Exercícos fisica I

29
1. Um automóvel move-se num segmento AB, partindo de A com velocidade constante de 50 km/h. Ao atingir o ponto médio M (metade do trajeto) do segmento AB, a velocidade muda bruscamente para 80 km/h e se mantém constante até atingir o ponto B. A velocidade média do automóvel em todo o trajeto será: 1) 614 km/h 2) 61,6 km/h 3) 130 km/h 4) 65 km/h 5) 6,5 km/h 2. Um motorista passou de carro às 10h00min horas por um ponto de uma estrada que indicava Km 7, quando deu 11h00min, o motorista parou para descansar e às 11h30min voltou para a estrada, chegando no seu destino às 12h00min onde a sua posição estava marcando o Km 152. Qual foi a velocidade média do carro nesse percurso? 1) 72,5 Km/h 2) 97 Km/h 3) 73Km/h 4) 72Km/h 5) 96Km/h 3. Uma bola de basebol é lançada com velocidade igual a 108 m/s, e leva 0,6 segundo para chegar ao rebatedor. Supondo que a bola se desloque com velocidade constante, qual a distância entre o arremessador e o rebatedor? 1) 64,8 m 2) 100 m 3) 60 m 4) 12 m 5) 75 m

Transcript of Exercícos fisica I

Page 1: Exercícos fisica I

1.

Um automóvel move-se num segmento AB, partindo de A com velocidade constante de 50 km/h.

Ao atingir o ponto médio M (metade do trajeto) do segmento AB, a velocidade muda

bruscamente para 80 km/h e se mantém constante até atingir o ponto B. A velocidade média do

automóvel em todo o trajeto será:

1) 614 km/h

2) 61,6 km/h

3) 130 km/h

4) 65 km/h

5) 6,5 km/h

 

2.

Um motorista passou de carro às 10h00min horas por um ponto de uma estrada que indicava Km

7, quando deu 11h00min, o motorista parou para descansar e às 11h30min voltou para a

estrada, chegando no seu destino às 12h00min onde a sua posição estava marcando o Km 152.

Qual foi a velocidade média do carro nesse percurso?

1) 72,5 Km/h

2) 97 Km/h

3) 73Km/h

4) 72Km/h

5) 96Km/h

 

3.

Uma bola de basebol é lançada com velocidade igual a 108 m/s, e leva 0,6 segundo para chegar

ao rebatedor. Supondo que a bola se desloque com velocidade constante, qual a distância entre

o arremessador e o rebatedor?

1) 64,8 m

2) 100 m

3) 60 m

4) 12 m

5) 75 m

 

4.

Page 2: Exercícos fisica I

Os aviões da ponte aérea Rio-São Paulo percorrem a distância entre as cidades, de 400 km, em

40 minutos. A velocidade média destes aviões neste trajeto é de

1) 1600 Km/h

2) 400 Km/h

3) 40 Km/h

4) 600 Km/h

5) 500 Km/h.

 

5.

Um estudante, a caminho da universidade, trafega 8,0 km na Linha Vermelha a 80 km/h (10

km/h a menos que o limite permitido nessa via). Caso ele fosse insensato e trafegasse a 100

km/h, calcule quantos minutos economizaria nesse mesmo percurso

1) Economizaria 1 minuto e 12 segundos.

2) Economizaria 1 minuto e 30 segundos.

3) Economizaria 1 minuto e 45 segundos.

4) Economizaria 2 minutos e 12 segundos.

5) Economizaria 3 minutos e 12 segundos.

 

6.

Em 1984, o navegador Amyr Klink atravessou o Oceano Atlântico em um barco a remo,

percorrendo a distância de aproximadamente, 7000 km em 100 dias. Nessa tarefa, sua

velocidade média foi em km/h, aproximadamente  igual a:

1) 1,4

2) 2,9

3) 6,0

4) 7,0

5) 70

 

7.

Em um prédio de 20 andares (além do térreo) o elevador leva 36s para ir do térreo ao 20º andar.

Uma pessoa no andar X chama o elevador, que está inicialmente no térreo, e 39,6s após a

chamada a pessoa atinge o andar térreo. Se não houve paradas intermediárias, e os tempos de

abertura e fechamento da porta do elevador e de entrada e saída do passageiro são

desprezíveis, podemos dizer que o andar X é o:

Page 3: Exercícos fisica I

1) 9º

2) 11º

3) 16º

4) 18º

5) 19º

 

8.

