Exposicion automatas

20
UNIVERSIDAD FERMÍN TORO VICE-RECTORADO ACADEMICO DECANATO DEINGENIERÍA ESCUELA DE COMPUTACIÓN Autómatas Probalísticos Integrantes: Isaías Medina 20672454 Luis Quiroga 24155286 Jorge Martínez 19323838

Transcript of Exposicion automatas

Page 1: Exposicion automatas

UNIVERSIDAD FERMÍN TOROVICE-RECTORADO ACADEMICO

DECANATO DEINGENIERÍAESCUELA DE COMPUTACIÓN

Autómatas Probalísticos

Integrantes:Isaías Medina 20672454Luis Quiroga 24155286Jorge Martínez 19323838

Autómatas y Lenguajes Formales

Page 2: Exposicion automatas

Son autómatas finitos en los que las transiciones entre estados a partir de símbolos de entrada pueden no producirse de forma segura (probabilidad = 1)

En su funcionamiento interviene el concepto de probabilidad, asociada a que se produzca una determinada transición.

No se habla del estado en el que se encuentra el autómata en un determinado instante, sino de la probabilidad de que se encuentre en cada uno de los estados del autómata.

Autómatas Probalísticos

Page 3: Exposicion automatas

Ma contiene las probabilidades de transición de un estado a otro cuando se recibe el símbolo a.

AFP = (Σ, Q, M, P(0), F), es una quíntupla

Σ: Es el alfabeto de entrada

Q: conjunto de estados, finito y no vacío

M: conjunto de matrices de probabilidad de transición entre estados M = {Ma |a ∈ Σ}

P(0): vector de estado inicial: contiene la probabilidad deencontrarse en el estado inicial.

F⊆Q: Conjunto de estados finales o de aceptación (no vacío).

Definición

Page 4: Exposicion automatas

Los estados Q se

representan como

vértices, etiquetados

con su nombre en el interior.

Una transición desde un estado a otro, se

representa mediante una arista dirigida que une a estos

vértices.

El estado inicial q0 se caracteriza

por tener una arista que llega a él,

proveniente de ningún

otro vértice.

El o los estados finales F se representan mediante vértices que están encerrados a su vez por otra circunferencia.

Representación como Diagrama de Estados

Page 5: Exposicion automatas

∀a ∈ Σ, ∃ M(a) =

P11 P12 … P1nP21 P22 … P2n… …… …Pn1 Pn2 … Pnn Para cada estado i,

se cumple:

n: número de estados: | Q |

pij: probabilidad de que estando en el estado i y recibiendo una a como entrada, transite al estado j. 0 ≤Pij ≤ 1

Matrices de Probabilidad de Transición

Por cada símbolo a de Σ se define una matriz de probabilidad de transición, M(a), que define la probabilidad de dado que el autómata se encuentre en un determinado estado y reciba el símbolo de entrada a, transite a cada uno de los demás estados.

Page 6: Exposicion automatas

P(t) es el vector de estados en un instante t. Indica la probabilidad de cada estado en el instante t

Tiene una componente para cada estado del AFP.

P(t) = (P1(t), ..., Pn(t)), para un AFP con n estados

Cada Pi(t) es la probabilidad de que el AFP se encuentre en el estado i.

Para el vector completo: P(t+1) = P(t)xM(a)

Vectores de Estado

Page 7: Exposicion automatas

Sea el AFP = (Σ, Q, M, P(0), F, Θ), donde Θ es un umbral con valoresentre 0 y 1. Se recibe la palabra x = a1a2...ap El vector de estados en el instante p será:

El lenguaje aceptado por el AFP es:L = {x l x∈Σ + y Pf(x) ≥ Θ} siendo Pf(x): probabilidad del estado final

Una palabra es aceptada por un AFP cuando la probabilidad delestado final, una vez calculado el vector de estados, es ≥ Θ

Lenguaje Aceptado por un AFP

Page 8: Exposicion automatas

Se pueden ver los AFD’s como un caso particular de AFP:

AFD = (Σ,Q, f ,q0, F) ⇒ AFP = (Σ,Q,M,P(0),F,Θ)

P(0)• Es un vector

booleano, que contiene un único 1, en la componente del estado inicial.

