Experimental Data on Renewable Methanol/Methane Generation ... · PDF fileExperimental Data...

76
Michael Specht, Ulrich Zuberbühler, Andreas Bandi Centre for Solar Energy and Hydrogen Research (ZSW), Stuttgart Experimental Data on Renewable Methanol/Methane Generation from Atmospheric CO 2 in Pilot Plants Brainstorming Workshop Sustainable methanol: An alternative green fuel for the future 22./23.11.2011, IASS, Potsdam

Transcript of Experimental Data on Renewable Methanol/Methane Generation ... · PDF fileExperimental Data...

Michael Specht, Ulrich Zuberbühler, Andreas Bandi

Centre for Solar Energy and Hydrogen Research (ZSW), Stuttgart

Experimental Data onRenewable Methanol/Methane Generation

from Atmospheric CO2 in Pilot Plants

Brainstorming WorkshopSustainable

methanol:

An alternative green

fuel

for

the

future22./23.11.2011, IASS, Potsdam

Centre for Solar Energy and Hydrogen Research (ZSW): New Energy Technologies

• Applied Research & Development• Close Cooperation with Industry and Universities•

25 Million €

Turnover, 200 Employees

• Photovoltaic –

Thin Film Technologies (CIS) & Application Systems• Renewable Fuels and Processes• Fuel Cells –

Technology, Systems, Test Centre

• Batteries & Super Capacitors –

Materials, Systems, Qualification• Systems Analysis and Policy Consulting

Stuttgart Widderstall Ulm

Strategy Change at ZSW: Renewable Carbon-based Fuels

C-Resource: “CO2

from Air” “CO2 from Biogas”

Fuel: MeOH SNG

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Goal: Energy System with Closed Carbon Loop

Carbon-based Fuel

Goal: Carbon-Based Fuels via H2 /CO2 Route

CO2 + 3 H2 - CH2 - + 2 H2 O

Δ

H298 = - 119 kJ / mol

CO2 + 3 H2 CH3 OH + H2 O

Δ

H298 = - 50 kJ / mol

Electrolysis

CO2

Recovery CO2

Synthesis

H2

Synfuel

Δ

,

Thermodynamic Efficiency Calculations for the Conversion of Syngas to Synfuels

SYNGAS CO / H2

SYNGAS CO2 / H2

[ ]molkJ

H298Δ

Syngas

298LHV

H1 Δ−=η

[ ]molkJH298Δ

Syngas

298LHV

H1 Δ−=η

OHCH3 -90,625 0,882 -49,943 0,931

33 CHOCH -204,932 0,866 -121,682 0,916

4CH -206,158 0,796 -165,475 0,829

125 HC -802,865 0,803 -602,450 0,844

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Concept: Methanol from Atmospheric CO2 “Artificial Photosynthesis”

Renewable

Energies

Oxygen

Hydrogen

CO2

CO2

H2

Electrolysis

Absorber Electrodialysis Stripper

MethanolSynthesis

-+

Air

Wind

Hydropower

KOH H2SO4

K2 SO4K 2CO3

H2

Principle Flow Sheet: Methanol from Atmospheric CO2 with Electrodialysis Regeneration

Dialysis

K2SO4+2H2O -> 2KOH+H2SO4

CO2-seperation

K2CO3+H2SO4 -> H2O+CO2+K2SO4

Exhaust

Air

KOH

K2CO3

H2SO4

K2SO4

H2O

Elektrolysis

2H2O -> 2H2+O2

MeOH-SynthesisCO2+3H2 -> CH3OH+H2O

CO2+H2 -> CO+H2OCO+2H2 -> CH3OH

O2H2

Raw methanol

Synthesis offgas

Reactor:50 – 100 bar 250 – 280 °CDi = 66.1 mmVKat ca. 300ml

Catalyst:Cu/ZnO-based

H2/CO2=3

H2

O2

Air:1600 m³/kgCO2

Fluegas >5% CO2:10 m³/kgCO2

Ca. 0,2 kg/h

Electrodialysis

CO2 from Atmosphere with Caustic Air Scrubber “Artificial Photosynthesis”

Caustic Air ScrubberColumn

Stripper Column

XXXXXXXXXXXXX

XXXXXXXXXXXXX

Electrodialysis

Acidic Solution

KOH Solution

CO2

AirSalt

CO2 – Lean Air

- - - - - - - - - - - - - - - -- -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

