Fabry-Perot interferometers - Massachusetts Institute of Technology

24
1 MIT 2.71/2.710 Optics 10/24/05 wk8-a-1 Today’s summary Multiple beam interferometers: Fabry-Perot resonators Stokes relationships Transmission and reflection coefficients for a dielectric slab Optical resonance Principles of lasers Coherence: spatial / temporal MIT 2.71/2.710 Optics 10/24/05 wk8-a-2 Fabry-Perot interferometers

Transcript of Fabry-Perot interferometers - Massachusetts Institute of Technology

Page 1: Fabry-Perot interferometers - Massachusetts Institute of Technology

1

MIT 2.71/2.710 Optics10/24/05 wk8-a-1

Today’s summary• Multiple beam interferometers: Fabry-Perot resonators

– Stokes relationships– Transmission and reflection coefficients for a dielectric slab– Optical resonance

• Principles of lasers• Coherence: spatial / temporal

MIT 2.71/2.710 Optics10/24/05 wk8-a-2

Fabry-Perot interferometers

Page 2: Fabry-Perot interferometers - Massachusetts Institute of Technology

2

MIT 2.71/2.710 Optics10/24/05 wk8-a-3

Relation between r, r’ and t, t’

a

arat

air glass

a’

a’r’

a’t’

12 =′+

−=′

ttrrr Proof: algebraic from the Fresnel coefficients

or using the property of preservation of thepreservation of thefield properties upon time reversalfield properties upon time reversal

glass air

Stokes relationships

MIT 2.71/2.710 Optics10/24/05 wk8-a-4

Proof using time reversal

a

arat

air glassatt’

arat

air glass

atr’

artar2

( )( ) 1

0 22 =′+⇒=′+

′−=⇒=′+

ttrattrarrtrra

Page 3: Fabry-Perot interferometers - Massachusetts Institute of Technology

3

MIT 2.71/2.710 Optics10/24/05 wk8-a-5

Fabry-Perot Interferometer

L

incident

reflected

transmitted

Resonance condition: reflected wave = 0⇔ all reflected waves interfere destructively

nmL2λ

=wavelength in free space

refractive index

MIT 2.71/2.710 Optics10/24/05 wk8-a-6

Calculation of the reflected wave

incoming a

reflected ar

transmitted ateiδ

reflected atei2δr’

transmitted ateiδt’

reflected atei3δ(r’)2

transmitted atei2δr’t’

reflected atei4δ(r’)3

transmitted atei3δ(r’t’)2

reflected atei5δ(r’)4

transmitted atei4δ(r’)3t’

air, n=1 glass, n air, n=1 λπδ nL2=

Page 4: Fabry-Perot interferometers - Massachusetts Institute of Technology

4

MIT 2.71/2.710 Optics10/24/05 wk8-a-7

Calculation of the reflected wave

( ){ }

⎭⎬⎫

⎩⎨⎧

′−′′+=

+′+′+′′+=

δδ

δδδ

222

44222reflected

e11e

ee1e

ii

iii

rrttra

rrrttraa L

Use Stokes relationships12 =′+

−=′

ttrrr

( )δ

δ

22

2

reflected e1e1

i

i

rraa−−

=

MIT 2.71/2.710 Optics10/24/05 wk8-a-8

Transmission & reflection coefficients

( )δ

δ

22

2

reflected e1 e1

i

i

rraa

−−

= δ22dtransmitte e1 irttaa

−′

=

( )( )

( ) δ

δδ

22

22dtransmitte

22

22reflected

sin411

tcoefficienontransmissi

sin41sin4

tcoefficienreflection

RRR

aa

RRR

aa

+−−

==⎟⎟⎠

⎞⎜⎜⎝

+−==⎟⎟

⎞⎜⎜⎝

2rR ≡

Page 5: Fabry-Perot interferometers - Massachusetts Institute of Technology

5

MIT 2.71/2.710 Optics10/24/05 wk8-a-9

Transmission & reflection vs pathR=0.95

R=0.5

MIT 2.71/2.710 Optics10/24/05 wk8-a-10

Fabry-Perot terminology

nLmc2

( )nL

cm2

1+ ( )nL

cm2

2+ frequency ν

bandwidth

freespectralrange

resonancefrequencies

Page 6: Fabry-Perot interferometers - Massachusetts Institute of Technology

6

MIT 2.71/2.710 Optics10/24/05 wk8-a-11

Fabry-Perot terminologyFWHM Bandwidth is inversely proportionalto the finessefinesse F (or quality factorquality factor)of the cavity

