FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth%...

36
What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs Chan Joshi UCLA With help from Weiming An , Chris Clayton, Xinlu Xu, Ken Marsh, Warren Mori, Navid Vafaei FACET Mee2ng, October 1719 th 2016 Work supported by DOEHEP and NSF

Transcript of FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth%...

Page 1: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

What  must  the  PWFA  Collabora2on  do  at  FACET  II  

Overview  of  requirements  for  Plasma  Sources  based  on  experimental  needs  

Chan  Joshi  UCLA  

With  help  from  Weiming  An  ,  Chris  Clayton,  Xinlu  Xu,  Ken  Marsh,  Warren  Mori,  Navid  Vafaei  

FACET  Mee2ng,  October  17-­‐19th  2016  Work  supported  by  DOE-­‐HEP  and  NSF  

Page 2: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Outline  of  this  talk  

•  First  experiment  aligned  with  the  DOE-­‐HEP’s  strategic  plan    

•  Second  Experiment  aligned  with  early  applica2on  

•  What  are  the  beam  and  plasma  requirements,  where  are  we,  and  what  do  we  need  to  do  to  get  there?  

•  Conclusions  are  independent  of  the  type  of  plasma  source.    

Page 3: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

1:Propose  a  major  experiment  that  is  consistent  with  DOE’s  one  or  more    strategic  goals  

 Proposal  for  an  experiment  at  the  FACET  Science  mee2ng  at  UCLA    

•  Deplete  the  drive  beam  of  its  energy  •  50%  Energy  extrac2on  Efficiency  •   10  GeV  energy  gain  for  the  trailing  beam  (TB)  •  Minimize  the  energy  spread  of  TB  (<<1%)  •   Demonstra2on  of  emieance  preserva2on  of  TB  •   (this  is  the  first  step  towards  eventually  gegng  a  collider  quality  beam)  

•  All  at  the  same  2me  

Page 4: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

2:Experiment  aligned  with  early  applica2on    

•  General  consensus  at  present  is  early  applica2on  is    genera2on  of  coherent  light  source.  

•  Need  to  produce  electron  bunches  with  brightness  orders  of  magnitude  larger  than  the  brightest  beams  available  today.  

•  What  are  the  beam  and  plasma  requirements?  

Page 5: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Experiment  1:Realizable  because  of  Differences  between  FACET  I  and  II  beams  Parameter                                                    FACET  I                                FACET  II  Drive  Beam                                                20  GeV                              10  GeVNorm.  Emieance                            20x100  um                <  3x7  um  (without  foil)Pump  Deple2on                                No                                                    Yes    

Trailing  Beam  Bunch  Charge                                        >100  pC                                >  100  pC  Energy  Spread                                        <5%                                              <<1  Energy  gain                                                  max  8  GeV                      10  GeV  Efficiency                                                            30%                                              50%  Emieance  Preserva2on              No                                              Yes?    We  are  going  to  op2mize  beam  loading  and  demonstrate  beam  matching.      

Page 6: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

1  What  have  we  already  shown?  Accelera2on  of  a  witness  bunch    

•  PWFA  can  accelerate  a  100  pC  bunch  with~5%  energy  spread  and  30%  energy  extrac2on  efficiency  with  an  energy  gain  of  up  to  9  GeV  in  1.3  meters  (7  GeV/m  loaded)  

•  Ref.  M.  Litos  et  al  PPCF  2015  

Page 7: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

2  What  have  we  already  shown?  Panofsky-­‐Wenzel  Theorem  for  PWFA  in  blow-­‐our  regime  

•  PWFA  cavity  in  the  blow  out  regime  has  the  field  structure  to  accelerate  par2cles  at  high  gradient  while  preserving  the  emieance  of  the  bunch  

•  Ref:  C.E.  Clayton  et  al  Nature  Communica2ons  2016  

!

Page 8: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

3  What  have  we  already  shown?  We  can  measure  emieance  at  20+  GeV  down  to  5  um  

•  We  have  measured  emieance  of  the  ioniza2on  injected  electrons  as  low  as  5.5  um  using  an  exis2ng  spectrometer  with  no  special  effort  made  to  preserve  the  emieance  of  the  beam  

•  Ref:  N.  Vafaei  Najfabadi  et  al    PhD  thesis  UCLA  2016  

       TBP  

Page 9: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

4  What  have  we  already  shown?  We  have  shown  beam  matching  is  possible  using  a  Li  source  

Very  low  density  but  long  plasmas  can  add  a  significant  phase  to  the  beam  envelope    

Ref;  Muggli  et  al  PRL  2004  

(σxm)2  =  εn  (c/ωp)  (2/γ)1/2  

Page 10: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Two  Key  Concepts  for  high  quality  beams  from  plasma  accelerators  