Um trem e um automóvel caminham paralelamente e no mesmo sentido, num trecho retilíneo.

Os seus movimentos são uniformes e a velocidade do automóvel é o dobro da velocidade do

trem. Supondo desprezível o comprimento do automóvel e sabendo que o comprimento do trem

é de 100 metros, qual é a distância percorrida pelo automóvel desde o instante em que alcança

o trem até o término da ultrapassagem?

1) 200

2) 300

3) 400

4) 500

5) 600

 

9.

Segundo a Revista Quatro Rodas, a Fiat revelou que o novo Palio (2012), modelo 1.0 é capaz de

acelerar de 0 a 100 km/h em 15 segundos, enquanto o modelo 1.4 gasta 12,2 segundos. Fonte:

http://quatrorodas.abril.com.br/carros/testes/fiat-palio-645979.shtml, adaptado.

As acelerações médias dos modelos 1.0 e 1.4 são, respectivamente, de:

1) 6,7 m/s2 e 8,2 m/s2.

2) 1,9 m/s2 e 8,2 m/s2.

3) 6,7 m/s2 e 3,6 m/s2.

4) 1,9 m/s2 e 2,8 m/s2.

5) 6,7 m/s2 e 3,6 m/s2.

 

10.

O ozônio é formado a partir de uma combinação de oxigênio molecular (O2) e oxigênio atômico

(O). Sabemos que a camada de ozônio, cuja espessura é maior entre 15 km e 25 km acima da

superfície terrestre, protege a vida na Terra contra os raios ultravioleta; sua incidência provoca

danos às células. Alguns estudantes leram, em alguns artigos, sobre a espessura da camada de

Page 4: Exercícos fisica I

ozônio em diferentes unidades de medida, porém, apenas uma alternativa está correta, assinale-

a: 

1) 15.000 cm e 25.000 cm

2) 0,15 m e 0,25 m

3) 15.000 m e 2.500.000 cm

4) 1.500 cm e 2.500 cm

5) 0,015 m e 0,025 m

 

11.

Ben Johnson, é um ex-velocista canadense nascido na Jamaica. Considerado o homem mais

rápido do mundo no fim da década de 1980 quando quebrou por duas vezes o recorde mundial

dos 100m rasos e campeão olímpico por 48 horas nos Jogos Olímpicos de Verão de 1988 em

Seul, perdendo a medalha de ouro, os recordes e a reputação, ao ser flagrado no mais conhecido

caso de doping na história dos esportes em geral. Em 24 de setembro de 1988, final dos 100m

rasos masculino, ele cruza a linha de chegada, com o braço desafiadoramente levantado e o

dedo indicador apontado para o alto mostrando quem era o número um, ele demoliu novamente

seu próprio recorde, com a marca de 9s79. Fonte: http://pt.wikipedia.org/wiki/Ben_Johnson,

adaptado.

A velocidade média desenvolvida por Bem Johnson, nos jogos de Seul foi de:

1) 11,11 m/s

2) 10,79 m/s

3) 10, 21 m/s

4) 10,10 m/s

5) 11,51 m/s

 

12.

 Observe a Figura 1:

Page 5: Exercícos fisica I

 

Figura 1

 

Fonte da Figura 1: http://fisica.tubalivre.com/2009/05/p2-dicas-para-prova-primeira-serie.html.

A Figura 1 apresenta um avião lançando uma bomba. Assinale as opções: 

I. A trajetória da bomba lançada pelo avião visto por uma pessoa no interior do avião é uma reta.

II. A trajetória da bomba lançada pelo avião visto por uma pessoa no interior do avião é uma

parábola.

III. A trajetória da bomba lançada pelo avião visto por uma pessoa no chão é uma reta.

IV. A trajetória da bomba lançada pelo avião visto por uma pessoa no chão é uma parábola.

V. A trajetória da bomba lançada pelo avião visto por uma pessoa no interior do avião é uma reta

inclinada.

A alternativa correta é:

 

1) I e III.

2) I e IV.

3) II e III.

4) V e IV.

5) V e III.

 

13.

Já vou embora 

Mas sei que vou voltar

Amor não chora

Se eu volto é pra ficar

 

Trecho da música “Canção da Despedida” de Geraldo Azevedo e Geraldo Vandré.