CO2 Laden Solution

Caustic Air ScrubberColumn

Stripper Column

XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

Electrodialysis

Acidic Solution

KOH Solution

CO2

AirSalt

CO2 – Lean Air

- - - - - - - - - - - - - - - -- -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

CO2 Laden Solution

Design Data ofAbsorber Column:Height: 3.5 mDiameter: 0.5 mAir Throughput: 1000 m3

N

/hCO2

Absorption: ca. 70 % (1 mol KOH)

Chemical Reactions in Absorber / Stripper / Electrodialysis (ED) Unit

Absorber:2 KOH + CO2

K2

CO3 + H2

O

Electrodialysis Unit:K2

SO4

+ H2

O KHSO4

+ KOH

Stripper:

K2

CO3

+ 2 KHSO4

2 K2

SO4

+ CO2 + H2

O

Regeneration of Scrubbing Liquid and Acidic Solution: Bipolar Membrane Electrodialysis of Na2 SO4 Solution

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Results: CO2 from Atmosphere via Caustic Air Scrubber

Regeneration:

Electrodialysis: 275 kJel /molCO2

Limestone-Process: 244 kJth

/molCO2

MEA Prozess: ∼

200 kJth

/molCO2

(CO2

from flue gas)

Goal → absorber with low pressure drop

For 100 MWel

input power:→ Absorber ca. 80 m ∅

or 10 Absorber á

25 m ∅

Absorption column:

Gas velocity: ca. 1 m/sec

Fluid load: 10 m3/(m2h)

Pressure drop: ∼

1 mbar/m

Result from scrubber operation:94 m2/(molCO2 sec)(Mellapak

250, 72 % Absorption)

Overall pressure drop: ca. 5 mbar

⇒ ca. 50 kJel

/molCO2Incl. humidificationand pumps: 80 kJel /molCO2

LHVMeOH

: -

639 kJ/molMeOH

calculated

measured

Methanol Synthesis from H2 /CO2 : Reaction Conditions / Results

CO + 2 H2 CH3 OH

Δ

H = - 92 kJ / mol

CO2 + 3 H2 CH3 OH + H2 O

Δ

H = - 50 kJ / mol

Reaction Conditions:

250 -

280°C

50 -

100 bar

Cu / ZnO-based

Catalyst

Results:

SV: 8000 lsyngas

lcat-1h-1

0.7 kgMeOH

lcat-1h-1

CO Formation via Retro Shift Reaction

Methanol Synthesis from H2 /CO2 : Energetic Efficiency (Power-to-Methanol)

Energetic Efficiency calculated from ED results (LHVMeOH /ElectricityInput ):

Atmospheric CO2

: < 46 %

Flue Gas CO2

: < 48 %

“free”

CO2

: < 61 %

Renewable Methanol for Road Transport produced from H2 and Atmospheric CO2 at ZSW in 1996

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Power-to-Gas - Concept: Basic Layout of the Demonstration Plant in 2009

Abluft

Hydrogen Generator

2-BankKonsole

PKW

CO2-Puffer

Gastrocknung

2-Bank-Speicher

CH4-Puffer

CO2-Produktion

Kraftstoffsynthese

Di-Patrone

Trinkwasser

FIC

PIC

CO2-Absorber

Elektrodialyse CO2-Bereitstellung

H2-ErzeugungCH4-Synthese

FIC

Betankung

PIC

CO2 -Absorber

F

NaOH

Na2CO3

Coupling of Absorber / Electrodialysis Unit for Continuous CO2 -Production

K A K K

+ —

Na+

OH- H+

Na+

H2O2

CO2 Container (left) / SNG Container (right)

Absorber Packing

Design Data ofAbsorber Column:

Height: 2 x 1.05 m

Diameter: 1.2 m

CO2

Production: 40 molCO2

/h

Air Throughput: 3600 m3/h

Absorption liquid: 800 l

Absorption liquid flow:5 -

10 m3/h

Electrodialysis

Electrodialysis

stack

with

80 cells(bipolar / cation

exchange

membrans)

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Caustic Air Scrubber/Electrodialyisis: Experimental Data, Design Data, Optimization

Measurement2010-08-19

DesignData Optimization Remarks

CO2 abs.mol/h 35.30*) 12:10-12:30 single absorber

kW kWh/m³CO2 kWh/m³CO2 kWh/m³CO2 Standard Conditions 0°C,1013mbar

ED ges. 7.00 8.85 4.56 7.32

ED Stack 5.00 6.32 3.93 6.32 improvement with 3 chamber ED ?

