EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC...

89
EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION EUROCONTROL EXPERIMENTAL CENTRE RVSM5 REAL TIME SIMULATION EEC Report No. 349 Project NAV-2-E4 Issued: July 2000 The information contained in this document is the property of the EUROCONTROL Agency and no part should be reproduced in any form without the Agency’s permission. The views expressed herein do not necessarily reflect the official views or policy of the Agency. EUROCONTROL

Transcript of EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC...

Page 1: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROPEAN ORGANISATIONFOR THE SAFETY OF AIR NAVIGATION

EUROCONTROL EXPERIMENTAL CENTRE

RVSM5

REAL TIME SIMULATION

EEC Report No. 349

Project NAV-2-E4

Issued: July 2000

The information contained in this document is the property of the EUROCONTROL Agency and no part shouldbe reproduced in any form without the Agency’s permission.

The views expressed herein do not necessarily reflect the official views or policy of the Agency.

EUROCONTROL

Page 2: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area
Page 3: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

REPORT DOCUMENTATION PAGE

Reference:EEC Report No. 349

Security Classification:Unclassified

Originator:EEC - OPS

(ATM Operational & SimulationExpertise)

Originator (Corporate Author) Name/Location:EUROCONTROL Experimental CentreB.P.15F – 91222 Brétigny-sur-Orge CEDEXFRANCETelephone : +33 (0)1 69 88 75 00

Sponsor:EUROCONTROL

Sponsor (Contract Authority) Name/Location:EUROCONTROL HEADQUARTERS - BRUSSELS

TITLE:RVSM5 REALTIME SIMULATION

AuthorsRoger LANE

Robin DERANSY

Date07/00

Pagesx + 54

Figures14

Tables5

Appendix4

References5

EATMP TaskSpecification

-

ProjectNAV-2-E4

(RVS-5-E2 FromJanuary 2000)

Task No. Sponsor

-

Period

October/November1999

Distribution Statement:(a) Controlled by: Simulation Service Manager(b) Special Limitations: None(c) Copy to NTIS: YES / NO

Descriptors (keywords):

Real-Time Simulation – RVSM – FLAS – SOFT FLAS – HARD FLAS – Core Area – Sectorisation – Co-ordination – Controller workload. Inversion UN852/3

Abstract: This report describes a EUROCONTROL Real Time Simulation that studied the impact of theintroduction of RVSM in the core area of Europe with specific reference to the effect on sectorisationand the use of a Soft and Hard FLAS (Flight Level Allocation scheme).

Page 4: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

This document has been collated by mechanical means. Should there be missing pages, please report to:

EUROCONTROL Experimental CentrePublications Office

B.P. 15F91222 - BRETIGNY-SUR-ORGE CEDEX

France

Page 5: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 v

SUMMARY

The RVSM5 Simulation was the final phase of the RVSM Core area study, and wasdesigned to study the use of Flight Level Allocation Schemes (FLAS) and effects onsectorisation after the introduction of RVSM Flight Levels.

RVSM5 was the fifth RVSM Real Time Simulation (RTS) commissioned byEUROCONTROL to be held at the EEC Bretigny. It was one of the largest in termsof number of controllers involved and also one of the longest having run for sevenweeks during October and November 1999.

The simulation area covered the airspace of five countries and was managed byeight Air Traffic Control Centres (ACCs). One of the major successes of the studywas the bringing together of operational personnel to work and co-operate on suchan important project. Firstly, during the course of 18 months, representatives fromeach administration met regularly to formulate an agreed plan for the study and toco-ordinate a network for the FLASs. Secondly, about 70 Air Traffic Controllerstook part in the RTS, many experiencing RVSM for the first time and also benefitingfrom working alongside and socialising with colleagues from adjacent ACCs.

The participants quickly became confident using RVSM procedures and were ableto see the benefits of the six extra flight levels, especially during busy periods oftraffic.

The testing of a FLAS meant that on certain routes, the use of some flight levelswas restricted. Having seen the benefit of being able to use all the flight levels tomanage traffic, the controllers generally considered that for RVSM implementation,a fixed FLAS would be too restrictive for both the controller and the pilots. Theypreferred to have all the flight levels available to resolve any potential conflictsthemselves.

Despite the strong feeling that all flight levels should be available, many thoughtthat a FLAS should not be ruled out completely. It was felt that in some areas atspecific times of the day, a FLAS applied on a temporary or flexible basis couldprovide potential benefits, such as reducing monitoring tasks and automatically de-conflicting traffic.

The implementation of RVSM will have an effect on sectorisation in the future. It isknown that current sector divisions such as FL340 will have to be amended toeither FL335 or FL345, as FL340 will be a useable RVSM flight level. It is difficult toaccurately predict the traffic distribution and route utilisation, post RVSMimplementation but it is certain that there will be a vertical re-distribution of traffic.This makes the definition of the Division Flight Level (DFL) between upper sectorsthe most significant issue for airspace design. The controllers confirmed that thisneeds careful consideration as sectors could become overloaded if there are toomany flight levels available and the flow of traffic is not carefully managed.

Page 6: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

vi Project NAV-2-E4 – EEC Report n° 349

ACKNOWLEDGEMENTS

As Project Manager of the RVSM5 RTS, I would like to pass on my gratitude to all the staff (seeAnnex C) who participated in the project for their professional approach and opinions, whichmake this report possible. Also, to the administrations of the eight ACCs who were kindenough to supply the controllers during the various stages of the project. We appreciate withcurrent staff shortages, releasing controllers is always a problem, but projects like this are onlysuccessful with the input and feedback from people with current operational expertise.

In particular, Alain, Kevin, Karin and the EEC Project team deserve a special mention for theirprofessional attitude, patience and dedication during the project.

����� ����

Page 7: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 vii

TABLE OF CONTENTSLIST OF FIGURES ................................................................................................................................ixREFERENCES ......................................................................................................................................ixABBREVIATIONS ..................................................................................................................................x

1. INTRODUCTION...................................................................................................................11.1 DEFINITION OF TERMS.............................................................................................................1

1.1.1 Conventional Vertical Separation Minimum (CVSM) ............................................................11.1.2 Reduced Vertical Separation Minimum (RVSM)...................................................................11.1.3 Flight Level Allocation Scheme (FLAS) ................................................................................1

1.2 RVSM BACKGROUND................................................................................................................21.3 CORE AREA STUDY ..................................................................................................................2

1.3.1 Phase 1- System for Assignment and Analysis at a Macroscopic Level (SAAM) ..................21.3.2 Phase 2- Fast Time Simulation (FTS-TAAM) ......................................................................31.3.3 Phase 3- Real Time Simulation (RTS) .................................................................................3

2. SIMULATION OBJECTIVES ................................................................................................42.1 GENERAL OBJECTIVE...............................................................................................................42.2 SPECIFIC OBJECTIVES .............................................................................................................42.3 ACHIEVEMENT OF OBJECTIVES..............................................................................................4

3. SIMULATION ENVIRONMENT.............................................................................................53.1 INTRODUCTION.........................................................................................................................53.2 SIMULATION AREA....................................................................................................................53.3 CONTROL CENTRES.................................................................................................................53.4 ROUTE STRUCTURE.................................................................................................................53.5 OPERATIONS ROOM.................................................................................................................5

3.5.1 Layout..................................................................................................................................53.6 SECTORS...................................................................................................................................6

3.6.1 Measured Sectors................................................................................................................63.6.2 Feed Sectors .......................................................................................................................6

3.7 ATC SIMULATOR .......................................................................................................................73.7.1 Radar Functions ..................................................................................................................73.7.2 Flight Strips..........................................................................................................................73.7.3 Telecommunications (AUDIOLAN).......................................................................................83.7.4 Short Term Conflict Alert (STCA) .........................................................................................83.7.5 Meteorological Conditions....................................................................................................8

4. DESCRIPTION OF THE SCENARIOS .................................................................................94.1 RVSM (REFERENCE) SCENARIO 1...........................................................................................94.2 HARD FLAS SCENARIO 3 ..........................................................................................................94.3 SOFT FLAS SCENARIO 2.........................................................................................................10

4.3.1 Summary of the FLAS Scenarios .......................................................................................11

5. TRAFFIC SAMPLES...........................................................................................................135.1 INITIAL CREATION...................................................................................................................135.2 CONVERSION FROM CVSM TO RVSM...................................................................................135.3 CHANGES MADE FOR THE REAL TIME SIMULATION ...........................................................13

6. ATC WORKING PROCEDURES ........................................................................................14

7. SIMULATION PROGRAMME .............................................................................................147.1 PARTICIPANTS ........................................................................................................................147.2 EXERCISE SCHEDULE ............................................................................................................14

8. RESULTS............................................................................................................................158.1 ANALYSIS.................................................................................................................................15

Page 8: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

viii Project NAV-2-E4 – EEC Report n° 349

8.1.1 Subjective analysis ............................................................................................................158.1.2 Objective analysis..............................................................................................................16

8.2 SPECIFIC OBJECTIVE 1 ..........................................................................................................178.2.1 Operational advantages/disadvantages .............................................................................178.2.2 Management of FL availability on main traffic flows............................................................198.2.3 Effect on controller workload and sector throughput ...........................................................218.2.4 Effect on Sectorisation.......................................................................................................278.2.5 Interface between Two or more ACCs................................................................................318.2.6 Evaluate the impact on adjacent sectors preparing the FLAS ............................................32

8.3 SPECIFIC OBJECTIVE 2 ..........................................................................................................358.3.1 Brief History.......................................................................................................................358.3.2 Results ..............................................................................................................................35

8.4 SPECIFIC OBJECTIVE 3 ..........................................................................................................378.4.1 Controller confidence using RVSM.....................................................................................378.4.2 Possible benefits of a FLAS ............................................................................................... 38

8.5 SPECIFIC OBJECTIVE 4 ..........................................................................................................39

9. CONCLUSIONS..................................................................................................................409.1 GENERAL .................................................................................................................................409.2 SPECIFIC OBJECTIVE 1 ..........................................................................................................409.3 SPECIFIC OBJECTIVE 2 ..........................................................................................................419.4 SPECIFIC OBJECTIVE 3 ..........................................................................................................429.5 SPECIFIC OBJECTIVE 4 ..........................................................................................................42

10. RECOMMENDATIONS ...................................................................................................43

Green pages : French translation of the summary, the introduction, objectives, conclusions andrecommendations ....................................................................................................................... 45

Pages vertes : Traduction en langue française du résumé, de l'introduction, des objectifs, des conclusionset recommandations ................................................................................................................... 45

ANNEX A: MAPSANNEX B: OPERATIONS ROOM LAYOUTANNEX C: SIMULATION PARTICIPANTSANNEX D: SIMULATION SCHEDULE

Page 9: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 ix

LIST OF FIGURES

Figure Page

Figure 1: Differences between CVSM and RVSM flight levels. .................................................1Figure 2: The Reims sector UE .................................................................................................7Figure 3: Sector equipment (AUDIOLAN left, ISA centre and TID right) ...................................8Figure 4: Hard FLAS Quadrantral scheme ................................................................................9Figure 5: Hard FLAS example .................................................................................................10Figure 6: Soft FLAS example ..................................................................................................11Figure 7: Effect of a FLAS on FL, route and sector occupancy...............................................12Figure 8: ISA Workload for the Swiss sectors in Session 4 ....................................................23Figure 9: ISA Workload for the French sectors in Session 4...................................................24Figure 10: ISA Workload for the Italian sectors in Session 4 ....................................................24Figure 11: Screen dump of Sector MOLUU during a Hard FLAS exercise................................30Figure 12: Flight Level Orders Session 1 for sectors preparing a FLAS ...................................33Figure 13: Session 2 ISA (Karlsruhe and Munich Sectors) .......................................................34Figure 14: Session 2 telephone usage. .....................................................................................34

REFERENCES

1) RVSM5 Project Management Plan –EEC Bretigny – Author: R. Lane.2) RVSM5 Facility Specification – EEC Bretigny Authors: R. Lane and C. Chevalier3) EATMP ATC Manual for RVSM in Europe – Eurocontrol HQ4) EEC Report 315 –3rd Continental RVSM RTS5) EEC Report 341 – RVSM4 (Turkey) RTS

Page 10: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

x Project NAV-2-E4 – EEC Report n° 349

ABBREVIATIONS

ACC Area Control CentreAIP Aeronautical Information PublicationANT Airspace and Navigation TeamARN ATS Route NetworkATC Air Traffic ControlATM Air Traffic ManagementATS Air Traffic ServicesCFL Cleared Flight LevelCVSM Conventional Vertical Separation MinimumCWP Controller Working PositionDFL Division Flight LevelEATMP European Air Traffic Management ProgrammeECAC European Civil Aviation ConferenceEEC EUROCONTROL Experimental CentreEUROCONTROL European Organisation for the Safety of Air NavigationEXC ExecutiveFIR Flight Information RegionFL Flight LevelFLAS Flight Level Allocation SchemeFt FeetFTS Fast Time SimulationHQ HeadquartersICAO International Civil Aviation OrganisationN/A Non ApplicableNAT North AtlanticNm Nautical milesPLC Planner ControllerR/T Radio & TelephoneRFL Request Flight LevelRTS Real Time SimulationRVSM Reduced Vertical Separation MinimumSAAM System for Assignment at a Macroscopic LevelSTCA Short Term Conflict AlertTID Touch Input DeviceUIR Upper Information Region

Page 11: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 1

1. INTRODUCTION1.1 DEFINITION OF TERMS

1.1.1 Conventional Vertical Separation Minimum (CVSM)CVSM is the current separation standard where flight levels above FL290 arevertically separated by 2000 feet.

1.1.2 Reduced Vertical Separation Minimum (RVSM)RVSM is an approved International Civil Aviation Organisation (ICAO) concept toreduce aircraft vertical separation from the CVSM 2000’ to 1000’, between flightlevels (FLs) 290-410 inclusive. RVSM introduces 6 additional flight levels(FL300,320,340,360,380,400) and as a general principle the levels up to FL410are allocated as ‘even levels – west/north bound and odd levels – east/southbound’.

Note that FL310/350/390 change parity from even to odd flight levels withRVSM

EVEN CVSM ODD EVEN RVSM ODD

410 410400

390 390380

370 370360

350 350340

330 330320

310 310300

290 290280 280

Figure 1: Differences between CVSM and RVSM flight levels.

1.1.3 Flight Level Allocation Scheme (FLAS)A scheme whereby specific flight levels may be assigned to specific routesegments within the route network on a strategic basis (see sections 4.2 & 4.3)

Page 12: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

2 Project NAV-2-E4 – EEC Report n° 349

1.2 RVSM BACKGROUNDIn the late 1970s, civil aviation faced both rising fuel costs and fast growingdemand. Consequently, the International Civil Aviation Organisation (ICAO)initiated an extensive programme of studies to investigate the feasibility ofreducing the 2000ft Vertical Separation Minimum (VSM) to 1000ft above FL290.

These investigations indicated that RVSM (Reduced Vertical SeparationMinimum) between FL290-410 was feasible, safe and cost-beneficial withoutimposing massive technical requirements.

RVSM (between FL330-370) became operational in the NAT (North Atlantic)region on 27 March 1997. This level band was increased to FL310-390 on the 8October 1998.

Full RVSM implementation within European and NAT airspace will take place onthe 24 January 2002, and is expected to provide considerable benefits.However, due to the complex nature of the European ATS route structure andthe fact that some 40 countries are participating in the project, Europeanimplementation will be more complicated compared with the NAT region.

1.3 CORE AREA STUDY

EUROCONTROL has sponsored many studies associated with the introductionof RVSM in European airspace. The RNDSG (Route Network DevelopmentSub-Group) of the Airspace and Navigation Team (ANT), requested a study inconjunction with the States concerned, to look at the effect of RVSM onsectorisation and in particular, the possible benefit of applying different FLASs(Flight Level Allocation Schemes) within the Core Area of Europe. Thisdocument reports on the third and final phase of the study – the RVSM5 RealTime Simulation.

1.3.1 Phase 1- System for Assignment and Analysis at a Macroscopic Level (SAAM)

SAAM is a statistical analysis tool developed at EUROCONTROL Headquarters.The tool is widely used in support of the work of the RNDSG because it permitslarge traffic samples to be modeled and evaluated over the entire Europeanroute network. The results are provided in a matter of minutes. These includetraffic loadings on individual segments of the route network, loads on sectorsand conflict counts in any defined volume of airspace. However, SAAM is notyet able to calculate controller workload. Because the tool has a quick responsetime and a user-friendly graphical interface, it is possible to reconfigure airspaceand experiment with new structures without investing too much time inpreparation. This allows for the evaluation of a wide range of scenarios afterwhich the more promising can be proposed for further development. SAAM wasused in the development of Version 3 of the ARN and therefore already had thefuture (planned V3 network) route network instantly available. This enabled aseries of sectorisation options to be investigated so that the two most likelyvertical sector splits could be identified and assessed further in the Fast TimeSimulation.

Page 13: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 3

1.3.2 Phase 2- Fast Time Simulation (FTS-TAAM)

In October 1998 a request for a fast time simulation was submitted to the EECBretigny. Through the EUROCONTROL Simulation Partnership Scheme therequest was offered to Swisscontrol and the DFS, both of whom use the TotalAirspace and Airport Modeler (TAAM). Initially the two TAAM providers wereexpecting to work on elements of the study. However, due to other commitmentsthe DFS were forced to withdraw from the simulation leaving SWISSCONTROLas the sole provider.

TAAM enabled a more detailed examination of the scenarios and, in addition toa more refined calculation of conflict counts, sector and segment traffic loadsthan SAAM, also provided controller workload figures throughout the 24 hourperiod. It was recognised from the very beginning that the timescales wereextremely tight bearing in mind the scale of the proposed simulation. At least 30sectors were proposed for examination most of which were simulated withdifferent vertical splits (FL 325 and FL335) using the 24 hour traffic samplewhich included approximately 8000 flights. Wherever possible the trafficsamples and the geographical definition of the airspace (sectors and routenetwork) were to be transferred from SAAM to TAAM. To an extent this wasachieved but the TAAM providers were still faced with a considerable workloadin getting the data prepared.