∆νFWHM

RRF

−≡

∆νFSR

nLFc

2FWHM =∆ν

FFSR

FWHMνν ∆

=∆ ( ) ( )( )finesse

range spectral freebandwidth =

MIT 2.71/2.710 Optics10/24/05 wk8-a-12

Spectroscopy using Fabry-Perot cavity

Experimental measurement principle:Experimental measurement principle:

container with specimen to be measured

transparentwindows

light beam ofknown spectrum

spectrum of light beamis modified by substance

partially–reflectingmirrors (FP cavity)

powermeter

Goal: Goal: to measure the specimen’s absorption as function offrequency ω

scanningstage

(controls cavitylength L)

Page 7: Fabry-Perot interferometers - Massachusetts Institute of Technology

7

MIT 2.71/2.710 Optics10/24/05 wk8-a-13

Spectroscopy using Fabry-Perot cavity

Experimental measurement principle:Experimental measurement principle:

container with specimen to be measured

transparentwindows

light beam ofknown spectrum

spectrum of light beamis modified by substance

partially–reflectingmirrors (FP cavity)

powermeter

Goal: Goal: to measure the specimen’s absorption as function offrequency ω

electro-optic(EO) modulator

(controls refr.index n)

MIT 2.71/2.710 Optics10/24/05 wk8-a-14

Spectroscopy using Fabry-Perot cavity

ω

I(ω)

unknownspectrum

Fabry–Perottransmissivity

ω1sample measured:

I(ω1)

Page 8: Fabry-Perot interferometers - Massachusetts Institute of Technology

8

MIT 2.71/2.710 Optics10/24/05 wk8-a-15

Spectroscopy using Fabry-Perot cavity

ω

I(ω)

unknownspectrum

Fabry–Perottransmissivity

ω2sample measured:

I(ω2)

MIT 2.71/2.710 Optics10/24/05 wk8-a-16

Spectroscopy using Fabry-Perot cavity

ω

I(ω)

unknownspectrum

Fabry–Perottransmissivity

ω3sample measured:

I(ω3)

Page 9: Fabry-Perot interferometers - Massachusetts Institute of Technology

9

MIT 2.71/2.710 Optics10/24/05 wk8-a-17

Spectroscopy using Fabry-Perot cavity

ω

I(ω)

unknownspectrum

Fabry–Perottransmissivity

ω3sample measured:

I(ω3)

unknown spectrumwidth should not exceed the FSR

MIT 2.71/2.710 Optics10/24/05 wk8-a-18

Spectroscopy using Fabry-Perot cavity

ω

I(ω)

unknownspectrum

Fabry–Perottransmissivity

ω3sample measured:

I(ω3)

spectral resolutionspectral resolutionis determined by thecavity bandwidth

Page 10: Fabry-Perot interferometers - Massachusetts Institute of Technology

10

MIT 2.71/2.710 Optics10/24/05 wk8-a-19

Lasers

MIT 2.71/2.710 Optics10/24/05 wk8-a-20

Absorption spectra

λ (µm)

Atm

osph

eric

tran

smis

sion

human vision

Page 11: Fabry-Perot interferometers - Massachusetts Institute of Technology

11

MIT 2.71/2.710 Optics10/24/05 wk8-a-21

Semi-classical view of atom excitationsEnergy

Energy

Atom in ground stateAtom in ground state

Atom in excited stateAtom in excited state

Ze+e-

MIT 2.71/2.710 Optics10/24/05 wk8-a-22

Light generation

ground state

excited state

equilibrium: most atomsin ground state

Energy

Page 12: Fabry-Perot interferometers - Massachusetts Institute of Technology

12

MIT 2.71/2.710 Optics10/24/05 wk8-a-23

Light generation

ground state

excited state

A pump mechanism (e.g. thermal excitation or gas discharge) ejects some atoms to the excited state

Energy

MIT 2.71/2.710 Optics10/24/05 wk8-a-24

Light generation

ground state

excited state

The excited atoms radiativelydecay, emitting one photon each

Energy

Page 13: Fabry-Perot interferometers - Massachusetts Institute of Technology

13

MIT 2.71/2.710 Optics10/24/05 wk8-a-25

Light amplification: 3-level system

ground stateequilibrium: most atomsin ground state; note the existenceof a third, “super-excited” state

Energy super-excited state

excited state

MIT 2.71/2.710 Optics10/24/05 wk8-a-26

Light amplification: 3-level system

ground stateUtilizing the super-excited stateas a short-lived “pivot point,” thepump creates a population inversion

Energy super-excited state

excited state

Page 14: Fabry-Perot interferometers - Massachusetts Institute of Technology

14

MIT 2.71/2.710 Optics10/24/05 wk8-a-27

Light amplification: 3-level system

ground stateWhen a photon enters, ...