Pumps 2.00 2.53 0.63 1.00 lower Stack pressure

Absorber ges. 4.30 5.43 1.67 2.00

Air fan 1.30 1.64 1.04 1.00 1 absorber with reduced pressure drop

Pumps 3.00 3.79 0.63 1.00

Humidifier 0.40 0.51 0.50 no improvement

Abs. 3.0.0 1.30 1.64 0.50 Distribution channel instead spraying

Abs. 4.0.0 1.30 1.64

Abs. & ED 11.30 14.28 6.23 9.32 35% Optimization Potential

CO2

Container 13.60 17.19 incl. auxiliaries

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Conclusion: Power-to-Methanol / CO2 from Air

All components of the system “CO2 from air” were tested in two pilot plants

Realised technology 1995: Batch operation

Realised technology 2009: Continuous operation

Worldwide first demonstration plants for CO2 generation from atmosphere (?)

From technical point of view C-based fuels can be generated from atmospheric CO2

Energetic efficiency MeOH from air-CO2: up to 46 %

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Long Term Storage of Renewable Energy (RE) - FAQ -

How is long-term storage of energy realised today?

How much capacity do we need for RE storage?

What is the best way to collect and to store RE?

Can the existing infrastructure be used to store and to distribute RE?

What is “the” future fuel for mobility?

Energy Consumption and Storage Capacity in Germany (2008)

Electricity Natural gas Liquid fuels1)

Consumption [TWh/a] 615 930 707

Average power [GW] 70 1062) 81

Storage capacity [TWh] 0,043) 2174) 2505)

Calculated operating range of installed storage capacity6) [h] 0,6 2000 3100

1) Petrol, diesel, kerosene2) Seasonally fluctuating3) Pumped hydro storage4) 47 Underground gas storage facilities [Landesamt

für

Bergbau, Energie

und Geologie

(LBEG), Hannover]5) Provisioning of petrol, diesel, kerosene and heating oil6) Related to average power

Required storage capacity for electricity grid in DE: tens of TWh

!

Wind Power Integration: Status Today (Christmas 2009, up to 60 % Wind Power in German Electricity Grid)

How can Renewables

supply balancing power?

Conventional power plants

Options for Long Term (Seasonal) Energy Storage: Chemical Energy Carriers

Methanol

Hydrogen

Substitute Natural Gas (SNG)

Liquid Hydrocarbons

Renewable Energy Storage Systems: Capacity and Discharge Time

0,001

0,01

0,1

1

10

100

1000

10000

1 kWh 10 kWh 100 kWh 1 MWh 10 MWh 100 MWh 1 GWh 10 GWh 100 GWh

1 m

1 h

1 d

CAES

1 TWh 10 TWh 100 TWh

CAES

Fly Wheels

Storage capacity of different storage types

Dis

char

ge ti

me

[h]

CAES Compressed

air

energy

storage

PHS Pumped

hydro

storage

SNG Substitute

natural

gas

Batteries

PHS

1 a

SNG

H2

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Path 1: (Digestive) Biomass SNG State-of-the-Art - Technology

AnaerobicDigester

Plant

Gas Cleaning /Conditioning

Bio-Gas

50 - 70 vol.-%CH4

DigestiveBiomass

Compost

SNG

Separation of• CO2

• H2O• Impurities

(to Grid orFilling

Station)

Path 1: (Digestive) Biomass SNGPressure Swing Adsorption (PSA) Gas Upgrading

Biogas

Vacuum pump

Off-gas(CO2)

Flushing gas

SNG

Water separator

Compressor

Des

ulph

uris

atio

n

Ads

orbe

r uni

t

Path 2: (Woody) Biomass SNG“BtG” Biomass-to-Gas

CO, H2 , CO2 , CH4

Gasification

Biomass

Producer Gas

SNG(CH1.52

O0.65

)

(Synthesis Gas)

(Gas conditioning,stoichiometry

adjustment)

1st Step 2nd Step

Synthesis

Path 3: CO2 + H2 (via Electrolysis) SNGPower-to-Gas (P2G)

Path 2 and 3: Methanation of CO / CO2

Methanation:

