Exam Proposal GE604

24
University of Tripoli Faculty of Engineering Postgraduate department Mustafa Abed Ellsamad - #2215802 1 Advanced Mathematics [ GE 604 ] Midterm exam – spring 2015 Q1} Find the solution of the following equation with : i. Green function. ii. Variation of parameters. iii. Laplace transforms. x 3 y ,xxx + 3x 2 y ,xx − 8xy ,x = 10x 2 with initial conditions y(1) = −1, y ,x (1) = −2 , y ,xx (1) = 16 Q2} find the solution of the following equation with : i. Green function. ii. Variation of parameters. iii. Laplace transforms. x 2 y ,xx − 2xy ,x + 2y = x 2 lnx with initial conditions y(1) = 1, y ,x (1) = −1 Q3} Determine Governing Equation by using Calculus of variation. I = ∫ F(x, y, y′, y′′)dx x 2 x 1 Q4} Find the solution of the following ODE using power series method : y ′′ + xy = 2 y(0) = 1 , y (0) = 1

description

GE 604

Transcript of Exam Proposal GE604

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    1

    Advanced Mathematics [ GE 604 ] Midterm exam spring 2015

    Q1} Find the solution of the following equation with :

    i. Green function.

    ii. Variation of parameters.

    iii. Laplace transforms.

    x3y,xxx + 3x2y,xx 8xy,x = 10x

    2

    with initial conditions y(1) = 1, y,x(1) = 2 , y,xx(1) = 16

    Q2} find the solution of the following equation with :

    i. Green function.

    ii. Variation of parameters.

    iii. Laplace transforms.

    x2y,xx 2xy,x + 2y = x2lnx

    with initial conditions y(1) = 1, y,x(1) = 1

    Q3} Determine Governing Equation by using Calculus of variation.

    I = F(x, y, y, y)dx

    x2

    x1

    Q4} Find the solution of the following ODE using power series method :

    y + xy = 2 y(0) = 1 , y(0) = 1

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    2

    Q5} Find the solution for x(t) + x(t) = F(t)

    With conditions x(0) = x(0) = 0 , by using :

    i. Homogeneous and particular solution.

    ii. Using superposition.

    iii. Using Laplace transform.

    1

    t

    Q6} find the solution of the following :

    1

    [x2 (1 x )]3

    dx 1

    0

    b cos6 x dx

    2

    0

    c x2dx

    2 x

    2

    0

    Q7} Find Fourier series for :

    F(x) = {0 5 03 0 5

    period =10

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    3

    Advanced Mathematics [ GE 604 ] Midterm exam spring 2015

    Q1} find the solution of the following equation with :

    i. Green function.

    ii. Variation of parameters.

    iii. Laplace transforms.

    x3y,xxx + 3x2y,xx 8xy,x = 10x

    2

    with initial conditions y(1) = 1, y,x(1) = 2 , y,xx(1) = 16

    a0(x)y,xxx a1(x)y,xx + a2(x)y,x + a3(x)y = a4(x)

    Check for self ad joint a0(x)=x3 (a0(x)),x=3 x

    2 (a0(x)),x=a1(x)

    the DE is self ad joint

    R(R2 3R + 2) + 3R(R 1) 8R = 0

    R3 3R2 + 2R + 3R2 3R 8R = 0

    R3 9R = 0

    R(R 3)(R + 3) = 0

    yh = c1 + c2x3 +

    c3x3

    i. Green function

    G(x, z) = c1(z) + c2(z)x3 +

    c3(z)

    x3

    G(z, z) = c1(z) + c2(z)z3 +

    c3(z)

    z3= 0

    G,x(x, z) = 3c2(z)x2 3

    c3(z)

    x4

    G,x(z, z) = 3c2(z)z2 3

    c3(z)

    z4= 0

    c3(z) = c2(z)z6

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    4

    G,xx(x, z) = 6c2(z)x + 12c3(z)

    x5

    G,xx(z, z) = 6c2(z)z + 12c3(z)

