Exploring the Invisible Universe - Wright Laboratory ... Student Open... · Exploring the Invisible...

60
Karsten Heeger, Yale University Münster, April 10, 2014 Karsten M. Heeger Yale University March 27, 2015 1 Exploring the Invisible Universe: From Discovery to Precision Measurements

Transcript of Exploring the Invisible Universe - Wright Laboratory ... Student Open... · Exploring the Invisible...

Karsten Heeger, Yale University Münster, April 10, 2014

Karsten M. HeegerYale University

March 27, 2015

1

Exploring the Invisible Universe:From Discovery to Precision Measurements

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

Our Universe

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

“neutrinos are the most abundant particles in the Universe besides photons”

Fig: Murayama

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

“neutrinos are the most abundant particles in the Universe besides photons”

330 neutrinos/cm3.

One billion more neutrinos than protons.

Fig: Murayama

Cluster Cosmology in 1930s

Fritz Zwicky 1898-1974

In 1933, Zwicky used the virial theorem to infer the existence of dark matter in the Coma cluster.

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

Evidence for Dark MatterGravitational Evidence for Dark Matter

gravitational lensing

rotation curves of galaxies

Bullet Cluster

In 2005, the Bullet Cluster “proved” the existence of dark matter.

X-ray emitting gas(most of the baryons)

Mass distribution inferred from gravitational lensing

(dark matter)

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 8

Heavy Elements:0.03% Ghostly

Neutrinos: ~0.3%

Dark Energy:70%

Dark Matter:25%

Matter in the Universe

neutrinos are highly abundant but with little massdark matter accounts for 85% of all matter

Free Hydrogen and Helium: 4%

Stars:0.5%

Neutrinos and Matter

Karsten Heeger, Yale University Yale, March 27, 2015

c

Neutrinos and the Early Universe

at T < 100 keVdeuterium formation, followed by BBN

at T < 1 eV (380,000 yrs)photons decouple, cannot break up atomsno more free charges to scatter photonsUniverse becomes transparent

n+p ↔ d+γ p+e- ↔ H+γ

at T ~ 1 MeV (~ 1 sec)neutrinos decouplerelic neutrino spectrum left over

9

Karsten Heeger, Yale University Yale, March 27, 2015

c

Neutrinos and the Early Universe

380,000 yrs now

10

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

sMassive Neutrinos Play a Role in Large Scale Structure of the Universe

Even small neutrino mass influences power spectrum of galaxy correlations

Neutrinos that are more massive cause more clustering on large scales.

11

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 12

“without neutrinos dying stars would not explode”

“neutrinos helped cook the light elements in the Universe”

SN 1987ANeutrinos and Supernovae

Karsten Heeger, Yale University Yale, March 27, 2015

Early Days of the Neutrino

N → N’ + e- some nuclei emit electrons!

Chadwick, 1914

Pauli, 1930

Reines and Cowan, 1956 “Observation of the Free Antineutrino”

inverse beta decayνe + p → e+ + n

13

Karsten Heeger, Yale University Yale, March 27, 2015

First Proposal For Direct Detection of Neutrino

14

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrinos in the Standard Model

• 3ν flavors• upper limits on mν from kinematic studies.• massless ν (ad hoc assumption in Standard Model)

Discovery of νµ and ντ Accelerator studies of ν

The Standard Model

15

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrino Astrophysics

“…to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars...” (Bahcall, 1964)

1938 Bethe & Critchfield p + p → 2H + e+ + νe

1947 Pontecorvo,1949 Alvarez propose neutrino detection through 37Cl + νe → 37Ar + e-

1960’s Ray Davis builds chlorine detector.John Bahcall, generates first solar model calculations and ν flux predictions.

