Example -BB Powertrain

53
V2008 R2 - 1 Sponsor Peter Zhou Champion XXXXXX Leader XXXXXX Team Member XXXX XXXX XXXX XXXX Front Cover Inlet Deformation Issue Improvement July, 2009

Transcript of Example -BB Powertrain

Page 1: Example -BB Powertrain

V2008 R2 - 1

Sponsor Peter Zhou

Champion XXXXXX

Leader XXXXXX

TeamMember

XXXXXXXXXXXXXXXX

Front Cover Inlet Deformation Issue Improvement

July, 2009

Page 2: Example -BB Powertrain

V2008 R2 - 2

Zhaoqing Power - Chrysler AM I CD

XXX Power Accessories Co., Ltd.

Production of Aluminum Casting Front Cover – Timing Chain Case

Chrysler Mack Engine Plant

Annual Volume: 200,000 units

Page 3: Example -BB Powertrain

V2008 R2 - 3

Big Y Drill DownReduce the Overall Process

Defect Rate (25%) for Chrysler Products

Casting(70%)

Heat Treatment (20%)

Others (Deburring & Machining)

(10%)

Poor Fluidity15%

Inlet Deforming

45%

2) Identify / quantify the inputs

1) Start with business goal

3) Drill down again

Others (10%)

Inlet Deforming

(90%)

Porosity30%

Others10%

AM I CD

Page 4: Example -BB Powertrain

V2008 R2 - 4

CTQ & CTP Chart

CTQ CCR Customer Issues

VOC

Reduced external defect rate of Inlet Deforming

No quality issue of inlet deforming in Chrysler plant.

The quality issue of inlet deforming will case production line problem in Chrysler Engine Plant.

Chrysler is not satisfied with the current quality issue of inlet deforming. Improvement should be made to reduce defect rate.

VOB Business Issues

CBR CTP

The process internal scrap rate is too high, customer is not happy with our performance and the profit is lossing.

Low output rate with high scrap cost

Substantially reduce the defect rate of inlet deforming, ideally “0”

Reduce the defect rate of inlet deforming with cost saved.

Remark1. Voice of customer and voice of business to be prioritized to those which are related to project objective2. Use VOB or VOC or both depending on the project objectives

AM I CD

Page 5: Example -BB Powertrain

V2008 R2 - 5

Process Flow

Insert sand coreClose mold and hold pressure (parameter set)

Take out parts & appearance Check

Dimension Inspection by sampling

Degating & Deburring

Set parts ready in fixture and Heat treating process

Shot blasting Dimension Inspection by sampling

Shipping good parts to machining

Inlet Deforming Related Process

AM I CD

Page 6: Example -BB Powertrain

V2008 R2 - 6

Quick Win Analysis

f

i

Proces

sNo.

Quick Win OpportunityFast to

Implement ()

Easy to Implement

()

Cheap to Implemen

t ()

Within the Team’s Control

()

Easily Reversible

()

Implement

(Yes/No)

Adjust the casting parameters No No Yes Yes Yes No

Adjust the heat treatment settings No No Yes Yes Yes No

Add heating insert to help heating around mold inlet section

Yes Yes Yes Yes Yes Yes

Add injection pin around mold inlet section for even distribution of force

Yes Yes Yes Yes Yes Yes

Adjust the chemical composition of Sr Yes Yes Yes Yes Yes Yes

RemarkQW Opportunity Sources from Process Analysis, Brainstorming, Process walk through…

AM I CD

Page 7: Example -BB Powertrain

V2008 R2 - 7

Quick Win Analysis

f

i

Add heating insert to help heating around mold inlet area. Add injection pin around mold inlet area for even distribution of force. Adjust the chemical content of Sr to the lower limit of Chrysler specification.

Heating Insert Injection Pin

Defect rate reduced from 12% to 10% by implementing the above 3 Quick Wins.

AM I CD

Page 8: Example -BB Powertrain

V2008 R2 - 8

Inlet Position Output Indicator

Input / Process Indicator Correlation between Input & Output PriorityInsufficient Training 1 1

Insufficient Experience 1 1Poor Accountability 1 1

Incorrect Tooling Design 1 1Inlet Cooling too quick 9 9Injection Pin Location 9 9

Insufficient Oil Pressure 1 1High Content of Strontium 3 3

Material Impurity 1 1

Hardness not even 1 1Setting of Melting Aluminum Temperature 9 9

Setting of Pressure 9 9Part Placement Orientation during HT 9 9

No Standard W.I. 1 1No Quick Inspection Gage 1 1

Noise 1 1Insufficient Lighting 1 1

Floor Temperature Change 1 1

Environment

Operator

Machine

Material

Process

Fishbone Diagram

5 high affected inputs and 1 medium affected inputs to Inlet Position have been identified by Cause & Effect Matrix.

