Fast Target Detection Framework for Onboard Processing · PDF file03/06/2015 ·...

20
Applied Research LLC 1 Fast Target Detection Framework for Onboard Processing of Multispectral and Hyperspectral Images B. Ayhan and C. Kwan June 3, 2015 Applied Research LLC 9605 Medical Center Dr., Rockville, MD20850 Research supported by NASA SBIR Program

Transcript of Fast Target Detection Framework for Onboard Processing · PDF file03/06/2015 ·...

Applied Research LLC

11

Fast Target Detection Framework for Onboard Processing of Multispectral and Hyperspectral Images

B. Ayhan and C. Kwan

June 3, 2015

Applied Research LLC

9605 Medical Center Dr., Rockville, MD20850

Research supported by NASA SBIR Program

Applied Research LLC

22

1. Contents

1. Contents 2

2. Research Objectives 3

3. Technical Approach 4-8

4. Results 9-20

Applied Research LLC

33

2. Research Objectives

33

• Develop a robust, automated, and real-time target detection system under varying illumination, atmospheric conditions and target/sensor viewing geometry.

• Demonstrate the feasibility of the system using actual and/or simulated data.

Applied Research LLC

4

Fast target detection framework

• Conventional target detection is done in the reflectance domain: a lot of

computations due to atmospheric compensation, not suitable for onboard

processing, difficult to change mission goals during mission.

• Our approach is done in the radiance domain. Only a few target signatures

(reflectance) need to be transformed to the radiance domain. This is very

suitable for onboard processing such as search and rescue missions.

• JHU/APL developed a similar approach that uses MODTRAN and AFWA MM5.

Our approach was motivated by [1], which is a hybrid framework that uses

MODTRAN and a nonlinear analytical model.

3. Technical Approach

[*1] “Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling," Adrian V. Mariano ; John M. Grossmann, J. Appl. Remote Sens. 4(1), 043563 (November 23, 2010).

Applied Research LLC

5

• Radiance equation model parameter estimation using MODTRAN outputs [*1]

3. Technical Approach

1 1

A

A A

BAL P D

S S

ρρα ρ

ρ ρ= + + −

− −

ρ : Material reflectance

Aρ : Adjacent region reflectance

S : Spherical albedo

A,B : Coefficients that depend on atmospheric, geometric and solar illumination conditions

P : Path radiance

D : Radiance due to direct solar illumination

α : Amount of solar occlusion

[*1] “Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling," Adrian V. Mariano ; John M. Grossmann, J. Appl. Remote Sens. 4(1), 043563 (November 23, 2010).

L: Radiance

Applied Research LLC

6

• Radiance equation model parameter estimation using MODTRAN outputs [*1]

3. Technical Approach

1 0.05ρ =

2 0.6ρ =

MODTRAN

Simulation

(1)

MODTRAN Output

"DRCT_REFL(1)"

Atmospheric,

geometric and solar

illumination conditions

MODTRAN Output

" GRND_RFLT(1) " Estimation of

radiance equation

parameters

(A,B, D,P and S)

1 1

A

A A

BAL P D

S S

ρρα ρ

ρ ρ= + + −

− −

MODTRAN Output

" SOL_SCAT (1) "

MODTRAN

Simulation

(2)

MODTRAN Output

"DRCT_REFL(2)"

MODTRAN Output" GRND_RFLT(2)"

MODTRAN Output" SOL_SCAT(2) "

DRCT_RFLT: Direct Reflectance (MODTRAN output)

SOL_SCAT: Solar Multiple Scattering (MODTRAN output)

GRND_RFLT: Ground Reflectance (MODTRAN output)

[*1] “Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling," Adrian V. Mariano ; John M. Grossmann, J. Appl. Remote Sens. 4(1), 043563 (November 23, 2010).