    z5=

    1

    p(z)=

    1

    z3

    6c2(z)z + 12c2(z)z =1

    z3

    c2(z) =

    1

    18z4 c3(z) =

    z2

    18

    c1(z) = c2(z)z3

    c3(z)

    z3

    c1(z) = 1

    9z

    G(x, z) = 1

    9z+

    1

    18z4x3

    +

    z2

    18x3

    yp = G(x, z)

    x

    0

    f(z)dz

    yp = (

    x

    0

    1

    9z+

    1

    18z4x3

    +

    z2

    18x3) 10z2 dz

    yp = (

    x

    0

    10

    9 z +

    10

    18 z2x3

    +

    10z4

    18x3)dz

    yp = 5

    9 x2

    5

    9 x2 +

    1

    9 x2 = x2

    y = yh + yp

    y = c1 + c2x3 +

    c3x3

    x2

    1 = c1+c2+c3 1

    y,x = 3c2 x2 3

    c3

    x4 2x

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    5

    2 = 4c2c3

    y,xx = 12c2 x2 +

    2c3

    x3

    6

    5x3+

    12x2

    10

    12 = 12c2 + 2c3

    c3 = 1 c2 = 1 c1 = 2

    y = 2 + x3 +1

    x3 x2

    -----------------------------------------------------------

    ii. variation of parameters

    From homogeneous solution

    yh = c1 + c2x3 +

    c3x3

    y1 = 1 y2 = 3 y3 =

    1

    3

    w(y1, y2, y3) =

    [ 1 x3

    1

    3

    0 3x2 3

    x4

    0 6x12

    x5 ]

    =54

    3

    yp = u1(x) + u2(x)x3 +

    u3(x)

    3

    u1 + u2x

    3 + u3

    3= 0

    3u2x2

    3u3x4

    = 0

    6u2x +12u3

    x5= 102

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    6

    [ 1 x3

    1

    3

    0 3x2 3

    x4

    0 6x12

    x5 ]

    [

    u1u2u3

    ] = [00

    102]

    u1 =[ 0 x

    3 13

    0 3x2 3x4

    10 6x

    12x5 ]

    w(y1, y2, y3)=

    602

    543

    = 10

    9

    u2 =[ 1 0

    13

    0 0 3x4

    010

    12x5 ]

    w(y1, y2, y3)=

    30 x5

    543=

    5

    9 x2

    u3 =

    [

    1 x3 00 3x2 0

    0 6x10

    ]

    w(y1, y2, y3)=

    30x

    54 3=

    5

    9 4

    u1(x) = u1(x)dx =

    10

    9 dx =

    5

    92

    u2(x) = u2(x)dx =

    5

    9 x2dx =

    1

    9

    u3(x) = u3(x)dx =

    5

    9 4 dx =

    1

    9 5

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    7

    yp = 5

    92

    1

    9 3 +

    19

    5

    3

    yp = 5

    9x2

    5

    9 x2 +

    1

    9x2 = x2

    y = yh + yp y = c1 + c2x3 +

    c3x3

    x2

    1 = c1 + c2 + c3 1

    0 = c1 + c2 + c3

    y,x = 3c2x2 3

    c3x4

    2x

    2 = 3c2 3c3 2

    c2 = c3

    y,xx = 6c2x +12c3x5

    2

    16 = 6c2 + 12c3 2 18 = 18 2 2 = 1

    c2 = 1 c3 = 1 c1 = 2

    y = 2 + x3 +1

    x3 x2

    -----------------------------------------------------------

    iii. Laplace transform

    L[y(t)] = y(s) = y(t)est

    0

    dt

    L[y,x(x)] = sy(s) y(0)

    L[y,xx(x)] = s2y(s) sy(0) y,x(0)

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    8

    L[y,xxx(x)] = s3y(s) s2y(0) sy,x(0) y,xx(0)