1.3.3 Phase 3- Real Time Simulation (RTS)

The RTS was the final phase of the study and simulated 32 sectors from eightACCs. The results of the previous phases were used to further study the effectsof the use of a FLAS within the Core Area of Europe, with the additional benefitof being able to measure the workload and gain feedback from operational AirTraffic Controller staff. The RTS was held at the EEC Bretigny and due to thelarge number of sectors involved, was divided into four sessions (a maximum of10 sectors at a time). This report details the findings of the RTS.

Page 14: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

4 Project NAV-2-E4 – EEC Report n° 349

2. SIMULATION OBJECTIVES

2.1 GENERAL OBJECTIVE

To evaluate the impact of the introduction of RVSM in the Core Area ofEurope with specific reference to the effect on sectorisation and the use ofa FLAS(s).

Note: The above General objective was made for the three phases of the study.The specific objectives 3 and 4 were applicable solely to the Real TimeSimulation.

2.2 SPECIFIC OBJECTIVES

1. To compare the use of a Hard and Soft FLAS with the RVSM cruising levelreference, as published by ICAO in Annex 2 (Annex 2 Appendix 3, Table ofcruising Levels, table a.) with particular attention to the following aspects,

• operational advantages/disadvantages• effect on controller workload and sector throughput• effect on sectorisation• the interface between two, or more, ACCs applying a FLAS• evaluate the impact on adjacent sectors (which are not applying a FLAS)

when preparing traffic for and receiving traffic from, sectors which areapplying a FLAS

2. To assess the operational impact of the inversion of the flight direction of theroutes UN852 and UN853 in the airspace of Geneva and Reims.

3. To gain controller confidence in the viability of introducing RVSM in the corearea of Europe and the possible benefit of a FLAS.

4. To further validate the RVSM ATC procedures developed by the ATMProcedures Development Sub Group (APDSG).

2.3 ACHIEVEMENT OF OBJECTIVES

The objectives were achieved by gathering controller feedback via questionnaires,debriefs and observations, and by data recordings made during the exercises. Afull description of the analysis can be found in section 8 - Results.

Page 15: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 5

3. SIMULATION ENVIRONMENT3.1 INTRODUCTION

This chapter outlines the ATC environment and different Scenarios that wereused for the RVSM5 simulation.

3.2 SIMULATION AREAThe simulation area covered five different countries and included parts of theAustrian, France, German, Italian and Swiss FIR/UIRs (see Annex A Map 1).

3.3 CONTROL CENTRESThe following eight Air Traffic Control Centres were involved in the Simulation;Geneva, Karlsruhe, Milan, Munich, Padua, Reims, Vienna and Zurich.

3.4 ROUTE STRUCTUREThe route structure used during the simulation was that planned in the ARNVersion 3 proposal for amendment to the EUR ANP (The structure was thatproposed for Phase 2 implementation for France and Geneva, Phase 3 forAustria Italy and Zurich). The German route structure generally followed thatplanned for Phase 3 with some adaptation as a result of the GE98 Real TimeSimulation. Additional adaptations, proposed by the State experts during thepreparatory stage, were also included.

3.5 OPERATIONS ROOM

3.5.1 Layout

The Operations Room layout was the same for all four sessions. The configurationand a photograph are shown in Annex B.

Page 16: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

6 Project NAV-2-E4 – EEC Report n° 349

3.6 SECTORSDue to the size of the airspace to be studied (see Annex A Map 1) it was notpossible to simulate all of the sectors (30 in total) at the same time. Therefore,the airspace was divided into four areas with a maximum of 10 measuredsectors in each area. The four areas were considered to be ‘four minisimulations’ and were called SESSIONs. The vertical limits and frequenciesused for each sector can be found on the maps in Annex A. The table belowdetails the grouping for each session.

SESSION ACC involved Measured SectorsSESSION 1Oct. 4-15 Munich AYING RIDAR

Vienna EST/U, NST/U, SST/U, WST/USESSION 2Oct. 18-29 Karlsruhe KARLS/U

Milan EU/EUUMunich ALGOI/ALPENPadua NT/NTUZurich ZUR/H

SESSION 3Nov. 8-12 Reims UE/XE, UH/XH

Zurich ZUR/HSESSION 4Nov. 15-26 Milan WU/WUU

Geneva MILPA/U, MOLUS/UReims UE/XE, UH/XH

3.6.1 Measured SectorsMeasured sectors consisted of two Controller Working Positions (CWP) -Executive (EXC) and Planner controller (PLC). Figure 2 shows the Reims sector‘UE’ with the EXC controller on the left and his PLC on the right.

3.6.2 Feed SectorsIn each Session, up to five feed positions were simulated, to deliver and receivetraffic from the measured position and to respond to coordination requests onthe telephone. Controllers from either the adjacent ACC or the ACC beingsimulated were used to staff the feed positions.

Page 17: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 7

Figure 2: The Reims sector UE

3.7 ATC SIMULATORA common HMI (Human Machine Interface) was used for the seven-week periodof Simulation in order to reduce the risk of technical difficulties. The platformwas a proven HMI based on the French Cautra system.

3.7.1 Radar FunctionsThe following functionality was available to all sectors;

• Sony 28 inch colour Radar screen showing full radar cover from FL000-FL460.

• Touch Input Device (TID) to change the Planned Flight Level of an aircraft• Standard paper strip containing flight plan information.• Range and Bearing tool• Speed Vector (0-10 minutes)• Minimum separation tool• Height filtering• Short Term Conflict Alert

3.7.2 Flight Strips

Paper flight strips were used on the measured sectors.

Page 18: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

8 Project NAV-2-E4 – EEC Report n° 349

3.7.3 Telecommunications (AUDIOLAN)

All positions used AUDIOLAN telecommunications equipment. This comprised of aHeadset and touch input panel (see Figure 3: sector equipment) with pre-definedfrequencies and landlines according to the sector.

Figure 3: Sector equipment (AUDIOLAN left, ISA centre and TID right)

3.7.4 Short Term Conflict Alert (STCA)STCA was available within the radar coverage area.2 volumes were defined and in each case the look ahead time was 2 minutes:

Volume 1 between FL 000 to FL 410:The minimum horizontal separation = 4.9 Nm.The minimum vertical separation = 1000 ft.

Volume 2 FL 410 to FL 460:The minimum horizontal separation =4.9 Nm.The minimum vertical separation = 2000 ft.

3.7.5 Meteorological Conditions

The direction and strength of the wind was decided as necessary for each exerciseby the simulation team.

Page 19: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 9

4. DESCRIPTION OF THE SCENARIOS4.1 RVSM (REFERENCE) SCENARIO 1

The introduction of RVSM results in six extra Flight Levels. Within the area beingsimulated these levels were organised according to the direction of the route orroute segment flown. In general this followed a north/south split and the levelswere allocated even/odd accordingly. The purpose of the Scenario RVSMreference was to simulate the proposed 2001 Airspace plan using RVSM trafficsamples based on the Single Alternate Flight Level Orientation adjusted to levelsof traffic forecast for 2001.

4.2 HARD FLAS SCENARIO 3The RVSM Scenario can be further subdivided into a ‘Quadrantal‘ scheme andthis is illustrated in the Diagram below.

Figure 4: Hard FLAS Quadrantral scheme

This scheme forms the basis of the two variants of the FLAS simulated. Termedthe ‘Hard’ and ‘Soft FLAS’ by the Working Group they were just two of an infinitenumber of possibilities that exist when a FLAS is applied over a largegeographical area.

It is important to point out that in the simulation the German sectors did not applya FLAS within their airspace. However because neighbouring ACCs wereexpecting to receive and give traffic at FLAS levels, the Munich (session 1) andKarlsruhe (session 2) controllers had the additional tasks placed upon them ofpreparing the traffic for the correct FLAS levels. This element was tested andmeasured in the simulation.

Page 20: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

10 Project NAV-2-E4 – EEC Report n° 349

The Hard FLAS involved a rigid application of the Quadrantal rule on majorroutes within the defined airspace. Map 3 in Annex A shows the routes wherethe Hard FLAS was applied and the colours of the routes correspond to thecolours and levels shown in Figure 4.

The purpose of the HARD FLAS was to reduce controller workload byautomatically resolving conflicting levels at major crossing points. This wasachieved by allocating specific levels to specific routes, thereby improving theflow of traffic. Figure 5 below illustrates the general principle of level allocation.

Figure 5: Hard FLAS example

In this example, traffic on two northbound crossing routes was strategically de-conflicted. Three northbound levels are made available to each traffic flow andat the crossing point there is no risk of confliction between aircraft in level flight.In theory the controllers’ monitoring task would be minimal.

In the simulation the routes on which a Hard FLAS was applied were selected bythe State experts and were designed to accommodate the major traffic flows andease the burden on controllers at known choke points.

Due to the complex route network it was impossible to strictly apply thequadrantal scheme, therefore some routes were allocated levels which did notnecessarily agree with Figure 4.

4.3 SOFT FLAS SCENARIO 2

The Soft FLAS involved a more flexible application of the Quadrantal rule onsome of the major routes within the defined airspace. The intention of the SoftFLAS was to reduce the controller workload at major crossing points bystrategically resolving some of the conflicts, at selected Flight Levels withoutdenying the controller tactical freedom. In addition the Soft FLAS offered theairspace user more flexibility in the choice of the RVSM Flight levels

The Soft FLAS used the same general principle of level application according tothe direction of flight but unlike the Hard FLAS, only one or in some cases two

Hard FLAS

OnlyFLs 380,340

and 300 available

OnlyFLs 400,360

and 320 available

Page 21: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 11

Flight Levels were frozen on individual routes (see Annex A- Map 2). Figure 6below illustrates this principle.

Figure 6: Soft FLAS example

In this example the two northbound routes each have five useable Flight Levelswith a single level frozen on each one. FL 320 is not available for north-westbound traffic. FL 320 would therefore become a ‘protected’ or ‘preferred’level on the other north-eastbound route. As a consequence FLs 320 and 340are free of conflicts on this pair of routes.

As with the Hard FLAS, the experts from the States selected the routes and FLsfor the Soft FLAS exercises. The general principle was that this would be kept tothe minimum and would only be applied in order to accommodate major flows oftraffic. In addition, wherever a level was frozen, this was co-ordinated along thelength of a route to avoid unnecessary changes of FL for the operators and ATC.

4.3.1 Summary of the FLAS ScenariosA comparison of the three scenarios simulated is shown in Figure 7. In thisexample, two routes that pass through the busy Swiss point MOLUS are used.The flight levels available to the controller are also shown in each case next tothe routes. The FLs are shown next to each of the six aircraft, and in the Softand Hard FLAS examples the modified FLAS FL was chosen at random (theoriginal FL appears in brackets next to the new FL).

The split between the Upper and Middle sectors was FL335, and it can be seenthat in the No FLAS scenario, the Blue and the Purple aircraft would be in theMiddle sector. However, in the Soft FLAS scenario the Blue and Green aircraftare in the Middle sector and in the Hard FLAS the Purple and Yellow aircraft.This diagram is just a demonstration of the way a FLAS can effect levels, routesand sector occupancy, all of which would be dependent on the FL selected bythe controller at the time. In the Soft FLAS, note that on each of the routes, oneFL is blocked and one is highlighted in bold. This highlighted FL was called a‘preferred FL’ as it corresponded to the blocked level of the other crossing route.

Soft FLAS

FL 320 frozen

FL 340 frozen

FLs 400,380,360 320 and 300

available

FLs 400,380,360 340 and 300

available

Page 22: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

12 Project NAV-2-E4 – EEC Report n° 349

Figure 7: Effect of a FLAS on FL, route and sector occupancy

Page 23: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 13

5. TRAFFIC SAMPLES

5.1 INITIAL CREATIONIt was planned to use a common traffic sample for all three phases of the study.A traffic sample containing 24,000 flights from 26th June 1998 was taken fromthe CFMU databank and this was cross-checked with the CRCO data. Thissample was boosted, by the Statistics and Forecasting Unit (STATFOR) of DED4, to June 2001 levels. STATFOR takes forecast data for each city pair in theECAC area into account. This resulted in a new sample with approx. 28,000flights, (an approximate global increase of 20%). In the simulation windowalmost 10,000 flights were captured within the 24-hour period.

The original traffic sample had been based on the 1998 route network, whichwas radically different in some regions from that planned for Version 3, and itwas necessary to ‘move’ many of the flights onto the new network. This wascompleted using the SAAM tool, which automatically assigns large trafficsamples to the available routes according to certain criteria. In this case theshortest path available, provided the right connections existed, was selected.

5.2 CONVERSION FROM CVSM TO RVSM

In addition to the lateral change to the traffic a method of distributing flights fromtheir current (non-RVSM) levels onto the RVSM levels was investigated andapplied to the sample. The following issues were taken into account:

• The two hemispherical (North/South and East/West) methods of allocatingflight Levels in accordance with the direction of flight within Europe will beretained.

• After the implementation of RVSM more flights will operate closer to theiroptimum FL, within the level band FL330-370.

• 60% of flights within the ECAC region are of less than 400nms• ‘Capping’ of city pairs is likely to remain in force although it is hoped the

general push up to higher levels by other flights will result in a raising ofthese capped levels (probably FL 270/280/290 instead of FL 230/240)

• The ATC system will probably ‘spread’ the traffic more evenly than aircraftperformance would demand, either at sector or pre-tactical level

The group preparing the simulation selected a scheme where flight levels wereHarmonised and applied to the 2001 traffic sample. The Harmonisation alloweda defined proportion of traffic at any given level to be moved to another, providedthe FLs were of the same parity. i.e. N/S or E/W.

5.3 CHANGES MADE FOR THE REAL TIME SIMULATION

The traffic sample was then modified for use in the Real Time Simulator asfollows:

• 2 x 2 hour periods were identified to form a Morning and Afternoon Trafficsample.

• The periods selected were 0800-1000 and 1600-1800.• The traffic was reviewed by the staff at the EEC and further reduced to make

Page 24: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

14 Project NAV-2-E4 – EEC Report n° 349

two traffic samples, each one 80 minutes long (10 minutes lead in, followedby 60 minutes measured, followed by 10 minutes wind down).

• The traffic levels in each sector were adjusted by adding or reducing traffic inorder to achieve a constant load (about 55 per hour) on each sectorconcerned during the measured period.

The samples were validated by the experts from each ACC to verify correctrouteings and vertical profiles. The samples were adjusted for the Soft and HardFLAS so that aircraft commencing outside of the measured sectors who requiredto be at a FL compliant with a FLAS were adjusted accordingly. The new FLschosen for use were based upon Departure/Destination, letters of Agreementand aircraft performance.

A list of the traffic samples used can be found at Annex D SimulationSchedule.

6. ATC WORKING PROCEDURESThe ATC working procedures used during the simulation were in accordancewith current Letters of Agreement and/or particular Operational Instructions.

All Sessions used SSR where the code was automatically converted to show thecallsign on the radar label.

RVSM Procedures – The reduction of separation from 2000’ to 1000’ betweenFL290 and FL410 was applied based on the ICAO recommended Table ofCruising Levels (ICAO doc Annex 2, Appendix 3, table a).

In order to be able to compare the effect of the different FLASs, it was necessaryto keep the number of variables (outside influences) to a minimum. The workinggroup agreed that all aircraft would be considered to be RVSM approved.Specific procedures (Phraseology, Separation, Strip marking) required forhandling non-RVSM approved aircraft were therefore not necessary during thesimulation.

There were no exercises concerning non-RVSM approved aircraft, R/T failure,failure to maintain altitude or transition between CVSM/RVSM.

7. SIMULATION PROGRAMME7.1 PARTICIPANTS

A list of the simulation participants can be found in Annex C.

7.2 EXERCISE SCHEDULE

The timetable for the seven weeks of simulation can be found in Annex D.

Page 25: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 15

8. RESULTS

The description of the methods (Subjective and Objective analysis) used tocollate the results follows this paragraph. The results are then detailedaccording to the four Specific Objectives (see section 2.2). The Conclusions ofthe results appears at section 9.

The results of Session 3 were not taken into account as it was felt that too manychanges to the traffic samples occurred during the first three days of the five daySession. Also, the exercise schedule included too many variations (RVSM,FLAS and Inversion) with too few exercises for the controllers to be reasonablyexpected to form a subjective opinion. However, the Session was seen to be avaluable training period for the nine Reims controllers who stayed on to completeSession 4.

Sessions 1,2 and 4 were analysed individually and then the results werecompared to see if a trend existed between them.

8.1 ANALYSIS

8.1.1 Subjective analysisThe subjective analysis is based on two different sources of information. The firstsource is the questionnaires given to the controllers before, during, and after thesimulation. The second source is the Instantaneous Self Assessment method orISA. Where appropriate, questions asked on the questionnaires (indicated by a ‘Q.’ followed by the text in bold italic letters) have been inserted. Theanswers appear below the question in normal text.

Questionnaires

The following questionnaires were used during the seven week simulation:

• Pre-simulation (sent out one month before start of simulation)• Post exercise (short questionnaire after each exercise)• RVSM -No FLAS (given at the end of the Scenario 1 exercises)• RVSM Soft FLAS (given at the end of the Scenario 2 exercises)• RVSM Hard FLAS (given at the end of the Scenario 3 exercises)• Inversion (Session 3 and 4 only)• Final questionnaire (given at the end of each Session)

The Post exercise questionnaire included subjective evaluations on a scale from1 to 10 of the following elements:

• the controller overall workload• the R/T loading• the degree of realism of the simulated traffic sample• the difficulty in maintaining situational awareness

For each of these elements, the value 1 was considered to be Very Low, 5 asModerate, and 10 as Very High. If a controller answered with a value of 6 orhigher they were asked to give a brief reason why (i.e. traffic density, R/T

Page 26: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

16 Project NAV-2-E4 – EEC Report n° 349

loading, procedures). The value of 6 indicates the point at which theeffort/demand was considered to be higher than moderate. The workload resultson the questionnaires were used as a crosscheck with the ISA and datarecordings, and also as a back up in case of a recording failure.

Instantaneous Self Assessment (ISA)

The ISA method allowed the controller to assess his/her workload during thecourse of a simulated exercise. The controller was provided with a warning(Flashing light) every three minutes and had 30 seconds to register theirperceived workload on a five button box (see Figure 3: sector equipment)according to the following point scale,

1 - Under-utilised, 2 - Relaxed, 3 - Comfortable, 4 - High, 5 - Excessive.