Light Element Fusion Reactionsp + p →2H + e+ + νe p + e- + p → 2H + νe

2H + p →3He + γ

3He + p →4He + e+ +νe

3He + 4He →7Be + γ

7Be + e- →7Li + γ +νe

7Li + p → α + α

3He + 3He →4He + 2p

99.75% 0.25%

85% ~15%

0.02%15.07%

~10-5%

7Be + p →8B + γ

8B → 8Be* + e+ + νe

16

Karsten Heeger, Yale University Yale, March 27, 2015

Cl-Ar Solar Neutrino Experiment at Homestake

17

νe + 37Cl→ 37Ar + e-

1970 - 1994SSM

only sensitive to νe

Karsten Heeger, Yale University Yale, March 27, 2015

Solar Neutrino Measurements with SNO

18

Even with all solar neutrino fluxes as free parameters, cannot reproduce the data. PMSM < 1.7% at 95% CL KMH, Robertson PRL 77:3270 (1996)

Solar Neutrino Problem: Too few νe observed from the Sun.νeνeνe

νe

Neutral-CurrentCharged-CurrentElastic Scattering

model-independent test of flavor change

νe+ νµ+ντνeνe+ 0.15 (νµ+ντ)

Sudbury Neutrino Observatory (SNO)

Karsten Heeger, Yale University Yale, March 27, 2015

Solar Neutrino Measurements with SNO

19

2.0

1.5

1.0

0.5

0.0

Neutral-Current Elastic Scattering Charged-Current

νe+ 0.15 (νµ+ντ) νe

SSM

νe+ νµ+ντ

CC shape unconstrained

5.3 σ

NeutralCurrent (NC)

Elastic Scattering (ES)

ChargedCurrent (CC)

CC shape constrained

Neu

trino

Sig

nal

(SS

M/B

P00

)

Total Neutrino flux Electron Neutrino flux

Results from SNO, 2002

solar neutrinos change flavor

total flux of active solar neutrinos agrees with solar models

SNO results, 2002

Karsten Heeger, Yale University Yale, March 27, 2015

Reactor Antineutrinos with KamLAND

55 reactors

Kamioka

KamLANDReactors in Japan

reactor ν flux at KamLAND~ 6 x 106/cm2/sec

20

1kt liquid scintillator detector

mean, flux-weighted reactor distance ~ 180km

Karsten Heeger, Yale University Yale, March 27, 2015

Reactor Neutrino Physics 1956-2003 PRL 90:021802 (2003)Observed νe 54 events No-Oscillation 86.8 ± 5.6 events Background 1 ± 1 events Livetime: 162.1 ton-yr

KamLAND:Long Baseline

Reactor !e

12

4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0

The

rmal

Pow

er F

lux

(µW

/cm

2 )

Sur

viva

l Evi

s>

2.6

MeV

123456

0 50 100Distance (km)

150 200 250 300 350 400 450 50000.20.40.60.811.2

Figure 1. Distribution of nuclear power reactors as a function of distance fromthe KamLAND site. The solid histogram is the current operation and the dashedhistogram is the expected operation in 2006 (Shika at 88 km increases by a factor3). The height of the histogram shows the thermal power flux contribution atKamioka. Also shown as solid (!m2 = 7×10−5 eV2), dashed (3×10−5) anddotted (1.4×10−4) lines are the survival probability of ν̄e as a function of distance(all for sin2 2θ = 0.84). The probability is calculated for events above 2.6 MeVin visible energy.

In the observation of reactor neutrinos, four fissile nuclei (235U, 239Pu, 238U and 241Pu) areimportant and the others contribute only at the 0.1% level. Fission fragments from these nucleisequentially β decay and emit anti-electron–neutrinos. The purity of the ‘anti’ neutrinos is veryhigh and electron–neutrino contamination is only at the 10 ppm level above an inverse β decaythreshold, 1.8 MeV. These four nuclei release similar energy when they undergo fission [15] (235U201.8 ± 0.5 , 239Pu 210.3 ± 0.6, 238U 205.0 ± 0.7 and 241Pu 212.6 ± 0.7 MeV). Thus, the fissionrate is strongly correlated with the thermal power output that is measurable at much better than 2%even without any special care. Then, one fission causes about six neutrino emissions on averageand, therefore, the neutrino intensity can be roughly estimated to be ∼2 × 1020 ν̄e GW−1

th s−1.Fission spectra reach equilibrium within a day above ∼2 MeV. This delay is a possible cause ofsystematic error. Also, attention to the long-lived nuclei such as

106RuT1/2=372 d−−−−−→ Rh −−−−−−−−→

Emax=3.541 MeVPd,

144CeT1/2=285 d−−−−−→ Pr −−−−−−−−→

Emax=2.996 MeVNd

is necessary [16]. They affect the correlation between thermal power and neutrino flux at low-energy region by <1% level.