Page 6: Exercícos fisica I

O trecho retirado da “Canção da Despedida” de Geraldo Azevedo e Geraldo Vandré indica a

saída e a volta de uma pessoa para sua casa. Vamos supor que a distância de casa para o

destino dessa pessoa é de 100 km. O deslocamento total sofrido pela pessoa é de:

1) 200 km.

2) 100 km

3) – 200 km.

4) – 100 km.

5) 0 km.

1.

“Dentro do carro

Sobre o trevo

A cem por hora, ó meu amor

Só tens agora os carinhos do motor “

Trecho da música Paralelas de Belchior.

 

A cem por hora, citado no trecho da música Paralelas de Belchior, está representando a medida

de velocidade vista pelo velocímetro do carro, que é de 100 km/h.

Analise as afirmativas:

 

I.O movimento é uniforme.

II.O movimento é uniformemente variável.

III.O movimento é acelerado.

IV.O movimento é regressivo.

V.O movimento é progressivo.

A alternativa que expressa somente afirmativas verdadeiras é:

 

1) I e II.

2) I e III.

3) III e IV.

4) II e III.

5) I e V.

 

2.

“Tire o seu sorriso do caminho

Que eu quero passar com a minha dor

Hoje pra você eu sou espinho

Espinho não machuca a flor

Eu só errei quando juntei minh'alma a sua

O sol não pode viver perto da lua”

Page 7: Exercícos fisica I

Versos da música “A Flor e o Espinho” de Nelson Cavaquinho e Guilherme de Brito,

considerado os mais belos versos da música brasileira.

Nesses versos o “sorriso da amada (a Flor)” atrapalha o caminho do “desprezado sofredor (o

Espinho)”. Vamos supor, que tanto a Flor, quanto o Espinho estejam executando movimentos

uniformes e em um determinado instante de tempo eles se encontram, para a tristeza do

Espinho. As equações horárias da Flor e do Espinho são respectivamente, SF = 5t e SE = 14 - 3t,

onde a posição é expressa em m e o tempo, em s. Podemos afirmar que:

 

1) A posição inicial da Flor é zero e que o instante do encontro é igual a t = 5 s.

2) A posição inicial da Flor é 14 e que o instante do encontro é igual a t = 5 s.

3) A posição inicial do Espinho é 14 e que o instante do encontro é igual a t = 7 s.

4) A posição inicial do Espinho é zero e que o instante do encontro é igual a t = 7 s.

5) A posição inicial da Flor é 14 e que o instante do encontro é igual a t = 7 s.

 

3.

Se um corpo é lançado obliquamente com uma certa velocidade, em uma determinada direção e

formando um ângulo de até 90 graus com a mesma, podemos afirmar que o movimento

resultante terá uma trajetória:

1) linear

2) elíptica

3) parabólica

4) hiperbólica

5) senoidal

 

4.

“Penso nos malabaristas

Do sinal vermelho

Que nos vidros fechados dos carros

Descobrem quem são...”

Trecho da música Malabaristas do sinal vermelho de João Bosco e Francisco Bosco.

Uns dos movimentos mais comuns na natureza é o movimento regido pela aceleração da

gravidade. Vamos supor que seu módulo é: g = 10 m/s2.

Um malabarista do sinal vermelho joga uma bolinha para cima com velocidade inicial de 20 m/s.

A altura que a bolinha assume antes de parar e o tempo com que ela chega ao chão são,

respectivamente:

 

Page 8: Exercícos fisica I

1) 20m e 2s.

2) 2m e 2s.

3) 20m e 1s.

4) 2m e 1s.

5) 2m e 20s.

 

5.

Um jogador de futebol chuta uma bola em certa direção com velocidade inicial v0, cujas

projeções vertical e horizontal têm módulos, respectivamente, de 100 m/s e 75 m/s. A trajetória

descrita é parabólica e o projétil toca o solo horizontal em B.

Desprezando a resistência do ar, podemos afirmar que:

 

1) A velocidade da bola se anula onde a altura é máxima

2) A bola chega ao ponto B com velocidade nula.

3) A velocidade vetorial da bola ao atingir B é igual à de lançamento.

4) Durante o movimento há conservação das componentes horizontal e vertical da

velocidade.

5) Durante o movimento apenas a componente horizontal da velocidade é conservada.

 

6.

A figura abaixo representa o gráfico da velocidade v em função do tempo t de movimentos

retilíneos de dois móveis A e B.