AM I CD

Page 9: Example -BB Powertrain

V2008 R2 - 9

Data Collection Plan - 1

Key Indicator Operation Definition

Sl. No. Performance Indicator (Y) Operational definitionY Inlet Deforming Inlet Position Misalignment Measured by CMM (+/- 1.25 mm)

AM I CD

Performance measure

(Y)

Operational definition

Data source and

location

Sample

size

Who will collect the

data

When will data be

collected

How will data be

collected

Other data that should be

collected at the same time

Inlet Deforming

Inlet Position Misalignment Measured by

CMM (+/- 1.25 mm)

CMM Tester 60 QA/ Zhu Jie 10 pcs each lot

CMM

Page 10: Example -BB Powertrain

V2008 R2 - 10

Data Collection Plan - 2

Remarks:Other data refers to additional information from stratification perspective.

We will collect the Inlet Position Data under current process setting of identified key inputs (Melting aluminum temperature, Filling pressure phase I, Filling pressure phase II, Filling pressure phase III).

The current settings are:Melting aluminum temperature (T): 695 °CFilling pressure phase I (P1): 0.14 MPaFilling pressure phase II (P2): 0.20 MPaFilling pressure phase III (P3): 0.29 MPa P1 P3

充型充满升液箱

充满升液管保压

加压曲线及说明

时间P2

AM I CD

Page 11: Example -BB Powertrain

V2008 R2 - 11

MSA Plan

尺寸连续型

特性Y1:Inlet Deforming

測試人員3 persons

測試設備CMM 三坐标

進行方法 編號 1~10 給 3 位進行 判定,循環 3 次

判定方法 共取得 90 個資料 , 依 Gage R&R 計算之數值判定

Sampling

Mesurement Methods  

GR&R Plan

AM I CD

Page 12: Example -BB Powertrain

V2008 R2 - 12

MSA Data

评价人: 3 零件数: 10试验次数: 3 1 2 3 4 5 6 7 8 9 10 平均值

1评价人 1试验人 -0. 16 -0. 41 -0. 36 -0. 19 -0. 32 -0. 14 -0. 09 -0. 26 -0. 36 0. 45 -0. 18452试验人 -0. 17 -0. 41 -0. 36 -0. 17 -0. 32 -0. 16 -0. 10 -0. 26 -0. 36 0. 46 -0. 18493试验人 -0. 17 -0. 41 -0. 37 -0. 18 -0. 32 -0. 13 -0. 10 -0. 28 -0. 37 0. 45 -0. 1868

平均值 -0. 16567 -0. 40833 -0. 36067 -0. 18033 -0. 319 -0. 14367 -0. 09533 -0. 27033 -0. 36333333 0. 452666667 -0. 1854极差 0. 011 0. 004 0. 009 0. 025 0. 007 0. 027 0. 009 0. 019 0. 006 0. 014 0. 0131

2评价人 1试验人 -0. 13 -0. 41 -0. 36 -0. 18 -0. 29 -0. 13 -0. 08 -0. 26 -0. 36 0. 43 -0. 17672试验人 -0. 13 -0. 40 -0. 35 -0. 19 -0. 30 -0. 13 -0. 08 -0. 26 -0. 35 0. 43 -0. 17593试验人 -0. 13 -0. 40 -0. 35 -0. 19 -0. 32 -0. 15 -0. 08 -0. 26 -0. 35 0. 46 -0. 178

平均值 -0. 131 -0. 406 -0. 35367 -0. 18633 -0. 30333 -0. 13767 -0. 082 -0. 26033 -0. 35033333 0. 442 -0. 176866667极差 0. 003 0. 014 0. 01 0. 012 0. 029 0. 025 0. 004 0. 005 0. 015 0. 031 0. 0148

3评价人 1试验人 -0. 13 -0. 41 -0. 35 -0. 17 -0. 31 -0. 14 -0. 09 -0. 25 -0. 33 0. 45 -0. 17212试验人 -0. 13 -0. 39 -0. 36 -0. 17 -0. 30 -0. 13 -0. 10 -0. 26 -0. 33 0. 45 -0. 17263试验人 -0. 13 -0. 40 -0. 35 -0. 16 -0. 31 -0. 14 -0. 06 -0. 24 -0. 35 0. 45 -0. 1678

平均值 -0. 13067 -0. 40067 -0. 35 -0. 16667 -0. 307 -0. 13533 -0. 08333 -0. 248 -0. 33666667 0. 45 -0. 170833333极差 0. 007 0. 017 0. 009 0. 007 0. 007 0. 004 0. 038 0. 018 0. 014 0. 007 0. 0128

量具重复性和再现性数据收集表零件

AM I CD

Page 13: Example -BB Powertrain

V2008 R2 - 13

MSA ResultsP

erce

nt

Part-to-PartReprodRepeatGage R&R

100

50

0

% Contribution%?Study?Var

Sam

ple

Ran

ge

0.04

0.02

0.00

_R=0.01267

UCL=0.03261

LCL=0

A B C

Sam

ple

Mea

n

0.5

0.0

-0.5

__X=-0.178UCL=-0.165LCL=-0.191

A B C

Part10987654321

0.5

0.0

-0.5

OperatorCBA

0.5

0.0

-0.5

Part

Ave

rage

10 9 8 7 6 5 4 3 2 1

0.5

0.0

-0.5

OperatorABC

Gage name:Date of study:

Reported by:Tolerance:Misc:

Components of Variation

R Chart by Operator

Xbar Chart by Operator

Y by Part

Y by Operator

Operator * Part Interaction

Gage R&R (ANOVA) for Y

1

1

2

3

4

2

3

4

Biggest variance is from Part-to-Part.