The beta spectra from 235U, 239Pu and 241Pu have been measured with a spectrometerirradiating thermal neutrons at ILL [17]. They fitted the observed beta spectra from 30hypothetical beta branches and converted each branch to a neutrino spectrum [18]. In the caseof 238U, it does not undergo fission with thermal neutrons and only a theoretical calculation [19]is available. This calculation traces 744 unstable fission products and obtains the correspondingneutrino spectrum. The error on the calculated spectrum is larger than the measurement, but it

New Journal of Physics 6 (2004) 147 (http://www.njp.org/)

Many reactors, far away

One kTon of Gd-LS, extremely well shielded, with about one signal event per day.

mean, flux-weighted reactor distance ~ 180km

21

solar predicted KamLAND

KamLAND 2003

Evidence for Reactor νe Disappearance

Karsten Heeger, Yale University Yale, March 27, 2015

Direct Evidence for Neutrino Oscillation

22

KamLANDSNOSolar νe Reactor νe

Φνe

Φνμτ

L/E

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrino OscillationNeutrino Oscillation Imply Neutrino Mass

Pi→i = sin2 2θ sin2 1.27Δm2 LE

%

& '

(

) *

First Second First Second

Mass states

Time, t

Weak states

ν1 ν2 νe

νe cosθ sinθ2sinθ cosθ νµ

νµ

( ) ν2( )( )=ν1

ν1

ν2

νe

νµ

ν2

ν1

cosθ

sinθ

θ

θ

2

Pure νµ

0

Pure νµPure νµ

Mass States Weak States

Time, t

Pure νµ Pure νµ

First FirstSecond Second

νeνeνµ

"

# $ $

%

& ' ' =

cosθ sinθ2sinθ cosθ)

* +

,

- . ν1ν2

"

# $ $

%

& ' '

Pontecorvo, 1968

Neutrino Oscillations

6

Illustrate with only two generations

|⇥a⇥ = cos �|⇥1⇥ � sin �|⇥2⇥|⇥b⇥ = sin �|⇥1⇥+ cos �|⇥2⇥

|⇥a⇥ = cos �|⇥1⇥ � sin �|⇥2⇥|⇥b⇥ = sin �|⇥1⇥+ cos �|⇥2⇥

|⇥(t)⇥ = e�iHt|⇥(t = 0)⇥

|⇥a⇥ = cos �|⇥1⇥ � sin �|⇥2⇥|⇥b⇥ = sin �|⇥1⇥+ cos �|⇥2⇥

|⇥(t)⇥ = e�iHt|⇥(t = 0)⇥

H|⇥1⇥ = E1|⇥1⇥ E1 =�p2 + m2

1

⇥1/2

H|⇥2⇥ = E2|⇥2⇥ E2 =�p2 + m2

2

⇥1/2

energy and baseline dependent

there are at least 3 states...

23

Pure νµ

osc frequency depends on Δm2

amplitude depends on θ

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrino OscillationNeutrino Oscillation Imply Neutrino Mass

Pi→i = sin2 2θ sin2 1.27Δm2 LE

%

& '

(

) *

First Second First Second

Mass states

Time, t

Weak states

ν1 ν2 νe

νe cosθ sinθ2sinθ cosθ νµ

νµ

( ) ν2( )( )=ν1

ν1

ν2

νe

νµ

ν2

ν1

cosθ

sinθ

θ

θ

2

Pure νµ

0

Pure νµPure νµ

Mass States Weak States

Time, t

Pure νµ Pure νµ

First FirstSecond Second

νeνeνµ

"

# $ $

%

& ' ' =

cosθ sinθ2sinθ cosθ)

* +

,

- . ν1ν2

"

# $ $

%

& ' '