Applied Research LLC

7

• Radiance equation model parameter estimation using MODTRAN outputs [*1]

3. Technical Approach

1 1

A

A A

BAL P D

S S

ρρα ρ

ρ ρ= + + −

− −

( ) ( )1 2DRCT_RFLT 1 / DRCT_RFLT / 2D ρ ρ= =

1 11 1

1 1

, 1 1

A BG C P

S Sρ ρ

ρ ρ

ρ ρ= = +

− −

2 22 2

2 2

, 1 1

A BG C P

S Sρ ρ

ρ ρ

ρ ρ= = +

− −

2 2 1 1

2 1

/ /G GS

G G

ρ ρ

ρ ρ

ρ ρ−=

2

22

GA G S

ρρ

ρ= −

1 2 2 2 1 1

2 1

( ) / /

1 / 1/

S C C C CP

ρ ρ ρ ρρ ρ

ρ ρ

− + −=

11

1( )( )B C P Sρ

ρ= − −

Suppose , and1 1_ (1) and _ (1)C GSOL SCAT GRND RFLTρ ρ= =

2 2_ (2) and _ (2)C GSOL SCAT GRND RFLTρ ρ= =

Then, and

The radiance model parameters can then be found as:

[*1] “Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling," Adrian V. Mariano ; John M. Grossmann, J. Appl. Remote Sens. 4(1), 043563 (November 23, 2010).

Applied Research LLC

Proprietary Information - ARLLC8

3. Technical Approach

Advantages of the proposed system

• Eliminates the need of applying atmospheric correction on the whole image cube and instead simulates the variants of the radiance signature of the target of interest and searches for these signatures in the test radiance image cube

• The effects of different illumination, atmospheric conditions, occlusion and varying sensor/target viewing geometries are takeninto effect during the simulation of the radiance spectral profiles of the target of interest

• Allows generation of look-up tables for several radiance signature variants of the target which will reduce computation/processing time for target detection in operations like “search and rescue” that require quick on-board decisions

Applied Research LLC

9

• Demonstration of radiance model parameter estimation and simulating radiance profiles with the model parameter estimates

Model Tropical

IHAZE Rural

VIS 5 km

H2OSTR 0.5

Altitude 1 km

Approximate observer position Latitude: 39.3305º (N), Longitude: 76.2879 (W)

Date August 29, 1995

Time data collected 18:37 UTC

Atmospheric, solar illumination and geometric

location parameters used in

two MODTRAN runs to

estimate model parameters

(S, A, P, D, B)

0 500 1000 1500 2000 2500 30000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Frequency (nm)

Am

plit

ude

S

0 500 1000 1500 2000 2500 30000

2

4

6

8

10

12

14

16

Frequency (nm)

Am

plit

ude

A

0 500 1000 1500 2000 2500 30000

0.5

1

1.5

2

2.5

3

3.5

Frequency (nm)

Am

plit

ud

e

P

0 500 1000 1500 2000 2500 30000

1

2

3

4

5

6

7

Frequency (nm)

Am

plit

ude

D

0 500 1000 1500 2000 2500 30000

2

4

6

8

10

12

14

16

18

Frequency (nm)

Am

plit

ude

B

S

P

A

D B

Plots of estimated model parameters (S, A, P, D, B)

4. Results

Applied Research LLC

10

• Comparing the simulated radiance profiles (from the model parameter estimates) with the MODTRAN results

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.1

0.2

0.3

0.4

0.5

Reflectance Data

Wavelength (µm)

Re

fle

cta

nc

e

1 tree1000010x2Easd0x2Eref

Case 2 (reflectance of a green tree)

Case 1 (fixed reflectance of 0.6)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.2

0.4

0.6

0.8

1

Wavelength (µm)

Re

fle

cta

nc

e

MODTRAN

Radiance model with

estimated parameters

MODTRAN

Radiance model with

estimated parameters

0 500 1000 1500 2000 2500 30000

5

10

15

20

25

Wavelength (nm)

Radia

nce

MODTRAN generated radiance

Radiance estimated with model parameters

0 500 1000 1500 2000 2500 30000

2

4

6

8

10

12

Wavelength (nm)

Radia

nce

MODTRAN generated radiance

Radiance estimated with model parameters

The results are almost identical which shows that radiance model parameter estimation is successful !