Experience shows that selection of either button 4 or 5 for more than 40% of anexercise means that the participant is likely to reject the organisation.

8.1.2 Objective analysis

The Objective analysis is taken from data recordings made for each exercise.From these recordings the following factors are studied:

• Analysis of the R/T occupancy• Analysis of RFL• Analysis of pilot orders• Level Changes to Solve Conflicts• Analysis of the loss of separation

Most of the objective analysis concerned the controllers workload and istherefore directed mainly towards Specific Objective 1.

Reference to Controller workload covers the executive and the planningcontroller unless specific reference is made to one or the other.

The simulation produced a large amount of data and recordings for analysis. Inorder to keep the size of the report reasonable, only the graphs or figures thatshow a significant trend have been included, and where possible the results notshowing a clear trend have been summarised as text.

Page 27: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 17

8.2 SPECIFIC OBJECTIVE 1To compare the use of a Hard and Soft FLAS with the RVSM cruising levelreference, as published by ICAO (Annex 2 Appendix 3, Table of CruisingLevels, table a.) with particular attention to the following aspects:

• operational advantages/disadvantages• effect on controller workload and sector throughput• effect on sectorisation• the interface between two, or more, ACCs applying a FLAS• evaluate the impact on adjacent sectors (which are not applying a

FLAS) when preparing traffic for and receiving traffic from, sectorswhich are applying a FLAS

8.2.1 Operational advantages/disadvantages

Achievement of RFL (Requested Flight Level)

The table below shows the percentage of flights that reached their RFL duringthe three sessions. It can be seen that in the RVSM No FLAS exercises thepercentage of aircraft reaching their RFL was in the high 80s. In all threesessions this rate was slightly reduced in the Soft FLAS and very much reducedin the Hard FLAS.

The two traffic samples (morning and afternoon) used in each session wereduplicated throughout the different scenarios, with the exception of the cruisingFlight Level where a FLAS was applicable (the original RFL remained constant).In reality, if a FLAS was in use and a pilot knew that for example FL340 was notavailable on a route, it would be unlikely that the pilot would flight plan an RFLwhich was unavailable, instead they would more likely opt for FL320 or FL360.However, the table below indicates how many flights were disrupted by the twoFLASs.

TRAFFIC SAMPLE SCENARIO SESSION 1 SESSION 2 SESSION 4Afternoon NO FLAS 89% 87% 81%

Soft 86% 75% 64%Hard 64% 51% 51%

Morning NO FLAS 88% 88% 85%Soft 85% 75% 61%Hard 59% 60% 55%

Page 28: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

18 Project NAV-2-E4 – EEC Report n° 349

Management of crossing points

It was expected that the main advantage of a FLAS would be the de-conflictionof traffic at crossing points with the aim of reducing the controllers workload andincreasing safety.

Q: Does the Soft FLAS make the management of crossing points easier?Yes 33No = 27The advantage reported was a reduction in the monitoring tasks

Q: Does the Hard FLAS make the management of crossing points easier?Yes 50No = 8The main advantage reported was the reduction in conflicts or potential conflicts,closely followed by the reduction in monitoring tasks.

From the responses to the above two questions and from debriefings, it wasseen that the Soft and Hard FLAS both offered the controllers some advantagesat busy crossing points. Where traffic was in level flight and required nopreparation for the following sector, the controllers felt that a FLAS could bebeneficial for reducing the planning and monitoring of crossing traffic. Thisbenefit was greater where a FLAS was concentrated on a point (i.e. where manyroutes converged and each one had a level/ or levels restricted).

However, it was felt that the advantage of a FLAS only occurred at certain timesFor long periods it was deemed that a FLAS was not required and that aircraftwere being penalised unnecessarily by being descended from their RFL toconform with the FLAS even though no conflicts along the route were detected.For this reason it is considered that a temporary/flexible FLAS or a letter ofAgreement would be more appropriate than a permanent FLAS.

In some cases the use of an Opposite Direction Level (ODL) was used, thisoccurred in larger sectors where there were few crossing routes of the oppositeparity.

Example: Traffic on the route SUMEK-PUBEG-DETSA at FL330 had to vacateFL330 at PUBEG to comply with the Soft FLAS. Quite often the traffic wasinitially descended to FL320 for transit of the WSU sector, this avoided the trafficat FL310 on the busy routes ENKUN-TIROL and ENKUN-KFT. The aircraft stillhad to be watched carefully to avoid any conflicts with traffic at FL320 routeingthrough VIW/KFT northwest bound. When clear of all these routes the aircraftwould be given FL310 (or another level other than 330/350) before hand-over toPadua Feed sector.

Page 29: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 19

8.2.2 Management of FL availability on main traffic flows

The biggest disadvantage perceived by the controllers was the fact that they hadbeen given six extra levels to use, then restricted with the way in which to usethem. Although a FLAS was seen to offer some benefits at busy crossing points,the controllers felt that the number of levels available without a FLAS waspreferential and offered more flexibility to the controller. They also felt that pilotsmay question big level changes in the future when RVSM is supposed to helpthem to get closer to their Requested Flight Level. In terms of the controllerworkload, although the FLASs might prove beneficial at the crossing point (fewerconflicts, less monitoring) this was outweighed by the disadvantage of havingfewer FLs available.

Most sectors handled a high density of traffic and this in itself meant an increasein monitoring tasks. It also showed the controllers that in reality this level oftraffic would be difficult to manage with the sectorisation simulated.

Hard FLAS

The controllers found that the Hard FLAS was more difficult to manage than theSoft FLAS and RVSM (No FLAS). On the positive side, the traffic was evenlydistributed over routes in a quadrantal system and at crossing points wheretraffic was in level flight, this provided a well separated flow. On the negativeside, the level availability on routes went from six to three (similar to CVSM) andthe controllers were working the same volume of traffic. This led to difficulties infinding an available FL for traffic that was bunching and evolving, and on manyoccasions a lack of exit FLs was reported.

Q: Was the integration of evolving traffic made more difficult on a routewith the Hard FLAS?Yes = 38No = 27

It was felt that co-ordination also increased between internal sectors as thedistribution of FLs affected the throughput of the lower and upper sectors, often asector would end up with only one popular/useable FL available.

Example: The table below shows the distribution of levels available on theroutes that run from southeast to northwest (FRZ-AOSTA and GEN-AOSTA)within the WU/WUU Italian sectors.They were allocated as Even FL’s in the RVSM (No FLAS) scenario. If weassume that there are few flights at FL400, it can be seen that each sector endsup with only one useable FL on two very busy routes.

SECTOR FL’s available inRVSM (No FLAS )

FL’s available in HARD FLAS

WU (FL285-335) 300 -320 320WUU (FL335-UNLTD) 340-360-380-400 360/400

Page 30: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

20 Project NAV-2-E4 – EEC Report n° 349

Q: Does the proposed Hard FLAS offer sufficient flexibility between numberof flights and the number of FLs available?Not at all = 43Partially = 18Totally = 2

Example: This situation demonstrates the restriction put on controllers and pilotsfor exit FL availability. In Session 1, NSU/NST sectors had FLs 300/340/380available for the northwest bound traffic on three busy converging routes (GRZ-STAUB, PINKA-LALIN and GUSTA-LALIN) going into German airspace (whichwas not applying a FLAS). Once these routes had crossed the east-west routesPRITZ-SNU and TALSA -AW2 they had no other crossing routes to affect theFLAS and the controllers felt penalised by having only three exit levels availableinstead of six. After several exercises it was agreed in this case to make all sixlevels available to traffic after crossing the east-west routes.

Summary

The use of a FLAS clearly restricted aircraft from achieving their RFL. At somecrossing points a FLAS was seen at certain times to show some benefits;reduced monitoring and automatic deconfliction. The management/integration oftraffic was considered to be easier with all FLs available (No FLAS).

On balance, RVSM without a FLAS was operationally the most beneficial,however, a Soft FLAS or letter of Agreement could be beneficial in certaincircumstances.

Page 31: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 21

8.2.3 Effect on controller workload and sector throughput

Controller Workload - Method

Controller workload was measured by the following means:

½ ISA - controllers had to assess their workload on a scale of 1-5 every threeminutes during an exercise.

½ Questionnaires – at the end of each exercise the controllers had to marktheir average workload during the exercise on a scale of 1-10. Also, thecontrollers were asked to comment on their workload at the end of eachscenario.

½ Telephone use- the amount of calls made between sectors½ R/T use- the amount of time spent talking on the frequency.

Summary

The recordings from Sessions 1, 2 and 4 show very little difference betweencontroller workload with RVSM (No FLAS), Soft FLAS and Hard FLAS. The ISArecordings on most sectors vary between a normal to very high workload. Whenthis data is compared to the number of aircraft on frequency it is clear that muchof the workload for the Executive controller can be contributed to R/T load andfor the Planning controller the tasks of strip loading/sorting and co-ordination.

These points were confirmed in the debriefings where controllers commented onthe number of aircraft passing through the sector and many felt that althoughthey were just able to cope in a simulation environment. In real life this amountof traffic would be unacceptable with the sector dimensions simulated. A FLASwill not be able to remedy the R/T saturation, which is the major limitation oncontroller workload.

Where the controllers believed that there was a difference in workload betweenScenarios, it has been detailed under the appropriate objective.

RVSM NO FLAS

The main comment on workload from Scenario 1 was the fact that the extra FLsgave the controller the opportunity to use 1000 feet separation on a tactical basisto resolve conflictions, instead of giving heading or speed restrictions.

Nearly all the controllers felt that as an Executive or Planning controller theybenefited from the extra levels, however the increase in useable FLs within asector did lead to an increase in monitoring tasks.

SOFT FLAS

Generally it was considered that workload was not reduced when using a SoftFLAS. Co-ordination on some sectors became more difficult especially thosepreparing the traffic for the FLAS (e.g. EST/U in Session 1). Many of thecontrollers (44/61) felt that workload increased on the sectors which had toprepare or receive the FLAS from adjacent sectors and as result 27 of thecontrollers thought this would lead to reduced sector capacity.

Page 32: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

22 Project NAV-2-E4 – EEC Report n° 349

Q: When compared with the RVSM (No FLAS), did the Soft FLAS reduce theworkload:for the planner?No = 51Yes = 7

for the executive?No = 40Yes = 20

HARD FLAS

When compared to the No FLAS and Soft FLAS scenarios, the Hard FLASScenario changed the operating practices of the controller the most. It wassimilar in many respects to the way that the controllers operate in CVSM i.e.having three levels available on a route, each separated by 4000’ feet.However, the main difference was that instead of six FLs being separated in twodirections, 12 FLs were arranged in four directions (see section 4.2). Also, thevolume of traffic was much greater than the present declared capacity.

The workload figures show no global significant difference, some sectors have ahigher workload and some have a lower workload. This is also reflected in thequestionnaire responses below,

Q: When compared with the RVSM (No FLAS), did the Hard FLAS reducethe workload:for the planner?No = 43Yes = 19

for the executive?Yes = 32No = 27

Sector throughput

The traffic samples aimed at simulating about 55 aircraft per hour in each sector,generally this volume of traffic is much higher than levels normally handled withCVSM. Achieving an exact balance is often difficult due to variations in aircraftperformance and the difficulty in predicting controllers’ orders. This led to somesectors having more than the 55 aircraft per hour and some having less than the55. This variation actually provided a useful guide to the number of aircraft thata sector could reasonably manage using RVSM in a simulation environment.

The controllers believed that the benefit from six extra RVSM levels would leadto an increase in the present sector entry rate. In the simulation sectors handlingbetween 32-50 movements showed an acceptable workload (1-3 on ISA button)where sectors with over 50 showed an unacceptably high workload (regular useof the 4-5 ISA button).

Page 33: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 23

It is important to note that these figures represent a simulation environment, andall aircraft simulated were RVSM approved. Other simulations have shown that,

½ Non-RVSM State aircraft in an RVSM environment do increaseworkload/reduce capacity for the executive and planning controller

½ Sectors generally can cope with more workload due to the fact that thesituation is simulated (e.g. traffic is not real, pilots are more cooperative andaircraft respond quickly after an input).

The application of a FLAS did create a redistribution of traffic between somesectors. However, in the sectors where the affect was minimal, the throughputwas similar with or without a FLAS. Therefore, the use of a FLAS did notincrease or decrease the sector throughput.

The following three Figures (8-10) show the ISA workload averages for Session4. In Figure 8 there is a slight reduction in workload in the MILPU/MOLUU Uppersectors and a slight increase in workload in the MILPA/ MOLUS sectors. in theSoft FLAS Scenario. This can be attributed to the imbalance of traffic betweenthe sectors which is an indirect result of the selection of FLs which can re-distribute traffic from one sector to another, either above or below. In Figure 9and Figure 10 it can be seen that the sectors (XE/XH/WU and WUU) whichgenerally handled below 50 aircraft an hour have a noticeably reduced workload.

Estimated Workload (ISA) SESSION 4

Very High Norma Low Very No

%

0

10

20

30

40

50

60

70

80

90

00

MILPA/EX MILPA/PL MILPU/EX MILPU/PL MOLUS/EX MOLUS/PL MOLUU/EX MOLUU/PL1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H

Figure 8: ISA Workload for the Swiss sectors in Session 4

Page 34: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

24 Project NAV-2-E4 – EEC Report n° 349

Estimated Workload (ISA) SESSION 4

Very High Norma Low Very No

%

0

10

20

30

40

50

60

70

80

90

00

UE/EXC UE/PLC UH/EXC UH/PLC XE/EXC XE/PLC XH/EXC XH/PLC1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H

Figure 9: ISA Workload for the French sectors in Session 4

Estimated Workload (ISA)

SESSION 4

Very High Norma Low Very No

%

0

10

20

30

40

50

60

70

80

90

100

WU/EXC WU/PLC WUU/EXC WUU/PLC

1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H

Figure 10: ISA Workload for the Italian sectors in Session 4

Page 35: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 25

The answers to the following questions show that half of the controllers considera FLAS would not increase the sector throughput and the majority of the otherhalf believe a Soft FLAS would help more than a Hard FLAS.

Q: In your view would the application of a FLAS increase sector throughputYes = 31No = 31

Q: If yes, which FLAS would be the most advantageousSoft FLAS = 21Hard FLAS = 14

The table below details the average amount of traffic each sector handled in theafternoon traffic samples (the morning sample was very similar) and shows thedifference between scenarios. It should be noted that these are average figuresand they are based on the number of aircraft on the sector frequency at the timeof measurement. The majority of the differences between Scenarios can beattributed to the effect of the FLAS. However, in some cases they are the resultof the traffic being transferred at different times.

Page 36: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

26 Project NAV-2-E4 – EEC Report n° 349

SESSION 1

PM NB Acft Max AcftSector No Soft Hard No Soft HardAYING 61 62 60 10 12 11EST 50 49 45 17 15 14ESU 43 47 53 14 15 17NST 58 57 58 14 14 14NSU 51 60 61 13 14 15RIDAR 59 63 63 15 15 17SST 63 63 64 15 14 14SSU 52 52 46 11 12 10WST 54 52 55 14 15 16WSU 59 61 61 17 19 19

SESSION 2

PM NB Acft Max AcftSector No Soft Hard No Soft HardALGOI 51 56 61 11 12 12ALPEN 59 54 53 13 14 12EU 54 45 49 14 10 14EUU 49 56 52 13 14 14KARLS 70 66 70 14 13 15KARLU 50 54 50 10 11 11NT 57 50 57 20 13 18NTU 56 61 48 20 23 16ZUR 57 60 63 11 12 12ZURH 64 62 56 18 19 17

SESSION 4

PM NB Acft Max AcftSector No Soft Hard No Soft HardMILPA 46 62 48 10 12 10MILPU 60 54 66 13 13 16MOLUS 52 63 61 11 13 13MOLUU 58 59 59 12 13 11UE 46 50 54 13 14 15UH 56 63 61 13 13 13WU 41 37 41 14 11 13WUU 46 49 45 15 16 16XE 41 42 37 12 11 10XH 35 32 39 9 8 10

Page 37: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 27

8.2.4 Effect on Sectorisation

The sectorisation (for the full list of sector splits see Annex A– Maps)selected for the RTS came about as a result of the SAAM and TAAMsimulations, and agreements made between the members of the WorkingGroup. Many of the geographical limits were unchanged from that in use today,however, the factor of most interest was which Division Flight Level (DFL) wouldbe most suited to RVSM operations.

The benefit of simulating 32 sectors is that a wide range of operationaldifferences can be considered such as, route network, vertical splits, conflictpoints and traffic profiles. Although the sectors were all considered to be ‘en-route sectors’ some dealt with predominantly overflying traffic (EST- Vienna) andsome dealt with mainly evolving traffic (UH-Reims).

The most common sector base level was FL285, with FL335 being mostcommonly used as the intermediate DFL. Generally these two levels varied by ±2000’ with the exception of sectors UE and UH which used FL195 as the baselevel as they are heavily involved with climbing/descending traffic from severalmajor airports (e.g. Geneva, Paris, Basel and Zurich). The busy exercise planmeant that there was no flexibility during the seven week simulation to testdifferent DFLs (this had been the main objective of the FT Simulations)

The controllers were asked the following question after the RVSM (No FLAS)exercises in order to get opinions on sectorisation without the influence of aFLAS.

Q: Do you consider that the vertical splits (DFLs) between the sectors wereappropriate?Yes = 40No = 10Don’t know = 10

In the RTS the DFLs remained the same for the Soft and Hard FLAS exercises.The FLs chosen for the Soft FLAS were mainly between FL310-340. This meantthat most of the sectors affected were the Middle sectors (e.g. between FL285-335). The controllers felt that the choice of FLAS vs DFL needs to be taken intoconsideration, as does the ratio of traffic on crossing routes vs the number ofFLs available for use on each route.

The controllers highlighted the following specific points on sectorisation,

Austria - There were eight Vienna ACC sectors simulated and a commonDFL of FL285/335 was used between the Upper and Top sectors. Most of thecontrollers felt that the DFLs were appropriate with RVSM (No FLAS), but notwhen using a FLAS. The Hard FLAS reduced the number of levels from six tothree in a given direction. In some sectors this caused difficulties, for examplethe NST/U sectors deal with traffic predominantly northwest bound and the levelsavailable were 300/340/380. This meant that NSU sector (FL285-335) had onlyFL300 available on three routes used by both the overflights and the Viennadepartures towards Germany.