    Let t=lnx t ,x =1

    x et = x

    y,x = y,t. t ,x xy,x = y,t = R

    By diff xy,xx + y,x = y,tt. t ,x x2y,xx + x y,x = y,tt

    x2y,xx = y,tt y,t

    x2y,xxx + 2xy,xx = y,ttt. t ,x y,t. t ,x

    x3y,xxx + 2x2y,xx = y,ttt. y,tt

    x3y,xxx = y,ttt. 3y,tt + 2y,t

    Form the main equation we found

    y,ttt. 3y,tt + 2y,t + 3y,tt 3y,t 8y,t = 10e2t

    y,ttt 9y,t = 10e2t

    s3y(s) s2y(0) sy,x(0) y,xx(0) 9sy(s) + 9y(0) =10

    s 2

    s3y(s) s2A sB C 9sy(s) + 9A =10

    s 2

    (s3 9s)y(s) A(s2 9)Bs C =10

    s 2

    (s3 9s)y(s) =10

    s 2+ A(s2 9) + Bs + C

    (s3 9s)y(s) =10 + A(s3 2s2 9s + 18) + B(s2 2s) + C(s 2)

    s 2

    y(s) =10 + A(s3 2s2 9s + 18) + B(s2 2s) + C(s 2)

    s(s 3)(s 2)(s + 3)

    p(s) = 10 + A(s3 2s2 9s + 18) + B(s2 2s) + C(s 2)

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    9

    s = 0 s = 3 s = 3 s = 2 p(0) = 10 + 18A 2C p(3) = 10 + 3B + C p(3) = 10 + 15B 5C p(2) = 10 q(s) = s4 2s3 9s2 + 18s q,x(s) = 4 s

    3 6s2 18s + 18

    q,x(0) = 18 ; q,x(3) = 18 ; q,x(3) = 90 ; q,x(2) = 10

    y(t) =p(0)

    q,x(0)e0 +

    p(3)

    q,x(3)e 3t +

    p(3)

    q,x(3)e3t +

    p(2)

    q,x(2)e2 t

    y(t) =10 + 18A 2C

    18 +

    10 + 3B + C

    18e3 t +

    10 + 15B 5C

    90e3t +

    10

    10e2 t

    y(x) =10 + 18A 2C

    18 +

    10 + 3B + C

    18x3 +

    10 + 15B 5C

    90x3 x2

    1 =10 + 18A

    18 +

    10 + 3B + C

    18 +

    10 + 15B 5C

    90 1

    A = 1

    y,x(x) =10 + 3B + C

    6x2 +

    10 + 15B 5C

    30x4 2x

    2 =10 + 3B + C

    6 +

    10 + 15B 5C

    30 2

    B = 2

    y,xx(x) = 10 + 3B + C

    3x +

    40 + 45B 20C

    30x5 2

    16 =10 + 3B + C

    3 +

    40 + 45B 20C

    30 2

    C = 14

    y = 2 + x3 +1

    x3 x2

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    10

    Q2} find the solution of the following equation with :

    iv. Green function.

    v. Variation of parameters.

    vi. Laplace transforms.

    x2y,xx 2xy,x + 2y = x2lnx

    with initial conditions y(1) = 1, y,x(1) = 1

    a0(x)y,xx a1(x)y,x + a3(x)y = a4(x)

    Check for self-ad joint a0(x)=x2 (a0(x)),x=2 x a1(x) = -2x (a0(x)),xa1(x)

    p(x) = e

    a1(x)

    a0(x)

    dx= e

    2 xdx = 2

    1

    2y,xx

    2

    3y,x +

    2

    4y =

    lnx

    x2

    the DE now is self ad joint

    let x= t= ln x

    R(R 1) 2R + 2 = 0

    R2 R 2R + 2 = 0

    R2 3R + 2 = 0

    (R 1)(R 2) = 0

    = c1x + c22

    i. Green function

    G(x, z) = c1(z)x + c2()2

    G(z, z) = c1(z)z + c2()2 = 0

    G,x(x, z) = c1 + 2c2

    G,z(z, z) = c1 + 2c2 = 1

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    11

    1 = 1 22z

    2 = 1

    1 = 1 , 2 =1

    G(x, z) = x +x2

    z

    yp = G(x, z)

    x

    0

    f(z)dz

    yp = (

    x

    0

    x +x2

    z) ln z dz

    yp = (

    x

    0

    x ln + x2

    zln )dz

    yp = (

    x

    0

    x ln )dz + (

    x

    0

    x2

    zln )dz

    yp = x[z ln z]0

    + 2[ 1

    2(ln )2]