Considerando-se os seis segundos iniciais do movimento, podemos afirmar que:

 

Page 9: Exercícos fisica I

1) o móvel A tem aceleração menor do que o móvel B.

2) o móvel B percorre maior distância do que o móvel A.

3) o movimento do móvel A é uniforme.

4) os móveis percorrem distâncias iguais.

5) os móveis têm a mesma aceleração.

 

7.

Para o estudo do movimento de uma esfera, foi utilizado um plano inclinado articulável com

escala de 0 a 45 graus. Um esfera de aço foi confinada num tubo contendo líquido viscoso. Após

várias cronometragens da posição em relação ao tempo, os estudantes obtiveram o gráfico

mostrado na figura abaixo, com relação ao tipo de movimento, é correto afirmar que :

 

 

1) o movimento é uniformemente variado, a aceleração é diferente de zero.

2) o movimento é uniforme, sendo a aceleração igual a zero.

3) o movimento é circular, com aceleração constante.

4) o movimento é uniforme , sendo a velocidade variada.

5) o movimento é uniformmente variado porque a aceleração muda uniformemente.

 

8.

Durante um experimento de física, um estudante anotou diversos espaços percorridos por um

carrinho de controle remoto em função do tempo da experiência estabelecido pelo professor, em

movimento uniforme. Ao final do experimento, o estudante construiu a tabela abaixo. A partir

dos dados fornecidos pela tabela, podemos afirmar que a função horária dos espaços para o

carrinho em questão vale:

Page 10: Exercícos fisica I

1) S=10+4t

2) S=2t

3) S=4t

4) S=2 + 3t

5) S=2+4t

 

9.

Um móvel descreve uma trajetória em MUV segundo a equação S = 18 – 9t + t²., no SI. Podemos

afirmar que a função da velocidade deste móvel vale:

1) V=-9+2t

2) V=-5+4t

3) V=-4+4t

4) V=9+2t

5) V=9-2t

 

10.

Dois móveis A e B movimentam-se ao longo do eixo x, obedecendo às equações móvel A: xA =

100 + 5,0t e móvel B: xb = 5,0t². onde xA e xB são medidos de acordo com o SI. Pode-se

afirmar que:

 

 

1) A e B possuem a mesma velocidade;

2) o movimento de B é uniforme e o de A é acelerado;

3) entre t=0 e t=5,0s os móveis percorrem a mesma distância.

4) a aceleração de A é nula e a de B tem intensidade igual a 10 m/s2;

5) Nenhuma das respostas anteriores.

 

11.

Durante uma aula de laboratório, os estudantes verificaram o movimento de uma esfera em uma

calha contendo óleo. O plano foi inclinado segundo um ângulo de 10 graus para que a esfera de

Page 11: Exercícos fisica I

aço entrasse em movimento. Após algumas cronometragens , os alunos obtiveram os valores

mostrados na tabela a seguir . Com base nesses dados, é correto afirmar que : 

t(s) x (cm)

0 10

2 20

4 30

6 40

8 50

 

 

1) a velocidade mudou uniformemente

2) o movimento da esfera foi acelerado

3) não houve mudança no valor da velocidade.

4) o movimento é uniformemente acelerado.

5) a aceleração foi constante e negativa.

 

12.

Um garoto, brincando no jardim da sua casa, lança uma bolinha com velocidade 20 m/s da altura

de sua mão, que vale 1,30m. A partir da situação descrita, podemos afirmar que a altura máxima

atingida pela bolinha em relação ao solo foi:

 

1) 21,3m

2) 31,3m

Page 12: Exercícos fisica I

3) 41,3m

4) 60m

5) 70,3m

1.

“Rio 40 graus

Cidade maravilha

Purgatório da beleza e do caos”

Trecho da música “Rio 40 graus” de Fernanda Abreu - Fausto Fawcett – Laufer.

A música “Rio 40 graus” destaca a temperatura carioca característica de verão. Analise as

afirmações sobre esta grandeza física.

 

I.É escalar.

 

II.É vetorial.

 

III.Fica completamente definida através do módulo, da direção e do sentido.

 

IV.Fica completamente definida através do módulo, da direção, do sentido e da unidade de

medida.

 

V.Fica completamente definida através do valor e da unidade de medida.

 

A opção que apresenta somente afirmações verdadeiras é:

 

1) I e II.

