EUROMAT 2013 - Characterization of the Cellular Structure of Mesophyll Tissues of Plant Leaves using...

1
M.D. Fariñas, D. Sancho-Knapik * , J.J. Peguero-Pina * , E. Gil-Pelegrín * , D. Saco ^ , T. Gómez Álvarez-Arenas CHARACTERIZATION OF THE CELLULAR STRUCTURE OF MESOPHYLL TISSUES OF PLANT LEAVES USING AIR-COUPLED ULTRASONIC SPECTROSCOPY US-BIOMAT, Ultrasonic and Sensors Tech. Dept. ITEFI, CSIC, Serrano 144, 28006, Madrid, Spain *Unidad de Recursos Forestales. CITA, Gobierno de Aragón. Zaragoza, Spain ^Facultad de Farmacia. Universidad Complutense de Madrid. Madrid, Spain Examples: Platycerium bifurcatum Phormium tenax Aspidistra elatior Examples: Epipremnum aureum Vitis vinifera Hedera helix Prunus laurocerasus Acer platanoides Ligustrum lucidum 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 -6 -5 -4 -3 -2 -1 0 MAG Magnitude (dB) Ligustrum Lucidum II FAS Phase (rad) Frequency (MHz) Leaves effective parameters like C 33 , density and ultrasonic velocity, and attenuation are obtained from magnitude and phase spectra measurements of the first thickness resonance by solving the inverse problem. In some cases, a distortion of the resonance pattern is observed. This distortion can be conventional or anomalous, two explanations are provided for the second case: heterogeneous Mesophyll structure or anomalous wave dispersion similar to that found in other flexible foams A non-contact and through transmission ultrasonic technique is proposed for the characterization of the cellular structure of the Mesophyll tissues in plant leaves. The mechanical properties of the tissues are extracted from measurement of the thickness resonance spectra by solving the inverse problem. Furthermore, the second order of thickness resonance is also measured. Compared with model predictions, the results show a distortion of the frequency pattern of the spectra of the first two orders of the thickness resonances. The observed distortion degree is variable and experimental evidences suggest, so far, that it may depends on the tissues layered microstructure, cell shape, cell wall rigidity and turgor pressure, among others. HOMOGENEOUS (MONOCOT) TISSUE, DISPERSIVE (ANOMALUOS) HETEROGENEOUS (DICOT) TISSUE ALSO DISPERSIVE (ANOMALOUS)… (?) 0,2 0,4 0,6 0,8 1,0 1,2 1,4 -70 -65 -60 -55 -50 -45 -40 0,2 0,4 0,6 0,8 1,0 1,2 1,4 -2,4 -2,2 -2,0 -1,8 -1,6 -1,4 -1,2 -1,0 -0,8 -0,6 Cinta Hall MAG Magnitude (dB) FAS Phase (rad) Frequency (MHz) MOTIVATION Armonic Distorsion < 1 EXPERIMENTAL SET-UP Wideband & Air-Coupled Ultrasounds Through Transmission Thickness resonances excitation Spectral analysis (phase and magnitude) v [m/s] ρ [kg/m 3 ] th [μm] C 33 [Mpa] α [Np/m] Populus x. euroam. 305 722 223 67 1686 Ligustrum l* 353 1038 692 130 225 Vitis v. 317 927 238 93 1093 Epiprenmum a. 205 821 414 35 520 Nerium o. 284 892 565 72 698 I. Analysis f 1 Acoustically Layered Meshophyll: In many cases agree with Mesophyll structure Frequency distortion < 1 Classical wave dispersion Frequency distortion > 1 Two alternative solutions: II. Analysis f 1 and f 2 Anomalous Low Frequency Wave Dispersion: Both velocity and attenuation increase with frequency Similar behaviour observed in soft foams in contrast to rigid foams A B Soft and dispersive foam Rigid and non- dispersive foam [email protected] [email protected] Leaf cross section -60 -40 -60 -40 -60 -40 1 2 3 4 5 6 -60 -40 Ligustrum Lucidum * Vitis Vinifera Magnitude (dB) Epipremnum Aureum Normalized Frequency Nerium Oleander -60 -40 Populus x. euroam. > 1 - Degree of armonic distortion (>1) - + Degree of armonic distortion (>1) - + Examples: Populus x euroam. Ligustrum lucidum * Vitis vinifera Eucalyptus 0,0 0,2 0,4 0,6 0,8 1,0 1,2 -70 -60 -50 -40 0,0 0,2 0,4 0,6 0,8 1,0 1,2 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 MAG Magnitude (dB) Ligustrum Lucidum I FAS Phase (rad) Frequency (MHz) QUASI- HOMOGENEOUS (DICOT) TISSUE NON-DISPERSIVE Examples: Dracaena marginata HOMOGENEOUS (MONOCOT )TISSUE, NON-DISPERSIVE 0,2 0,4 0,6 0,8 1,0 1,2 1,4 -60 -55 -50 -45 -40 0,2 0,4 0,6 0,8 1,0 1,2 1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 Dracaena Marginata MAG Magnitude (dB) FAS Phase (rad Frequency (MHz) CLASSIFICATION OF THE TISSUES ATTENDING TO THEIR ACOUSTIC RESPONSE QUASI- HOMOGENEOUS (DICOT) TISSUE , DISPERSIVE (ANOMALOUS) ? Degree of Mesophyll heterogeneity - + Degree of anomalois dispersion + - The acoustic properties of the mesophyll of a leaf depends not only on the species but also on the maturity of the tissue, the environmental conditions where it grows , the turgor pressure… ?? EXPERIMENTAL RESULTS