Page 38: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

28 Project NAV-2-E4 – EEC Report n° 349

France - The Reims sector layout included the new sector ‘XE” for thesimulation which was situated above the existing sector UE. This sector wasconsidered to be necessary by the controllers for RVSM implementation in orderto manage traffic levels similar to those experienced in the simulation. The DFLbetween the sectors UH/XH was FL325. This meant that traffic at FL320 was insector UH which added extra workload. Although not tested, many of thecontrollers felt that a DFL of FL315 may have proportioned the workload moreevenly between the two sectors UH/XH, and given the XH controller moreflexibility to resolve conflicts between traffic on UN852/3 crossing UL856.

Germany – The Karlsruhe ‘KARLS’ sector was the only middle sector to have abase level of FL295, which meant that FL290 was in the feed sector below.During the RVSM No FLAS exercises this did not cause too many problems forthe controllers. However, during the FLAS exercises (bearing in mind that thissector had to prepare and deliver the traffic at FLAS levels to the adjacentZurich/Munich sectors) the controllers regularly ran out of odd levels and felt thatFL290 would have been useful in the KARLS sector. The integration of Frankfurt(EDDF) departures was also very difficult without FL290, and many southboundflights were restricted at FL270/280 and transferred to Zurich.

For the Munich controllers the AYING sector was simulated from FL285 toUnlimited. This sector had the busy crossing point AYING situated in the middleof it. The main concern of the controllers was that the sector had too manylevels and was too small geographically. As a result there was little time tocontrol the aircraft on the frequency, and all level co-ordination had to be donebefore sector entry.

Italy – The Milano controllers normally operate with smaller sectors divided on anorth/south basis. For the simulation, the sectors were divided into east /westwith each sector having an upper DFL of FL335. This DFL was considered to beappropriate, however, it was felt that the Milano sectors were too long and thin.

SwitzerlandZurich – The sectors were split at FL285/FL335 which was felt to be suitable forthe simulation. However, the controllers felt that with this sectorisation and hightraffic levels there would be too much traffic on too many levels to handle safely.A geographical split of these large sectors should be investigated in the mediumterm.

Geneva - The controllers did not like the MILPA and MOLUS sectorisation,which was very different to the one that they were familiar with in their ACC.(note: the sectorisation was built on an east/west rather than north/south split.)For the simulation it was agreed that the military areas would be assumed to beactive, which forced all traffic from the SE towards the point MOLUS to route viaAOSTA.The following observations were made,

½ Poor geographical division between sectors MILPA/U and MOLUS/U - thetwo main conflict points MOLUS and MILPA were located in differentsectors. However, two of the three routes converging at each conflict pointwere in the adjacent sector e.g. AOSTA-MOLUS controlled by MOLUSsector, ISOAR-MOLUS and TDP MOLUS controlled by MILPA sector, withthe point MOLUS only about 10nm from the MILPA sector boundary.

Page 39: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 29

½ Positioning of routes in the sectors – MOROK-GILIR-TUROM-MILPA passedthrough MOLUS/U for a very short time, and most aircraft were transferreddirectly to MILPA/U sector. Overflying traffic from Northeast to Southwestand vice-versa had to pass through two sectors, resulting in an increase inco-ordination.

½ MILPA sector too long – Generally the radar screen range was set at 140nmdiameter for MOLUS/U and 200nm for MILPA/U.

½ The advantages of the sectorisation were that only one sector (MOLUS)controlled the traffic from Geneva to Zurich and TONDA-MOLUS-DIJ. Also,the sectors MILPA/U were the only sectors controlling traffic on the routeMOU-MILPA-TOP.

Figure 11 shows the sector MOLUU and most of the adjacent sector MILPU.The exercise was a Hard FLAS afternoon sample, and the convergence of theroutes to the points MOLUS and MILPA can be seen. Of particular note is theflight CFG804 at the boundary of the two sectors heading towards MILPA.CFG804 is flying at FL360, whereas the Hard FLAS levels for this route and theconverging route TUROM-MILPA were FLs 290/330/370/410. The controller hasused an even flight level (FL360) to avoid the conflict with HLF045, also atFL370. This is a good example of the tactical use of 1000’ separation instead ofdescending CFG804 by 4000’ to FL330. The exercise recording shows that thisflight was descended from FL370 to FL360 about 5nm before the screen dumpwas taken and then climbed to FL370 shortly after MILPA (where the two flightscrossed) before exiting the sector towards BOJOL level at FL370.

Page 40: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

30 Project NAV-2-E4 – EEC Report n° 349

Figure 11: Screen dump of Sector MOLUU during a Hard FLAS exercise

Page 41: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 31

8.2.5 Interface between Two or more ACCsUnder normal circumstances aircraft can be transferred between ACCs atirregular levels subject to co-ordination. However, in order to reduce co-ordination and be able to examine the effects of a FLAS along the entire plannedroute, within this simulation, the controllers were briefed to strictly apply theFLAS levels at the boundary between ACCs, in the Soft and Hard FLASScenarios.

The FLAS network was constructed on all major routes and aimed at de-conflicting as many points as possible along each route length. It was agreedthat the controllers should have tactical freedom to use Flight Levels as requiredwithin their sector but that the general framework of the FLAS should berespected. This would mean that a receiving ACC could expect aircraft to arriveat FLs, which were already de-conflicted at a major conflict point close to thesector boundary.

An example of this can be found in the Zurich Sector. The point TRA(Trasadingen) is located close to the boundaries of Reims and Karlsruhe ACCs.It acts as a crossroad for several major routes and the Hard FLAS in particular,was intended to automatically de-conflict 4 flows of traffic. Therefore, it wasimportant to the Zurich controllers that the FLAS was respected as they hadlimited levels available and a short period of time to control the traffic beforecrossing the conflict point.

The following questionnaire replies show that the controllers considered that aFLAS had an effect on inter-ACC co-ordination and that the Soft FLAS was lesspenalising than the Hard FLAS.

Q: Was co-ordination between neighbouring ACCs affected by theapplication of a FLASYes = 47No = 18

Q: If yes with which FLAS was it easierSoft FLAS = 27Hard FLAS = 14

The recorded data from the telephone lines also shows no clear trend for thenumber of calls between ACCs. Some sectors show an increase and someshow a decrease. The sector that showed the most noticeable increase was theKARLS PLC where there were more calls to Zurich and Munich in the FLASexercises, but there was no clear difference between the Soft and Hard FLAS.This increase can be attributed to the addition task of preparing the FLAS, whichthe KARLS sector was responsible for.

Page 42: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

32 Project NAV-2-E4 – EEC Report n° 349

8.2.6 Evaluate the impact on adjacent sectors preparing the FLAS

During the preparation phase of the simulation the DFS indicated that they wouldbe unlikely to implement a FLAS within their airspace in the future. Thisenabled examination of the impact of traffic transferring from a FLAS to nonFLAS environment, and vice versa, in the following sectors:

½ AYING/RIDAR - Munich ACC sectors in Session 1.½ EST/U - Vienna sectors which prepared the SOFT FLAS only for the WST/U

sectors) in Session1.½ KARLS/KARLU – Karlsruhe ACC sectors Session 2

This objective was studied using a duplicate of the RVSM exercise trafficsample, but with the following differences,

½ For flights exiting a sector with no FLAS to a sector with a FLAS, the flightlevels were unaltered. In other words, a worst case scenario wasassumed where the last sector prior to a sector with a FLAS, wasresponsible for delivering the traffic at the correct level.

½ The Feed sectors delivering traffic to sectors with a FLAS were assumed tobe part of the FLAS system and flight levels were modified so as to be at acorrect FLAS level prior to sector entry.

RESULTS

The sectors preparing the Soft and Hard FLAS for other sectors found the task tobe very demanding. The controllers reported an increase in co-ordinationbetween adjacent ACCs and internally between upper and lower sectors (seeFigure 14: telephone use).

In Session 1 the two Munich sectors and the two Austrian ES sectors wereresponsible for the FLAS preparation (ES prepared traffic in the Soft FLAS only).The Munich sectors reported little difference, mainly due to the fact that therewere few aircraft in the traffic sample that transited the sector at the FLAS levels.However, the ES sectors were affected and the workload associated with co-ordination and FL orders was increased. In the Hard FLAS the ES sectors didnot have to prepare traffic and the number of telephone calls and flight levelorders were less than the Soft FLAS. Figure 12: Pilot orders shows theaverage number of flight level orders given by the controller during the threeScenarios. There is an increase in the number of instructions in all of thesectors preparing the FLAS in Session 1, with the Austrian sectors notablyhigher than the Munich sectors.

Page 43: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 33

Flight Level orders by sectorsSESSION 1

1617

19

30

37

32

9

16

14

21

34

28

0

10

20

30

40

AYING RIDAR EST ESU1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H 1.N 2.S 3.H

Figure 12: Flight Level Orders Session 1 for sectors preparing a FLAS

The Hard FLAS proved to be the most difficult due to the number of restrictedFLs and in Session 2 the Karlsruhe sectors experienced an extremely highworkload whilst attempting to deal with the dense level of traffic and limited exitflight levels. The problem of flight level distribution has already been detailed insection 8.2.2 . The small geographical sector (see 8.2.4 ‘Germany’) added tothe complexity of the task.

It can be seen from Figure 13 that the ISA workload levels for the two Karlsruhesectors were already at high levels in the RVSM (No FLAS) Scenario due to thevolume of traffic. With the exception of the Upper sector PLC, there is anincrease in workload with the Soft and Hard FLAS.

During the simulation the automatic transfer of Flight plan information was senteight minutes before sector entry. The planned flight level could be changed upto three minutes before sector exit. However, a PFL change could often mean anew sector sequence and as a result strips had to be generated on the newsector and cancelled from a sector if it had already been pre-warned (eightminutes before entry). To reduce this extra co-ordination the Karlsruhe planningcontrollers would attempt to plan the sector exit before the eight minutenotification to Zurich/Munich. This would give them only three to five minutes todecide on the exit levels and during the FLAS preparation exercises this taskwas difficult to achieve due to volume of traffic, lack of available levels and thetime parameters of the system.

Page 44: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

34 Project NAV-2-E4 – EEC Report n° 349

The controllers also had the task of receiving traffic at FLAS levels and whererequired, changing the flights back to a No FLAS situation (from three to sixFLs). The controllers had no difficulty with this as the extra three FLs gave themadded flexibility.

Estimated Workload (ISA)SESSION 2

Very High High Normal Low Very Low No Answer

%

0

10

20

30

40

50

60

70

80

90

00

ALGOI/EX ALGOI/PL ALPEN/EX ALPEN/PL KARL/EX KARL/PL KARLU/EX KARLU/PL1.N 2.S3.H 1.N 2.S3.H 1.N 2.S3.H 1.N 2.S 3.H 1.N 2.S3.H 1.N2.S 3.H 1.N 2.S3.H 1.N2.S 3.H

Figure 13: Session 2 ISA (Karlsruhe and Munich Sectors)

1818

18

14

18 20

12

7 611

11

5

29

36

31

30

28 27

14

10 912

12

6

13

14 14

10

13 13

Session 2 –Telephone Usage

The number on the top of each bar = number of calls made/received

%

m

0

5

10

15

20

ALGOI/PLALPEN/PL EU/PL EUU/PL KARLS/PLKARLU/PL NT/PL NTU/PL ZUR/PL ZURH/PL

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

1.N

2.S

3.H

Figure 14: Session 2 telephone usage.

Page 45: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 35

8.3 SPECIFIC OBJECTIVE 2

To assess the operational impact of the inversion of the flight direction onthe routes UN852 and UN853 in the airspace of Geneva and Reims.

8.3.1 Brief History

The proposed inversion would mainly affect three ACCs (Maastricht, Reims andGeneva). Whilst the change in direction might benefit the ATM system in someareas it may cause problems in others and this needs to be fully addressedbefore any change takes place. The dualisation of UN852/53 has beenoptimised yearly since 1977 and the Reims controllers are now familiar with thisnetwork. Many procedures would need to be changed to accommodate aninversion (specifically arrival /departure routes) and unless these issues arecorrectly co-ordinated, they could cause serious disruption within Reims airspaceand lead to a reduction in capacity.

8.3.2 Results

The plan in the original exercise schedule was that a FLAS would be tested inthe inversion exercises. This was achieved in three session 3 exercises but onlywith the Hard FLAS. However, the traffic sample was modified several times inSession 3 and this meant that the results could not be used for comparison. InSession 4 only the inversion with RVSM (No FLAS) was examined so that acomplete set of exercise runs could be completed, enabling comparison with thenon-inversion exercises.The results of the inversion exercises show a clear difference in opinion betweenthe controllers from Reims and Geneva ACCs.

Reims – The Reims controllers experienced difficulties with the new proceduresfor ARR/DEP routes in sectors UH/UE. These included:

½ the conflict between traffic on routes UL851-UN853½ the conflict between traffic on routes UL613-UN852½ the conflict between Zurich arrivals from the west on UM606 and departures

from Zurich to the North. The controllers felt there was less airspace toprovide tactical separation with the inversion. The climb profile of Zurichdepartures to the north also caused a conflict when intercepting UL 851.

½ Inbound and outbound routes from Strasbourg, Geneva, Lyon and Baslewere opposite direction to each other and would require separating bycreating new transition routes.

½ Inbound descending traffic to Luxembourg and Saarbrucken was difficult toseparate from other northbound traffic and it was felt that a secondnorthbound axis was required to allow arrivals to descend. However, thecreation of a new axis would be difficult due to the military area TSA 22.

½ Inbound traffic to ETAR from DIJ (Dijon) is opposite direction to thesouthbound flow (UN853), In the non inversion exercises the ETAR trafficroutes in the same direction as the Northbound traffic on UN853.

The ISA recordings show an increase in workload on all the French sectors(especially the UH EXC) compared with the non Inversion (NO FLAS) recordings

Page 46: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

36 Project NAV-2-E4 – EEC Report n° 349

Due to the evolving traffic the airspace structure in the inversion exercises had alower potential capacity than the current network. The Reims ACC already has acapacity problem, and it was considered that the inversion would make thisworse. The inversion was not considered to be beneficial (with or without HardFLAS) in comparison with the current route organisation. The viability of theinversion would require more airspace to establish specialised routes(Saarbrucken, Strasbourg, Basel, Zurich and Luxembourg). The inversion wasnot considered to be a necessity for RVSM implementation.

Geneva – The problems encountered in the Reims airspace were not asapparent in Geneva airspace. The base level of the measured Geneva sectorswas FL285 or above and the airspace that would normally be most affected witharrival and departure routes was a feed sector in the simulation. The Uppersectors reported few problems with the inversion as the overflying trafficbenefited from more direct one way routeings. The other advantages reportedwere that the crossing angle at MILPA was improved and the crossover pointGILIR was removed. The ISA recordings show a very small reduction inworkload compared with the non inversion (No FLAS) exercises. Further studiesare required to assess the effect on the Geneva lower sectors.

Questionnaire responses

Q: Did you benefit from the inversion?No = 9 (all Reims)Yes = 8 (all Geneva)

Q: Did you find the inversion difficult to apply?Yes = 9 (all Reims)No = 8 (all Geneva)

For those who replied yes, a further question asked the controllers to give theiropinion on why the inversion was difficult to apply. The replies are summarisedin the above paragraph Reims.

Q: Do you think the Soft FLAS is sufficient to solve these difficulties?No = 10 (9 Reims)Yes = 3 (all Geneva)

Q: Do you think the Hard FLAS is sufficient to solve these difficulties?No = 12 (9 Reims)

Q: With the non-inversion organisation, do you think a FLAS is necessary?No = 9 (all Reims)Yes = 8 (all Geneva)

Q: If yes, which one?Soft FLAS = 8 (all Geneva)

Page 47: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 37

8.4 SPECIFIC OBJECTIVE 3

To gain controller confidence in the viability of introducing RVSM in thecore area of Europe and the possible benefit of a FLAS.

8.4.1 Controller confidence using RVSM

This objective was considered to be important, as the simulation was anexcellent opportunity for many controllers to use RVSM flight levels for the firsttime in their airspace. The results were achieved by the use of questionnaires,observation during exercises and debriefings.

Of the 69 controllers who took part during the seven weeks only 26 had takenpart in a Real Time Simulation before, and of these only 12 had participated inan RVSM simulation. At the end of each session the controllers were asked thefollowing question.

Q: Has the simulation changed your perception of RVSM?No = 33Yes = 28

During the course of the simulation, short presentations were given on thefollowing subjects to help the controllers fully understand the implications ofRVSM;

• RVSM use in Irish Airspace/North Atlantic.• RVSM European Programme• RVSM Height monitoring and aircraft requirements• RVSM ATC Procedures

ALL of the Controllers quickly adapted to using RVSM flight levels and were verypositive about the use of RVSM in their airspace. The following advantageswere immediately apparent,

• the six extra flight levels offered much more flexibility• RVSM facilitated an increase in entry rate into the sector• Most of the controllers (50/60) used a 1000’ level change as a method of

resolving a conflict as opposed to the use of a radar heading (see Figure11: example CFG804 versus HLF045).

However, the controllers were aware that they were operating in an environmentwhere all aircraft were being simulated as RVSM approved and during thecourse of the simulation they raised many procedural issues including non-RVSM traffic, wake vortex and future sector capacity/limits.

These issues have been covered in previous simulations and were not includedin RVSM5 in order that the controllers could concentrate on the objectivesrelating to the FLAS and sectorisation issues. Notwithstanding this, they areextremely important and each ACC should consider them prior to RVSMimplementation.

Page 48: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

38 Project NAV-2-E4 – EEC Report n° 349

The controllers were asked whether the extra level availability in the upperairspace provided by RVSM could lead to a relaxation of current restrictions likecity pair capping, ATC Constraints, LOA’s etc. The questionnaire responsesbelow show that most felt that these restrictions were necessary. Thedebriefings confirmed that in their view there is a need to regulate traffic, in orderto maintain a managed sector sequence.

Q: Do you consider short haul city pairs could have been capped belowFL290Yes = 44No = 7Don’t know =7

Q: Do you consider that the usual flight level/ATC Constraints are stillnecessaryYes = 33No = 10Don’t know =15

One of the frequent questions asked concerning RVSM introduction is – willexperienced controllers be able to adjust to the fact that three even flight levelsused today (FL310/350/390) will change parity to odd flight levels with RVSM,and how long will it take for them to become familiar with the new scheme?