    0

    yp = 2 ln + 2 + 2

    2(ln )2

    y = y + y

    y = c1x + c222 ln + 2 +

    2

    2(ln )2

    1 = c1+c2 + 1 c1 = c2

    y,x = c1 + 2 c2x + x x ln + (ln )2

    y,x(1) = 1 = c1 + 2 c2 + 1 0 + 0

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    12

    c2 = 2 c1 = 2

    y = 2x 222 ln + 2 + 2

    2(ln )2

    ii. variation of parameters

    From homogeneous solution

    = c1x + c22 y1 = x y2 =

    2

    w(y1, y2, y3) = [ 2

    1 2] = x2

    yp = u1(x)x + u2(x)x2

    u1x + u2x

    2 = 0

    u1 + 2u2x = ln

    [[ 2

    1 2] ] [

    u1u2

    ] = [0

    ln ]

    u1 =[ 0

    2

    ln 2]

    w(y1, y2)=

    2 ln

    2 = ln

    u2 =[ 01 ln

    ]

    w(y1, y2)=

    x ln

    2 =

    ln

    u1(x) = u1(x)dx = ln dx = [x ln x ]

    u2(x) = u2(x)dx =

    ln

    dx =

    1

    2 (ln )2

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    13

    yp = u1(x)x + u2(x)x2

    yp = 2 ln + 2 + 2

    2(ln )2

    y = + y

    y = c1x + c222 ln + 2 +

    2

    2(ln )2

    1 = c1+c2 + 1 c1 = c2

    y,x = c1 + 2 c2x + x x ln + (ln )2

    y,x(1) = 1 = c1 + 2 c2 + 1 0 + 0

    c2 = 2 c1 = 2

    y = 2x 222 ln + 2 + 2

    2(ln )2

    iii. Laplace transform

    L[y(t)] = y(s) = y(t)est

    0

    dt

    L[y,x(x)] = sy(s) y(0)

    L[y,xx(x)] = s2y(s) sy(0) y,x(0)

    Let t= ln x t ,x =1

    x et = x

    y,x = y,t t,x xy,x = y,t

    xy,xx + y,x = y,tt t,x x2y,xx + x y,x = y,tt x

    2y,xx = y,tt y,t

    by substitution in the main equation :

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    14

    y,tt y,t 2y,t 2y = te2t

    y,ttt 3y,t 2y = te2t

    s2y(s) sy(0) sy,x(0) 3sy(s) + 3y(0) + 2y(s) =1

    (s 2)2

    s2y(s) sA sB 3sy(s) + 3A + 2y(s) =1

    (s 2)2

    ()(s2 3s + 2) A(s 3) sB =1

    (s 2)2

    ()(s2 3s + 2) =1

    (s 2)2+ A(s 3) + sB

    () =1

    (s 2)2(s2 3s + 2)+

    A(s 3)

    (s2 3s + 2)+

    sB

    (s2 3s + 2)

    () =1

    (s 2)2(s 2)( 1)+

    A(s 3)

    (s 2)( 1)+

    sB

    (s 2)( 1)

    () =1 + A(s 3)(s 2)2 + sB(s 2)2

    (s 2)3( 1)

    p(s) = 1 + A(s 3)(s 2)2 + sB(s 2)2 s = 2 s = 1 p(2) = 1 p(1) = 1 2A + B q(s) = s4 7s3 18s2 + 20s + 8 q,x(s) = 4 s

    3 21s2 36s + 20

    q,x(2) = 104 ; q,x(1) = 33

    y(t) =p(1)

    q,x(1)et +

    p(2)

    q,x(2)e 2t

    y(t) =1 2A + B

    33e t +

    1

    104e2 t

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    15

    y(t) =1 2A + B

    33x +

    1

    1042

    1 =1 2A + B

    33

    1

    104

    1 2A + B = 33(1 +1

    104 )

    = 33(105

    104) 1 + 2

    y,x(x) =1 2A + B

    33+

    2

    104x

    1 =1 2A + B

    33

    2

    104

    1 2A + B = 33(1 +1

    104 )

    =1

    2(1 + + 33 (

    103

    104))

    y = 2x 222 ln + 2 + 2

    2(ln )2

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    16

    Q3} Determine Governing Equation by using Calculus of variation.