Repeatability is acceptable.

Reproducibility is acceptable.

No Interaction between operator and part.

AM I CD

Page 14: Example -BB Powertrain

V2008 R2 - 14

MSA Results

Total Gauge R&R% = 5.16% < 10%

GR&R% is Acceptable.

AM I CD

Page 15: Example -BB Powertrain

V2008 R2 - 15

Capability Analysis

Y Y Y Y Y Y

1 -1.16 11 -1.23 21 -1.13 31 -1.24 41 -1.14 51 -1.052 -1.22 12 -0.89 22 -1.15 32 -1.17 42 -1.45 52 -0.943 -1.19 13 -1.38 23 -1.48 33 -0.95 43 -1.14 53 -1.104 -0.82 14 -0.99 24 -1.24 34 -1.17 44 -1.25 54 -1.065 -1.16 15 -1.23 25 -1.04 35 -1.19 45 -1.19 55 -0.996 -1.20 16 -1.45 26 -1.23 36 -1.07 46 -0.89 56 -1.247 -1.25 17 -1.18 27 -1.02 37 -1.23 47 -1.23 57 -1.118 -1.18 18 -1.31 28 -1.14 38 -0.97 48 -1.09 58 -1.009 -1.35 19 -1.18 29 -1.19 39 -1.00 49 -1.09 59 -0.98

10 -1.25 20 -0.84 30 -1.16 40 -0.92 50 -1.11 60 -0.95

Using the CMM tester to collect the Inlet Position data.

The settings are: Melting aluminum temperature (T): 695 °CFilling pressure phase I (P1): 0.14 MPaFilling pressure phase II (P2): 0.20 MPaFilling pressure phase III (P3): 0.29 MPa

AM I CD

Page 16: Example -BB Powertrain

V2008 R2 - 16

Indi

vidu

al V

alue

60544842363024181261

-0.8

-1.2

-1.6

_X=-1.1358

UCL=-0.7062

LCL=-1.5654

Mov

ing

Ran

ge

60544842363024181261

0.4

0.2

0.0

__MR=0.1615

UCL=0.5277

LCL=0

Observation

Valu

es

6055504540

-1.0

-1.2

-1.4

-0.80-0.96-1.12-1.28-1.44

-0.5-1.0-1.5

Within

Overall

Specs

WithinStDev 0.14320Cp 2.91Cpk 0.27CCpk 2.91

OverallStDev 0.14565Pp 2.86Ppk 0.26Cpm *

Process Capability Sixpack of Inlet DeformingI Chart

Moving Range Chart

Last 25 Observations

Capability Histogram

Normal Prob PlotAD: 0.612, P: 0.106

Capability Plot

Capability Analysis

Data Analysis result:P value is greater than 0.05, the data are normal distributed.

Cp = 2.91Cpk = 0.27

AM I CD

Page 17: Example -BB Powertrain

V2008 R2 - 17

Capability Analysis

Output indicator

Average Standard deviation

Cp Cpk Sigma Level

Y -1.14 0.14 2.91 0.27 2.3

Current Baseline Performance:Mean: -1.14 Standard Deviation: s =0.14 Distribution Shape : Shift too muchConclusion: variance is Ok but mean shifted, mean need to be improved