Energy super-excited state

excited state

MIT 2.71/2.710 Optics10/24/05 wk8-a-28

Light amplification: 3-level system

ground state

Energy super-excited state

excited state

When a photon enters, it “knocks” an electron from the inverted population down to the ground state, thus creatinga new photon. This amplification process is called stimulated emission

Page 15: Fabry-Perot interferometers - Massachusetts Institute of Technology

15

MIT 2.71/2.710 Optics10/24/05 wk8-a-29

Light amplifier

Gain medium(e.g. 3-level system

w population inversion)

Pin

Pout =gPin

MIT 2.71/2.710 Optics10/24/05 wk8-a-30

Light amplifier w positive feedback

Gain medium(e.g. 3-level system

w population inversion)

Pin

Pout =gPin

gΣ+

+

When the gain exceeds the roundtrip losses, the system goes into oscillation

Page 16: Fabry-Perot interferometers - Massachusetts Institute of Technology

16

MIT 2.71/2.710 Optics10/24/05 wk8-a-31

Laser

Gain medium(e.g. 3-level system

w population inversion)

LightAmplification throughStimulatedEmission ofRadiation

initial photon

Partiallyreflecting

mirror

MIT 2.71/2.710 Optics10/24/05 wk8-a-32

Laser

Gain medium(e.g. 3-level system

w population inversion)

LightAmplification throughStimulatedEmission ofRadiation

initial photonamplified once

Partiallyreflecting

mirror

Page 17: Fabry-Perot interferometers - Massachusetts Institute of Technology

17

MIT 2.71/2.710 Optics10/24/05 wk8-a-33

Laser

Gain medium(e.g. 3-level system

w population inversion)

LightAmplification throughStimulatedEmission ofRadiation

initial photonamplified once

reflected

Partiallyreflecting

mirror

MIT 2.71/2.710 Optics10/24/05 wk8-a-34

Laser

Gain medium(e.g. 3-level system

w population inversion)

LightAmplification throughStimulatedEmission ofRadiation

initial photonamplified once

reflected

amplified twice

Partiallyreflecting

mirror

Page 18: Fabry-Perot interferometers - Massachusetts Institute of Technology

18

MIT 2.71/2.710 Optics10/24/05 wk8-a-35

Laser

Gain medium(e.g. 3-level system

w population inversion)

LightAmplification throughStimulatedEmission ofRadiation

initial photonamplified once

reflected

amplified twice

Partiallyreflecting

mirror

reflected

output

MIT 2.71/2.710 Optics10/24/05 wk8-a-36

Laser

Gain medium(e.g. 3-level system

w population inversion)

LightAmplification throughStimulatedEmission ofRadiation

initial photonamplified once

reflected

amplified twice

Partiallyreflecting

mirror

reflected

output

amplified againetc.

Page 19: Fabry-Perot interferometers - Massachusetts Institute of Technology

19

MIT 2.71/2.710 Optics10/24/05 wk8-a-37

Confocal laser cavities

waist w0

diffractionangle

0

tannwπλθ =

Beam profile: 2D Gaussian function

“TE00 mode”

MIT 2.71/2.710 Optics10/24/05 wk8-a-38

Other “transverse modes”

TE10 TE11

(usually undesirable)

Page 20: Fabry-Perot interferometers - Massachusetts Institute of Technology

20

MIT 2.71/2.710 Optics10/24/05 wk8-a-39

Types of lasers

• Continuous wave (cw)• Pulsed

– Q-switched– mode-locked

• Gas (Ar-ion, HeNe, CO2)• Solid state (Ruby, Nd:YAG, Ti:Sa)• Diode (semiconductor)• Vertical cavity surface-emitting lasers –VCSEL– (also sc)• Excimer (usually ultra-violet)

MIT 2.71/2.710 Optics10/24/05 wk8-a-40

CW (continuous wave lasers)

