Expenditure Minimization. Set up optimization problem.

34
Expenditure Minimization

Transcript of Expenditure Minimization. Set up optimization problem.

Page 1: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization

Page 2: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization

• Set up optimization problemx y

x y

x x x x x

y y y y y

x x

y y

E p x p y, U U(x, y)

L p x p y (U - U(x, y))

FOC

L : p U 0 p U

L : p U 0 p U

L : U U(x, y) 0 U U(x, y)

With the result that

p U

p U

Page 3: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization: SOC• The FOC ensure that the optimal consumption

bundle is at a tangency.• The SOC ensure that the tangency is a minimum, and

not a maximum by ensuring that away from the tangency, along the indifference curve, expenditure rises.

X

Y

E=E*

E=E’E*<E’

Page 4: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization: SOC• The second order condition for constrained minimization will hold

if the following bordered Hessian matrix is positive definite:

2 2 2

let ( , ) ( , )

00

0 and 0

0, and 2 0

x y

x y

x xx xy

y yx yy

x yx

x xx xyx xx

y yx yy

x x y xy x yy y xx

L x y p x p y U U x y

L L L

H L L L

L L L

U UU

H H U U UU U

U U U

U U U U U U U U

Will hold if the Hessian of the Lagrangian is is Positive Definite

Note, -(-Ux )2 =-Ux 2

< 0 and (so long as μ > 0), 2UxUxy Uy -Uy2Uxx-Ux

2Uyy > 0, so theseconditions are equivalent to checking that the utility function is strictly quasi-concave.

Page 5: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization

• Solve FOC to get:

x x

y y

c* cx y

c* cx y

* cx y

p U

p U

U U(x, y)

And get the compensated, Hicksian, demand curves

x x p ,p ,U

y y p ,p ,U

p ,p ,U

Page 6: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization

• Back into the expenditure function determine minimum expenditure:

• Solve for Ū to get the indirect utility function:

* c cx x y y x yE p x p ,p ,U p y p ,p ,U

* * *x y x yV V p ,p ,E V p ,p ,M

Page 7: Expenditure Minimization. Set up optimization problem.

Interpreting μ: Envelope Result• Start with L*

c c

c

* c c c cx x y y x y x y x y x y

*c* c* * * c* c* c* c* * * c* c*

x U y U U U U Ux y

*c* * c* c* *U x U yx

L p x (p ,p , U) p y (p ,p , U) (p ,p , U) U U x (p ,p , U), y (p ,p , U)

L Up x p y U U x U y U x , y )

U U

Lx p U y p U

U

Differentiate with respect to U

c

c c

c* * * * c* c*U Uy

*c* * c* c* * c* * c* * c* c*U x U y Ux y

* *c* c* * c* *U U U

** c* c*

x y

U U x , y

Lx p U y p U U U x , y

U

L Lx 0 y 0 0

U U

Ex , y 0 E* p ,p , U

U

,

Because U-U , L*= and

In other words, if you want to*

increase utility by 1 util, you need to

increase expenditure by .

c* cx y

c* cx y

*x y

x x p ,p ,U

y y p ,p ,U

p ,p ,U

Page 8: Expenditure Minimization. Set up optimization problem.

Finding : Envelope Result• Start with L*.

c cx x x x x

cx

* c c c cx x y y x y x y x y x y

x

*c* c* c* * * c* * c* * * c* c*

x p y p p p px yx

** * c* *

x p yxx

L p x (p ,p , U) p y (p ,p , U) (p , p , U) U U x (p ,p , U), y (p , p , U)

p

Lp x x p y U x U y U U x , y

p

Lp U x p U

p

Differentiate with respect to

cx x x

x x x x

* c* c* c* * c* c*p p py

* *c* c* c* * c*p p p p

x x

*c* c* c*

x

y x U U x , y

L L0 x 0 y x 0 x

p p

EU - U x , y 0 E x

p

x

x

,

Because , L= ,

In other words, if p increases by $1, you need to increase expenditure by c*.

c* cx y

c* cx y

*x y

x x p ,p ,U

y y p ,p ,U

p ,p ,U

*

x

E

p

Page 9: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization• Comparative Statics

c* cx y

c* cx y

c* cx y

* c * c cx x x y x x y x y

* c * c cy y x y y x y x y

* * c cx y x y

Plug the optimization functions into the FOC

x x p ,p ,U

y y p ,p ,U

p ,p ,U

FOC

L : p p ,p ,U U x p ,p ,U , y p ,p ,U 0

L : p p ,p ,U U x p ,p ,U , y p ,p ,U 0

L : U U x p ,p ,U , y p ,p ,U 0

Page 10: Expenditure Minimization. Set up optimization problem.

