Exam2 Sample Key

download Exam2 Sample Key

of 5

Transcript of Exam2 Sample Key

  • 8/18/2019 Exam2 Sample Key

    1/5

    Sample Exam 2 - SolutionsMAT 2150 - Winter 2016 

    February 19, 2016 Friday

    (1)   [Sec. 3.2: 21] A snowball melts in such a way that the rate of change in its volume is proportionalto its surface area. If the snowball was initially 4 in. in diameter, and after a half hour itsdiameter is 3 in.

    (a) When will its diameter be 2 in.?

    (b) Mathematically speaking, when will the snowball disappear?

    Solution:  The governing equation is

    dV 

    dt  = −kS 

    where

    V   = V  (t) = 4

    3πr3, S  = S (t) = 4πr2

    with the understanding that  r  =  r(t) is also a function of time. Let us measure time in hours.The minus sign in the model comes from the fact that the volume is decreasing and hence weexpect k  to be a positive constant which we will compute using the given data in the problem.

    Inserting the expressions for  V   and  S   into the governing equation we obtain

    3

    d(r3)

    dt  = −k · 4πr2 =⇒

    1

    3  · 3r2

    dr

    dt  = −kr2 =⇒

    dr

    dt  = −k.

    Solving this simple first order differential equations we get

    r(t) = −kt + C.

    Initially (i.e. at  t = 0) the diameter of the snowball is 4 in. which means that the radius is 2in. Hencer(0) = 2 =⇒   C  = 0 =⇒   r(t) = 2 − kt.

    It is also given that the diameter after half an hour (i.e. at time  t  = 1/2) is 3 in. and hencethe radius is 3/2 in. when  t  = 1/2. Thus

    r(1/2) = 3

    2  =⇒   2 − k

    1

    2 =

     3

    2  =⇒   k = 1 =⇒   r(t) = 2 − t.

    We are now ready to answer the questions.

    (a) The diameter will be 2 in. when the radius is 1 in. Thus

    r(T ) = 1 =⇒   2 − T   = 1 =⇒   T   = 1.

    Hence the diameter will be 2 in. in one hour.

  • 8/18/2019 Exam2 Sample Key

    2/5

    (b) The snowball will disappear when r = 0 i.e.

    r(T ) = 2 − T   = 0 =⇒   T   = 2.

    That is, the snowball will disappear in two hours.

    (2)   [Sec. 4.2: 19] Solve the initial value problem   y + 2y + y = 0, y(0) = 1, y(0) = −3.

    Solution: The associated auxiliary equation is

    r2 + 2r + 1 = 0

    which has the repeated root  r1,2 = −1. Hence two linearly independent solutions are

    y1(t) = e−t and y2(t) = te

    −t.

    A general solution is given byy(t) = c1e

    −t + c2te−t.

    Upon differentiation y (t) = −c1e−t + c2(1 − t)e

    −t. The initial value

    y(0) = 1 =⇒   c1 = 1.

    Hencey(0) = −3 =⇒ −1 + c2 = −3 =⇒   c2 = −2.

    Consequently, the solution of the IVP is

    y(t) = (1 − 2t)e−t.

    (3)   [Sec. 4.3: 21] Solve the IVP   y + 2y + 2y = 0, y(0) = 2, y(0) = 1.

    Solution:  The auxiliary equation is  r2 + 2r + 2 = 0 whose roots are

    r1,2 =  −2 ±

     22 − 4(1)(2)

    2  =

      −2 ± 2i

    2  = −1 ± i.

    Hence a general solution to the DE is

    y(t) = c1e−t cos t + c2e

    −t sin t

    and hencey(0) = 2 =⇒   c1 = 2.

    The derivative of  y(t) is

    y(t) = c1[−e−t cos t − e−t sin t] + c2[−e

    −t sin t + e−t cos t]

    and hence

    y

    (0) = 1 =⇒ −

    c1 + c2 = 1 =⇒

      c2 = 3.Thus the desired solution is

    y(t) = 2e−t cos t + 3e−t sin t.

  • 8/18/2019 Exam2 Sample Key

    3/5

    (4)   [Sec. 4.5: 29] Solve the IVP   y − y = sin t − e2t, y(0) = 1, y(0) = −1.

    Solution:   The auxiliary equation

    r2 − 1 = 0 =⇒   r1,2 = ±1 =⇒   yh(t) = c1et + c2e

    −t.

    We need to find two particular solutions, one for the sin t  part and one for the  e2t part of theright hand side function. For the sin t  part we set

    y p(t) = A cos t + B sin t   =⇒   y

     p(t) = −A sin t + B cos t   =⇒   y

     p(t) = −A cos t − B sin t.