1/ν

t

Laser oscillation well approximated by a sinusoid

Typical sources: • Argon-ion: 488nm (blue) or 514nm (green); power ~1-20W• Helium-Neon (HeNe): 633nm (red), also in green and yellow; ~1-100mW• doubled Nd:YaG: 532nm (green); ~1-10W

Quality of sinusoid maintained over a time duration known as“coherence time” tc

Typical coherence times ~20nsec (HeNe), ~10µsec (doubled Nd:YAG)

Page 21: Fabry-Perot interferometers - Massachusetts Institute of Technology

21

MIT 2.71/2.710 Optics10/24/05 wk8-a-41

Two types of incoherence

d1 d2

Michelson interferometer Young interferometer

1r1r

2r

spatialspatialincoherenceincoherence

temporaltemporalincoherenceincoherence

pointsource

matchedpaths

poly-chromatic light(=multi-color, broadband)

mono-chromatic light(= single color, narrowband)

MIT 2.71/2.710 Optics10/24/05 wk8-a-42

Two types of incoherence

d1 d2

1r1r

2r

spatialspatialincoherenceincoherence

temporaltemporalincoherenceincoherence

pointsource

matchedpaths

waves from unequal pathswaves from unequal pathsdo not interferedo not interfere

waves with equal pathswaves with equal pathsbut from different pointsbut from different points

on the wavefronton the wavefrontdo not interferedo not interfere

Page 22: Fabry-Perot interferometers - Massachusetts Institute of Technology

22

MIT 2.71/2.710 Optics10/24/05 wk8-a-43

Coherent vs incoherent beamsMutually coherent: superposition field amplitudeamplitudeis described by sum of complex amplitudessum of complex amplitudes

1e11φiaa =

2e22φiaa =

221

2

212121 ee

aaaI

aaaaa ii

+==

+=+= φφ

Mutually incoherent: superposition field intensityintensityis described by sum of intensitiessum of intensities1I

21 III +=

2I (the phases of the individual beams vary randomly with respect to each other; hence,we would need statistical formulation todescribe them properly — statistical optics)

MIT 2.71/2.710 Optics10/24/05 wk8-a-44

Coherence time and coherence length

incominglaserbeam

l1

l2

Michelson interferometer

Intensity

l1

• l1-l2 much shortershorter than “coherence length” ctc

sharp interference fringes

Intensity

l1

• l1-l2 much longerlonger than “coherence length” ctc

no interference

0

2I0

I0

Page 23: Fabry-Perot interferometers - Massachusetts Institute of Technology

23

MIT 2.71/2.710 Optics10/24/05 wk8-a-45

Coherent vs incoherent beamsCoherent: superposition field amplitudeamplitudeis described by sum of complex amplitudessum of complex amplitudes

1e11φiaa =

2e22φiaa =

221

2

212121 ee

aaaI

aaaaa ii

+==

+=+= φφ

Incoherent: superposition field intensityintensityis described by sum of intensitiessum of intensities1I

21 III +=

2I (the phases of the individual beams vary randomly with respect to each other; hence,we would need statistical formulation todescribe them properly — statistical optics)

MIT 2.71/2.710 Optics10/24/05 wk8-a-46

Mode-locked lasers

Typical sources: Ti:Sa lasers (major vendors: Coherent, Spectra Phys.)Typical mean wavelengths: 700nm – 1.4µm (near IR)

can be doubled to visible wavelengthsor split to visible + mid IR wavelengths using OPOs or OPAs(OPO=optical parametric oscillator;OPA=optical parametric amplifier)

Typical pulse durations: ~psec to few fsec(just a few optical cycles)

Typical pulse repetition rates (“rep rates”): 80-100MHzTypical average power: 1-2W; peak power ~MW-GW

Page 24: Fabry-Perot interferometers - Massachusetts Institute of Technology

24

MIT 2.71/2.710 Optics10/24/05 wk8-a-47

Overview of light sourcesLasernon-Laser

Thermal: polychromatic,spatially incoherent(e.g. light bulb)

Gas discharge: monochromatic,spatially incoherent(e.g. Na lamp)

Light emitting diodes (LEDs):monochromatic, spatially incoherent

Continuous wave (or cw):strictly monochromatic,spatially coherent(e.g. HeNe, Ar+, laser diodes)

Pulsed: quasi-monochromatic,spatially coherent(e.g. Q-switched, mode-locked)

mono/poly-chromatic = single/multi color

pulse duration

~nsec ~psec to few fsec