Beam  Loading  Energy  Spread  and  Efficiency  

Matching  Sec2on  Emieance  Preserva2on  

Ref:  M.  Tzoufras  et  al  PRL   Ref:  X.  Xu  et  al  PRL  2015  

Page 11: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

QuickPIC  Simula2on  without  ramps  or  ioniza2on  to  op2mize  density,  and  Dr-­‐Tr  beam  efficiency  

 Drive  (Dr)  Bu      Trailing  (Tr)  Bunch    γ(GeV)    10                                  10  I(kA)            15                                  7.5    εn  (μm)  50                                50  σz  (μm)  14                                  8    σr  (μm)  3.6                                3.6      Δξ  (μm)  150      Plasma  Density          4x1016  cm-­‐3              Preformed  plasma              

Send  a  matched  beam  through  preformed  plasma  

(σr)2matched  =  εn  (c/ωp)  (2/γ)1/2  

Page 12: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Energy  Evolu2on  of  the  two  bunches  

Energy  Gain:  >10  GeV  Energy  spread  1%  Efficiency  50%  TR~  1.2  Energy  Loss  >9  GeV  No  envelope  oscilla2ons  No  measurable  hosing  Some  energy  spread  so  expect  some  emieance  growth    

Looks  extremely  promising  so  now  reduce  emieance  to  10um    and  add  ramps,  ioniza2on.  Ioniza2on  trapping  may  beam  load  the  wake  and  reduce  the  TR  

Page 13: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Numerical  calcula2on  of  beam  matching    follow  the  evolu2on  of  C-­‐S  parameters  throughout  the  matching  sec2on  star2ng  from  the  matched  beam  in  PA    

β*,σ*  

β*,  σ*    

Βmatch<  β*  σmatch<  σ*    

Page 14: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Density  Profile  of  the  Matching  sec2on  

A  Good  star*ng  point  is  deduced  density  from  the  measured  temperature  ramps  See  Ken’s  talk  

Posi*on  of  the  water  Jacket  

Deduced  from    temperature  Measurement  

Linear  Scale  

Log  Scale  

Ref:  Numerical  Recipes  Incomplete  Gamma  Func2on  L=(ne/(dne/dx)  

Page 15: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Beam  Parameters  Used  

•                                     Drive  Bunch                            Trailing  Bunch  

•  Energy(GeV)                  10                                                  10,  4,  0.3  •  Current(kA)                      15                                                  7.5,  2,  2  •  εn  (μm)                                      10                                                  10,  3,  1??  •  σz  (μm)                                      15                                                    8  ,  ??  •  Spacing  (μm)                150  

•  Plasma  Density          4x1016  cm-­‐3          

•  4  and  0.3  GeV  bunch  currents  too  low  for  beam  loading  but  might  be  useful  for    demonstra2on  of  slice  emieance  preserva2on  :  needs  more  work                

Page 16: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Example  of  beam  matching    

Ref:  Xinlu  Xu:  private  communica2on  

(σrm)2  =  εn  (c/ωp)  (2/γ)1/2  

Page 17: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

A  scenario  for  matching  using  an  achievable  density  profile  and  10  GeV  Drive-­‐  Trailing  beams,  εn=10  μm  

β*=  3.9  cm,  4.2  cm    σ*=  4.4  μm,  3.3  μm      

βmatch=  0.53  cm,  0.75  cm  σmatch=  1.6  μm,  0.75  μm  

10  GeV    20  GeV   10  GeV    20  GeV    

σ(  z=2.2m,  7m)=  260  μm,  550μm      

βmatch  β*,  σ*   Βmatch<  β*  σmatch<  σ*      

Ref:  Xinlu  Xu  PRL  2015  

Page 18: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Can  we  measure  10s%  changes  in  εn?  

See  talk  by  Navid  

Caveat:  Not  self  consistent  simula2ons  

Page 19: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

We  can  measure  10s    %  changes  in  εn  with  exis2ng  setup  

See  talk  by  Navid  

Page 20: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Sources  of  emieance  growth  

-­‐Error  in  posi2oning  the  beam  waist  in  the  plasma  matching  sec2on  -­‐Errors  in  the  ramp  density  profile  of  the  matching  sec2on  from  ideal.  -­‐The  bunches  have  a  finite  energy  spread,  asymmetric  emieance  and  complex  phase  space.  Need  to  incorporate  these  into  PIC  codes.  For  now  make  es2mates  using  C-­‐S  formulism  for  ideal  beams  but  non-­‐ideal  matching.      