    I = F(x, y, y, y)dx

    x2

    x1

    I=0= F,yy+F,yy+F,yy)dxx2x1

    F, y ydx =F, yy|x1

    x2 (F, y ),x ydx

    F, y ydx = F, y y |x1

    x2 (F, y

    x2

    x1

    ),x ydx

    F, y ),x ydx = (F, y ),x y (F, y ),xx ydx

    x2

    x1

    I = (F, y (F, y ),x

    x2

    x1

    + (F, y ),xx )y + F, y y| x1x2

    +(F, y ) y |x1

    x2 (F, y),x y|

    x1

    x2

    Boundary conditions

    (F, y ),xx )y + F, y y| x1x2+ (F, y ) y |

    x1

    x2 (F, y),x y|

    x1

    x2

    Governing equation

    F, y (F, y),x+ (F, y),xx = 0

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    17

    Q4} Find the solution of the following ODE using power series method :

    y + xy = 2 y(0) = 1 , y(0) = 1

    n

    n=2

    (n 1)anxn2 + x an

    n=0

    xn = 2

    n

    n=2

    (n 1)anxn2 + an

    n=0

    xn+1 = 2

    (n + 2)

    n=0

    (n + 1)an+2xn + an1

    n=1

    xn = 2

    (2)(1)a2 + [(n + 2)

    n=1

    (n + 1)an+2 + an1]xn + 2a2 = 2

    a0 = y(0) = 1 , a1 = y(0) = 1

    2a2 = 2 , a2 = 1

    an+2 =an1

    (n + 2)(n + 1) , n 1

    a3 = a06

    = 1

    6 , a4 =

    a14.3

    = 1

    12 , a5 =

    a25.4

    = 1

    20 ,

    a6 = a36.5

    =1

    180

    General Solution

    y1(x) = 1 + x + x2

    x3

    6

    x4

    12

    x5

    20+

    x6

    180+

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    18

    Q5} Find the solution for x(t) + x(t) = F(t)

    With conditions x(0) = x(0) = 0 by using :

    i. Homogeneous and particular solution.

    ii. Using superposition.

    iii. Using Laplace transform.

    i. Homogeneous and particular solution

    F(t) = {+1 , 0 t < 1 , t

    Homogeneous solution x(t) + x(t) = 0

    m2 + 1 = 0 m = i

    xh = Acos t + B sin t

    particular solution

    xp(t) = c0 x(t) = 0

    c0 = 1 c0 = 1

    xp(t) = 1

    x(t) = xh + xp x(t) = A cos t + B sin t + 1

    x(0) = A cos 0 + B sin 0 + 1 = 0

    A = 1

    x(t) = Asin t + B cos t

    x(0) = Asin 0 + B cos t

    B = 0

    x(t) = 1 cos t for 0 t < . . (1)

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    19

    Now repeat last steps for initial condition :

    x(t) = 1 cos t

    x() = 1 cos

    x() = 2

    x(t) = sin t

    x() = 0

    Homogeneous solution x(t) + x(t) = 0

    m2 + 1 = 0 m = i

    xh = Acos t + B sin t

    particular solution

    xp(t) = c0 x(t) = 0

    c0 = 1

    xp(t) = 1

    x(t) = xh + xp x(t) = A cos t + B sin t 1

    x() = A cos + B sin 1 = 2 A = 3

    x(t) = Asin t + B cos t

    x() = Asin + Bcos = 0 B = 0

    x(t) = 3cos t 1 for t > . . (2)

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    20

    ii. Using superposition :

    f(t) = [u(t) u(t )] u(t )

    f(t) = u(t) 2u(t )