4. Results

Applied Research LLC

11

• AVIRIS data for Los Angeles Station Fire (Aug 2009) to detect burnscar

The Station Fire took place between August 26 and October 16, and a total of 160,577

acres (251 sq mi; 650 km2) were affected, 209 structures had been destroyed, including

89 homes [*2]. It first started in the Angeles National Forest near the U.S. Forest Service

ranger station on the Angeles Crest Highway (State Highway 2) [*2].

[*2] http://en.wikipedia.org/wiki/2009_California_wildfires

AVIRIS images acquired on October 6, 2009 (fire is mostly over)

4. Results

Applied Research LLC

12

• Getting groundtruth of burned locations for AVIRIS data using MODIS MCD45A1 product

500 1000 1500 2000

500

1000

1500

2000

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

MODIS H8-V5 tile (Los Angeles region falls into this tile)

MCD45A1 burned area product for this tile for Sep 2009 (red pixels indicate burned areas)

Zoom into the region for the LA Station Fire in MCD45A1 product

Based on AVIRIS image data coverage for each strip the groundtruth maps for burned area are extracted

4. Results

Applied Research LLC

13

• Burnscar pixel selections from AVIRIS image strips

Direct sunlight:

With occlusion:

Based on extracted groundtruth maps and also visual examination, burnscar pixels are selected from each AVIRIS image data (pixels with direct sunlight and under shadow with some occlusion)

r09 r10 r11 r12 r13 r14 r15

4. Results

Applied Research LLC

14

• Radiance and reflectance signatures of selected burnscar pixelsActual radiance

signatures of selected pixels

(in DN)

0 500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Wavelength (nm)

Radia

nce

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

2 3 4 5 6 7

500

1000

1500

2000

MODIS band index

Radia

nce (7 M

ODIS

bands)

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

Actual radiance

signatures of selected pixels

(in DN) for

MODIS bands only

MODIS bands: 648 nm, 858 nm, 470 nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm (In target

detection investigations in this work, we used the 7 bands that are closest to these MODIS bands )

0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength (nm)

Reflecta

nce

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

Reflectance

signatures of selected pixels

(after QUAC atmospheric

correction)

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (nm)

Reflecta

nce

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

Reflectance

signatures of selected pixels

after QUAC atmospheric

correction (MODIS bands

only)

4. Results

Applied Research LLC

0 500 1000 1500 2000 25000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (nm)

Reflecta

nce

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

15

• Atmospheric, illumination and geometric location conditions used in radiance model parameter estimation and simulation of radiance signatures for the selected reflectance profiles

Geometric locations of the AVIRIS image strips and corresponding UTC values

AVIRIS

Image Strip Min Lat Min Long Max Lat Max Long UTC

Ground

Elevation (km)

r09 34.1436 -118.376 34.5639 -118.276 18:51

0.67

r10 34.1488 -118.31 34.6222 -118.208 19:01

0.93

r11 34.152 -118.236 34.5625 -118.133 19:11 0.98

r12 34.1571 -118.165 34.5788 -118.066 19:21

1.11

r13 34.1603 -118.091 34.5626 -117.99 19:29

1.22

r14 34.1575 -118.022 34.5984 -117.924 19:39

1.17

r15 34.1634 -117.943 34.563 -117.847 19:48

1.18

Model Mid Latitude Summer (MODEL = 2)

VIS (Visibility) 20 km

H2OSTR (Water vapor) 0.270

IHAZE Rural (IHAZE =1)

Altitude 14 km

Observer position (see above table for observer positions)

Data collection day Oct 6, 2009

Data collection time (see above table for UTC times)

Atmospheric and time/date conditions

Variants of selected burnscar reflectance profiles (based on QUAC)

4. Results

Applied Research LLC

16

• Simulated radiance signatures with estimated radiance model parameters and target detection results

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

3000

Wavelength (nm)