1.20.80.40.0-0.4-0.8-1.2

LSL USLProcess Data

Sample?N 60StDev(Within) 0.14320StDev(Overall) 0.14565

LSL -1.25000Target *USL 1.25000Sample Mean -1.13583

Potential (Within) Capability

CCpk 2.91Overall Capability

Pp 2.86PPL 0.26PPU 5.46Ppk

Cp

0.26Cpm *

2.91CPL 0.27CPU 5.55Cpk 0.27

Observed PerformancePPM?<?LSL 100000.00PPM?>?USL 0.00PPM?Total 100000.00

Exp. Within PerformancePPM?<?LSL 212646.00PPM?>?USL 0.00PPM?Total 212646.00

Exp. Overall PerformancePPM?<?LSL 216566.12PPM?>?USL 0.00PPM?Total 216566.12

WithinOverall

Process Capability of Inlet Deforming

AM I CD

Page 18: Example -BB Powertrain

V2008 R2 - 18

Station1 Measurement_Casting Station2 Measurement_Deburing Station3 Measurement_HTCasting -1.16 Deburring -1.07 HT -1.58Casting -1.20 Deburring -1.21 HT -1.47Casting -1.19 Deburring -1.14 HT -1.58Casting -1.16 Deburring -1.19 HT -1.67Casting -1.20 Deburring -1.13 HT -1.32Casting -1.22 Deburring -1.15 HT -1.51Casting -1.18 Deburring -1.14 HT -1.57Casting -1.26 Deburring -1.32 HT -1.42Casting -1.35 Deburring -1.22 HT -1.73Casting -1.20 Deburring -1.35 HT -1.56Casting -1.23 Deburring -1.12 HT -1.43Casting -1.21 Deburring -1.12 HT -1.39Casting -1.38 Deburring -1.11 HT -1.47Casting -1.18 Deburring -1.08 HT -1.63Casting -1.31 Deburring -1.10 HT -1.75Casting -1.18 Deburring -1.06 HT -1.54Casting -1.09 Deburring -0.99 HT -1.56Casting -1.29 Deburring -1.20 HT -1.49Casting -1.36 Deburring -1.11 HT -1.57Casting -1.32 Deburring -1.09 HT -1.64Casting -1.04 Deburring -1.19 HT -1.49Casting -1.23 Deburring -1.16 HT -1.53Casting -1.02 Deburring -1.25 HT -1.43Casting -1.14 Deburring -1.08 HT -1.37Casting -1.19 Deburring -1.20 HT -1.55Casting -1.16 Deburring -1.22 HT -1.66Casting -1.22 Deburring -1.21 HT -1.70Casting -1.17 Deburring -1.18 HT -1.69Casting -1.03 Deburring -1.26 HT -1.45Casting -1.17 Deburring -1.16 HT -1.62

-1.0-1.1-1.2-1.3

Median

Mean

-1.12-1.14-1.16-1.18-1.20

Anderson-Darling Normality Test

Variance 0.0061Skewness -0.370835Kurtosis 0.478176N 30Minimum -1.3500

A-Squared

1st Quartile -1.2100Median -1.15503rd Quartile -1.1075Maximum -0.9900

95% Confidence I nterval for Mean-1.1894

0.25

-1.131395% Confidence Interval for Median

-1.1977 -1.120095% Confidence Interval for StDev

0.0620 0.1046

P-Value 0.732Mean -1.1603StDev 0.0778

95% Confidence Intervals

Summary for Measurement_Deburing

AM I CD

-1.0-1.1-1.2-1.3-1.4

Median

Mean

-1.16-1.18-1.20-1.22-1.24

Anderson-Darling Normality Test

Variance 0.0080Skewness 0.010839Kurtosis 0.212838N 30Minimum -1.3800

A-Squared

1st Quartile -1.2375Median -1.19503rd Quartile -1.1600Maximum -1.0200

95% Confidence Interval for Mean-1.2347

0.69

-1.167995% Confidence Interval for Median

-1.2200 -1.172395% Confidence Interval for StDev

0.0712 0.1202

P-Value 0.065Mean -1.2013StDev 0.0894

95% Confidence Intervals

Summary for Measurement_Casting

-1.3-1.4-1.5-1.6-1.7

Median

Mean

-1.50-1.52-1.54-1.56-1.58-1.60

Anderson-Darling Normality Test

Variance 0.0122Skewness 0.024626Kurtosis -0.647635N 30Minimum -1.7500

A-Squared

1st Quartile -1.6290Median -1.55203rd Quartile -1.4608Maximum -1.3210

95% Confidence I nterval for Mean-1.5863

0.14

-1.503795% Confidence I nterval for Median

-1.5828 -1.487295% Confidence Interval for StDev

0.0881 0.1487

P-Value 0.967Mean -1.5450StDev 0.1106

95% Confidence Intervals

Summary for Measurement_HT

Observation

Mea

sure

men

t_De

burin

g

30282624222018161412108642

-1.0

-1.1

-1.2

-1.3

-1.4

Number of runs about median:

0.93142

12Expected number of runs: 16.00000Longest run about median: 7Approx P-Value for Clustering: 0.06858Approx P-Value for Mixtures:

Number of runs up or down:

0.02645

24Expected number of runs: 19.66667Longest run up or down: 2Approx P-Value for Trends: 0.97355Approx P-Value for Oscillation:

Run Chart of Measurement_Deburing

Observation

Mea

sure

men

t_Ca

stin

g

30282624222018161412108642

-1.0

-1.1

-1.2

-1.3

-1.4

Number of runs about median:

0.64491

15Expected number of runs: 16.00000Longest run about median: 6Approx P-Value for Clustering: 0.35509Approx P-Value for Mixtures:

Number of runs up or down:

0.27571

21Expected number of runs: 19.66667Longest run up or down: 2Approx P-Value for Trends: 0.72429Approx P-Value for Oscillation:

Run Chart of Measurement_Casting

Observation

Mea

sure

men

t_HT

30282624222018161412108642

-1.3

-1.4

-1.5

-1.6

-1.7

-1.8

Number of runs about median:

0.35509

17Expected number of runs: 16.00000Longest run about median: 5Approx P-Value for Clustering: 0.64491Approx P-Value for Mixtures:

Number of runs up or down:

0.77172

18Expected number of runs: 19.66667Longest run up or down: 3Approx P-Value for Trends: 0.22828Approx P-Value for Oscillation:

Run Chart of Measurement_ HT

ANOVA Analysis

30 Inlet Deforming data were collected for each process station from Casting to Heat Treating, all data are independent and normal distributed (P>0.05).