3 H2

+ CO CH4

+ H2

O ΔHR0

= -206,4 kJ/mol

4 H2 + CO2 CH4

+ 2 H2

O ΔHR0

= -164,9 kJ/mol

Shift- Reaction:

H2

O + CO H2

+ CO2

ΔHR0

= -41,5 kJ/mol

CO / CO2 Methanation: Development Status

Methane synthesis from CO/H2-based Syngas is a state-of-the-art technology

Methane synthesis from CO2/H2-based Syngas is not a state-of-the-art technology

Source Dakota Gasification Company: Coal to Electricity / SNG / CO2

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Power-to-Gas (P2G) - Concept: Basic Layout

CCPP / µ-CHP

CO2

buffer

Grid Gas distribution system

Electrolysis /

H2

bufferMethanation

H2

CO2

CH4

POWER GENERATION

ELECTRICITY STORAGE

CO2

Gas

storage

Solar

Wind

H2

CO2

CCPP: Combined Cycle Power Plant; µ-CHP: micro Combined Heat and Power Plant

Power-to-Gas (P2G) - Concept: Interconnection with Mobility

EV:

Electric Vehicle

BEV: Battery Electric Vehicle

FCEV: Fuel Cell Electric Vehicle

CNG-V: Compressed Natural Gas Vehicle

Plug-In HEV: Plug-In Hybrid Electric Vehicle

(especial: Plug-In Electric Drive Motor Vehicles / Range-Extended Electric Vehicle)

CCPP Combined

Cycle

power plant

B-CHP Block-type combined heat and power station

Solar

WindCCPP / B-CHP

CO2

buffer

Electricitygrid

Gas distribution system

Electrolysis

/

H2

bufferMethanation

H2

CO2

CH4

POWER GENERATION

ELECTRICITY STORAGE

CO2

Gas

underground

storage

Electricity H2 SNG

BEV FCEV CNG-V

Mobility

H2

CO2

Plug-In HEV Plug-In HEV

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Utilisation of Biogenic CO2 Resources for P2G-Process

C6 H12 O6 3 CH4 + 3 CO2

Simplified overall reaction

C6 H12 O6 2 C2 H5OH + 2 CO2

Biogas production:

Ethanol production:

Biogas plant, Foto: Krautkremer

EtOH

plant in Nebraska, USA

Market for P2G at Biogas Plants in Germany: Number of Installed Plants and Power Range

Source: DBFZ

Number of biogas plants:

ca. 5900 (end of 2010)Installed power: 2,3 GWelAverage power per plant: 380 kWel

(corresponding to ca. 1 MWbiogas

output

)Corresponding electrolysis power for Methanation

of CO2

in biogas: ca. 1 MWel

(for 1 MWbiogas

output

)*

* depending

on CH4

/CO2

ratio

in biogas

and on electrolysis

efficiency

Market for P2G at Biogas Plants in Germany: Alternative Options - Electricity or Gas Feed-in

Biomass

feed

Electricity

feed-in0,4 MWel

Biogas plant

Gas engine

1

1 MWbiogas

output

Operating state 1 : electricity feed-in

Sources fotos: www.ge-energy.com, www.rehau.at

Market for P2G at Biogas Plants in Germany: Alternative Options - Electricity or Gas Feed-in

Biomass

feed

Gas

feed-in1,6 MWSNG

Biogas plant

Power-to-Gas plant

1 MWel

2

Operating state 2 : gas feed-in

1 MWbiogas

output

Sources fotos: www.ge-energy.com, www.rehau.at

Total SNG production potential from Bio-Gas (Bio-Methane and P2G-Gas): ca. 65 TWhgas /aOverall control power via Gas Feed-in: ca. 8 GW

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Schematic Diagram of a P2G - Plant for IPSEpro Process Simulation (Feed: CO2 /H2 and Biogas/H2 )

SettingsEnergy demand electrolysis:

4 kWhel

/mN3H2

System pressure:

7 barabsGrid pressure:

16 barabs

Energy Flow of a P2G - Plant

Case

1: “CO2

/H2

-to-SNG"Case

2: "Biogas/H2

-to-SNG“

(50 / 50 [Vol.%CH4

/ Vol.%CO2

] in biogas)Case

3: "Biogas/H2

-to-SNG“

(70 / 30 [Vol.%CH4

/ Vol.%CO2

] in biogas)

Influence of Electrolysis Efficiency on P2G System Efficiency (CO2 /H2 -to-SNG)