Pontecorvo, 1968

Neutrino Oscillations

6

Illustrate with only two generations

|⇥a⇥ = cos �|⇥1⇥ � sin �|⇥2⇥|⇥b⇥ = sin �|⇥1⇥+ cos �|⇥2⇥

|⇥a⇥ = cos �|⇥1⇥ � sin �|⇥2⇥|⇥b⇥ = sin �|⇥1⇥+ cos �|⇥2⇥

|⇥(t)⇥ = e�iHt|⇥(t = 0)⇥

|⇥a⇥ = cos �|⇥1⇥ � sin �|⇥2⇥|⇥b⇥ = sin �|⇥1⇥+ cos �|⇥2⇥

|⇥(t)⇥ = e�iHt|⇥(t = 0)⇥

H|⇥1⇥ = E1|⇥1⇥ E1 =�p2 + m2

1

⇥1/2

H|⇥2⇥ = E2|⇥2⇥ E2 =�p2 + m2

2

⇥1/2

energy and baseline dependent

there are at least 3 states...

24

Pure νµ

osc frequency depends on Δm2

amplitude depends on θ

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrino Energies

Big-Bang neutrinos ~ 0.0004 eV

Neutrinos from the Sun < 20 MeV

Neutrinos from accelerators up to GeV (109 eV)

Antineutrinos from nuclear reactors < 10.0 MeV

Atmospheric neutrinos ~ GeV

black holes, gamma ray bursters, supernova remnants, cosmic rays, WIMPs?? 1011eV -1021 eV

25

Karsten Heeger, Yale University Yale, March 27, 2015 26

6 detectors, Dec 2011- Jul 2012 217 days

now running with 8 detectors

target mass: 20 ton per ADphotosensors: 192 8”-PMTsenergy resolution: (7.5 / √E + 0.9)%

Gd-doped liquid scintillator

liquid scintillatorγ-catcher

mineral oil

six 2.9 GWth reactors

Daya Bay Reactor Experiment

Experimental Halls Antineutrino Detector

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 27

Karsten Heeger, Yale University Yale, March 27, 2015

Antineutrino Candidates (Inverse Beta Decay)

Prompt + Delayed Coincidence

28

IBD candidates

νe + p → e+ + n

Uncertainty in relative Ed efficiency (0.12%) between detectors is largest systematic.

Prompt Energy Signal Delayed Energy Signal

Prompt energy (MeV)0 2 4 6 8 10 12

Even

ts/0.

25 M

eV

0

500

1000

1500

2000

Data, DYB-AD1

MC

Delayed energy (MeV)0 2 4 6 8 10 12

Even

ts/0.

05 M

eV

0

500

1000

1500

2000

2500

3000

Data, DYB-AD1

MC

prompt event:positron deposits energy and annihilates (~ns)

delayed event: neutron thermalizes and captures on Gd

Karsten Heeger, Yale University Yale, March 27, 2015

Antineutrino Rate vs. Time

29

• Predicted Rate assumes no oscillation• Absolute normalization determined by fit to data• Normalization within a few percent of expectations

Detected rate strongly correlated with reactor flux expectationsRun Time

400

500

600

700

800

900

400

500

600

700

800

405060708090

100110IB

D R

ate

(/da

y/A

D)

Daya Bay Near Hall

Ling Ao Near Hall

Far Hall

Jan Feb Mar Apr May Jun JulDec2011 2012 2012 2012 2012 2012 2012 2012

DataNo OscillationBest Fit

Karsten Heeger, Yale University Yale, March 27, 2015

Measurement of Neutrino Mixing at Daya Bay

Observation of electron antineutrino disappearance over km-long baselines

νe νe,x νe,x

Karsten Heeger, Yale University Yale, March 27, 2015

Daya Bay Neutrino Oscillation

31

Neutrino oscillation is energy and baseline dependent

Pi→i = sin2 2θ sin2 1.27Δm2 LE

%

& '

(

) * Pi→j

Daya Bay demonstrates L/E oscillationDaya BayPhys.Rev.Lett. 112 (2014) 061801

Karsten Heeger, Yale University Yale, March 27, 2015

From Anomalies to Precision Oscillation Physics

32

solar neutrino problem

Ga

Cl SK

1960 -1990oscillation searches1990 - 2000

precision measurements2000 - present

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrino Mixing

33

Mixing Angles

atmospheric, K2K reactor and accelerator 0νββSNO, solar SK, KamLAND

!