Page 19: Example -BB Powertrain

V2008 R2 - 19

Stations

Mea

sure

men

ts

HTDeburringCasting

-0.9

-1.0

-1.1

-1.2

-1.3

-1.4

-1.5

-1.6

-1.7

-1.8

Boxplot of Measurements by Stations

ANOVA Analysis AM I CD

No big difference observed between the measurement data after Deburring station and data after Casting station. So the Degating/Deburring process Does Not Cause Difference to the part inlet position.

The measurement data after Heat Treating station are obviously different with those after Casting and Degating/Deburing station. The Heat Treating process Causes Difference to the part inlet position.

Page 20: Example -BB Powertrain

V2008 R2 - 20

Data

VerticalHorizontal

0.50

0.25

0.00

-0.25

-0.50

Boxplot of Horizontal, Vertical

2 Sample T-Test AM I CD

Compared with the horizontal placement, the inlet position difference of vertical placement is much better (mean 0.115 vs. mean -0.390), so we will use this placement method, and the part fixture will be designed accordingly.

Page 21: Example -BB Powertrain

V2008 R2 - 21

AM I CDSOV Analysis

Mold Mold 1 Mold 2

Machine Setting 1 2 1 2

SOV is conducted to verify which factor in the casting process to cause the biggest variance.

In this study, 2 duplicated molds from 2 suppliers were used. 2 machine settings (different temperature, 3 pressures) were applied to verify the largest variance.

Page 22: Example -BB Powertrain

V2008 R2 - 22

Mold

Measu

rem

ent

21

-0.9

-1.0

-1.1

-1.2

-1.3

-1.4

-1.5

-1.6

MachineSetting

12

Multi-Vari Chart for Measurement by Machine Setting - Mold

AM I CDSOV Analysis

In the Casting Process, The Largest Variance is From the Machine Setting.

Page 23: Example -BB Powertrain

V2008 R2 - 23

Summary Table of Validated X’s

Y’s X’s X’s Identified from FMEA / CE Matrix/CE

Diagram/5 Why’s

X’s Validated from Hypothesis

Test/Corr/Regression/Plot/Chart

Conclusion Remarks (attach Minitab output)

Inlet Deformation

X1: Inlet cooling too quick

C&E MatrixFishbone Diagram

Quick Win Implementation

Important (Defect rate lowered 2%)

X2: Injection pin location not even

C&E MatrixFishbone Diagram

Quick Win Implementation

Important (Defect rate lowered 2%)

X3: High content of strontium

C&E MatrixFishbone Diagram

Quick Win Implementation

Important (Defect rate lowered 2%)

X4: Part placement orientation in HT furnace

C&E MatrixFishbone Diagram

ANOVA and 2 Sample T-Test

Significant (P<0.05)

X5: Melting aluminum temperature

C&E MatrixFishbone Diagram

SOV Analysis Variance components percentage 70%

X6: Casting filling pressures

C&E MatrixFishbone Diagram

SOV Analysis Variance components percentage 70%

AM I CD

Page 24: Example -BB Powertrain

V2008 R2 - 24

Improve Phase Planning

Y Variable, X’s Improve Methods Status

Y: Inlet Deformation

X1: Melting Aluminum Temperature

DOE On-goingX2: P1 X3: P2X4: P3

AM I CD

Page 25: Example -BB Powertrain

V2008 R2 - 25

DOE Plan

Y Factors Defination Levels

X1: Temperature Temperature of Melting Aluminum Ready for Casting 2

X2: P1 Tube Pressure 2X3: P2 Tank Pressure 2X4: P3 Molding Pressure 2

Inlet Deformation

AM I CD

Factors Level 1 Level 2

Temperature 685 °C 705 °C

P1 0.1 Mpa 0.2 Mpa

P2 0.1 Mpa 0.22 Mpa

P3 0.23 Mpa 0.35 Mpa

Page 26: Example -BB Powertrain

V2008 R2 - 26

Step 1 View the Data – Graphical Summary

Data is normally distributed without outlier points

DOE Analysis AM I CD

-0.2-0.4-0.6-0.8-1.0-1.2-1.4

Median

Mean

-0.5-0.6-0.7-0.8-0.9

Anderson-Darling Normality Test

Variance 0.10171Skewness -0.574826Kurtosis 0.008989N 20Minimum -1.42000

A-Squared

1st Quartile -0.91500Median -0.660003rd Quartile -0.47500Maximum -0.17000

95% Confidence Interval for Mean-0.86276

0.31

-0.5642495% Confidence Interval for Median

-0.81000 -0.4994195% Confidence I nterval for StDev

0.24253 0.46580

P-Value 0.522Mean -0.71350StDev 0.31892

95% Confidence Intervals

Summary for Inlet Deformation

Page 27: Example -BB Powertrain

V2008 R2 - 27

DOE Analysis AM I CD

Step 2 Create the Model – All terms are included in the initial model

Page 28: Example -BB Powertrain

V2008 R2 - 28

AM I CD

Estimated effects and coefficients indicate that Temperature, P2, P3 and

interaction between Temperature*P3 are significant at a = 0.05. R-Sq = 99.22% R-Sq(adj) = 96.27% Curvature is not significant.