Comparative Staticsx

c* c* ** *

xx xy xx x x

c* c* *c* c

yx yy yx x x

c* c*

x yx x

c* c*

x yx x

* c**

x xxx x

Differentiate with respect to p

x y1 U U U 0

p p p

x y0 U U U 0

p p p

x y0 U U 0

p p

Rearrange

x y U U 0

p p

xU U

p p

c**

xyx

c* c* c**

y yx yyx x x

yU 1

p

x yU U U 0

p p p

Page 11: Expenditure Minimization. Set up optimization problem.

Comparative Statics: Effect of a change in px

Put in Matrix Notation• Solve for

xx y c

x xx xyx

y yx yy c

x

2 2x y xy x yy y xx

y

x xy

2c*y yy y

x

p0 U U 0

xU U U 1

p0U U U

yp

Assuming SOC are satisfied H 2 U U U U U U U 0

0 0 U

U 1 U

U 0 U Ux0

p ( )H

Compe

nsated demand curves must be downward sloping.

c*

x

x

p

Page 12: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization: Example

.5x y x y

.5x y

.5x x

y y .5

.5

yx x

y x y

E p x p y, U xy ,M 60,p 1,p 2

L p x p y U xy

FOC

L : p y

xL : p

2y

L U xy

With the result that

2p yp p x2yx and y

p x p 2p

Page 13: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization• Combining with

.5

2/31/32y* * x

x y

L U xy

yields the Hicksian Demand Functions

2p U p Ux and y

p 2p

Page 14: Expenditure Minimization. Set up optimization problem.

Expenditure Minimization

• Expenditure Function

• And solving this for U would yield U* = V *(px,py,M)

* c* c*x y

2/31/32y* x

x yx y

E p x p y

2p U p UE p p

p 2p

Page 15: Expenditure Minimization. Set up optimization problem.

• Homogeneity– a doubling of all prices will precisely double the value

of required expenditures• homogeneous of degree one

• Nondecreasing in prices– E*/pi 0 for every good, i

• Concave in prices– When the price of one good rises, consumers respond

by consuming less of that good and more of other goods. Therefore, expenditure will not rise proportionally with the price of one good.

Properties of Expenditure Functions

Page 16: Expenditure Minimization. Set up optimization problem.

E(p1,…)

Since the consumption pattern will likely change, actual expenditures will be less than portrayed Ef such as E(px,py,U*). At the px where the quantity demanded of a good becomes 0, the expenditure function will flatten and have a slope of 0.

Ef

If the consumer continues to buy a fixed bundle as p1’ changes (e.g. goods are perfect compliments), the expenditure function would be Ef

Concavity of Expenditure Function

px

E(px,py,U*)

E(px’,py…U*)

px’

Page 17: Expenditure Minimization. Set up optimization problem.

Max and Min RelationshipsUtility MaxL = U(x) + λ(M-g(x))x* = x(px, M)

Indirect UtilityU* = U *(x*)V * = V *(px, M)

Expenditure FunctionSolve V * for M (M=E)E * = E *(px, U)

Expenditure MinL = g(x) + μ(U-U(x)))xc* = xc (px, U)

Expenditure FunctionE* = E *(xc*)E * = E *(px, U)

Indirect UtilitySolve E * for U (E=M)U * = V *(px, M)

xE g(x) p x

Page 18: Expenditure Minimization. Set up optimization problem.

Shephards Lemma and Roy’s Identity

• Two envelope theorem results allow:– Derivation of ordinary demand curves from the

expenditure function– Derivation of compensated demand curves from

the indirect utility function

Page 19: Expenditure Minimization. Set up optimization problem.