    Inserting into the DE   y p   − y p = sin t   yields

    −A cos t − B sin t − (A cos t + B sin t) = sin t   =⇒ −2A cos t − 2B sin t = sin t

    =⇒   2A = 0,   2B = −1

    =⇒   A = 0, B = −1

    2.

    Hence,

    y p(t) = −1

    2

     sin t.

    For the  e2t part,y p(t) = Ae

    2t =⇒   y p(t) = 2Ae2t =⇒   y p(t) = 4Ae

    2t.

    Inserting into the DE   y p   − y p = −e2t yields

    4Ae2t − Ae2t = −e2t =⇒   3Ae2t = −e2t =⇒   3A = −1 =⇒   A = −1

    3.

    Hence,

    y p(t) = −1

    3e2t.

    Hence a general solution to the DE given in the problem is

    y(t) = c1et + c2e

    −t−

    1

    2 sin t −

    1

    3e2t.

    The initial condition

    y(0) = 1 =⇒   c1 + c2 −1

    3 = 1 =⇒   c1 + c2 =

     4

    3.

    Also,

    y(t) = c1et

    − c2e−t

    −1

    2 cos t −

    2

    3e2t.

    Hence the other initial condition

    y(0) = −1 =⇒   c1 − c2 −1

    2  −

    2

    3 = −1 =⇒   c1 − c2 =

     1

    6.

  • 8/18/2019 Exam2 Sample Key

    4/5

    Thus,

    c1 = 3

    4, c2 =

      7

    12.

    Thus, the desired solution to the IVP is

    y(t) = 3

    4et +

      7

    12e−t −

    1

    2 sin t −

    1

    3e2t.

    (5)  Find a particular solution to   y

    + 2y

    + y  =  e−t

    (a) by the method of undetermined coefficients.

    (b) by the method of variation of parameters.

    Solution:

    (a) The auxiliary equation is

    r2 + 2r + 1 = 0 =⇒   (r + 1)2 = 0 =⇒   r1,2 = −1.

    Hence, the trial solution is

    y p(t) = At2e−t =⇒   y p =  Ae

    −t(2t − t2) =⇒   y p  = Ae−t(t2 − 4t + 2).

    Inserting these into the DE gives

    y p + 2y

     p + y + p =  Ae−t[t2 − 4t + 2 + 2(2t − t2) + t2] = e−t

    =⇒   2Ae−t = e−t =⇒   2A = 1 =⇒   A = 1

    2.

    Hence, a particular solution is

    y p(t) = 1

    2t2e−t.

    (b) Since r1,2 = −1, the complimentary solution is

    yh(t) = c1e−t + c2te

    −t.

    Hence, a variation of parameter solution is

    y p(t) = v1(t)e−t + v2(t)te

    −t.

    Differentiating y p   gives,

    y p

     =  v 1e−t − v1e

    −t + v2te−t + v2(te

    −t)

    = v 1e−t + v

    2te−t − v1e

    −t + v2(1 − t)e−t

    = −v1e−t + v2(1 − t)e

    −t

  • 8/18/2019 Exam2 Sample Key

    5/5

    where we assumed thatv1e−t + v

    2te−t = 0

    to avoid second order derivatives of  v1  and  v2. Multiplying both sides of this equality bye−t gives

    v1 + v

    2t = 0.

    Differentiating once more we obtain

    y p  = −v1e−t + v1e−t + v2(1 − t)e−t + v2[(1 − t)e−t]

    = −v1e−t + v1e

    −t + v2(1 − t)e−t + v2[−e

    −t− (1 − t)e−t]

    = e−t[−v1 + v1 + v

    2(1 − t) + v2(t − 2)].

    Inserting these into the DE yields

    y p + 2y

     p + y p =  e−t[−v

    1 + v1 + v

    2(1 − t) + v2(t − 2) + 2v2(1 − t) − 2v1 + v1 + tv2]

    = e−t[−v1 + v

    2(1 − t)] = e−t

    after cancelations. Comparing two sides of this equality gives

    −v1 + v

    2(1 − t) = 1.

    Hence we have the following system of equations for  v 1

     and  v 2:

    v1

      +   t v2

      = 0−v

    1  + (1 − t)v

    2  = 1

    The first equation gives   −v1

     =  tv 2. Inserting this into the second equations we obtain

    tv2 + (1 − t)v

    2 = 1 =⇒   v

    2 = 1 =⇒   v2 =  t

    where we set the constant of integration to be zero. Then,

    v1

     = −tv2

      =⇒   v1

     = −t   =⇒   v1 = −1

    2t2

    where we again set the constant of integration to zero. Thus, a particular solution is

    y p(t) = v1(t)e−t + v2(t)te

    −t = −1

    2t2 + t · te−t = (t2 −

    1

    2t2)e−t =

     1

    2t2e−t.

    The same as the one we found in (a).