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 U µ3

U"1 U" 2 U" 3

#

$

% % %

&

'

( ( (

=

0.8 0.5 Ue3

0.4 0.6 0.70.4 0.6 0.7

#

$

% % %

&

'

( ( (

=

1 0 00 cos)23 sin)230 *sin)23 cos)23

#

$

% % %

&

'

( ( ( +

cos)13 0 e* i,CP sin)130 1 0

*ei,CP sin)13 0 cos)13

#

$

% % %

&

'

( ( ( +

cos)12 sin)12 0*sin)12 cos)12 00 0 1

#

$

% % %

&

'

( ( ( +

1 0 00 ei- / 2 00 0 ei- / 2+ i.

#

$

% % %

&

'

( ( (

!

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 U µ3

U"1 U" 2 U" 3

#

$

% % %

&

'

( ( (

=

0.8 0.5 Ue3

0.4 0.6 0.70.4 0.6 0.7

#

$

% % %

&

'

( ( (

=

1 0 00 cos)23 sin)230 *sin)23 cos)23

#

$

% % %

&

'

( ( ( +

cos)13 0 e* i,CP sin)130 1 0

*ei,CP sin)13 0 cos)13

#

$

% % %

&

'

( ( ( +

cos)12 sin)12 0*sin)12 cos)12 00 0 1

#

$

% % %

&

'

( ( ( +

1 0 00 ei- / 2 00 0 ei- / 2+ i.

#

$

% % %

&

'

( ( (

UMNSP MatrixMaki, Nakagawa, Sakata, Pontecorvo

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrino mass and mixing → Neutrino oscillation

What is the absolute neutrino mass?

Are neutrinos their own antiparticles?

Are there more than 3 neutrinos?

Is there CP violation?

Open Questions in Neutrino Physics

34

Karsten Heeger, Univ. of Wisconsin Yale, March 27, 2015

Neutrino Mass and Particle Nature

What is the absolute mass scale?What is the mass hierarchy?

normal inverted quasi-degenerate

Δmatm2 mν> 0.045 eV

Are neutrinos Majorana particles?

35

Karsten Heeger, Yale University Yale, March 27, 2015

Project 8 - Neutrino Mass Measurement

36

arXiv:1408.5362  D.  M.  Asner  et  al.,  2014

B  =  1  T  E  =  18  keV  f  =  26  GHz  P  =  1  fW

Electron  energy  spectrum  near  18  keV  endpoint    should  be  distorted  by  the  effective  mass  of  νe,  squared.

Karsten Heeger, Univ. of Wisconsin Yale, March 27, 2015

0ν mode: hypothetical process only if Mν ≠ 0 AND ν = ν

Neutrinoless Double Beta Decay: 0νββ

Γ0ν =G0ν |M0ν |2 mββ

2

0νββ would imply- lepton number non-conservation- Majorana nature of neutrinos

2ν mode: conventional 2nd order process in nuclear physics

Γ2ν =G2ν |M2ν |2

G are phase space factors

0νββ may allow us to determine- effective neutrino mass

G0ν ~ Q5

37

Karsten Heeger, Univ. of Wisconsin Yale, March 27, 2015

Search for 0νββ in 130Te

Experimental Signature of 0νββ cartoon of 2νββ and 0νββ spectra - peak at the transition Q-value

- enlarged by detector resolution- over unavoidable 2νββ background

Q(130Te)=2527 keV

energy = key event signature

Cuoricino summed spectrum

38

in 130Te

Karsten Heeger, Univ. of Wisconsin Yale, March 27, 2015

For E = 1 MeV: ΔT = E/C ≅ 0.1 mK Signal size: 1 mV

Time constant: τ = C/G = 0.5 s Energy resolution: ~ 5 keV at 2.5 MeV

Heat sink: Cu structure (8-10 mK)Thermal coupling: Teflon (G = 4 pW/mK)Thermometer: NTD Ge-thermistor (dR/dT ≅ 100 kΩ/µK)Absorber: TeO2 crystal (C ≅ 2 nJ/K ≅ 1 MeV / 0.1 mK)TeO2 Bolometer: Source = Detector

TeO2 Bolometers

Single pulse example

Time (ms)

Am

plitu

de (a

.u.)