    1

    = tt

    1

    t

    +

    -1

    f(0) = 1

    f(1) = 1 2 = 1

    f(2) = 1 2 0 = 1

    f(3) = 1 2 = 1

    From equation (1) we get :

    x(t) = 1 cos t for 0 t . . (1)

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    21

    f(t) = u(t) 2u(t )

    x(t) = 1 cos t 2(1 cos(t ))

    x(t) = 3cos t 1 for t >

    iii. Using Laplace transform:

    F(t) = {+1 , 0 t < 1 , t

    F(s) = est

    0

    dt est

    dt

    xeaxdx =eax

    a(x

    1

    a)

    F(s) =est

    s|0

    est

    s|

    F(s) = es

    s+

    1

    s

    es

    s=

    1

    s

    2es

    s

    F(t) = U(t) 2U(t )

    s2x(s) sx(0) x(0) + x(s) =1

    s

    2es

    s

    x(s)(s2 + 1) =1

    s

    2es

    s

    x(s) =1

    s(s2 + 1)

    2es

    s(s2 + 1)

    1

    s(s2 + 1)=

    A

    s+

    Bs + C

    (s2 + 1)=

    As2 + A + Bs2 + Cs

    s(s2 + 1)

    A + B = 0 , A = 1 , B = 1

    1

    s(s2 + 1)=

    1

    s+

    s

    (s2 + 1)

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    22

    x(s) =1

    s

    s

    (s2 + 1)

    2es

    s+

    2ses

    (s2 + 1)

    x(t) = 1 cos t 2(1 + cos t)U(t )

    Q6} find the solution of the following:

    a- 1

    [x2 (1 x )]3

    dx 1

    0

    I = x23 (1 x )

    13 dx

    1

    0

    = B(1

    3,2

    3) =

    (13) (

    23)

    (1)

    = (1

    3) (

    2

    3) = (

    1

    3) (1

    1

    3) =

    sin (3)

    =

    3/2=

    2

    3

    b. cos6 x dx

    20

    2n 1 = 0 n =1

    2 , 2m 1 = 6 m =

    7

    2

    2I = B (1

    2,7

    2) I =

    1

    2B (

    1

    2,7

    2) =

    (12) (

    72)

    2(4)=

    (12)

    52

    32

    12 (

    12)

    2 3!

    =5

    32

    c. x2dx

    2x

    2

    0

    let x = 2t , dx = 2dt

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    23

    at x = 0 t = 0 , at x = 2 t = 1

    I = x2dx

    2 x

    2

    0

    = 4t2 2dt

    2 2t

    1

    0

    =8

    2

    t2dt

    1 t

    1

    0

    = 42 t2(1 t)12 dt

    1

    0

    = 42 B (3,1

    2) = 42

    (3) (12)

    (72)

    42 2! (

    12)

    52

    32

    12 (

    12)

    =642

    15

    Q7} Find Fourier series for :

    F(x) = {0 5 03 0 5

    period =10

    = 1

    5 () cos

    5

    5

    5

    1

    5 { (0) cos

    5 + (3)

    5

    5

    0

    0

    5} =

    3

    5 cos

    5

    5

    0

    For n 0 = 3

    5 (

    5

    ) sin(

    5)]

    50

    If n =0 , = 0 = 3

    5 cos

    0

    5

    5

    0 =

    3

    5 = 3

    5

    0

    = 1

    5 { (0) sin

    5 + (3)

    5

    5

    0

    0

    5

    } = 3

    5 sin

    5

    5

    0

  • University of Tripoli Faculty of Engineering

    Postgraduate department Mustafa Abed Ellsamad - #2215802

    24

    = 3

    5 (

    5

    cos

    5)]

    50 =

    3(1cos )

    The corresponding Fourier series is

    0

    2+ cos

    + sin

    =

    3

    2=1 +

    3(1cos)

    =1 sin

    5

    = 3

    2+

    6

    [sin

    5+

    1

    3sin

    3

    5+

    1

    5sin

    5

    5+ ]

    -------------------------------------------------------------------------------------------------------------