DOE AnalysisStep 3 Fit the Model – Effects Estimation

Page 29: Example -BB Powertrain

V2008 R2 - 29

Standardized Effect

Perc

ent

1050-5-10-15

99

9590

80706050403020

105

1

Factor

P3

NameA TemperatureB P1C P2D

Effect TypeNot SignificantSignificant

ADD

C

A

Normal Probability Plot of the Standardized Effects(response is Inlet Deformation, Alpha = .05)

AM I CDDOE Analysis

Step 3 Fit the Model – Probability Plot of Effects

Normal Probability Plot of Effects also shows that Temperature, P2, P3 and interaction between Temperature*P3 are significant at a = 0.05.

Page 30: Example -BB Powertrain

V2008 R2 - 30

AM I CDDOE Analysis

Term

Standardized Effect

ACDBD

BABCBCDABD

ABCDABCDBCACAD

CDA

181614121086420

2.78Factor

P3

NameA TemperatureB P1C P2D

Pareto Chart of the Standardized Effects(response is Inlet Deformation, Alpha = .05)

Step 3 Fit the Model – Pareto Plot of Effects Pareto Plot of Effects shows the same result.

Page 31: Example -BB Powertrain

V2008 R2 - 31

AM I CD

Step 3 Fit the Model - Main Effects and Interaction Effects Plots

The significant effects can also be verified through the Main Effect Plot and Interaction Effect Plot.

DOE AnalysisM

ean

of In

let D

efor

mat

ion

705695685

-0.5-0.6-0.7-0.8-0.9

0.200.150.10

0.220.160.10

-0.5-0.6-0.7-0.8-0.9

0.350.290.23

Temperature P1

P2 P3

Point TypeCornerCenter

Main Effects Plot (data means) for Inlet Deformation

Temperature

0.200.150.10 0.220.160.10 0.350.290.23

-0.4

-0.8

-1.2

P1

-0.4

-0.8

-1.2

P2

-0.4

-0.8

-1.2

P3

Temperature

Center705 Corner

Point Type685 Corner695

P1

Center0.20 Corner

Point Type0.10 Corner0.15

P2

Center0.22 Corner

Point Type0.10 Corner0.16

Interaction Plot (data means) for Inlet Deformation

Page 32: Example -BB Powertrain

V2008 R2 - 32

AM I CDDOE AnalysisStep 4 Perform Residual Diagnostics

The residuals are not normally distributed. The residuals are not randomly centered around zero in the plot of Residuals vs. Fitted Values. The residuals are not randomly centered around zero in the plot of Residuals vs. Run Order.

Standardized Residual

Perc

ent

3210-1

99

90

50

10

1

Fitted Value

Stan

dard

ized

Resi

dual

0.0-0.4-0.8-1.2-1.6

2

1

0

-1

-2

Standardized Residual

Freq

uenc

y

1.51.00.50.0-0.5-1.0-1.5

16

12

8

4

0

Observation Order

Stan

dard

ized

Resi

dual

2018161412108642

2

1

0

-1

-2

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Inlet Deformation

Page 33: Example -BB Powertrain

V2008 R2 - 33

AM I CDDOE Analysis

Step 4 Perform Residual Diagnostics

The residuals show non-random pattern in the plots of Residuals vs. each Input Factors.

Temperature

Stan

dard

ized

Res

idua

l

705700695690685

2

1

0

-1

-2

P1

Stan

dard

ized

Res

idua

l

0.2000.1750.1500.1250.100

2

1

0

-1

-2

P2

Stan

dard

ized

Res

idua

l

0.200.150.10

2

1

0

-1

-2

P3

Stan

dard

ized

Res

idua

l

0.350.300.25

2

1

0

-1

-2

Residuals Versus Temperature(response is Inlet Deformation)

Residuals Versus P1(response is Inlet Deformation)

Residuals Versus P2(response is Inlet Deformation)

Residuals Versus P3(response is Inlet Deformation)

Page 34: Example -BB Powertrain

V2008 R2 - 34

AM I CDDOE Analysis

Step 5 Check for Possible Transformation

A Transformation is not necessary since the SSE for Lambda=1 is below the 95% confidence line.

lambda

Resid

ual S

um o

f Squ

ares

210-1-2

1.00

0.10

0.01

0.020

Box-Cox TransformationsWith approximate 95 % confidence interval for the transformation parameter

Page 35: Example -BB Powertrain

V2008 R2 - 35

AM I CDDOE Analysis

Step 6 Remove Non-significant Terms / Refit Reduced Model - Non-significant terms are removed

Page 36: Example -BB Powertrain

V2008 R2 - 36

AM I CD

All terms are significant. R-Sq = 94.21% R-Sq(adj) = 92.67% Curvature is not significant.

DOE Analysis

Step 6 Remove Non-significant Terms / Refit Reduced Model

Page 37: Example -BB Powertrain

V2008 R2 - 37

AM I CDDOE Analysis

Step 6 Remove Non-significant Terms / Refit Reduced Model

Normal Probability Plot and Pareto Plot of Effects also show that all terms are significant at a = 0.05.

Page 38: Example -BB Powertrain

V2008 R2 - 38

AM I CDDOE Analysis

Step 6 Remove Non-significant Terms / Refit Reduced Model

The significant effects can also be verified through the Main Effect Plot and Interaction Effect Plot.