40

45

50

55

60

65

70

3,5 3,7 3,9 4,1 4,3 4,5 4,7 4,9 5,1

Electrolysis power requirement [kWhel

/mN3H2

]

Sys

tem

effi

cien

cy [%

]

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Land Consumption: Pumped Hydro Storage vs. Power-to-Gas Storage

Goldisthal Source: e.on

Hanse

Pumped hydro power

Water surface, Dam, Bank reinforcement

Land use: 2 - 44 kWhpot /m2

ηturbine

=

88 %ηpump

= 85 %

Underground storage facilities / PtG

Well site: 40 m x 60 m; Over ground facility, gas compression station: 200 m x 200 m; Security area

Land use: ca. 100 000 kWhSNG /m2

ηSNG electricity < 60 %ηelectricity SNG = 60 - 65 %

Land Consumption: SNG Transmission vs. Electricity Transmission

Sources: Wuppertal Institut

für

Klima, Umwelt

und Energie; P. Konstantin; G. Wossog; H. Brakelmann; OMV

Gas Electricity

Pressure Diameter Transmission power

Protection strip Voltage

Trans- mission power

Overhead line, Route width

Underground cable,

Protect. strip

[bar] [DN] [GW] [m] [kV] [GW] [m] [m]

< 0,1 50-600 < 0,1 2 - 10 0,4 (low) 10 1

> 0,1-1 100-400 0,01 - 0,2 2 - 8 1-24 (medium) 20 4

> 1-16 300-600 0,8 - 3 6 - 10 50-170 (high) 0,3 44 7

> 16

900 9 - 12 8 - 10 220 (high) 0,5 55 9

1000 12 - 16 8 - 10 380 (high) 2 70

1400 21 - 28 8 - 10

Transmission power:

Gas pipeline < 70 GW Power line < 7 GW

Environmental Benefits: Emissions Reduction through CNG-Vehicles

-80% -80%

-20%

-40%

-10%

-60%

-90%

-10%

-80%

CO NMHC GHG OZONE CO NMHC NOx GHG OZONE

in relation to gasoline in relation to Diesel

Source: nach

Fachverband

der

Gas-

und Wärmeversorgungsunternehmen, Wien

1) 1)

1) Green house gas reduction by using natural gas;nearly 100 % reduction by using renewable SNG!

Environmental Benefits via CNG-Vehicles: Audi balanced mobility / e-gas project (12.05.2011)

Sustainable mobility with CNG vehicles powered with e-gas

e-gas: SNG via P2G-plant

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Power-to-Gas - Technology: Process Flow Sheet (Principle)

Power-to-Gas - Technology: Technical Realisation for SolarFuel Company

CH4

-Filling stationca. 15 kg, 200 bar

Electrolyser

CO2

-Recovery

SNG Generation in Fixed Bed Molten Salt Cooled Reactor

SNG

Producer Gas from AER-Process

Salt Loop C

atal

yst

Zone

IZo

ne II

Zone

III

Dec

reas

ing

Tem

pera

ture

Goal:Once-through reactor

Demo-plant: 100 kWSNG

Concept presented at ACHEMA Fair in May 2009 (cooperation ZSW with MAN-

DWE, Germany)

CO2 + H2 (via Electrolysis) SNGExperimental Results: Gas Composition

Parameter of methanation:

T 250 -

550°C

pe

< 10 bar

SVwet

> 2000 1/h

Catalyst Substitute

Natural Gas Feed

Gas

Vol.%

H2 79,5

CO2

20,5

Methanation

H2

3,9

CO2

4,1

CH4 92,0

Vol.%

80

85

90

95

100

13400 17000 20600 24200 27800 31400 35000Test Duration [h]

CH

4-C

onte

nt [v

ol-%

]

0

5

10

15

20

CO

2-, H

2-C

onte

nt [v

ol-%

]

CH4CO2H2

0 1 2 3 4 5 6

CO2 + H2 (via Electrolysis) SNG Experimental Results: Gas Composition

Reactor concept: Fixed bed reactor with recycle loop and intercooler

Feed: CO2 20 Vol.%db , H2 80 Vol%dbT = 250 - 550 °C, p = 7 barabs , SV = 2000 l / (lcat * h)No downstream processing!