2) II e III.

3) III e IV.

4) IV e V.

5) V e I.

 

2.

A Figura  mostra um automóvel fazendo uma curva.

Page 13: Exercícos fisica I

A grandeza física necessária para fazer o automóvel sair de um movimento retilíneo e realizar

uma curva deve possuir algumas características. Analise as afirmativas.

I. É uma grandeza vetorial.

II. É uma grandeza escalar.

III. Sua direção é o centro da curva.

IV. Seu sentido é para fora da curva.

V. Só altera a direção do vetor velocidade.

 

A opção em que as características dessa grandeza física são corretas e seu nome é:

 

 

1) I, III e IV – velocidade centrípeta.

2) II, III e IV – aceleração tangencial.

3) I, III e V – aceleração centrípeta.

4) III, V e IV – aceleração centrípeta.

5) II, IV e V – velocidade tangencial.

 

3.

Observe a Figura:

Usando o gráfico e sabendo que o raio da circunferência é igual a 4 m, os valores da aceleração

centrípeta, do período e da frequência são, respectivamente. 

 

1) 50 m/s, 2,5 s e 2,5 hz.

2) 25 m/s, 0,4 s e 0,4 hz.

3) 50 m/s, 0,4 s e 2,5 hz.

4) 25 m/s, 2,5 s e 0,4 hz.

5) 50 m/s, 0,4 s e 2,5 hz.

 

4.

Page 14: Exercícos fisica I

A mosquinha da Figura executa um movimento circular onde a velocidade segue a equação v = -

1t. No instante 5s, o raio da circunferência é igual a 5 m. As acelerações centrípeta e tangencial,

no instante 5s, são:

 

 

1) 5 m/s2 e – 1 m/s2.

2) 25 m/s2 e 5,1 m/s2.

3) – 25 m/s2 e 1s.

4) 5 m/s2 e 5,1 m/s2.

5) – 5 m/s2 e 5,1 m/s2.

 

5.

“A felicidade é como a gota

De orvalho numa pétala de flor

Brilha tranquila

Depois de leve oscila

E cai como uma lágrima de amor”

Trecho da música “A Felicidade” de Tom Jobim e Vinícius de Moraes.

A gota de orvalho, do trecho da música “A Felicidade” desliza sobre a pétala de flor e cai. Ao

cair, ela sofre a ação da aceleração da gravidade. Para definir, completamente, a aceleração da

gravidade é necessário:

 

1) Valor, direção, início da queda e unidade.

2) Valor, direção, sentido e unidade.

3) Valor, direção, início da queda e sentido.

4) Valor, sentido, início da queda e unidade.

5) Valor, início da queda, final da queda e unidade.

 

6.

Uma polia A de diâmetro DA = 0,4 m está ligada, através de uma correia, a outra polia B de

diâmetro DB = 0,8 m, sendo que não existe atrito entre as polias e a correia, durante o

Page 15: Exercícos fisica I

movimento. Se o movimento descrito pelas polias A e B for MCU, poderemos afirmar o seguinte

em relação à velocidade angular de A:

 

1) igual à velocidade angular da polia B.

2) ela é numericamente igual à velocidade tangencial da polia A .

3) ela é numericamente menor do que a velocidade angular da polia B.

4) ela é numericamente maior do que a velocidade angular da polia B.

5) ela é numericamente igual à velocidade tangencial da polia B.

 

7.

Um estudante observa uma partícula que se movimenta em MCU e relata que a mesma executa

5 voltas a cada 20 segundos. Analisando esses dados, podemos afirmar que a conclusão do

estudante quanto ao período (em s) e a frequência do movimento (em Hz) foi que eles valem,

respectivamente:

1) 4 e 0,25

2) 0,25 e 4

3) 0,5 e 2

4) 2 e 0,5

5) 1 e 4

 

8.

Um pêndulo vai de uma posição A até uma posição B, pontos extremos de uma oscilação, em 4s,

como mostra a figura. Para o pêndulo em questão, podemos afirmar que sua frequência, em Hz,

vale:

Page 16: Exercícos fisica I

1) 0,25

2) 0,6

3) 0,8

4) 1

5) 2

 

9.

Num dia estressante, Rex, o câozinho da senhora Marilda, começou a fazer um movimento

circular repetitivo, o cão desenvolveu a velocidade de 3 m/s numa circunferência de raio igual a

2 m. Sua aceleração centrípeta é igual a:

1) 3,0 m/s2

2) zero

3) 4 m/s

4) 4,5 m/s2

5) -4,5 m/s

 

10.