Mea

n of

Inle

t De

form

atio

n

705695685

-0.5-0.6-0.7-0.8-0.9

0.220.160.10

0.350.290.23

-0.5-0.6-0.7-0.8-0.9

Temperature P2

P3

Point TypeCornerCenter

Main Effects Plot (data means) for Inlet Deformation

Temperature

0.220.160.10 0.350.290.23

-0.4

-0.8

-1.2

P2

-0.4

-0.8

-1.2

P3

Temperature

Center705 Corner

Point Type685 Corner695

P2

Center0.22 Corner

Point Type0.10 Corner0.16

Interaction Plot (data means) for Inlet Deformation

Page 39: Example -BB Powertrain

V2008 R2 - 39

AM I CDDOE Analysis

Step 6 Residual Diagnostics for Reduced Model

The residuals are not normally distributed. The plot of Residuals vs. Fitted Values and Residuals vs. Run Order do not show any non-random patterns.

Standardized Residual

Perc

ent

210-1-2

99

90

50

10

1

Fitted Value

Stan

dard

ized

Resid

ual

-0.3-0.6-0.9-1.2

2

1

0

-1

-2

Standardized Residual

Freq

uenc

y

2.01.51.00.50.0-0.5-1.0-1.5

4.8

3.6

2.4

1.2

0.0

Observation Order

Stan

dard

ized

Res

idua

l

2018161412108642

2

1

0

-1

-2

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Inlet Deformation

Page 40: Example -BB Powertrain

V2008 R2 - 40

AM I CD

The residuals do not show any non-random pattern in the plots of Residuals vs. each Input Factors.

DOE Analysis

Temperature

Stan

dard

ized

Res

idua

l

705700695690685

2

1

0

-1

-2

P1

Stan

dard

ized

Res

idua

l

0.2000.1750.1500.1250.100

2

1

0

-1

-2

P2

Stan

dard

ized

Res

idua

l

0.200.150.10

2

1

0

-1

-2

P3

Stan

dard

ized

Res

idua

l

0.350.300.25

2

1

0

-1

-2

Residuals Versus Temperature(response is Inlet Deformation)

Residuals Versus P1(response is Inlet Deformation)

Residuals Versus P2(response is Inlet Deformation)

Residuals Versus P3(response is Inlet Deformation)

Page 41: Example -BB Powertrain

V2008 R2 - 41

Y (Inlet Deformation) = -6.9454 + 0.0098 (Temperature) + 1.8524 (P2) + 80.9792 (P3) - 0.1208 (Temperature)*(P3)

AM I CDDOE Analysis

Step 7 Choose Improved Model & Predict Response

The reduced model is acceptable and thus the chosen model is as below:

Page 42: Example -BB Powertrain

V2008 R2 - 42

AM I CDDOE Analysis

Step 7 Choose Improved Model & Predict Response

Predict Inlet Deformation at the following settings of factors: Temperature = 685 °C P2 = 0.22 MPa P3 = 0.23 MPa

Page 43: Example -BB Powertrain

V2008 R2 - 43

AM I CDDOE Analysis

Step 8 Interpret Chosen Model

The Contour Plot and Surface Plot show the basic changing direction of factors to meet target Y.

Temperature

P3

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1.0

704702700698696694692690688686

0.34

0.32

0.30

0.28

0.26

0.24

Hold ValuesP2 0.22

Contour Plot of Inlet Deformation vs P3, Temperature

0.35

I nlet Deformation

-1.2 0.30

-0.9

-0.6

P3

-0.3

684 0.25690 696 702Temperature

Hold ValuesP2 0.22

Surface Plot of Inlet Deformation vs P3, Temperature

Page 44: Example -BB Powertrain

V2008 R2 - 44

AM I CDDOE Analysis

Step 8 Interpret Chosen Model

Page 45: Example -BB Powertrain

V2008 R2 - 45

AM I CDDOE Analysis

Step 8 Interpret Chosen Model

Optimal Y value -0.2422 can be reached at the following settings of Xs: Temperature = 685 °C P2 = 0.22 MPa P3 = 0.23 MPa

Page 46: Example -BB Powertrain

V2008 R2 - 46

AM I CDDOE Analysis

Step 9 Make Confirmation Runs

Will conduct 10 confirmation runs at the optimal settings above. Calculate the confidence interval of prediction based on the number of confirmation test run. 10 confirmation runs conducted. The mean (-0.2387) of the 10 confirmation runs falls within the calculated confidence interval. Thus we can finally draw the conclusion that the model is acceptable.