Page 21: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Effect  of  Errors:  1  Posi2on  of  vacuum  beam  waist    

•  As  soon  as  the  beam  is  not  matched,  it  will  undergo  envelope  oscilla2ons  and  betatron  yield  will  increase.  

Ref:  C.  Clayton  private  communica2on  

Page 22: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Visual summary of σ parameters in plasma varying scale length of ramp;

-20 -15 -10 -5 0 5 10 15 20z (cm)

0

1

2

3

4

5

6

7

8

9

10

< (7

m)

< vs z

s* = -9.88 cm<* = 4.3448 7m

0N = 107m, E0 = 10 GeV, n17 = 0.4 , <M = 1.6391 7m, -M = 0.52573 cm

profile = L=13.2cm, 1e-2 cut

Page 23: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

σ  parameters in plasma beta* = 3.51 cm (matched) and 1.0 cm (2.5 cm shorter) (profile 1-3 ~ RAW)

Effect  of  Errors  3:  Departure  from  Ideal  β*  

Page 24: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Departure  from  non  op2mal  matching  condi2ons  The  spot  size  becomes  larger  in  the  plasma  and  

oscillates  at  betatron  wavelength  

Error  in  posi2on  Of    waist  

Ref:  C.  Clayton,  Private  communica2on  

8 10 12 14 16 18 20Ramp length (10-90%) cm

1

1.2

1.4

1.6

1.8

2

2.2

max

(<) /

<M

@ 1

3.2c

m ra

mp

0N = 107m, E0 = 10 GeV, n17 = 0.4 , <M = 1.6391 7m, -M = 0.52573 cm

profile = 6-1; L=13.2cm, cut1e-2

shape-preserving spline9.6 cm11.0 cm13.2 cm, matched15.0 cm16.8 cm18.8 cm Error  in  scale-­‐

length  of  Density  ramp  

Error  in  β*  Errors  in  waist  posi2on  and  β*  will  lead  to    An  increase  in  growth  of  projected  emieance  Need  to  do  more  careful  PIC  simula2ons  to    Es2mate.  The  op2mum  ramp  profile  must  not  be  disturbed    By  the  beams,  for  instance  by  further  ioniza2on.        

Page 25: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Entrance  and  Exit  C-­‐S  Parameters  for  0.3  GeV,  4  GeV  and  10  GeV  Witness  Bunches  

Assump2on:    The  drive  bunch  is  the  same  in  all  cases  and  produces    a  wake  in  the  blowout  regime  throughout  the  matching  region  

Page 26: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Two-­‐bunch  PWFA  

26  

Drive Beam: E = 10 GeV, Ipeak=15 kA

β = 89.61 cm, α = 0.0653, σr = 21.17 µm, σz = 12.77 µm , N =1.0 x 1010 (1.6 nC), εN = 10 µm Trailing Beam: E = 10 GeV, Ipeak=9 kA

β = 89.61 cm, α = 0.0653, σr = 21.17 µm, σz = 6.38 µm , N =0.3 x 1010 (0.48 nC), εN = 10 µm Distance between two bunches: 150 µm Plasma Density: 4.0 x 1016 cm-3 (with ramps)

Plasma  Density  Profile  

QuickPic  Simula2on  with  matching  ramps  

Ref:  Weimng  An  and  Xinlu  Xu:  Private  Communica2on  

Page 27: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

27  

Two-­‐bunch  PWFA  Plasma  and  beam  density  with  on-­‐axis  Ez  line  out   Beam  Energy  

Beam  and  Plasma  Density    and  Energy  evolu2on  

Page 28: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

28  

Two-­‐bunch  PWFA  The  projected  beam  spot  size  and  emieance  

Page 29: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Beam  Parameters  from  Par2cle  Tracking  @  E200  IP  

Linac  RF  Phase  SeAngs  •  L1  φ  =  -­‐18.00  •  L2  φ  =  -­‐38.00  

•  Δt  @  IP  =  250  fs  •  BC11  &  BC14  

unchanged  

Parameter  @  IP  

No  COLL   S20  Notch  COLL  

Drive   Witness   Drive   Witness  

Q  /  nC   1.6   0.5   1.5   0.5  

δE  /  E  (%  rms)  

0.24   0.24   0.16   0.25  

Ipk  /  kA   32   16   34   16  

γεy  /  μm-­‐rad  

3.4   3.2   3.3   3.2  

γεx  /  μm-­‐rad  

6.4   7.8   5.6   7.8  

γεx  /  μm-­‐rad  (90%)  

5.7   6.1   5.1   6.1  

S20  Notch    Collimator    (100  pC)  

Ipeak=  Q/(2π)1/2  σz/c  

Ref:  Glen  SLAC  

Page 30: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Experiment  2:  Extreme  Bunches  a  la  Brendan/Glen    