Biogas + Power SNG:Biogas as CO2 Resource - 2 Process Options

Biogas-

Plant

CO2

-

Separation

CO2

-

Buffer

Methana-

tion

H2

-

Buffer

H2

-

Buffer

Biogas-

Buffer

Methana-

tion

Biogas-

Plant

Biomass

Biomass

Biogas

Biogas

(CH4

, CO2

)

(CH4

, CO2

)

CO2 CO2

H2 from Electrolysis H2

SNG (Feed-in)

if H2

-Deficit CO2 to AtmosphereSNG (Feed-in)

H2 from Electrolysis

BiogasSNG (Feed-in)

if H2

-Deficit Power Generation from Biogas

1

2

Power-to-Gas - Container: Operation with CO2 and at Biogas Plants with Biogas and PSA Off-Gas

Werlte

Stuttgart

2009 Alpha-Anlage

2011-Anlage an Biogasanlage

Morbach

Beta-Anlage

Source:

SolarFuel

2011

Power-to-Gas (P2G) - Concept: Option 1- Interconnection with Biogas Plant (via Biogas)

CCPP / µ-CHP

CH4

/CO2

buffer

Grid Gas distribution system

Electrolysis /

H2

bufferH2

Biogas

CH4

POWER GENERATION

ELECTRICITY STORAGE

Biogas

Gas

storageBiomass

Solar

Wind

H2

Biogas

plant

Methanation

HeatCH4

/CO2CH4

/CO2

CCPP: Combined Cycle Power Plant; µ-CHP: micro Combined Heat and Power Plant

Power-to-Gas - Container: Operation with Biogas at Werlte Biogas Plant

0

10

20

30

40

50

60

70

80

90

100

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

Dauer [hh:mm]

y_C

H4

[Vol

-%]

0

10

20

30

40

50

60

70

80

90

100

y_C

O2,

y_H

2, y_

O2 [

Vol-%

]

CH4 H2 CO2 O2

Power-to-Gas (P2G) - Concept: Option 2- Interconnection with Biogas Plant (via Off-gas)

CCPP / µ-CHP

CO2

buffer

Grid Gas distribution system

Electrolysis /

H2

bufferH2

CO2

CH4

POWER GENERATION

ELECTRICITY STORAGE

Off-gas (CO2 )

Gas

storageBiomass

Solar

Wind

H2

Biogas plant with “Bio-CH4

production

CH4

Methanation

Heat

CCPP: Combined Cycle Power Plant; µ-CHP: micro Combined Heat and Power Plant

Power-to-Gas - Container: Operation with Off-Gas at Werlte Biogas Plant

0

10

20

30

40

50

60

70

80

90

100

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

Dauer [hh:mm]

y_C

H4 [

Vol-%

]

0

10

20

30

40

50

60

70

80

90

100

y_C

O2,

y_H

2, y_

O2 [

Vol-%

]

CH4 H2 CO2 O2

Award for Power-to-Gas - Concept: SolarFuel / ZSW / IWES

Award “ASUE” of the German Gas Industry in the field “Innovation and

Climate Protection”, 29.09.2010, Berlin

Agenda Part I: Power-to-Methanol / CO2 from Air Agenda Part II: Power-to-Gas (P2G)

Goal (P2G)SNG Production Routes from REP2G ConceptCO2 ResourcesConversion EfficiencyEnvironmental BenefitsResults from 25 kWe P2G Pilot PlantConclusions / Next Steps

SNG: Substitute

Natural

GasRE: Renewable

Energy

Goal (CO2 from Air)Concept 1996 (Batch Mode)Results 1996Concept 2009 (Continuous Mode)Results 2009Conclusions

Conclusion: Advantages of P2G - Technology

Inspired by nature: “P2G as artificial photosynthesis”

Increasing importance of (S)NG backup power for load balancing

SNG is an ideal chemical storage medium for renewable energy (RE)

Storage of RE with “unlimited” storage capacity in the gas grid

Utilisation of existing underground gas storage facilities

Stabilization of electricity grid (positive and negative control power)

Merging of the energy sectors “electricity grid”, “gas grid”, and “mobility”

Timeline Commercialisation

Alpha-plant (25 KWel): 2009

Alpha-plus-plant (250 kWel): 2012

Beta-plant (6 MWel): 2013

Gamma-plant(> 6 MWel

, commercial product):

2015

Beta-plant co-operation partners:

Visit of the President from Turkey Abdullah Gül and Prime Minister Kretschmann at ZSW (21.09.2011)

An interesting discussion !

Thanks for your kind attention.