∀ a∈Σ, M(a)

• Es una matriz de 0’s y 1’s que se construye a partir de f, haciendo Maij = 1 si f(qi,a) = qj y Maij = 0 en caso contrario.

M(a)• Todas las filas

de M(a) tendrán un solo 1.

• Θ>0, lo habitual es Θ=1.

AFD como AFB

Page 9: Exposicion automatas

Reco

nocim

ient

o de

Vo

z

• Cuando una persona habla a un micrófono el sistema puede generar como salida las palabras dichas por esta persona, para ello se hace uso de AFP llamadas cadenas de Márkov. Por poner un ejemplo si después de una a tenemos un 10 % de probabilidades de tener una d y un 1 % de tener una e, el autómata se construirá tendrá en cuenta estas probabilidades para su funcionamiento y reconocimiento de los caracteres.

Robó

tica

• Cuando un robot está en movimiento y quiere saber lo que le rodea se hacen uso de los AFP ya que los sensores siempre pueden tener un error, o existir un rozamiento en las ruedas que afecte a su percepción de los elementos que le rodean, etc. Podemos implementar en los robots un AFP para según los elementos que le rodean y las consecuencias de las acciones del robot en el entorno, este actúe de una forma u otra.

Aplicaciones de los AFP’S

Page 10: Exposicion automatas

Autómata de Células de McCulloch-Pitts

Page 11: Exposicion automatas

Posteriormente y siguiendo con este mismo afán de emular el funcionamiento del cerebro humano se han ido desarrollando numerosos modelos de redes neuronales artificiales (RNA).

Con este aporte “nace” el campo de la inteligencia artificial.

En la década de los 40, el neurobiólogo Warren McCulloch y el estadístico Walter Pitts, Propusieron un modelo que tomaba ciertas características de una neurona biológica el cual trataba de explicar el funcionamiento del cerebro humano por medio de una red de células conectadas entre si.

Historia

Page 12: Exposicion automatas

Son las entradas de la célula

Es un umbral que tiene como valor un numero entero

Es el nombre de la célula.

Es la salida.

q(t) = estado en el que se encuentra la célula en un determinado instante t

Modelo Propuesto por McCulloch-Pitts

Page 13: Exposicion automatas

Para cada Autómata de Células de McCulloch-Pitts hay un AF equivalente. Para construirlo, se distinguen dos casos:

De todas las entradas, sólo puede haber una activa en cada instante t. puede haber 2 posibilidades (e1=0 , e2=1) (e1=1 , e2=0)

ACTIVACIÓN ÚNICA En el segundo caso, para pasar de un Autómata de Células a un AF, puede haber varias entradas activas al mismo tiempo o no haber ninguna activa. Puede haber 4 posibilidades (e1=0 , e2=0) (e1=0 , e2=1) (e1=1 , e2=0) (e1=1 , e2=2).

ACTIVACIÓN MÚLTIPLE

Construccion de Un Autómata Finito Equivalente

Page 14: Exposicion automatas

Se tiene el siguiente autómata de células: C1:

• Tiene un umbral de 0• Tienes 2 entradas: una

inhibidora (e1) y una excitadora (r2).

• Tiene un salida r1 C2:• Tiene un umbral de 1• Tienes 2 entradas

excitadoras: (r1) y (e2)• Tiene un salida r2 = r

que es la salida del Autómata.

Ejemplo

Se observa que:

Page 15: Exposicion automatas

ƒ 10 01

q00 q00 q11

q01 q10 q11

q10 q01 q11

q11 q11 q11

Page 16: Exposicion automatas

Se puede simplificar el AF equivalente, eliminando aquellos estados inaccesibles desde el estado inicial.

En este caso q10,q01 son inaccesibles y se pueden eliminar.

Diagrama de Transición de estado asociado al ejemplo anterior

Page 17: Exposicion automatas

Para cada AF hay un Autómata de Células de McCulloch-Pitts equivalente, y se construye de la siguiente manera:

Construcción de un autómata de células equivalente de un autómata

finito

Page 18: Exposicion automatas

SE TIENE EL SIGUIENTE AUTÓMATA FINITO:

ƒ 0 1

q q p

r r p

p p r

Ejemplo

Page 19: Exposicion automatas

Automata Correspodiente al Ejemplo

Page 20: Exposicion automatas

Gracias por su Atención!!