−50 −40 −30 −20 −10 0 100

2900

5700

8600

11500

14300

17200

20100

Z [µm]

Cur

rent

[A]

−50 −48 −46 −44 −420

1

3

4

5

6

8

z [µm]

Cur

rent

[kA]

Witness, σz =0.89115µm

−6 −4 −2 0 2 40

6

12

18

24

z [µm]

Cur

rent

[kA]

Drive, σz =0.77084µm

X [µm]

Y [µ

m]

Witness X−Y

−100 −50 0 50

−40

−20

0

20

40

X [µm]

Y [µ

m]

Drive X−Y

−10 −5 0 5 10

−60

−40

−20

0

20

40

60

−5 −4 −3 −2 −1 0 1x 10−5

−1.5

−1

−0.5

0

0.5

1

1.5x 10−4

Z [m]

X [m

]

X [m]

Xp [1

]

Witness, εxn =2.7813e−06

−10 −5 0 5x 10−5

−1

0

1

x 10−4

X [m]

Xp [1

]

Drive, εxn =2.4846e−06

−1 −0.5 0 0.5 1x 10−5

−1

0

1

x 10−4

Y [m]

Yp [1

]

Witness, εyn =3.3686e−06

−4 −2 0 2 4x 10−5

−4

−2

0

2

4

x 10−5

Y [m]

Yp [1

]

Witness, εyn =2.4592e−06

−6 −4 −2 0 2 4 6x 10−5

−5

0

5

x 10−5

Qd  120  pC,  Qw  50  pC  ,  εn  ~  3  μm  ,  σz  ~  1μm,    spacing  variable  

120  pC  50  pC  

Page 31: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Extreme  Bunches  a  la  Brendan    

•  Good  news  and  Bad  news  

•  First  the  bad  news  •  The  charge  in  the  witness  too  low  to  beam  load  the  wake,  need  2:1  ra2o  

of  beam  currents  for  beam  loading  

•  Now  the  Good  News:  we  can  use  just  the  drive  beam  to  do  the  following  •  Can  operate  at  high  density  2x1020  cm-­‐3  

•  No  dephasing  and  TeV/m  gradients  •  Ioniza2on  injec2on  and  downramp  injec2on  possible  •  May  be  possible  to  generate  collider  quality  ultra-­‐bright  beams.  •  May  be  the  easiest  route  to  a    first  applica2on-­‐genera2on  of  coherent  x-­‐

ray  radia2on  •  We  are  developing  plasma  sources  for  such  beams    

Page 32: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Preliminary  Downramp  injec2on  Example  

Ref:  Xinlu  Xu  Private  Communica2ons,  submieed    

Page 33: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Genera2on  of  ultra-­‐low  emieance  beams  in  downramp  injec2on  

See  talk  by  Ken    

Page 34: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Conclusions  1  •  We  must  and  can  do  a  very  high  profile  experiment  on  

FACET  II  in  the  first  3  years  

-­‐  Demonstrate  full  pump  deple2on,  energy  doubling,  liele  or  no  increase  of  energy  spread  and  emieance  and  50%  beam-­‐to-­‐beam  energy  transfer  efficiency.    Lots  of  careful  work  needed  to  make  a  plasma  source  with  suitable  ramps,  and  FACET  must  deliver  the  beams  and  ability  to  accurately  focus  them.  With  Li  oven  source,  modifica2on  of  ramps  due  to    Ioniza2on  and  energy  spread  arising  from  non-­‐op2mal  beam  loading  are  the  biggest  dangers.  

Page 35: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Conclusions  2  

•  Extreme  beams  open  up  new  discovery  opportuni2es  

No  dephasing  un2l  pump  deple2on  Ioniza2on  injec2on  and  downramp  trapping  to  explore  if  ultra-­‐low  emieance  beams  can  be  generated.  This  might  be  an  easier  route  towards  a  first  applica2on.    

Page 36: FACET ii-October 17thJoshiv3 - Stanford University · Sourcesof emieance%growth% OError%in%posi2oning%the%beam%waistin%the%plasma matching%sec2on% OErrors%in%the%ramp%density%profile%of%the%matching%

Conclusions  3  

•  More  work  is  needed  to  explore  0.3  and  4  GeV  injectors.  

•  1-­‐2  KA  peak  current  seems  too  low  to  beam  load  the  wake.    

•  Can  these  bunches  be  compressed  more  to  increase  the  beam  current  to  7-­‐8  KA?  

•  If  yes  then,  we  can  explore  emieance  preserva2on  down  to  3  um  but  injec2on  more  difficult.