1000 2000 3000 4000

voltage signal ∝ energy deposited

5 cm

790g per crystal deposited energy

39

Karsten Heeger, Yale University Yale, March 27, 2015

CUORE at Gran Sasso, Italy

A

1.4-km avg. rock overburden = 3100 m.w.e. flat overburden

factor 106 reduction in muon flux to ~ 3×10—8 µ/(s cm2)

CUORE

Cuoricino

40

Karsten Heeger, Yale University Yale, March 27, 2015

CUORE Detector and Cryostat

41

Outermost shield

DU Test Stand

The coldest cubic meter in the known Universe. 6mK stable base temperature.

Ancient lead for shielding

988 detectors206 kg of 130Te

Karsten Heeger, Yale University Yale, March 27, 2015

CUORE Sensitivity

• CUORE sensitivity goal T1/20νββ > 9.5 x 1025 yr @ 90% C.L.• Effective Majorana mass 51 - 133 meV @ 90% C.L.

• Assumptions: 5 keV FWHM ROI resolution (δE), background rate (b) of 0.01 counts/(keV·kg·yr), 5 years of live time.

42

Live time [y]0 1 2 3 4 5 6 7

C.L

. Sen

sitiv

ityσ

[y] 1

1/2ν0 T

2510

2610

Cuoricino

y)× kg ×CUORE-0 - bkg: 0.063 events/(keV

y)× kg ×CUORE - bkg: 0.01 events/(keV

[eV]lightestm-410 -310 -210 -110 1

[eV

]ββ

m

-410

-310

-210

-110

1Cuoricino exclusion 90% C.L.

GERDA exclusion 90% C.L. Ge claim76

KamLAND-Zen and EXO-200 exclusion 90% C.L.

CUORE 90% C.L. sensitivity

>0223 m∆

<0223 m∆

arXiv:1109.0494

CUORE sensitivity goalT1/20νββ: 9.5 x 1025 yr (90%

C.L.)

CUORICINO: 2.8 × 1024 y (90% C.L.)

Karsten Heeger, Yale University Yale, March 27, 2015

Neutrinos from Accelerators

dirt (~500 m)

target and horn (174 kA)

+

K+

K0

+✶

decay region (50 m)

detector

oscillations?

FNAL booster (8 GeV protons)

43

“background”Start with a beam of nearly pure muon neutrinos….look for νe appearance

Short-baselineL/E ~ 1km/GeVsearch for sterile neutrinosnew physics?

Long baselineL/E ~ 1000km/GeVmass hierarchyCP violationoscillation parameters

Karsten Heeger, Yale University Yale, March 27, 2015

MicroBooNE

44

ν

Electron neutrinos -> Electrons and othersMuon neutrinos -> muons and othersOther interactions that produce single photons

Neutrino hits the argon and produces charged particles.

The particles produced tell you about the neutrino -> flavor-> energy …

Liquid Argon Time Projection Chamber

Karsten Heeger, Yale University Yale, March 27, 2015

MicroBooNE Installation

45

Once detector assembly was finished, Moved the detector to the detector hall – summer 2014

Karsten Heeger, Yale University Yale, March 27, 2015

Deep Underground Neutrino Experiment (DUNE)

46

• Wide band beam – 0.5-10 GeV new neutrino beam at Fermilab• Observe oscillation spectrum 0.5-10 GeV• Baseline of 1300km from Fermilab to Homestake – lots of matter to observe

mass hierarchy effects!• Determine mass hierarchy, measure CP violation at the same time

starting in 2024?

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

What about dark matter?