Envelope Theorem• Say we know that y = f(x; ω)

– We find y is maximized at x* = x(ω)• So we know that y* = y(x*=x(ω),ω)). • Now say we want to find out

• So when ω changes, the optimal x changes, which changes the y* function.

• Two methods to solve this…

* * * *

*

dy dy dy dx

d d dx d

Page 20: Expenditure Minimization. Set up optimization problem.

Envelope Theorem• Start with: y = f(x; ω) and calculate x* = x(ω)• First option:

• y = f(x; ω), substitute in x* = x(ω) to get y* = y(x(ω); ω):

• Second option, turn it around:• First, take then substitute x* =

x(ω)

into yω(x ; ω) to get

•And we get the identity

***dy x( ),dy

y ( )d d

f x,yy (x; )

***dy x( ),dy

y ( )d d

**y ( ) y ( )

Page 21: Expenditure Minimization. Set up optimization problem.

This is the basis for…• Roy’s Identity

– Allows us to generate ordinary (Marshallian) demand curves from the indirect utility function.

• Shephard’s Lemma– Allows us to generate compensated (Hicksian)

demand curves from the expenditure function.

Page 22: Expenditure Minimization. Set up optimization problem.

Roy’s Identity: Envelope Theorem 1

x y

* * *x y x y x y

* * * * * * *x y

* *x y x y x y x x y y x y

* *x y x y x x y y x y

L U x, y I p x p y

x x p ,p ,M y y p ,p ,M p ,p ,M

L U x , y M p x p y

L V (x p ,p ,M , y p ,p ,M ) p ,p ,M I p x p ,p ,M p y p ,p ,M

L V p ,p ,M p ,p ,M I p x p ,p ,M p y p ,p ,M

Derive

; ;

Substitute

x x y y x y

* *x y x y

x

y

x

* *x

I p x p ,p ,M p y p ,

L p ,p ,M V p

p ,M 0

L V p ,p

,p ,M

,M

p p

Note that

So

Option 1: Plug the optimal choice variable equations into the Lagrangian and THEN differentiate

Page 23: Expenditure Minimization. Set up optimization problem.

* * *x y x y x y

*x

x y

x y

x

* *x

y

y

yx

x y

x

x x p ,p ,M y y p ,p ,M p ,p ,M

L U(x, y) (I p x p y)

L p ,p ,Mp ,p ,M

L(x, y,p ,p , I, )x

p

x x p ,

x pp

p ,M p ,p ,M

Assume we already have derived

, ,

Start with

NOW plug in , and to get

* * *x

x y

* *x y x y

x yx

y* *U x , y V p ,

,p ,M

L p ,p ,M V p ,p ,Mx p ,p ,M

p M

p ,M

M M

Remember that = i.e. =

Option 2: Differentiate the Lagrangian and THEN plug the optimal choice variable into the derivative equation

Roy’s Identity: Envelope Theorem 2

Page 24: Expenditure Minimization. Set up optimization problem.

* *x y x y

x yx

* *x y x y

x x

*

*

*x y

x y

x

x y

x

*x y

xy *

x y

L (

L (p ,p , I) V (p ,p , I)

p p

V (p ,p , I)

p

V (p ,p , I

p ,p , I) V (p ,p , I)x(p ,p , I)

p I

V (p ,p , I)x(p ,p , I)

I

x(p ,p , I)V (p

x,p , I)

)

p

I

Option 1 yields:

Option 2 yields:

Envelope Theorem and Roy’s Identity

Page 25: Expenditure Minimization. Set up optimization problem.

Shephard’s Lemma: Envelope Theorem 1

x y

* c * c *x y x y x y

* c c * c cx x y y x y x y x y x y

c* c*

* *x y

*x

L p x p y U U x, y

x x p ,p ,U , y y p ,p ,U , p ,p ,U

L p x p ,p ,U p y p ,p ,U p ,p ,U U U x p ,p ,U , y p ,p ,U

U U x , y 0

E E p ,p ,U

L p

Minimize

Derive

Plug them in to get

Since this reduces to

*y x y

x x

,p ,U E p ,p ,U

p p

Option 1: Plug the optimal choice variable equations into the Lagrangian and THEN differentiate

Page 26: Expenditure Minimization. Set up optimization problem.