During the first couple of days of the simulation some of the controllersexperienced confusion with the levels FL310/350/390 being reversed, especiallywhen planning. However, from the questionnaire responses given at the end ofeach session (two weeks maximum), none of the controllers reported havingany difficulty with the reverse change in parity of FL310/350/390.

8.4.2 Possible benefits of a FLAS

The possible benefits of a FLAS are fully described under Specific Objective 1(see section 8.2), however, to summarise, at the end of each session (includingthe Zurich controllers in Session 3) the controllers were asked the followingquestion.

Q. Taking all things into consideration, do you think the use of a FLAS isnecessary for your airspace?

38/69 controllers answered – No, believing that a FLAS was only useful atcertain times depending on the traffic situation, and they would prefer usingRVSM without a FLAS as it offered the controller greater flexibility and capacity. .

31/69 controllers answered – Yes, most felt that a temporary / flexible SoftFLAS or letters of agreement could be the solution to resolving conflictions atsome major crossing points in peak traffic periods.

Page 49: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 39

8.5 SPECIFIC OBJECTIVE 4

To further validate the RVSM ATC procedures developed by the ATMProcedures Development Sub Group (APDSG).

As part of the planned introduction of RVSM in European airspace the APDSGhas developed specific ATC Procedures (incorporated within the EATMP-ATCManual for RVSM in Europe) to enable RVSM operations to take place safelyand expeditiously in EUR RVSM airspace. These procedures are continuallyvalidated in RVSM Simulations.

The ATC procedures related to RVSM include General procedures, handling ofnon-RVSM Traffic, flight planning, co-ordination procedures, contingencyprocedures transition procedures and phraseology.

The ATC procedures applicable to the RVSM5 simulation are detailed in section6, however, it is important to remember that all aircraft were considered to beRVSM approved (non-RVSM approved state aircraft were not included inthe exercises).

With the absence of non-RVSM aircraft the only RVSM ATC procedure that wasconsidered in the simulation was the general procedure of reducing the verticalseparation from 2000’ to 1000’ between FL290-410 (see Table of Cruisinglevels - section 1.1.2).

The main aspects related to the use of 1000 feet separation are detailed underSpecific Objective 1 and 3.

Page 50: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

40 Project NAV-2-E4 – EEC Report n° 349

9. CONCLUSIONS

9.1 GENERAL

The use of a FLAS is a complex issue and has an effect on the vertical trafficdistribution and controller workload over an extended geographical area placingadditional tasks on controllers at ACCs preparing the FLAS.

The subjective view of the controllers was that although a FLAS can bebeneficial at some crossing points by reducing the controller monitoring task, itcan create additional workload by reducing the number of FLs available andcomplicating the management of FLs. The management/integration of traffic wasconsidered to be easier with all FLs available (No FLAS).

The implementation of RVSM will have a significant impact on sectorisation byaltering the vertical distribution of traffic and the choice of Division Flight Levelbetween sectors will be of primary importance in achieving a balanced flow oftraffic.

9.2 SPECIFIC OBJECTIVE 1To compare the use of a Hard and Soft FLAS with the RVSM cruising levelreference, as published by ICAO (Annex 2 Appendix 3, Table of cruisingLevels, table a.) with particular attention to the following aspects:

• operational advantages /disadvantages

Fewer aircraft achieved their RFL in the FLAS exercises compared with theRVSM No FLAS exercises.

The management of some crossing points was easier with a Soft FLAS atcertain times, due to reduced monitoring. The Hard FLAS helped to reducemonitoring and reduce conflicts and potential conflicts at some crossing points.

The integration of evolving traffic was more difficult in the FLAS exercises.In FLAS exercises (especially the Hard FLAS) the lack of available exit flightlevels from a sector meant that some climbing aircraft were restricted and somewhich were cruising had to be moved to a different level to avoid confliction or toconform with the FLAS. These actions led to extra R/T and co-ordination for thecontroller.

• effect on controller workload and sector throughputRecorded workload data showed no significant trend between scenarios,however, many controllers felt that their workload was increased during theFLAS scenarios. In general, sectors controlling more than 50 aircraft an hourshowed an unacceptably high workload (mainly due to R/T loading and flightstrip management). A FLAS was seen to have an effect on the distribution oftraffic between upper and lower sectors.

Page 51: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 41

• effect on sectorisationSome sectorisation problems were encountered due to the choice of DivisionFlight Level (especially affected during FLAS exercises). Several sectors alsoexperienced difficulties with their new geographical limits. The DFL 335 wasgenerally considered acceptable, but this choice will depend on the location ofthe sector, the nature of the traffic (overflights, evolving flights) and the verticaldistribution of traffic.

• the interface between 2, or more, ACCs applying a FLASAn increase in coordination was reported between sectors during FLASexercises

• evaluate the impact on adjacent sectors (which are not applying a FLAS)when preparing traffic for and receiving traffic from, sectors which areapplying a FLAS

Preparing traffic (i.e. adjusting the levels to comply with the FLAS) increasedworkload and was difficult due to restricted availability of exit flight levels.Controllers also found it difficult to integrate evolving traffic. It was felt that moreco-ordination was necessary at the interface between a FLAS and non FLASarea.

9.3 SPECIFIC OBJECTIVE 2To assess the operational impact of the inversion of the flight direction ofthe routes UN852 and UN853 in the airspace of Geneva and Reims.

Reims –Difficulties were experienced with the new procedures forarrival/departure routes in sectors UH/UE. The controllers considered that thesector capacity would be reduced compared with the current airspace structure.The Reims ACC already has a capacity problem, and it was felt that theinversion would make this problem worse.

Geneva –The Upper sectors reported few problems with the inversion as theoverflying traffic benefited from more direct one-way routeings. The advantagesreported were that the crossing angle at MILPA was improved and the crossoverpoint GILIR was removed. Further studies are required to assess the effect onthe Geneva lower sectors.

Page 52: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

42 Project NAV-2-E4 – EEC Report n° 349

9.4 SPECIFIC OBJECTIVE 3To gain controller confidence in the viability of introducing RVSM in thecore area of Europe and the possible benefit of a FLAS.

ALL of the Controllers quickly adapted to using RVSM flight levels and were verypositive about the use of RVSM in their airspace. RVSM offered them moreflexibility and permitted an increase in entry rate into the sector. A level changewas regularly used as a method of confliction resolution, as opposed to a radarheading.

However, the controllers were aware that they were operating in an environmentwhere all aircraft were being simulated as RVSM approved and during thecourse of the simulation they raised many procedural issues including, non-RVSM traffic, wake vortex and future sector capacity/limits.

It was generally felt that the use of RVSM should not affect the level capping thatexists on short haul city pairs and current ATC constraints/LoAs.

By the end of the simulation none of the controllers reported having any difficultywith the reverse change in parity of FL310/350/390 (some confusionexperienced during the first two to three days).

9.5 SPECIFIC OBJECTIVE 4To further validate the RVSM ATC procedures developed by the ATMProcedures Development Sub Group (APDSG).

The only ATC procedure applied during this simulation was the reduction ofseparation from 2000 feet to 1000 feet, between FL290-410. This caused noproblems for the controllers who welcomed the use of the six extra flight levels.

Page 53: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Real-Time Simulation EUROCONTROL

Project NAV-2-E4 – EEC Report n° 349 43

10. RECOMMENDATIONS

As a result of this simulation it is recommended that when preparing theairspace for RVSM implementation:

• States avoid establishing Flight Level Allocation Schemes whereverpossible. However, if circumstances dictate that a FLAS is necessary,this should be carefully co-ordinated with neighbouring ACCs and builton a temporary (not H24) or flexible basis.

• The vertical DFLs between sectors are closely examined and anassessment is made of new DFLs, best suited to the expectedredistribution of traffic.

• Further Study of the inversion of UN852/3 is required. This shouldinclude adjacent ACCs in order to resolve the problems with arrival anddeparture routeings, within Reims airspace. Reims ACC considered thatthe inversion was under no circumstances a precondition for RVSMimplementation.

Page 54: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Real-Time Simulation

44 Project NAV-2-E4 – EEC Report n° 349

Intentionally left blank

Page 55: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Simulation en temps réel EUROCONTROL

Projet NAV-2-E4– Rapport CEE n° 349 45

Traduction en langue française du Résumé, de l’Introduction,des Objectifs, des Conclusions et Recommandations

RÉSUMÉ

La simulation RVSM5 constitue la dernière phase de l'étude RVSM pour laZone Cœur de l'Europe. Elle a été conçue pour évaluer l'utilisation desSchémas d'Allocation de Niveaux de Vol (FLAS) et les effets del'introduction des niveaux de vol sur la sectorisation.

RVSM 5 est la cinquième Simulation en Temps Réel (RTS) pour la RVSM,commanditée par EUROCONTROL et réalisée au Centre ExpérimentalEUROCONTROL (CEE) à Brétigny. Elle est l'une des plus importantes entermes de nombre de contrôleurs impliqués et aussi une des plus longuesavec une durée de sept semaines allaut d’octobre á novembre 1999.

La zone de simulation s'étend sur l'espace de cinq pays, espace géré parhuit Centres de Control du Trafic Aérien (ACCs). Une des principalesréalisations de l'étude a été le travail en commun et la coopération dupersonnel opérationnel sur un projet d'une telle importance. En premierlieu, au cours des 18 mois de préparation, les représentants de chacunedes administrations ont tenu des réunions régulières pour mettre au pointun plan de l'étude, coordonner un réseau de routes et la sectorisationcorrespondante et établir les schémas d'allocation de niveaux de vol(FLAS). En second lieu, environ 70 contrôleurs du trafic aérien ont participéà la simulation; pour nombre d'entre eux, l'exercice a été l'occasion d'unepremière approche de la RVSM et aussi d'un travail en commun etd'échange avec des collègues des centres adjoints.

Très vite, les participants se sont habitués à l'utilisation des procéduresRVSM et ont perçu les bénéfices de l'utilisation de six niveaux de volsupplémentaire, en particulier pendant les périodes de trafic chargées.

Un Schéma d'Allocation de Niveaux de Vol (FLAS) signifie un système où,sur certaines routes, des niveaux de vols utilisables ont été interdits. Ayantconstaté l'avantage pour la gestion de trafic de l'utilisation de tous lesniveaux de vol, les contrôleurs, en général, ont considéré que, pour la miseen œuvre de la RVSM, un Schéma d'Allocation de Niveaux pré-établi seraittrop contraignant aussi bien pour le contrôleur que les pilotes. Ils ontmarqué leur préférence afin de pouvoir résoudre eux-mêmes les conflitspotentiels.

Malgré une nette préférence pour la disponibilité de tous les niveaux devol, de nombreux contrôleurs ont été d'avis qu'un certain type de FLAS nedevrait pas être complètement écarté. Dans certaines zones, et à certainesheures de la journée, un FLAS appliqué sur une période de temps définieou utilisé de manière flexible pourrait apporter des bénéfices tels que laréduction de la tâche de surveillance et la résolution automatiques deconflits.

Page 56: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Simulation en temps réel

46 Projet NAV-2-E4– Rapport CEE n° 349

La mise en œuvre de la RVSM aura un effet induit sur la sectorisation.D'abord, les séparations verticales entre secteurs, telles que FL 340,devront être modifiées à FL 335 ou FL 345 du fait que le FL 340 sera unniveau utilisable en RVSM. Il est difficile d’anticiper avec précision lesfutures distributions verticales du trafic et l'utilisation des routes résultantde la mise en œuvre de la RVSM, mais il est certain que cette dernièreentraînera une re-distribution verticale du trafic. De ce fait, la définition dela séparation verticale (Division Flight Level: DFL) entre secteurssupérieurs devient la question fondamentale pour l'organisation del'espace. Les contrôleurs ont confirmé que ce point devait être étudié avecsoin. En effet, des secteurs pourraient se retrouver en surcharge s'ilscontenaient trop de niveaux de vol utilisable et si le flux du trafic n'était pasrégulièrement distribué.

DESCRIPTION GENERALE

Historique de la RVSM

A la fin des années 70, l'Aviation Civile a été confrontée et à une augmentationdes coûts du carburant et à une rapide croissance de la demande. Enconséquence, l'Organisation de l'Aviation Civile Internationale (OACI) a lancé unvaste programme d'études de faisabilités de la réduction de 2000 pieds deséparation verticale minimum à 1000 pieds, au-dessus du niveau FL 290.

Ces recherches ont indiqué que la RVSM entre les niveaux FL 290-410 étaitréalisable, sure et présentait un rapport coût/bénéfice avantageux sans imposerd'investissements techniques massifs.

La RVSM (entre les niveaux FL330-370) est devenue opérationnelle sur laRégion NAT (Atlantique Nord) le 27 mars 1997. Cette couche de niveaux a étéétendue aux niveaux FL310-390 le 8 octobre 1998.

La mise en œuvre complète de la RVSM dans l'Espace Européen et Atlantiqueaura lieu le 24 Janvier 2002 et devrait apporter des bénéfices importants.Cependant, à cause de la nature complexe de la structure du réseau de routesATS en Europe, et du fait que quelques 40 pays participent au projet, la mise enœuvre dans l'Espace Européen sera plus complexe que dans l'EspaceAtlantique.

Etude de la Zone Cœur de L’Europe

EUROCONTROL a financé plusieurs Etudes liées à l'introduction de la RVSMdans l'Espace Européen. Le RNDSG (Sous-Groupe pour le Développement duRéseau de Route), sous-groupe de l'ANT (Airspace and Navigation Team) ademandé, en accord avec les Etats concernés, une étude d'impact de la RVSMsur la sectorisation, ainsi que, plus particulièrement, des bénéfices éventuels,dérivés de l'application de différents schémas d'allocation de niveaux de vol(FLAS) dans la Zone Cœur de l'Europe. Ce document, RVSM 5 Simulation entemps réel, est le rapport de la troisième et la dernière phase de l'Etude.

Page 57: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Simulation en temps réel EUROCONTROL

Projet NAV-2-E4– Rapport CEE n° 349 47

Phase 1 - Système d'assignement et d'Analyse au niveau macroscopique(SAAM)

SAAM est un outil d'analyse statistique, développé au siège d'EUROCONTROL.L'outil est largement utilisé en support du travail du RNDSG car il permet demodéliser et d'évaluer de gros échantillons de trafic sur l'ensemble du réseau deroute européen. Les résultats peuvent être fournis en quelques minutes. Ilscomprennent les charges de trafic sur des segments de routes, les charges surles secteurs et le comptage des conflits dans n'importe quel volume défini del'espace. Cependant, SAAM n'est pas encore à même de calculer la charge detravail du contrôleur. Parce que l'outil a un temps de réponse rapide et uneinterface graphique adaptée, il est possible de re-configurer l'espace et de letester avec les nouvelles structures dans un temps de préparation relativementcourt. Ceci rend possible une évaluation des scénarios à grande échelle,permettant de sélectionner les plus prometteurs pour des développementsultérieurs. SAAM a été utilisé pour le développement de la Version 3 de l’ARNet, en conséquence, avait déjà disponible, instantanément, le futur réseau deroute (Réseau V3 planifié). Ceci a permis d'étudier une série d'options desectorisations de façon à dégager les deux coupures verticales de secteurs lesplus probables et de les évaluer en Simulation Temps Accéléré.

Phase 2 - Simulation en Temps accéléré (FTS-TAAM)En Octobre 1998, une demande de Simulation en Temps Accéléré à étésoumise au Centre d'Etudes de Bretigny. Dans le cadre du partenariat pour lessimulations EUROCONTROL, la demande a été proposé à SWISSCONTROL età la DFS, l'un et l'autre utilisant le Total Airspace and Airport Modeler (TAAM).Initialement les deux fournisseurs de TAAM devaient se partager la tâche.Cependant, la DFS, à cause d'autres engagements, a du retirer son offre,laissant SWISSCONTROL comme seule fournisseur de service.

TAAM a permis un examen plus détaillé des scénarios et, en plus d'uncomptage des conflits et d'une charge secteurs plus précise que dans SAAM, ila aussi fourni des chiffres de charge de travail du contrôleur pour une périodede 24h. Aux moins 30 secteurs ont été étudiés, dont la plupart ont été simulésavec différentes coupures verticales (FL 325 et FL 335) en utilisant unéchantillon de trafic de 24 h comprenant approximativement 8000 vols. Dans lamesure du possible les échantillons de trafic et la définition géographique del'espace (secteur et réseau de routes) devaient être transférés de SAAM àTAAM. Ceci a été réalisé en grande partie, mais les utilisateurs de TAAM ontnéanmoins assumé une certaine charge de travail pour valider la préparationdes données.

Phase 3 - Simulation en Temps Réel (RTS)La RTS constituait la dernière phase de l' Etude et comprenait 32 secteurs asimuler regroupant 8 Centres de Contrôle différents. Les résultats des phasesprécédentes ont été utilisées pour étudier plus en profondeur les effets del'utilisation d'un FLAS dans la Région Cœur de l'Europe, avec, comme bénéficesupplémentaire, la possibilité de mesurer la charge de travail et d'avoir en retourles commentaires des équipes de contrôleurs opérationnels. La RTS s'est tenueau Centre Experimental EUROCONTROL (CEE) à Bretigny et à cause dunombre important de secteurs impliqués, a été divisée en 4 sessions (maximum10 secteurs mésurés à la fois). Ce rapport détaille les résultats de la RTS.

