp= 1 (oo te+)

    C surf = A (Sut)b

     = 2.7(120)'.26#

     = .7#&

    3.+ in. F d   13 in. C size = .86&(d )'0.0&7 = .86&(1)

    '0.0&7 = .86&

    Se = Cload   C size  C surf Ctemp  Crel  (Se = (.7#&)(.86&)(.#/120) = 3&.#7 ksi′

  • 8/19/2019 Fatigue failure.ppt

    36/37

     Ken Youssefi  MAE dept., SJSU +9

    &esign +a"ple

    >esign ife, H 1123 8

  • 8/19/2019 Fatigue failure.ppt

    37/37

    &esign +a"ple

    σa = 

    30##77

    (2.#)3= 1&.## ksi

    n H Sn

     K f σa=

    #3.3#

    1.63/1&.##= 1.67 1.6

    d  H '.2 in.

    )hec( &ieding

    n = S y

     K f σmax =

    &0

    1.63/1&.##= 2.8 9 1.6 oka

    Se = 36.2 ksi Sn = #3.3# ksiL