Stars 0.5%Neutrinos 0.3%

Karsten Heeger, Yale University Yale, March 27, 2015

What is Dark Matter?Observational evidence indicates:

– Non-baryonic– Cold(ish) and massive (non-relativistic and exerts gravity)– Interact little with ordinary matter – Stable and long-lived

48

Leading Candidates: Axions

- mass ~10-3 – 10-6 eV- Arises in the Peccei-Quinn solution to the strong-

CP problemWIMPs: Weakly Interacting Massive Particles

- mass of 1 GeV – 10 TeV- weak scale cross sections results in observed

abundance

<σA  v>  ≈  10-­‐26  cm3/s m

χ ≈  100  GeV

σ  ≈  10-­‐39  -­‐  10-­‐46  cm2

Karsten Heeger, Yale University Yale, March 27, 2015

Detecting WIMPs

scattering “Direct Detection” Let dark matter recoil off of nuclei Look for nuclear recoil

annihilation

“Indirect Detection”

Collect dark matter in Stars and Galaxies, then let them annihilate among themselves.

Detect the decay particles

χ χ

q q

Fermi/LAT

XWIMP

X

nuclear recoil

production Colliders Look for the missing energy

Karsten Heeger, Yale University LNGS, April 15, 2014 50

DM-Ice17

Modulation Search at South Pole

17 kg of NaI(Tl) at 2450m depth in operation since 2011

Dark Matter Search in Ice (DM-Ice)

DM-Ice-17

50m

bed

2450m2820m

AMANDA (decommissioned)

DeepCore

IceCube

1450m

Karsten Heeger, Yale University Yale, March 27, 2015

DM-Ice-17 Construction & Deployment

51

Shipment to Antarctica

Detector in the hole

Deployment

Detector assembly

July 2010

Revive NAIAD xtals

Sep - Oct. 2010 Dec. 1, 2010

Dec. 11, 2010

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

DM-Ice 17 Deployment - Hands-On

52

Karsten Heeger, Yale University Yale, March 27, 2015

ADMX-HF Experiment

53

Axion  is  predicted  in  the  context  of  the  standard  model  of  electroweak  interactions  to  explain  the  lack  of  CP  asymmetry  in  the  strong  force  The  axion  (or  axions)  is  an  ideal  dark  matter  candidate  due  to  its  feeble  interaction  with  matter.    

Axion  Dark  Matter  eXperiment  at  High  Frequency  (ADMX-­‐HF)

Axions  can  be  converted  to  photons  by  a  strong  magnetic  field

Modern cosmological hydro simulations include the effects of baryons (i.e., gas cooling, star formation, heating by SNe/AGN, metal enrichment and transport).

N-body+Gasdynamics with Adaptive Refinement Tree (ART) code Box size ~ 80/h Mpc; Region shown ~ 2/h Mpc; Spatial resolution ~ a few kpc

Cosmological Simulations of Galaxy Cluster Formation

Simulations performed by the Yale BulldogM HPC cluster

ΩDE

X-ray Cluster CosmologyVikhlinin et al. 2009

σ8=0.813(ΩM/0.25)-0.47±0.013w0=-0.991±0.045ΩDE=0.740±0.012

Local (z<0.1) sample of 49 clusters + 37 high-z clusters from the 400d X-ray selected cluster sample

Galaxy Clusters provide powerful constraints on Dark Energy, Dark Matter, and Neutrino. But, exploiting the statistic power of future cluster surveys requires improved

understanding of Cluster Astrophysics!!

Planck CMB vs. Cluster Tension

Possible Solutions: • New Physics: sum of the neutrino masses is ~0.2eV! • Cluster mass calibration is biased by 45%• Planck CMB results may be biased

KEY: Robust Mass Proxy Yx (excluding cluster cores)

Probing Dark Energy, Dark Matter and Neutrino with Galaxy Clusters

Planck 2015

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

Every second there are billions of neutrinos going through this tiny spot!

And we might be moving through a halo of dark matter particles.

Karsten Heeger May 27, 2015

The New Yale Wright Lab

58

Coming in 2016Experimental facilities for nuclear particle, and astrophysics

Karsten Heeger May 27, 2015

The New Yale Wright Lab

59

Facilities for Research, Education and Teaching

Research laboratories

Instrument Design / Machine ShopsInteraction Spaces / Communication / Education

Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009

95% of the Universe is unknown.

Much opportunity for discovery!

Explore it with us at Yale Physics!

Thanks to Charlie Baltay, Daisuke Nagai, Bonnie Fleming, Reina Maruyama, Penny Slocum, Keith Baker, Steve Lamoreaux, Flavio Cavanna, Ornella Palamara