Transcript of EUROMAT 2013 - Characterization of the Cellular Structure of Mesophyll Tissues of Plant Leaves using...

Page 1: EUROMAT 2013 - Characterization of the Cellular Structure of Mesophyll Tissues of Plant Leaves using Air-Coupled Ultrasonic Spectroscopy

M.D. Fariñas, D. Sancho-Knapik*, J.J. Peguero-Pina*, E. Gil-Pelegrín*, D. Saco^, T. Gómez Álvarez-Arenas

CHARACTERIZATION OF THE CELLULAR STRUCTURE OF MESOPHYLL TISSUES OF

PLANT LEAVES USING AIR-COUPLED ULTRASONIC SPECTROSCOPY

US-BIOMAT, Ultrasonic and Sensors Tech. Dept. ITEFI, CSIC, Serrano 144, 28006, Madrid, Spain *Unidad de Recursos Forestales. CITA, Gobierno de Aragón. Zaragoza, Spain ^Facultad de Farmacia. Universidad Complutense de Madrid. Madrid, Spain

Examples: Platycerium bifurcatum Phormium tenax Aspidistra elatior

Examples: Epipremnum aureum Vitis vinifera Hedera helix Prunus laurocerasus Acer platanoides Ligustrum lucidum

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

-6

-5

-4

-3

-2

-1

0

MAG

Ma

gn

itu

de

(d

B)

Ligustrum Lucidum II

FAS

Ph

ase

(ra

d)

Frequency (MHz)

• Leaves effective parameters like C33, density and ultrasonic velocity, and attenuation are obtained from magnitude and phase spectra measurements

of the first thickness resonance by solving the inverse problem.

• In some cases, a distortion of the resonance pattern is observed. This distortion can be conventional or anomalous, two explanations are provided

for the second case: heterogeneous Mesophyll structure or anomalous wave dispersion similar to that found in other flexible foams

A non-contact and through transmission ultrasonic technique is proposed for the characterization of the cellular structure of the Mesophyll tissues in plant leaves. The mechanical properties of the tissues are extracted from measurement of the thickness resonance spectra by solving the inverse problem. Furthermore, the second order of thickness resonance is also measured. Compared with model predictions, the results show a distortion of the frequency pattern of the spectra of the first two orders of the thickness resonances. The observed distortion degree is variable and experimental evidences suggest, so far, that it may depends on the tissues layered microstructure, cell shape, cell wall rigidity and turgor pressure, among others.