Radia

nce

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

1 2 3 4 5 6 7

500

1000

1500

2000

2500

3000

3500

MODIS band index no

Radia

nce

MODTRAN-generated radiance signatures (MODIS bands only)

r09 (Sample:389, Line:1929)

r09 (Sample:575, Line:1955)

r10 (Sample:3437, Line:2887)

r10 (Sample:665 Line:2778)

r11 (Sample:498, Line:2043)

r11 (Sample:532, Line:2298)

r12 (Sample:377, Line:1997)

r12 (Sample:398, Line:1953)

r13 (Sample:182, Line:2197)

r13 (Sample:163, Line:2235)

r14 (Sample:519, Line:3232)

r14 (Sample:537, Line:3280)

r15 (Sample:619, Line:4013)

= −

ji

ji

jiSAMrs

rs

rs

,cos),( 1

1 2M-SAM( ,burnscar) min( ( , ), ( , ),..., ( , ))i i i i KSAM SAM SAM=s s r s r s r

1 2where burnscar { , ,..., }K= r r r

Simulated radiance signatures for the

selected pixels

Simulated radiance

signatures for the selected pixels

(MODIS bands only)

Target detection score images with M-SAM for "r09" using simulated radiance signatures, using actual radiance signatures and using actual

reflectance signatures with QUAC (groundtruth map for “r09” image is

also shown). In target detection, we used the 7 MODIS bands only.

test pixel spectral profilei =s

burnscar signature variantj =r

4. Phase 1 Results

Applied Research LLC

17

• ROC curves with M-SAM detection technique for AVIRIS images

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r09

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r10

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r11

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r12

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

r09

r11

r10

r12

4. Results

Applied Research LLC

18

• ROC curves with M-SAM detection technique

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r13

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r14

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

r13 r14

4. Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

Pro

bability

of dete

ction

r15

Actual radiance signatures with M-SAM

Actual reflectance signatures with M-SAM

MODTRAN-simulated radiance signatures with M-SAM

r15

Applied Research LLC

19

• AUC (Area under curve) measures from ROC curves

AVIRIS

Filename

Analysis Type

Using

actual radiance

signatures

(target detection

in radiance

domain)

Using

QUAC reflectance

signatures (target

detection in

reflectance

domain)

Using simulated

radiance signatures

(reflectances are from

QUAC) (target

detection in radiance

domain )

r09 AUC(overall) 0.8958 0.8856 0.8935

AUC(partial) 0.0761 0.0750 0.0745

r10 AUC(overall) 0.9395 0.9183 0.9400

AUC(partial) 0.0655 0.0612 0.0653

r11 AUC(overall) 0.9028 0.8814 0.9087

AUC(partial) 0.0427 0.0472 0.0471

r12 AUC(overall) 0.8696 0.8487 0.8783

AUC(partial) 0.0473 0.0544 0.0514

r13 AUC(overall) 0.8772 0.8601 0.8771

AUC(partial) 0.0691 0.0679 0.0676

r14 AUC(overall) 0.8370 0.8055 0.8415

AUC(partial) 0.0648 0.0631 0.0659

r15 AUC(overall) 0.8536 0.7794 0.8713

AUC(partial) 0.0676 0.0585 0.0687

Overall: Whole ROC curve is used in AUC computationPartial: ROC curve up to a false alarm rate of 0.1 is used in AUC computation

4. Results

Applied Research LLC

20

• Observations

- With the simulated radiance signature library using estimated radiance models, we observed detection performances close to the detection performance obtained with using actual radiance signatures that are retrieved from actual images and in some cases slightly better than those.

- It is possible that if a better set of MODTRAN parameters has been selected in the radiance model parameter estimation that fully complies with the atmospheric conditions during the actualdata acquisition, or a more realistic set of reflectance signature variations for burnscar has been used, the detection performances could perhaps be further improved.

- These results are found highly promising in demonstrating the feasibility and effectiveness of the proposed fast target detection idea.

4. Results