Page 47: Example -BB Powertrain

V2008 R2 - 47

AM I CDPilot Run

Data Analysis result:P value is greater than 0.05, the data are normal distributed.Cp=3.09, Cpk=2.17

Indi

vidu

al V

alue

30272421181512963

0.00

-0.25

-0.50

_X=-0.2970

UCL=0.0262

LCL=-0.6203

Mov

ing

Rang

e

30272421181512963

0.4

0.2

0.0

__MR=0.1216

UCL=0.3971

LCL=0

Observation

Valu

es

3025201510

-0.15

-0.30

-0.45

-0.1-0.2-0.3-0.4-0.5

0.0-0.2-0.4-0.6

Within

Overall

Specs

WithinStDev 0.10776Cp 3.09Cpk 2.17CCpk 3.09

OverallStDev 0.09132Pp 3.65Ppk 2.57Cpm *

Process Capability Sixpack of Inlet DeformationI Chart

Moving Range Chart

Last 25 Observations

Capability Histogram

Normal Prob PlotAD: 0.423, P: 0.300

Capability Plot

Page 48: Example -BB Powertrain

V2008 R2 - 48

AM I CDPilot Run

1.20.80.40.0-0.4-0.8-1.2

LSL USLProcess Data

Sample?N 60StDev(Within) 0.14320StDev(Overall) 0.14565

LSL -1.25000Target *USL 1.25000Sample Mean -1.13583

Potential (Within) Capability

CCpk 2.91Overall Capability

Pp 2.86PPL 0.26PPU 5.46Ppk

Cp

0.26Cpm *

2.91CPL 0.27CPU 5.55Cpk 0.27

Observed PerformancePPM?<?LSL 100000.00PPM?>?USL 0.00PPM?Total 100000.00

Exp. Within PerformancePPM?<?LSL 212646.00PPM?>?USL 0.00PPM?Total 212646.00

Exp. Overall PerformancePPM?<?LSL 216566.12PPM?>?USL 0.00PPM?Total 216566.12

WithinOverall

Process Capability of Inlet Deforming

Cp=2.91Cpk=0.27

Cp=3.09Cpk=2.17

Current Performance:Mean: -0.29 Standard Deviation: s =0.10 Conclusion: variance is Ok and mean improved, successful improvement

0.90.60.30.0-0.3-0.6-0.9

LSL USLProcess Data

Sample?N 30StDev(Within) 0.10776StDev(Overall) 0.09132

LSL -1.00000Target *USL 1.00000Sample Mean -0.29703

Potential (Within) Capability

CCpk 3.09Overall Capability

Pp 3.65PPL 2.57PPU 4.73Ppk

Cp

2.57Cpm *

3.09CPL 2.17CPU 4.01Cpk 2.17

Observed PerformancePPM?<?LSL 0.00PPM?>?USL 0.00PPM?Total 0.00

Exp. Within PerformancePPM?<?LSL 0.00PPM?>?USL 0.00PPM?Total 0.00

Exp. Overall PerformancePPM?<?LSL 0.00PPM?>?USL 0.00PPM?Total 0.00

WithinOverall

Process Capability of Inlet Deformation

Page 49: Example -BB Powertrain

V2008 R2 - 49

AM I CDSolution Summary

X1: Cooling rate at inlet position

Solution: Add heating insert to help heating around mold inlet area

X2: Injection pin location

Solution: Add injection pin around mold inlet area for even distribution of force

X3: Content of Strontium (Sr)

Solution: Lower the Strontium content to the lower limit of Chrysler specification

X4: Part placement orientation HT in furnace

Solution: Vertical placement in HT furnace

X5: Melting aluminum temperature

Solution: Adjust the temperature setting

X6: Casting filling 3 pressures

Solution: Adjust the 3 pressures setting

Page 50: Example -BB Powertrain

V2008 R2 - 50

Full Scale Implementation Plan

Tasks Activities Responsible person

Start Date Due Date Status and Actions

WI Definition Re-develop the new working instruction for

affected process

XXX May 5 April 8 Closed

Staff Training Train related operators and line supervisors

XXX May 5 May 8 Closed

Machine parameter adjustment

Set the machine conditions XXX May 10 May 12 Closed

Data collection Collect the data on time, 5 pcs/shift

XXX May 15 June 15 On-going

Implementation strategy

Define the WI and set the selected pressure/temperature in parallelThen collect the data for 5 pcs per shift

Time line: May 15 ~ June 15

AM I CD

Page 51: Example -BB Powertrain

V2008 R2 - 51

AM I CDSPC Control Chart

Sample

Sam

ple

Mea

n

60544842363024181261

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

__X=-0.268

UCL=-0.040

LCL=-0.496

Before AfterXbar Chart of Inlet Deformation by Stage

Page 52: Example -BB Powertrain

V2008 R2 - 52

Replication Standardization Solution Focus Pilot Site Company-wide Similar process

Casting & HT process

Yes Exhaust Manifold Line Aluminum Workshop

Exhaust manifold line and other lines involving casting &

HT process

AM I CD

Replication Opportunity

Standardization and Documentation

Page 53: Example -BB Powertrain

V2008 R2 - 53

Financial Impact

Project Benefit: Initial estimate / COPQ: $264,000

Project Name Front Cover Inlet Deformation Issue Improvement

Project Leader Ling Hang

Financial Benefits 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Total

Direct savings 48,000 48,000 48,000 48,000 $192,000

Cost avoidance (3CPR avoidance)

35,000 $35,000

Total $0.00 $0.00 $0.00 $0.00 $227,000

Non-Financial Benefits

Potential more business with Chrysler

Signature

Approvals MBB Name

Date

Champion Name

Date

Finance Name

Date

AM I CD