HOMOGENEOUS (MONOCOT) TISSUE, DISPERSIVE (ANOMALUOS)

HETEROGENEOUS (DICOT) TISSUE ALSO DISPERSIVE (ANOMALOUS)… (?)

0,2 0,4 0,6 0,8 1,0 1,2 1,4

-70

-65

-60

-55

-50

-45

-40

0,2 0,4 0,6 0,8 1,0 1,2 1,4

-2,4

-2,2

-2,0

-1,8

-1,6

-1,4

-1,2

-1,0

-0,8

-0,6

Cinta Hall

MAG

Ma

gn

itu

de

(d

B)

FAS

Ph

ase

(ra

d)

Frequency (MHz)

MOTIVATION

Arm

on

ic D

isto

rsio

n

< 1 EXPERIMENTAL SET-UP

Wideband & Air-Coupled Ultrasounds Through Transmission Thickness resonances excitation Spectral analysis (phase and

magnitude)

v [m/s] ρ [kg/m3] th [µm] C33 [Mpa] α [Np/m]

Populus x. euroam. 305 722 223 67 1686

Ligustrum l* 353 1038 692 130 225

Vitis v. 317 927 238 93 1093

Epiprenmum a. 205 821 414 35 520

Nerium o. 284 892 565 72 698

I. Analysis f1

Acoustically Layered Meshophyll:

• In many cases agree

with Mesophyll structure

Frequency distortion < 1

Classical wave dispersion

Frequency distortion > 1

Two alternative solutions:

II. Analysis f1 and f2

Anomalous Low Frequency Wave Dispersion:

• Both velocity and attenuation increase with frequency

• Similar behaviour observed in soft foams in contrast to rigid foams

A B

Soft and dispersive foam

Rigid and non-dispersive foam

[email protected] [email protected]

Leaf cross section

-60

-40

-60

-40

-60

-40

1 2 3 4 5 6

-60

-40

Ligustrum Lucidum *

Vitis Vinifera

Magnitude (

dB

)

Epipremnum Aureum

Normalized Frequency

Nerium Oleander

-60

-40

Populus x. euroam.

> 1

-

De

gre

e o

f ar

mo

nic

dis

tort

ion

(>1

)

-

+

Degree of armonic distortion (>1) - +

Examples: Populus x euroam. Ligustrum lucidum * Vitis vinifera Eucalyptus

0,0 0,2 0,4 0,6 0,8 1,0 1,2

-70

-60

-50

-40

0,0 0,2 0,4 0,6 0,8 1,0 1,2

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

MAG

Ma

gn

itu

de

(d

B)

Ligustrum Lucidum I

FAS

Ph

ase

(ra

d)

Frequency (MHz)

QUASI- HOMOGENEOUS (DICOT) TISSUE NON-DISPERSIVE

Examples: Dracaena marginata

HOMOGENEOUS (MONOCOT )TISSUE, NON-DISPERSIVE

0,2 0,4 0,6 0,8 1,0 1,2 1,4

-60

-55

-50

-45

-40

0,2 0,4 0,6 0,8 1,0 1,2 1,4

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

Dracaena Marginata

MAG

Ma

gn

itu

de

(d

B)

FAS

Ph

ase

(ra

d

Frequency (MHz)

CLASSIFICATION OF THE TISSUES ATTENDING TO THEIR ACOUSTIC RESPONSE

QUASI- HOMOGENEOUS (DICOT)

TISSUE , DISPERSIVE (ANOMALOUS)

?

Degree of Mesophyll heterogeneity - +

De

gre

e o

f an

om

alo

is d

isp

ers

ion

+

-

The acoustic properties of the mesophyll of a leaf depends not only on the species but also on the maturity of the tissue, the

environmental conditions where it grows , the turgor pressure…

?? EXPERIMENTAL RESULTS