Page 58: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Simulation en temps réel

48 Projet NAV-2-E4– Rapport CEE n° 349

OBJECTIFS DE LA SIMULATION

Objectif généralEvaluer l'impact de l'introduction de la RVSM de la Zone Cœur de l'Europeet, plus précisément, son effet sur la sectorisaiton et l'interêt de la mise enplace d'un FLAS

Note: L'objectif général ci-dessus a été pris en compte dans les 3 phases del'Etude. Les objectifs particuliers 3 et 4 ci-dessous ne sont applicables qu'à laseule simulation en temps réel (RTS)

Objectifs spécifiques

1. Comparer l'utilisation d'un FLAS systématique (Hard FLAS) et d'un FLASpartiel (Soft FLAS) avec la Référence (No FLAS) des niveaux de vol RVSM telsque publiée par l'OACI (Annexe 2 Appendix 3, Table des niveaux de vol encroisière, table a) en mettant l'accent sur les aspects suivants:

• Avantages / Désavantagés opérationnels• Effet sur la charge de travail du contrôleur et sur la charge du secteur• Effet sur la sectorisation• Interface entre deux Centres (ACC) ou plus, appliquant un FLAS• Evaluation de l’impact sur les secteurs adjacents (n'appliquant pas de

FLAS) qui préparent, ou reçoivent, le trafic de secteurs appliquant un FLAS

2. Evaluer l'impact opérationnel de l’inversion de la direction de vol sur lesroutes UN 852 et UN 853 dans l'espace aérien de Genève et de Reims.dans la Zone Cœur de l'Europe

3. Assurer la confiance des contrôleurs quant à la viabilité de l'introduction dela RVSM dans la Zone Cœur de l’Europe, ainsi que les avantages éventuels liésà un FLAS.

4. Compléter la validation des procédures ATC/RVSM développées par lesous-groupe Développement des Procédures ATM (APDSG)

Zone de simulation

La zone simulée recouvre cinq pays et comprend des parties des FIR/UIR del'Autriche, la France, l'Allemagne, l'Italie et la Suisse (voir carte 1, Annexe A).

Centres de contrôle

Les Centres de Controle suivants ont participé à la simulation: Genève,Karlsrhue, Milan, Munich, Padua, Reims, Vienne et Zurich.

Structure du réseau de routes

La structure de route utilisée pour la simulation était le Plan Version 3 de l'ARN,proposition d'amendement pour le Plan EUR (EUR ANP). Plus précisément, leréseau de routes proposé était celui de la mise en oeuvre de la Phase 2 pour laFrance et Genève, de la Phase 3 pour l'Autriche, l'Italie et Zurich. La structure

Page 59: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Simulation en temps réel EUROCONTROL

Projet NAV-2-E4– Rapport CEE n° 349 49

de route pour l'Allemagne correspondait généralement à celle planifiée pour laPhase 3 avec quelques adaptations résultant de la Simulation en Temps RéelGE98. Des modifications supplémentaires ont été intégrées, proposées par lesexperts des Etats au cours de la phase de préparation.

DESCRIPTION DES SCENARIOS

RVSM (référence) Scénario 1

La mise en œuvre de la RVSM entraîne l'introduction de six niveaux de volsupplémentaires. Dans la Zone à simuler, ces niveaux de vol ont été organisésen fonction de la direction de la route ou du segment de route survolé. D'unemanière générale, le schéma a suivi une séparation Nord/Sud et les niveaux ontété respectivement alloués en niveaux pairs/impairs. Le but du scénario RVSMde Référence consistait à simuler l'organisation de l'espace proposé pour 2001en utilisant un échantillon de trafic (projection pour 2001) distribué sur lesniveaux RVSM en alternance simple (pair/impair alternativement).

Hard FLAS Scénario 3

Le scénario RVSM de référence peut être divisé en schéma "quadrantal" telqu’illustré dans le diagramme Figure 4.

Ce schéma est à la base de deux variantes des FLAS simulées. Nommées le"Hard" et le "Soft" FLAS par le groupe de travail, elles ne représentent que deuxvariantes parmi une infinité de cas possibles d'application d'un systèmed'allocation de niveaux sur une grande échelle géographique.

Il est important de noter que dans la simulation les secteurs allemands n’ont pasappliqué les FLAS à l'intérieur de leur espace. Cependant, parce que lesCentres voisins devaient recevoir et donner le trafic à des niveaux de vol définispour le FLAS, les contrôleurs de Munich (Session 1) et de Karslruhe (Session 2)ont eu la tâche supplémentaire de préparer le trafic aux niveaux définis pour ceFLAS. Cette disposition a été testée et mesurée au cours de la simulation.

Le Hard FLAS implique une application rigide de la règle quadrantale sur lesroutes principales dans l'espace défini. La carte 3 en Annex A montre les routessur lesquelles le Hard FLAS a été appliqué les couleurs des routescorrespondant aux couleurs et niveaux décrits dans la Figure 4

Le but du Hard FLAS est de réduire la charge de travail du contrôleur grâce à laségrégation automatique des niveaux en conflit aux principaux points decroisement. Ceci a été réalisé en allouant une série de niveaux spécifiques àdes routes spécifiques, permettant ainsi un meilleur écoulement du trafic. LaFigure 5 illustre le principe général de l'allocation de niveaux Hard FLAS.Dans cet exemple, le trafic sur deux routes Nord séquentes, a étéstratégiquement "déconflicté". Trois niveaux de vol orientés-Nord sontdisponibles pour chacun des deux flux de trafic et, au point de croisement, il n'ya pas de conflits potentiels entre avions en croisière. En théorie, la tâche desurveillance du contrôleur devrait être minimale.

Dans la simulation, les routes sur lesquelles un Hard FLAS a été appliqué, ontété sélectionnées par les Experts des Etats et ont été définies pour satisfaire le

Page 60: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Simulation en temps réel

50 Projet NAV-2-E4– Rapport CEE n° 349

flux de trafic dominant et pour alléger la charge sur les contrôleurs aux points deconvergences difficiles.

A cause de la structure complexe du réseau, il a été impossible d'appliquerstrictement le schéma quadrantal; de là certaines divergences du scénario HardFLAS avec la Figure 4.

Soft FLAS Scénario 2

Le Soft FLAS est une application plus flexible de la règle quadrantale imposéesur quelques unes des routes principales à l'intérieur de l'espace défini.L'intention du Soft FLAS est de réduire la charge de travail du contrôleur auxprincipaux points de croisement en résolvant stratégiquement une partie desconflits, à des niveaux de vol sélectionnés, sans priver le contrôleur de sa libertéd'action tactique. Par ailleurs, le Soft FLAS offre à l'utilisateur une plus grandeflexibilité dans son choix de niveaux de vol.

Le Soft FLAS utilise le même principe général d'attribution de niveaux selon ladirection du vol, mais contrairement au Hard FLAS, un seul niveau de vol, oudans quelques cas deux, ont été gelés sur une route particulière (voir Annexe ACarte 2) La figure 6 illustre ce principe.

Dans cet exemple les deux routes orientées Nord ont chacune 5 niveaux de volutilisables avec un seul niveau gelé sur chacune d'entre elles. Le niveau FL320n'est pas disponible sur la route orientée Nord/Ouest. Le niveau FL320 devientalors un "niveau protégé" ou un "niveau préféré" sur l'autre route, orientéeNord/Ouest. Ainsi les niveaux FL320 et 340 sont exempts de conflits sur cettepaire de routes.

De même que pour le Hard FLAS, les Experts des Etats ont sélectionnés lesroutes et les niveaux pour les exercices Soft FLAS. Le principe général était queles restrictions de niveaux seraient gardées minimales et ne seraient appliquéesque sur les flux principaux de trafic. En plus, partout où un niveau de vol devaitêtre gelé, cette disposition a été coordonné sur toute la longueur de la routepour éviter, aux opérateurs et aux contrôleurs, des changements de niveauxnon nécessaires.

PROCEDURES DE TRAVAIL ATC

Des procédures de travail utilisées pendant la simulation correspondaient auxlettres d'accord existantes et aux instructions opérationnelles particulières.Toutes les sessions ont utilisé le "SSR" où le code était automatiquementcorrélé pour indiquer l'identification de l'avion sur l'étiquette radar.

Procédures RVSM - La réduction de la séparation de 2000' à 1000' entre FL 290et FL 410 a été appliqué sur la base des Tables de Niveaux de Croisièresrecommandées par l'OACI (OACI doc Annexe 2, Appendix 3, table a).

Pour pouvoir comparer les effets des différents FLAS, il était nécessaire demaintenir un certain nombre de variables (influences extérieures) à un niveauminimum. Le groupe de travail s'est mis d'accord pour que tous les avions soientconsidérés "approuvés RVSM". Les procédures spécifiques (phraséologie,séparation, inscription sur les strips) nécessaires pour la gestion des avions

Page 61: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Simulation en temps réel EUROCONTROL

Projet NAV-2-E4– Rapport CEE n° 349 51

non-approuvés RVSM, n'ont donc pas été utilisées pendant la simulation.

Aucun exercice impliquant des avions non-approuvés RVSM, la panne decommunication R/T, la transition entre CVSM/RVSM, n'a été simulé.

CONCLUSIONS

Conclusions Générales

L'utilisation d'un FLAS est une question qui n'a pas de réponse simple. ToutFLAS a une influence sur la distribution verticale du trafic et sur la charge detravail du contrôleur dans une zone géographique étendue. En particulier destâches supplémentaires incomberont aux contrôleurs des ACCs préparant leFLAS.

Bien que les contrôleurs aient considéré qu'un FLAS pouvait présenter desavantages à certains points de croisement en réduisant la tâche de surveillance,ils ont été aussi d'avis qu'un FLAS pouvait créer une charge de travailsupplémentaire parce qu'il réduit le nombre de niveaux disponibles et compliquela gestion de ces niveaux. La gestion/intégration du trafic a été jugée plus aiséequand tous les niveaux peuvent être utilisés.

La mise en œuvre de la RVSM aura un impact important sur la sectorisationparce qu'elle modifiera la distribution verticale du trafic et le choix de la DivisionVerticale entre Secteurs (DFLs) sera primordial pour obtenir un équilibre entreles flux du trafic dans les secteurs superposés.

Objectifs particuliers 1

Comparer l'utilisation d'un FLAS systématique (Hard FLAS) et d'un FLASpartiel (Soft FLAS) avec la Référence (No FLAS) des niveaux de vol RVSMtelle que publié par l'OACI (Annexe 2 Appendix 3, Table des niveaux de volen croisière, table a) en mettant l'accent sur les aspects suivants:

• Avantages / Désavantages opérationnels

Dans les exercices avec FLAS les avions ont atteint leur RFL (niveau de voldemandé) dans une moindre proportion que lors des exercices sans FLAS.

Avec le Soft FLAS, la gestion de certains points de croisement a été facilitée,dans certaines cas, grâce à une réduction de la tâche de surveillance.Le Hard FLAS a contribué à réduire, pour certains points de croisement, la tâchede surveillance ainsi que le nombre de conflits et conflits potentiels.

L'intégration du trafic en évolution a été plus difficile dans les exercices avecFLAS.

Dans les exercices avec FLAS (et particulièrement avec le Hard FLAS), lemanque de niveaux de vol disponibles en sortie du secteur a conduit à limiter enniveau des avions en montée ou à changer de niveau des avions en croisière,soit pour éviter un conflit, soit pour se conformer au FLAS défini. Ces actions ontentraîné un surplus de communications R/T et de coordinations.

Page 62: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Simulation en temps réel

52 Projet NAV-2-E4– Rapport CEE n° 349

• Effet sur la charge de travail du contrôleur et sur la charge du secteur

Les données enregistrées en terme de charge de travail n'ont pas indiqué detendance significative entre les différents scénarios. Cependant nombre decontrôleur ont ressenti un accroissement de la charge de travail au cours desscénarios avec FLAS.

En général, les secteurs contrôlant plus de 50 avions en taux d'entrée par heure,ont présenté une charge de travail inacceptable, quel soit le scénario, avec ousans FLAS principalement due à la charge R/T et à la gestion des strips.

Tout FLAS a eu un impact sur la répartition du trafic entre secteurs supérieurs etinférieurs.

• Effet sur la sectorisation

Quelques problèmes de sectorisation ont été rencontrés, relatifs au choix de laséparation vertical (DFL) (mise en cause en particulier par des exercices avecFLAS). Plusieurs secteurs ont présenté des difficultés liées à leur nouvelledélimitation géographique. Le DFL 335 a été généralement jugé acceptable,mais ce choix dépendra de la localisation du secteur, de sa nature (survols purs,avions en évolutions) et de la distribution verticale constatée du trafic.

• Interface entre deux Centres (ACC) ou plus, appliquant un FLAS

On a constaté une augmentation de la charge de coordination entre secteurslors des exercices avec FLAS.

• Evaluation de l’impact sur les secteurs adjacents (n’appliquant pas deFLAS) qui préparent, ou reçoivent, le trafic de secteurs appliquant unFLAS

Préparer le trafic (c'est à dire ajuster les niveaux de vol pour se conformer auFLAS défini) augmente la charge et la difficulté du travail à cause du nombreplus réduit de niveaux de vol disponibles en sortie. Les contrôleurs ont aussireconnu une plus grande difficulté pour intégrer le trafic en évolution. Enfin, il aété estimé que davantage de coordination étaient nécessaire à l'interfaceFLAS/non FLAS.

Objectif particulier 2

Evaluer l'impact opérationnel de l'inversion de la direction de vol sur lesroutes UN 852 et UN 853 dans l'espace aérien de Genève et de Reims.

Reims: Des difficultés ont été rencontrées avec des nouvelles procédures pourles routes "Arrivées/Départs" dans les secteurs UH/UE. Les contrôleurs ontconsidéré que la capacité secteur pourrait être réduite par rapport à la structured'espace actuelle. Le Centre de Reims, est déjà confronté à des problèmes decapacité. Les contrôleurs ont jugé que l'inversion accentuerait ce problème.

Page 63: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RVSM5 Simulation en temps réel EUROCONTROL

Projet NAV-2-E4– Rapport CEE n° 349 53

Genève: Les secteurs supérieurs n'ont pas relevé des problèmes particuliersavec l'inversion, du fait que le trafic en survol disposait de routes uni-directionnelles plus directes. Parmi les avantages mentionnés, l'angle decroisement à MILPA a été amélioré et le point de croisement GILIR évité.D'autres études seront nécessaires pour évaluer l'effet de l'inversion sur lessecteurs inférieurs.

Objectif particulier 3

Assurer la confiance des contrôleurs quant à la viabilité de l'introductionde la RVSM dans la Zone Cœur de l'Europe, ainsi que les avantageséventuels liés à un FLAS.

Tous les contrôleurs se sont rapidement adaptés à l'utilisation des niveaux devol RVSM et ont été très positifs quant à l'utilisation de la RVSM dans leurespace. La RVSM leur a offert une plus grande flexibilité et a permis uneaugmentation du taux de trafic en entrée dans le secteur. Le changement deniveau a été régulièrement utilisé comme méthode de résolution de conflit paropposition à la technique du cap radar.

Cependant, les contrôleurs étaient conscients qu'ils opéraient dans unenvironnement où tous les avions étaient supposés qualifiés RVSM, et, au coursde la simulation, nombre de questions relatif aux procédures ont été soulevéesconcernant le trafic non approuvé RVSM, la turbulence de sillage et des futureslimites de capacités secteurs.

Il a été généralement admis que l'utilisation de la RVSM ne devrait pas affecterles restrictions de niveau qui existent actuellement pour les court-courriers entredeux villes ainsi que les contraintes ATC et les lettres d'accords (LoAs). Desmodifications ont pu être nécessaires là où les DFL ont été modifiés.

A la fin de la simulation aucun contrôleur n'a signalé avoir eu de difficultés avecle changement de parité de niveaux FL310/FL350/FL390 (seulement quelqueshésitations lors des deux/trois premiers jours).

Point de vue des contrôleurs sur le FLAS : voir objectif particulier 1.

Objectif particulier 4

Compléter la validation des procédures ATC/RVSM développées par lesous-groupe Développement des Procédures ATM (APDSG)

La seule procédure appliquée pendant la simulation a été la réduction de laséparation de 2000 pieds à 1000 pieds, entre FL 290-410. Les contrôleurs n'ontrencontré sur ce plan aucun problème et ont bien accueilli l'utilisation des sixniveaux de vol supplémentaires.

Page 64: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EUROCONTROL RVSM5 Simulation en temps réel

54 Projet NAV-2-E4– Rapport CEE n° 349

RECOMMANDATIONS

En conformité avec les résultats de la simulation, il est recommandé que,pour l'organisation de l'Espace, en vue de la mise en œuvre de la RVSM:

• les Etats évitent, autant que possible, la mise en place d'un Schémad'Allocation de niveau de Vol (FLAS). Cependant, si les circonstancesimposent un FLAS, celui-ci devra être soigneusement coordonné avecles Centres voisins, conçu sur une règle commune et élaboré pour uneapplication temporaire (pas H24) ou une application assez flexible,

• les séparations verticales entre secteurs (DFLs) soient étudiées endétail et une évaluation soit menée sur des nouvelles divisions entresecteurs, les mieux adaptés à la future distribution de trafic.

• des études complémentaires pour l'inversion des routes UN 852/3soient entreprises. Elle devront inclure les Centres adjacents pourpermettre de trouver une solution aux routes arrivée/départ dansl'espace de Reims. Le centre de Reims a jugé que l’inversion n’était enaucun cas un préalable à la mise en œuvre de la RVSM.