Um caminhão parte do repouso com uma aceleração constante igual a 2 m/s2 para percorrer

uma estrada retilínea. Após 20 segundos, o motorista aciona os freios até parar a 500 m do

ponto de partida. Podemos afirmar que o valor absoluto da aceleração desenvolvida pelo

caminhão ao frear foi, em m/s2, igual a:

1) 6

2) 8

3) 10

4) 5

5) 4

1.

Para a montagem de uma experiência sobre as Leis de Newton, os estudantes tiveram que

utilizar um dinamômetro para que a verificação dos valores das forças atuantes no sistema para

que essas fossem indicadas nos esquemas representativos da situação experimental. Em uma

das equipes apenas um dos estudantes fez a leitura correta no dinamômetro, que foi dada no SI

por :

1) 15 g

2) 15 mg

Page 17: Exercícos fisica I

3) 1,5 kg

4) 1,5 N

5) 0,0015 ton

 

2.

Observe a Tirinha:

O conceito físico que a tirinha se refere é:

 

1) Ação e Reação.

2) Choque.

3) Equilíbrio estático.

4) Movimento uniforme.

5) Princípio da inércia.

 

3.

Observe a Tirinha da Mônica:

Nela, vemos Mônica batendo no Cebolinha com o Sansão. Cebolinha fica machucado e o Sansão

fica destruído. O conceito físico usado nessa tirinha foi:

 

 

Page 18: Exercícos fisica I

1) Força.

2) Equilíbrio estático.

3) Ação e Reação.

4) Equilíbrio dinâmico.

5) Inércia.

 

4.

Observe a Figura

No famoso quadro de Cândido Portinari (1903 – 1962) “O café” vemos homens vários homens

carregando sacos de café. Imagine que eles estão em movimento uniforme. As forças que atuam

sobre eles são:

 

1) Peso, Normal, Peso do saco de café e Tração.

2) Peso do saco de café, Normal do saco de café, Atrito e Tração.

3) Peso, Normal, Atrito e Tração.

4) Peso, Peso do saco de café, Normal e Atrito.

5) Peso do saco de café, Normal, Atrito e Tração

 

5.

Observe a Figura :

Na Figura, um corpo está suspenso por 2 fios homogêneos de mesmo comprimento, em estado

de equilíbrio estático.

Page 19: Exercícos fisica I

Determine as trações T1 e T2 nos fios 1 e 2. (cos37º = 0,8 = sen53 e sen37º = cos53º = 0,6). A

massa do corpo m é de 10,0 kg. Use g = 10 m/s2 e uma casa decimal para fazer os cálculos.

 

1) 83,3 N e 62,5 N

2) 62,5 N e 83,3 N

3) 70,6 N e 83,3 N

4) 83,3 N e 70,6 N

5) 70,6 N e 62,5 N

 

6.

O sistema de corpos abaixo está em equilíbrio. Determine o ângulo α e a reação normal N.

Dados: g = 10 m/s2, PA = 60N, PB = 120N e PC = 100N.

1) 370 e 40 N.

2) 530 e 40 N.

3) 370 e 20 N.

4) 530 e 20 N.

5) 370 e 10 N

 

7.

A figura abaixo mostra três caixotes com massas m1 = 45,2 kg, m2 = 22,8 kg e m3 = 34,3 kg

apoiados sobre uma superfície horizontal sem atrito. Sabe-se que o sistema adquire uma

aceleração de 1,32 m/s2 ao ser empurrado para a direita por uma força F. Podemos afirmar que

a intensidade dessa força é, em N, igual a: 

Page 20: Exercícos fisica I

1) 135

2) 120

3) 160

4) 140

5) 165

 

8.

Uma partícula encontra-se sob a ação de três forças, como mostra a figura. Podemos afirmar que

a força resultante sobre a partícula, em N, vale:

1) 60

2) 80

3) 40

4) 50

5) 37

 

9.

Na tira de histórias em quadrinhos, podemos afirmar que o principal assunto pode ser

relacionado com o seguinte princípio da Física:

Page 21: Exercícos fisica I

1) Lei da inércia

2) Lei da Ação e reação

3) Lei de Kepler

4) Lei de Ampere

5) Princípio de Pascal

 

10.