Shephard’s Lemma: Envelope Theorem 2

* c * c *x y x y x y

x y

x

*x y

y

x

*x y

x

c

cy

x

x x p ,p ,U y p ,p ,U p ,p ,U

L p x p y U U(x, y)

L x, y,p ,p ,M,x

p

x x p ,p ,U

L p ,p ,Ux p ,p ,U

p

Having already derived

, y ,

Now start with

Take the derivative:

NOW plug in to get:Differentiate the Lagrangian and THEN plug the optimal choice variable into the derivative equation

Page 27: Expenditure Minimization. Set up optimization problem.

Shephard’s Lemma

• Bring results of Option 1 and Option 2 together:

*x y c

x

* *x y x y

x x

*x

yx

cy

y

xx

L p ,p ,Ux p ,p ,U

p

x p ,p

L p ,p ,

,U

U E p ,p ,U

p p

E p ,p ,U

p

Page 28: Expenditure Minimization. Set up optimization problem.

The Relationships

Primal Dual

Max U(x), s.t. M = pxL=U(x)-λ(p•x-M)

Marshallian Demandx* = x(p,M’)

λ=UM

Min E=p•x, s.t. Ū=U(x)L=px-μ(Ū=U(x))

Hicksian Demandx*=xc(p, Ū)

μ=EU

Indirect Utility FunctionU* = U(x*)

U* = U(x*=x(p,M’))U* = V(p, M’)

Expenditure FunctionE* = p•x*

where x*=xc(p, Ū)M’=E* = E(p, Ū)

U* =V(p,M’) when solved for M’ is E*= E(p, Ū)

x(p,M’) = x* = xc (p,Ū)when

E* = M’ and U* = Ū

When E* = M’And U* = Ū

x* = x(p,M)x*=xc(p,E(P,U))

x* = xc (p,U)x*=x(p,V(p,M))

Page 29: Expenditure Minimization. Set up optimization problem.

The RelationshipsPrimal Dual

Indirect Utility FunctionU* = V*(p, M)

Expenditure FunctionE* = E*(p, U)

xi* = xi(p,M)= - xi* = xci (p,U) =

∂V*(p,M)∂pi

∂V*(p,M)∂M

∂E*(p,U)∂pi

Roy’sIdentity

Shephard’sLemma

Page 30: Expenditure Minimization. Set up optimization problem.

Ordinary (Marshallian) Demand

y

xb xa xb xa

x*=x(px,py,M’)

ŪU2

x x

px/py

px/py

px’/py

Slope of budget line from px/py to steeper px’/py

Qd falls from xa to xbQd falls from xa to xb

Income is fixed at M’, but utility falls

Page 31: Expenditure Minimization. Set up optimization problem.

Compensated (Hicksian) Demand

y

xc xa xa

x*=xc(px,py, Ū)

U1

x x

px/py

px/py

px’/py

Slope of budget line from px/py to steeper px’/py

Qd falls from xa to xcQd falls from xa to xc

xc

Utility is fixed at Ū, butexpenditure rises

x(px,py,M’)=xc(px,py,Ū)

Page 32: Expenditure Minimization. Set up optimization problem.

Ordinary (Marshallian) Demand

y

xbxa

x*=x(px,py,M’)

ŪU0

x

px/py

px/py

px’’/py

Slope of budget line from px/py to flatter px’’/py

Qd falls from xa to xbQd falls from xa to xb

Income is fixed at M’, but utility rises

xbxa x

Page 33: Expenditure Minimization. Set up optimization problem.

Compensated (Hicksian) Demand

y

Ū

px/py

px/py

px’’/py

Slope of budget line from px/py to flatter px’’/py

Qd rises from xa to xcQd rises from xa to xc

x(px,py,Ī)=xc(px,py,Ū)

x*=xc(px,py,Ū)

Utility is fixed at Ū, butexpenditure falls

xcxa x xcxa x

Page 34: Expenditure Minimization. Set up optimization problem.

Ordinary and Compensated• If price changes and Qd changes along the

ordinary demand curve, then utility changes and you jump to a new compensated demand curve.

• If price changes and Qd changes along the compensated demand curve, then expenditure needed changes and you jump to a new compensated demand curve.

• Which curve is more or less elastic depends on whether the good is normal or inferior.