Page 65: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

Annex A: MAPS

Page 66: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

A75

AALEN

AARAU

ABENA

ABETI

ABN2

ABRON

ADENU

ADOSA

AJO

AKADO

AKOSI

AKUTI

ALFAS

ALGOI

ALOGA

AMINO

AMORE

ANC

ANDEC

ANKER

ANORA

ANSBA

ANTIK

ANTON

AOSTA

ARASA

ARBON

ARDEN

ARGIS

ARKOL

ARNOS

ARPUS

ATN

AW1 AW2AYING

BABAR

BABIT

BADEN

BALSI

BANKO

BARAK

BARSO

BAT2

BATTY

BAVMI

BEATEBEGAR

BEKAN

BENEM

BENIP

BEROK

BERSO

VERDI

GILIR

BERSU

BERVA

BIRGI

BITNI

BLCX

BLM

BLOMO

BLONA

BNO

BOA

BOBSI

BODAN

BOJOL

BOL

BORGA

BOSSA

BRASU

BRENO

BRINA

BRUCK

BRY

BUBLI

BUCCO

BUEWE

BULTO

BULUX

BUMAS

BW1

BZO

CALAS

CBY

CDG

CDO

CERNO

CESAR

CHATO

CHI

CHICO

CHIEM

CIFER

CIRGA

CLM

COGNE

COL

COLIN

CRANA

CTL

DBK

DELOX

DETSA

DIDOR

DIJ

DIK

DISUN

DKB

DOL

DORIN

DRAMO

DRN

EDUAR

EKRON

EKROT

ELB

ELENA

ELMUR

ELMUT

ENKUN

ENTAR

EPL

ERKIR

ERL

ERLLI

ERTOL

ETRAC

EUR

EXIDU

FARAK

FEDER

FELSI

FER

FFM

FHA2

FRANZ

FRE

FRZ

FUL

FULDI

FUSSE

GABEL

GABOR

GALBI

GANTA

GED

GELNI

GELTA

GEN

GIMER

GIPNI

GISCA

GIVOR

GOA

GOLEB

GOLEM

GONBA

GORTU

GOTAR

GRO

GRZ

GTQ

GUSTA

GVAGVAXAGVAXD

GVAXR

GX

GY

GYR

HAROM

HARRY

HDO

HEIDI

HERTA

HEUSE

HLV

HOC

HOLIN

HOLZI

HR

IDARO

IDONA

IDOSA

ILB

IMA

INN

INTER

ISOAR

ISTRI

IXILU

JAN

JESSE

JOZEF

JULIX

JURGE

KALOD

KARLS

KASUL

KATSA

KBO2

KENUM

KFT

KIKIT

KISTO

KLIMT

KLO

KODOK

KONINKONSA

KOPOR

KORED

KOTUN

KPTKRAUT

KREMS

KUKUT

LAGEN

LALIN

LARED

LAREN

LARIT

LASAT

LASNO

LASON

LAUFE

LBU

LBUXD

LEG

LEGRO

LEO

LEQX

LESPI

LIMBA

LIMRA

LIN

LIRKO

LIZUM

LKPR

LMG

LNZ

LOFER

LOLLI

LOVIN

LSA

LUGNY

LUKAS

LUL

LUSIL

LUVAL

LUXIELUXXD

MADOC

MAIRA

MALKO

MALUG

MAMBO

MANAG

MANAL

MARCO

MARCY

MAREL

MARTY

MATAR

MAUBE

MBG

MD3

MDF

MEDAM

MEDIX

MEL

MELCO

MEN

MESSE

MESSY

MEZEL

MG

MILPA

MIRGU

MIRJA

MMD

MOLUS

MONEY

MORIZ

MOROK

MOSET

MOU

MOZAR

MTL

MUR

NARSI

NDG

NETMA

NIGOT

NISAP

NITAR

NITRA

NIZZA

NKR

NOFRE

NOR

NORPA

NORRA

NOTAG

NOUGA

NOV

NTM

OBORN

ODIGA

ODINA

OHMAR

OKG

OKI

OKL

OKR

OKREN

OKRIX

OKRXD

OKX

OL

OLBEN

OMA

OMEDA

OMETO

OTKOL

OYE

P63

PAMLA

PANIS

PAR

PASPASRI

PAVLI

PENDU

PERNO

PEROS

PETEN

PETRO

PILAT

PILON

PINKA

PIS

PITAR

PITON

MOREG

PLOTO

PODET

POGOL

PON

PONTE

PRITZ

PRTXA

PRTXD

PSASE

PTV

PUBEG

PUGET

PUL

PX11

RAKRAKIS

RALIX

RAPNE

RAPOR

RBT

RDG

REKLA

RELAN

RESPO

RETNO

RID

RIDAR

RIEMA

RIEMU

RIGNI

RIGON

RINAX

RIPUS

RIVEL

RLP

ROBOT

RON

ROUSY

RUWER

SAA

SAFFA

SALAT

SALEM

SALZU

SAMBA

SAR

SARME

SBG

SCALA

SCHMA

SCHNE

SENIC

SEPPI

SEXYS

SHU

SIMBA

SIRLO

SISSI

SLC

SLOVO

SNU

SODRI

SOLEN

SORAL

SOTOR

SPEDY

SPEZL

SPITA

SPL

SRN

SRNXA

STAUB STO

STP

STR

SUL

SULUR

SULUS

SUMEK

SUMIR

SUSIN

SUTIF

SVR

TALAR

TALED

TALSA

TAUTAUER

TDP

TEGOS

TELBO

TGO

THR

TILSI

TIROL

TIRSO

TITOV

TOLNA

TOLPA

TOMPA

TOMPI

TONON

TONUS

DIMIL

TOP

TORIN

TORNOTORPA

TORTU

TOTOV

TOWER

TRA

TRASA

TRE

TRO

TROUE

TRUFO

TULSI

TUROM

TWIST

TZO

UDVAR

UGLUK

UNITA

URBAN

VADEM

VALEN

VALPO

VAMTU

VANAS

VAREK

VELAT

VERCI

VURDI

VESAN

VESOX

VEVAR

VIC

VIGOR

VILER

VINKE

VINOS

VIW

VLM

VOG

VOLVO

VYDRA

WALSE

WASAR

WEKAR

WELLS

WGM

WILLI

WISOS

WLD

WRB

WURST

WYP

XERAN

Y2TOP

Y3VOG

ZAB

ZAG

ZED1G

ZEPPO

ZIDAN

ZUE

ZWERG

EDDF

EDDM

EDDN

EDDR

EDDS

EDNY

EDSB

ELLX

ETAD

ETHN

ETSF

ETSM

LFST

LIPQ

LIRPLIRQ

LIMJ

LIML

LIMW

LIPE

LIPX

LIPZ

LOWL

LOWS

LOWW

LSGS

LSZA

LSZB

LDRI

LDZALFLB

LFLL

LFMN

LFSB

LFSD

LIMC

LIMF

LJLJ

LKPR

LKTB

LOWG

LOWI

LOWK

LSGG

LSZH

LFPB

ETAR

RVSM5

Véro:29.06.99

XEUE

XHUH

NSTNSU

ESTESU

SSTSSU

WSTWSU

NTUNT

ZURHZUR

EUUEU

WUUWU

MILPUMILPA

MOLUUMOLUS

KARLUKARLS ALPEN

ALGOI

RIDAR

AYING

XE

UE

UH

XH

WU

WUU

MILPA

MILPU

MOLUS

MOLUU

WST

WSU

RIDAR

AYING

ESU

EST

NSU

NST

SSU

SST

EUU

EU

ALPEN

ALGOI

KARLS

KARLU

NT

NTU

ZUR

ZURH

(305-460)

(195-305)

(195-325)

(325-460)

(285-335)

(335-460)

(285-335)

(335-460)

(285-335)

(335-460)

(335-460)

(285-335)

(285-460)

(285-460)

(285-335)

(335-460)

(285-335)

(335-460)

(285-335)

(335-460)

(335-460)

(285-335)

(325-460)

(285-325)

(295-335)

(335-460)

(285-335)

(335-460)

(285-335)

(335-460)

119.75

127.55

134.40

133.82

132.90

136.77

133.15

133.62

134.85

128.15

126.27

133.60

133.75

133.67

133.80

129.12

134.35

118.95

132.60

135.05

134.05

134.52

127.37

132.87

120.92

136.72

125.90

120.72

134.60

133.40

FREQUENCIES

4 OCT - 26 NOV 99

Page 67: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

330 FL290 FL

350 FL290 FL

350 FL330 FL

360 FL320 FL

350 FL330 FL

350 FL330 FL

310 FL

350 FL

330 FL

330 FL

310 FL

310 FL

290 FL

330 FL

330 FL

330 FL

350 FL

350 FL

330 FL

350 FL

330 FL

330 FL

290 FL

330 FL

250 FL

350 FL

310 FL

330 FL

310 FL

350 FL

350 FL

330 FL

320 FL

320 FL

320 FL

320 FL

340 FL

340 FL

360 FL

360 FL

320 FL

340 FL

340 FL

340 FL

360 FL

360 FL

320 FL

300 FL

340 FL

240 FL

260 FL

360 FL

320 FL

360 FL

340 FL

340 FL

320 FL

AMN UNIT RVSM CORE AREA STUDY : MAP 2 SOFT FLAS DATE:26.11.99

Page 68: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EDSB

LFLC

LSGS

LOWK

LFLB

LFJL

LIRP

LFMT

LDZD

LDPL

LKTB

LKMT

LDSP

LIMC

LZIB

LOWG

LOWI

LDZA

LOWL

LIMJ

LIPY

LSZA

EDNY

LJLJ

LSZB

LOWS

LIPX

EDDR

LIMF

ELLX

LIPE

LFSD

LIRQ

LFST

LIPZ

LFSB

LKPR

EDDN

EDDS

LFLL

LFMN

LSGG

LFML

LOWW

LSZH

LIML

EDDM

LFPO

LFPG

EDDF

SODRI

ERTOLTABIT STP

AKUTIMAREL

POMEG

NISAP

MTGNIBAR

TORTU

DRAMO

BERRE

SPL

FJR

VENTA

ANC

ZEBRA

PANISNIZZA

GIGNA

COLINPIS

LUNEL MEZELAMFOUURBANPRT.D

PRT.A

TRUFO VALEN

FRZABN2

IDONA

BARSO

BEROK

RETNOLAGEN GEN PEROS

MENSU MIRJA

BOA

MTL

MEN

ISOAR

NOUGA ELENAVEVAR ZEPPO

PAR FER

PULTOP LIMBA

BLONA

OMA

PAMLA VOG*3VOG VERDI

EDUARCHI

ETRAC

SIRLOMEDAM *2TOP

CDO DORINVERCI

CIRGAARBON

LAREN AKADO

BUCCOLIN.A VINOSNOV LIN

BALSI

FARAK

PILAT

LIN.D

TDPVANAS COGNE TZO

ILBCHICO

INTER TREFEDER ADOSA VICIMA SRN

MADOCTOLNA

LSA

OMETO SRN.ASULUR

CHATOAOSTA RONVALPO

O PINEL THR

MARCO

CBY

ZAGSLOVOISTRI

TALARARGIS

BOJOL 10AA

OTKOL

LUSIL

XI DOL

LESPI

XIA PITON

ODINA

X.XICBOBSI

GOLEBXA PAS

ABENA

MGPODET

4AIXB IX 3BGVAGVA.AGVA.DIXA 3A

LUGNY XII V.XIII

HARPO

MILPA XIV 1B 9A1A 1CRANA 9AA TONON9 7A8A8AA 7AB

TONUS

7 7AA MOLUSBZO

6 5AB ARNOS

LIRKO KFTMALUG

MOU

GALBI VIW

BERSO

DETSA

ATN

VADEM KOREDTALED

TUROMGRZ

MUR

BENIP

MATARBRENO

SHU

GOTAR

BENEM LEOBERSU

RIGNI

PITAR

LEGRO

NEV

ELMURRIVEL LIZUM

ODIGAINN

HOLIN

RIPUS

DIJ

BIRGI

ALOGA

OLBEN SARME

PENDU AARAU

PINKAMOROK

AMINOLASONHOC KLO ALGOI

ENKUN

PUBEGTORPA

MONEY

HR BLM.DMA1FUSSE WALSE

REKLATROUE BRINA ZUE BODAN

DELOXEKRON

BLM ERKIR

ARPUS

GYR

TRA

LULSAFFA LOFERKONSA FHA2

BUMAS

IXILU

KPT CHIEM

TIRSO

MALKO

RESPOKONIN

PRITZ

SNU

MANAL

HEIDIRLP

SISSI

BEGAR BADEN TULSI HOLZIANDEC

MIRGU

SNU.A

RALIX SBG

OKRIX

MA2 SBG.A

A/2 AW2

VYDRA

AYINGHEUSEPETEN LIMRA

MANAG

ANTON SIMBA

B/1

A/1JOZEF

SJANSEPPI

FRANZ MDF

OKR.D

MAIRA

LNZ

OKRTRO MELCO LUVAL

CIFERNITRA

EPL

WGM

BRY

STAUBPOGOL

TELBO

SULFRE

STO

STR.D

MEL

OBORN MD3

ERNST

GELTA

STRSTR.A WLDMARCY TEGOS MBGANKERTGO.A RIDAR

BERVA

TGOTGO.D GONBA

SUSIN

GIVORZWERG

OL

NDG

OYE

BUBLIKOTUN

NOTAG

MASOR

LALIN

SUMEK

KARLS A75

CLM

HERTALBU

AALENLBU.D

EXIDU

GTQGTQ.A

WDG CDG

WEKAR RDG

PERNO

ANORA

RINAX

LUKAS

CTL BNO

DKB P75HAROM

CREME

SAA SPEDY

TOMPISCHMA CERNOWILLI

KALOD

MEDIX

HLVDIDOR

SORAL

ANSBANKR

VILER GIMER

GORTURELAN

MMD

FELSI

VINKE

ROUSYWURST

KOPORMTD

MOSET

XERAN

HARRY

RAPORLUX.DLUXIE

LAUFEERL

SEXYS AKOSIERLLI

VLMIDOSALOLLI

RID PSASE

RUWERDIK BANKO IDARO

ZABNITARVESOX

NORPA NTM ADENUBUEWE P63 FFM SPEZL SULUS RAKIS JURGE OKG

EKROTGOA

OKLRAK

BULTO

GELNITAU TAUER

FULDIGED

AMN UNIT RVSM CORE AREA STUDY : MAP 3 HARD FLAS DATE:26/11/99

Page 69: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

EDDF

EDDM

EDDN

EDDS

EDNY

EDSB

ETHN

ETSF

ETSM

LIPQ

LIML

LIPX

LIPZ

LOWL

LOWS

LOWW

LSZA

LDRI

LDZALIMC

LJLJ

LKPR

LKTB

LOWG

LOWI

LOWK

LSZH

AALEN

ABENA

ADOSA

AKADO

AKOSI

ALGOI

ANDEC

ANKER

ANORA

ANSBA

ANTON

ARASA

ARNOS

AW1AW2

AYING

BABITBAVMI

BEKAN

BERVA

BIRGI

BITNI

BNO

BODAN

BOSSA

BRASU

BRENO

BRINA

BRUCK

BUCCO

BW1

BZO

CALAS CDO

CERNO

CESAR

CHI

CHICO

CHIEM

CIFER

DETSA

DISUN

DKB

DOL

DORIN

DRN

EKRON

EKROT

ELENA

ELMUR

ENKUN

ENTAR

ERKIR

ERL

ERLLI

EUR

FARAK

FEDER

FELSI

FER

FFM

FHA2

FRANZ

FRE

FUL

FULDI

FUSSE

GABEL

GANTA

GED

GELNI

GOLEM

GONBA

GOTARGRZ

GUSTA

GYR

HAROM

HARRY

HDO

HERTA

HEUSE

HLV

HOLIN

HOLZI

ILB

IMA

INN

INTER

ISTRI

JAN

JESSE

JOZEF

JURGE

KALOD

KARLS

KASUL

KATSA

KFT

KIKIT

KLIMT

KLO

KONIN

KONSA

KPT

KRAUT

KREMS

KUKUTLALIN

LAREN

LAUFE

LBU

LBUXD

LEO

LIMBA

LIMRA

LIN

LIZUM

LNZ

LOFER

LOLLI

LUKAS

LUSIL

MAIRA

MALKO

MALUG

MAMBO

MANAL

MARCO

MARCY

MATAR

MBG

MD3

MDF

MESSY

MG

MONEY

MORIZ

MOZAR

NDG

NITRA

NKR

NOFRE

NOTAG

NOV

ODINA

OKG

OKL

OKR

OKREN

OMA

OMETO

P63

PAMLA

PAR

PETEN

PETRO

PINKA

PITAR

PLOTO

PODET

PONTE

PRITZ

PSASE

PUBEG

PUL

RAK

RAKIS

RALIX

RDG

RID

RIDAR

RIEMA

RIEMU

RIGON

RIPUS

RIVEL

RON

SAFFA

SALEM

SAMBA

SARME

SBG

SCALA

SCHMA

SCHNE

SENIC

SEXYS

SIMBA

SIRLO

SLC

SLOVO

SNU

SPEDY

SPEZL

SPITA

SRN

SRNXA

STAUB STO

SUL

SULUR

SULUS

SUMEK

SUMIR

SVRTALED

TALSA

TAU TAUER

TEGOS

TGO

TILSI

TIROL

TITOV

TOMPA

TORNO

TOTOV

TRA

TRASA

TRE

TULSI

TZO

UDVAR

VALPO

VELAT

VURDY

VESOX

VIC

VIGOR

VINOS

VIW

VLM

VOG

VOLVO

VYDRA

WALSE

WASAR

WEKAR

WELLS

WGM

WILLI

WLD

WURST

Y3VOG

ZAB

ZAG

ZEPPO

ZUE

ZWERG

FNW

FNE

FSE

FSW

999000

999000

999000

999000

NSTNSUFNE

ESTESUFNE

SSTSSUFSE

WSTWSUFSE

RIDARFNW AYING

FNW

FNW

FNE

FSE

FSW

WST

WSU

RIDAR

AYING

ESU

EST

NSU

NST

SSU

SST

(000-unl)

(000-unl)

(000-unl)

(000-unl)

(335-460)

(285-335)

(285-460)

(285-460)

(285-335)

(335-460)

(285-335)

(335-460)

(285-335)

(335-460)