Uma das grandes preocupações atuais é a proteção climática. Várias pesquisas têm contribuído

com dados sobre esse problema. Na revista FAPESP, nº 103, foi publicado que o mar de água

doce que todo ano cobre a bacia Amazônica modifica a força gravitacional da Terra. As

informações coletadas pelos satélites gêmeos Grace, em órbita há dois anos, foram analisadas

por engenheiros da Universidade do Texas; verificaram-se sutis variações da gravidade do

planeta ao longo da bacia do Amazonas (Science, 23 de julho de 2004). Esse trabalho deve

ajudar a avaliar mudanças do clima e a mapear depósitos de água, que evaporam, condensam,

congelam e derretem, atraindo ou afastando a mais tênue das forças da natureza. Sabemos que

a gravidade no planeta Terra é cerca de 9,81 m/s2 e na Lua 1,63 m/s 2, podemos afirmar que:

1) Na Terra a massa desse corpo é cerca de 6 vezes menor do que na Lua.

2) Na Terra e na Lua o corpo possui o mesmo peso.

3) Na Terra o peso do corpo é aproximadamente 6 vezes maior do que na Lua.

4) Na Lua a massa desse corpo é seis vezes menor, por isso o corpo flutua.

5) A massa e o peso do corpo não são diferentes nesses locais, apesar de as gravidades

serem diferentes.

 

1.

A Figura 1 reflete bem a Lei da gravidade que diz: “A gravidade é uma das quatro forças

fundamentais da natureza (junto com a força forte, eletromagnetismo e força fraca) em que

Page 22: Exercícos fisica I

objetos com massa exercem atração uns sobre os outros.”

Sobre essa força, podemos afirmar que:

 

I.É a força com que a Terra atrai corpos próximos a ela.

 

II.A massa depende de onde estamos medindo, por exemplo: ela assume um valor na Terra e

outro em Marte.

 

III.O Peso de um corpo é o mesmo na Terra e na Lua.

 

IV.A força gravitacional com que a Terra atrai a Lua é diferente da força gravitacional com que a

Lua atrai a Terra.

 

V.As forças gravitacionais entre os corpos celestes são um par ação e reação.

 

A opção que contém apenas informações verdadeiras é:

 

1) I e II.

2) I e III.

3) I e V.

4) II e IV.

5) III e IV.

 

2.

A força de atrito é a força que uma superfície exerce sobre um corpo para evitar seu movimento.

Ela está relacionada ao fato de que tanto a superfície, quanto o corpo em contato com a

superfície são rugosos.

Observe o gráfico da Força de atrito x Força para movimentar o corpo.

Page 23: Exercícos fisica I

Depois de conhecermos um pouco sobre força de atrito, assinale a opção correta.

 

1) A força de atrito é proporcional ao peso do corpo, que é sempre igual à força normal.

2) A força de atrito dinâmico é maior que a força de atrito estático.

3) O coeficiente de atrito não depende da superfície.

4) A força de atrito é sempre contrária ao movimento do corpo.

5) A força de atrito cresce sempre quando cresce a força que faz o corpo se mover.

 

3.

Observe a Figura:

Analise as afirmações:

 

I.No terceiro quadrinho, o peso do bolinho é maior que a força que John faz para puxá-lo.

 

II.No quarto quadrinho a força que John faz para segurar o bolinho é igual ao peso do bolinho.

 

III.No terceiro quadrinho, a resultante das forças que agem sobre o bolinho tem direção vertical e

sentido para cima.

 

IV.No quarto quadrinho, a resultante das forças é igual à zero.

 

V.No terceiro quadrinho, a velocidade do bolinho é decrescente.

 

Page 24: Exercícos fisica I

A opção que só contém afirmações corretas é:

 

 

1) I e III

2) II e III

3) II e IV

4) V e IV

5) V e III

 

4.

“O homem, bicho da terra tão pequeno

Chateia-se na terra

Lugar de muita miséria e pouca diversão,

Faz um foguete, uma cápsula, um módulo

Toca para a lua

Desce cauteloso na lua

Pisa na lua”

Versos do poema, O Homem, As Viagem, de Carlos Drummond de Andrade.

Os versos do poema de Carlos Drummond de Andrade, fala de viagens interplanetárias, para

realizarmos uma viagem assim, precisamos conhecer a Força Gravitacional.

A força gravitacional que atrai os satélites e planetas e etc...,  é dada pela fórmula: F = G

M1M2/r², onde M1 é a massa do corpo 1, M2 é a massa do corpo 2, r é o raio entre os dois corpos

e G é a constante gravitacional.

Observe as figuras abaixo:

 

Nessas figuras estão representadas a Terra (cinza), a Lua (branco), a órbita da lua (tracejado) e

você (que está sob a posição da seta na Terra).

Dados: Raio da Terra =

Distância entre o raio da Terra e o raio da Lua =

Qual a razão entre os módulos das forças gravitacionais exercidas pela Lua em você quando

você está na figura 1 e na figura 2, ou seja, qual o valor de F1/F2.

Note que você não vai precisar dos valores de G, da massa da Lua e da sua massa, pois elas se

repetem nas duas fórmulas e podem ser simplificadas.

 

Page 25: Exercícos fisica I

 

1) 1,07

2) 1,00

3) 0,97

4) 1,10

5) 0,80

 

5.

A Figura abaixo mostra um corpo sendo puxado por uma força resultante F, sabemos que a força

resultante é descrita pela equação Fr = ma, onde m é a massa do corpo e a é a sua aceleração.

O ângulo que a Força resultante faz com a horizontal é de 60º e seu valor é de 12 N , o plano em

que se apoia o bloco possui atrito  e com isso, uma força de atrito definida pelo coeficiente de

atrito multiplicado pela força Normal do corpo – o coeficiente de atrito cinético é igual a 0,1 – a

massa do corpo é de 6 kg. A aceleração do corpo é:

 

1) 0,14 m/s².

2) 0,17 m/s².

3) 0,15 m/s².

4) 0,20 m/s².

5) 0,23 m/s².

 

6.

Lucas estava ajudando sua namorada e mudar alguns móveis de lugar, para mudar uma

pequena mesa de 10kg de massa, foi aplicada uma força horizontal de 30N, supondo a superfície

de contato entre o móvel e o chão, seja livre de atrito, podemos afirmar que a aceleração sofrida

pelo móvel foi igual a:

1) 2m/s2

2) 3m/s2

Page 26: Exercícos fisica I

3) 0,333m/s2

4) -2m/s2

5) -3m/s2

 

7.

Considere uma situação onde um estoquista de massa 70 Kg tenta erguer uma caixa contendo

mantimentos, de massa 30 Kg. Supondo o sistema em equilíbrio, admitindo que a polia na

situação seja ideal e considerando g= 10m/s2, podemos afirmar que a tração na corda vale:

1) 300 N

2) 400 N

3) 500 N

4) 100 N

5) 50 N

 

8.

A figura abaixo mostra dois corpos, A e B, com pesos de, respectivamente, 30 N e 70 N, em um

meio onde podem ser desprezados os atritos. Considerando o fio e a polia ideais e adotando a

aceleração gravitacional como sendo 10 m/s2, podemos afirmar que a tração no fio vale:

 

Page 27: Exercícos fisica I

1) 21 N

2) 40 N

3) 25 N

4) 30 N

5) 12 N

 

9.

Um comerciante tenta erguer uma caixa que se encontra sobre a mesa de sua loja para colocar

na prateleira, como indica a figura. Para isto, aplica na caixa uma força vertical de intensidade

igual a 10N. Podemos afirmar que o valor que a força que a mesa aplica na caixa, em N, é igual a

:

1) 20

2) 40

3) 50

4) 60

5) 80

 

10.

Consideremos uma corda elástica, cuja constante vale 10 N/cm. As deformações da corda são

elásticas até uma força de tração de intensidade 300 N e o máximo esforço que ela pode

suportar, sem romper-se, é de 500 N. Se amarramos um dos extremos da corda em uma árvore

e puxarmos o outro extremo com uma força de intensidade de 300 N, a deformação será de 30

cm. Se substituirmos a árvore por um segundo indivíduo que puxe a corda também com uma

força de intensidade de 300 N, podemos afirmar que:

Page 28: Exercícos fisica I

1) a força de tração será nula;

2) a força de tração terá intensidade de 300 N e a deformação será a mesma do caso da

árvore;

3) a força de tração terá intensidade 600 N e a deformação será o dobro do caso da árvore;

4) a corda se romperá, pois a intensidade de tração será maior que 500 N;

5) nada acontecerá.