124.02

134.72

128.87

127.37

126.27

133.60

133.75

133.67

133.80

129.12

134.35

118.95

132.60

135.05

FREQUENCIES

RVSM5

Véro:30.06.99

4 OCT - 15 OCT 99

SESSION 1

Page 70: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

A75

AALEN

AARAU

ABENA

ABN2

ADENU

ADOSA

AKADO

AKOSI

AKUTI

ALFAS

ALGOIAMINO

AMORE

ANC

ANDEC

ANKER

ANORA

ANSBA

ANTIK

ANTON

AOSTA

ARKOL

ARNOS

ARPUS

AYING

BADEN

BANKO

BARSO

BAVMI

BEGAR

BEKAN

BENEM

BEROK

BERSU

BIRGI

BITNI

BLM

BLOMO

BLONA

BOA

BODAN

BORGA

BOSSA

BRASU

BRENO

BRINA

BRUCK

BUCCO

BUEWE

BZO

CALAS CDO

CERNO

CESAR

CHI

CHICO

CHIEM

COGNE

COL

COLIN

CRANA

DELOX

DETSA

DIK

DISUN

DKB

DORIN

DRAMO

DRN

EDUAR

EKRON

ELMUR

ENKUN

ENTAR

EPL

ERKIR

ERL

ERLLI

EUR

FARAK

FEDER

FELSI

FER

FFM

FHA2

FRANZ

FRE

FRZ

FUL

FULDI

FUSSE

GABOR

GALBI

GED

GELNI

GEN

GIVOR

GOA

GOLEB

GONBA

GTQ

GVAGVAXAGVAXD

HAROM

HARRY

HDO

HERTA

HEUSE

HOC

HOLZI

HR

IDARO

IDONA

ILB

IMA

INN

INTER

ISOAR

ISTRI

IXILU

JURGE

KALOD

KARLS

KASUL

KATSA

KBO2

KENUM

KLO

KODOK

KONINKONSA

KORED

KPTKRAUT

LAGEN

LALIN

LAREN

LARIT

LASAT

LASNO

LASON

LAUFE

LBU

LBUXD

LEG

LEO

LIMBA

LIMRA

LIN

LIZUM

LNZ

LOFER

LOLLI

LUKAS

LUL

LUSIL

LUXIELUXXD

MAIRA

MALUG

MAMBO

MANAL

MARCO

MARCY

MAREL

MARTY

MATAR

MBG

MD3

MDF

MEDAM

MESSE

MEZEL

MIRGU

MOLUS

MONEY

MOROK

MOSET

MOZAR

MUR

NARSI

NDG

NETMA

NISAP

NIZZA

NKR

NOFRE

NOR

NORRA

NOTAG

NOV

NTM

OBORN

ODIGA

ODINA

OHMAR

OKG

OKL

OKREN

OLBEN

OMETO

P63

PAMLA

PANIS

PAR

PAS

PENDU

PEROS

PETEN

PETRO

PIS

PITAR

PITON

PLOTO

POGOL

PONTE

PRITZ

PRTXA

PRTXD

PSASE

PUGET

PUL

PX11

RAK

RAKIS

RALIX

RAPNE

RDG

RID

RIDAR

RIEMU

RIGON

RIPUS

RIVEL

RON

ROUSY

RUWER

SAA

SAFFA

SALAT

SALEM

SALZU

SARME

SBG

SCALA

SCHMA

SCHNE

SENIC

SEXYS

SHU

SIMBA

SIRLO

SORALSPEDY

SPEZL

SPITA

SRN

SRNXA

STAUB

STP

STR

SUL

SULUR

SULUS

SUMIR

SUTIF

TALED

TALSA

TAU TAUER

TEGOS

TGO

TILSI

TIRSO

TOMPI

TONON

TOP

TORIN

TORPA

TORTU

TOWER

TRA

TRASA

TRE

TROUE

TRUFO

TULSI

TUROM

TWIST

TZO

UNITA

URBAN

VADEM

VALEN

VALPO

VAMTU

VANAS

VERCI

VURDI

VEVAR

VIC

VINOS

VIW

VOG

WALSE

WASAR

WEKAR

WILLI

WISOS

WLD

WRB

WURST

WYP

Y2TOP

Y3VOG

ZED1G

ZEPPO

ZIDAN

ZUE

ZWERG

EDDF

EDDM

EDDN

EDDR

EDDS

EDNY

EDSB

ELLX

ETAD

ETHN

ETSF

ETSM

LFST

LIPQ

LIRP

LIRQ

LIMJ

LIML

LIMW

LIPE

LIPX

LIPZ

LOWL

LOWS

LSGS

LSZA

LSZB

LFMN

LFSB

LIMC

LIMF

LJLJ

LKPR

LOWI

LOWK

LSGG

LSZH

ETAR

Véro:28.09.99

RVSM5

18 OCT - 29 OCT 99

SESSION 2

FN

FE

FSW

FSE

FW

(000-unl)

(000-unl)

(000-unl)

(000-unl)

(000-unl) 133.82

124.02

133.67

124.20

135.00

FREQUENCIES

EUU

EU

ALPEN

ALGOI

KARLS

KARLU

NT

NTU

ZUR

ZURH

(335-460)

(285-335)

(325-460)

(285-325)

(295-335)

(335-460)

(285-335)

(335-460)

(285-335)

(335-460)

134.05

134.52

127.37

132.87

120.92

136.72

125.90

120.72

134.60

133.40

FN

FE

FSE

FSW

FW

999000

999000

999000

999000

999000

NTUNTFSE

ZURHZURFN

EUUEUFSW

KARLUKARLSFN

ALPENALGOI

FE

Page 71: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

A75

AALEN

AARAU

ABENA

ABN2

ADENU

ADOSA

ALFAS

ALGOI

ALOGA

AMINO

ANORA

ANSBA

ANTIK

ANTON

AOSTA

ARBON

ARDEN

ARGIS

ARKOL

ARPUS

ATN

BADEN

BALSI

BANKO

BARAK

BARSO

BAT2

BATTY

BAVMI

BEGAR

BEKAN

BENEM

BENIP

BEROK

BERSO

BERSU

BLM

BLOMO

BLONA

BOA

BOBSI

BODAN

BOJOL

BORGA

BOSSA

BRASU

BRENO

BRINA

BRY

BUBLI

BUEWE

BULTO

BULUX

BZO

CALAS

CBY

CDG

CDO

CHATO

CHICO

CIRGA

CLM

COGNE

COL

CRANA

CTL

DELOX

DIDOR

DIJ

DIK

DISUN

DKB

DORIN

EDUAR

EKRON

ELMUR

EPL

ERL

ERLLI

ETRAC

EUR

EXIDU

FARAK

FEDER

FFM

FHA2

FRZ

FUL

FULDI

FUSSE

GALBI

GED

GELNI

GELTA

GEN

GIMER

GIPNI

GISCA

GIVOR

GOA

GOLEB

GORTU

GTQ

GVA

GX

GY

HAROM

HARRY

HERTA

HEUSE

HOC

HR

IDARO

IDONA

IDOSA

IMA

INTER

ISOAR

IXILU

KARLS

KBO2

KENUM

KLO

KODOK

KONSA

KOPOR

KORED

KOTUN

KPTKRAUT

LAGEN

LARED

LARIT

LASAT

LASNO

LASON

LBU

LBUXD

LEGRO

LEO

LEQX

LESPI

LIMBA

LIN

LIRKO

LMG

LOLLI

LOVIN

LSA

LUGNY

LUL

LUSIL

LUVAL

LUXIELUXXD

MADOC

MAIRA

MAMBO

MANAG

MARCO

MARCY

MARTY

MATAR

MAUBE

MEDAM

MEDIX

MEL

MELCO

MEN

MEZEL

MILPA

MIRGU

MMD

MOLUS

MONEY

MOROK

MOSET

MOU

MTL

MUR

NARSI

NDG

NETMA

NIGOT

NITAR

NKR

NOR

NORPA

NORRA

NOTAG

NOUGA

NOV

NTM

OBORN

ODIGA

ODINA

OHMAR

OKREN

OKRIX

OL

OLBEN

OMETO

OTKOL

OYE

P63

PAMLAPAR

PASPASRI

PENDU

PERNO

PETRO

PILAT

PILON

PITAR

PITON

POGOL

PON

PSASE

PTV

PUGET

RALIX

RAPNE

RAPOR

RBT

REKLA

RELAN

RESPO

RETNO

RID

RIGNI

RIGON

RINAX

RIPUS

RIVEL

RLP

ROUSY

RUWER

SAA

SAFFA

SALAT

SALZU

SARME

SCALA

SCHMA

SCHNE

SEXYS

SHU

SIRLO

SORAL

SOTOR

SPEDY

SPEZL

SRN

SRNXA

STR

SUL

SULUR

SULUS

SUMIR

SUSIN

TALAR

TALED

TAUTAUER

TDP

TEGOS

TELBO

TGO

THR

TIRSO

TOLNA

TOLPA

TOMPI

TONON

TONUS

TOP

TORIN

TORPA

TRA

TRASA

TRO

TROUE

TRUFO

TUROM

TZO

UNITA

VADEM

VALPO

VAMTU

VANAS

VERCI

VURDI

VESAN

VEVAR

VILER

VINKE

VOG

WASAR

WEKAR

WILLI

WISOS

WLD

WRB

WURST

WYP

XERAN

Y2TOP

Y3VOG

ZED1G

ZEPPO

ZIDAN

ZUE

ZWERG

VERDI

GILIR

MOREG

DIMIL

EDDF

EDDN

EDDR

EDDS

EDNY

EDSB

ELLX

ETAD

ETHN

ETSF

ETSM

LFST

LIRQ

LIMJ

LIML

LIMW

LIPE

LIPX

LSGS

LSZA

LSZB

LFLBLFLL

LFSB

LFSD

LIMC

LIMF

LOWI

LSGG

LSZH

LFPB

ETAR

Véro:30.06.99

RVSM5

8 NOV - 12 NOV 99

SESSION 3

XEUE

FNW

XHUHFNW

ZURHZURFSE

FNE

FSE

FSW

999000

999000

999000

FNW999000

FNW

FNE

FSE

FSW

(000-unl)

(000-unl)

(000-unl)

(000-unl)

132.27

136.72

134.05

128.15

FREQUENCIES

XE

UE

UH

XH

ZURH

ZUR

(305-460)

(195-305)

(195-325)

(325-460)

(335-460)

(285-335)

119.75

127.55

134.40

133.82

133.40

134.60

Page 72: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

A75

AALEN

AARAU

ABENA

ABN2

ADENU

ADOSA

ALFAS

ALGOI

ALOGA

AMINO

ANORA

ANSBA

ANTIK

ANTON

AOSTA

ARBON

ARDEN

ARGIS

ARKOL

ARPUS

ATN

BADEN

BALSI

BANKO

BARAK

BARSO

BAT2

BATTY

BAVMI

BEGAR

BEKAN

BENEM

BENIP

BEROK

BERSO

BERSU

BLM

BLOMO

BLONA

BOA

BOBSI

BODAN

BOJOL

BORGA

BOSSA

BRASU

BRENO

BRINA

BRY

BUBLI

BUEWE

BULTO

BULUX

BZO

CALAS

CBY

CDG

CDO

CHATO

CHICO

CIRGA

CLM

COGNE

COL

CRANA

CTL

DELOX

DIDOR

DIJ

DIK

DISUN

DKB

DORIN

EDUAR

EKRON

ELMUR

EPL

ERL

ERLLI

ETRAC

EUR

EXIDU

FARAK

FEDER

FFM

FHA2

FRZ

FUL

FULDI

FUSSE

GALBI

GED

GELNI

GELTA

GEN

GIMER

GIPNI

GISCA

GIVOR

GOA

GOLEB

GORTU

GTQ

GVAGVAXAGVAXD

GVAXR

GXGY

HAROM

HARRY

HERTA

HEUSE

HOC

HR

IDARO

IDONA

IDOSA

IMA

INTER

ISOAR

IXILU

KARLS

KBO2

KENUM

KLO

KODOK

KONSA

KOPOR

KORED

KOTUN

KPTKRAUT

LAGEN

LARED

LARIT

LASAT

LASNO

LASON

LBU

LBUXD

LEGROLEO

LEQX

LESPI

LIMBA

LIN

LIRKO

LMG

LOLLI

LOVIN

LSA

LUGNY

LUL

LUSIL

LUVAL

LUXIELUXXD

MADOC

MAIRA

MAMBO

MANAG

MARCO

MARCY

MARTY

MATAR

MAUBE

MEDAM

MEDIX

MEL

MELCO

MEN

MEZEL

MILPA

MIRGU

MMD

MOLUS

MONEY

MOROK

MOSET

MOU

MTL

MUR

NARSI

NDG

NETMA

NIGOT

NITAR

NKR

NOR

NORPA

NORRA

NOTAG

NOUGA

NOV

NTM

OBORN

ODIGA

ODINA

OHMAR

OKREN

OKRIX

OL

OLBEN

OMETO

OTKOL

OYE

P63

PAMLA

PAR

PASPASRI

PENDU

PERNO

PETRO

PILAT

PILON

PITAR

PITON

POGOL

PON

PRTXA

PSASE

PTV

PUGET

RALIX

RAPNE

RAPOR

RBT

REKLA

RELAN

RESPO

RETNO

RID

RIGNI

RIGON

RINAX

RIPUS

RIVEL

RLP

ROUSY

RUWER

SAA

SAFFA

SALAT

SALZU

SARME

SCALA

SCHMA

SCHNE

SEXYS

SHU

SIRLO

SORAL

SOTOR

SPEDY

SPEZL

SRN

SRNXA

STR

SUL

SULUR

SULUS

SUMIR

SUSIN

TALAR

TALED

TAUTAUER

TDP

TEGOS

TELBO

TGO

THR

TIRSO

TOLNA

TOLPA

TOMPI

TONON

TONUS

TOP

TORIN

TORPA

TRA

TRASA

TRO

TROUE

TRUFO

TUROM

TZO

UNITA

VADEM

VALPO

VAMTU

VANAS

VERCI

VURDI

VESAN

VEVAR

VILER

VINKE

VOG

WASAR

WEKAR

WILLI

WISOS

WLD

WRB

WURST

WYP

XERAN

Y2TOP

Y3VOG

ZED1G

ZEPPO

ZIDAN

ZUE

ZWERG

COLIN PANISPIS

TOWER

DRAMO

NIZZA

SUTIF

VERDI

GILIR

MOREG

DIMIL

EDDF

EDDN

EDDR

EDDS

EDNY

EDSB

ELLX

ETAD

ETHN

ETSF

ETSM

LFST

LIRQ

LIMJ

LIML

LIMW

LIPE

LIPX

LSGS

LSZA

LSZB

LFLBLFLL

LFSB

LFSD

LIMC

LIMF

LOWI

LSGG

LSZH

LFPB

LIRPLFMN

ETAR

Véro:30.06.99

FNW

FNE

FSE

FSW

(000-unl)

(000-unl)

(000-unl)

(000-unl)

132.27

133.40

134.05

128.77

FREQUENCIES

RVSM5

15 NOV - 26 NOV 99

SESSION 4

XE

UE

UH

XH

WU

WUU

MILPA

MILPU

MOLUS

MOLUU

(305-460)

(195-305)

(195-325)

(325-460)

(285-335)

(335-460)

(285-335)

(335-460)

(285-335)

(335-460)

119.75

127.55

134.40

133.82

132.90

136.77

133.15

133.62

134.85

128.15

XEUE

FNW

XHUHFNW

WUUWUFSE

MILPUMILPAFSW

MOLUUMOLUSFSW

FNE

FSE

FSW

999000

999000

999000

FNW999000

Page 73: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

LFST

LSZB

LFSB

Zoom Inversion

XE

UE

FNW

XH

UH

FNW

ARPUS

BADEN

BEGAR

BENEM BERSU

BLM

CORDE

DELOX

EPL

EPOXI

GADOI

GALBI

GIVOR

HOC

HR

IXILU

KORED

TASAL

LASNO

LASON

LIRKO

LUL

MIRGU

MOLUS

MOROK

MUR

OBORN

ODIGA

OLBEN

PILON

POGOL

REKLA

SHU

SORTI

STR

TIRSO

TORPA

TROUE

SU

RV

OL

SN

OR

D-S

UD

AR

RL

SZ

H/L

SG

/FL

ARR LSZH

AR

RLFST

AR

RLFSB

DEP

LFST

DEP LFSB

DEP LSZH

AR

RL

SG

/LF

L

AR

RLSG

AR

RLFL

SU

RV

OL

S+

AR

RS

UD

-N

OR

D

Page 74: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

Annex B: OPERATIONS ROOM LAYOUT

Page 75: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area
Page 76: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

The OPS Room during Session 4.

Page 77: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

The RVSM5 Operations room layout was common for all 4 sessions. The layoutshown below details the Session 1 configuration. The table following the diagramdetails the position of the sectors for the Sessions 2-4.

28"

AYING

28"

28"

28"

Strp.pr.

133.67

24.08.99/SLI

28"

28"

28"

Strp.pr.

28"

Strp.pr.

Strp.pr.

Strp.pr.

Strp.pr.

Strp.pr.

SUPERVISION

28"28"

28"

Strp.pr.

28"28"

Hybrid

EXC

PLC

EXC

PLC

28"

28"

28"

EXC

PLC

EXC

PLC28"

Hybrid Hybrid Hybrid EXC

EXC

PLC

PLC

28"

EXC

PLC

EXC

PLC 28"

Strp.pr.

EXC

PLC

RVSM 5

FNE134.72 28"

28"

Hybrid

28"

28"

28"EXC

PLC 28"

Strp.pr.

SESSION 1 : 4 - 15 OCT

RIDAR133.75

WSU133.6

WST126.27

SST135.05

SSU132.6

NST118.95

NSU134.35

EST129.12

ESU133.8

FSE128.87

FSW127.37

FNW124.02

30 31 32 33

11

1

12

2

13

3

14

4

10

20

9

19

7

17

8

18

5

15

6

16

MUNCHEN

VIENNA

VIENNA

28"37

DEMO

TID

TID

TID

TID

TID

TID

TID

TID

TID

TID

Page 78: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

CONTROL ROOM POSITIONS FOR SESSION 2-4SECTOR NUMBERController/Planner

SESSION2 SESSION 3 SESSION 4

1/11 ALGOI MOLUS2/12 ALPEN MILPA3/13 EU ZUR MILPU4/14 EUU ZURH MOLUU5/15 KARLS UE UE6/16 KARLU XE XE7/17 NT UH UH8/18 NTU XH XH9/19 ZUR WU

10/20 ZURH WUU

A maximum of 13 Pilot positions was used during the simulation. The diagram belowshows an example of the Pilot Room layout for Session 1.

1 2 3 4 5 6

8 9 10 11

21 22 23 24

13

14

15

16

17

18

19

7

02.06.99/SLI

12

20

RVSM 5

27 28 29 3025 26

RIDAR WST

EST

AYING WSU133.67 133.75 133.6 126.27

129.12 134.35NSTNSU

118.95

SSU

132.6 (118.95)

(NST)SST135.05

SESSION 1

(133.67)

(AYING)ESU133.8

(134.35) (NSU)

Page 79: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area
Page 80: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

Annex C: SIMULATION PARTICIPANTS

Page 81: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area
Page 82: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

RRVVSSMM55SSIIMMUULLAATTIIOONN PPAARRTTIICCIIPPAANNTTSS

EEUURROOCCOONNTTRROOLL –– AAiirrssppaaccee MMaannaaggeemmeenntt aanndd NNaavviiggaattiioonn DDiivviissiioonn

Alain DUCHÈNE Core Area Study Project ManagerKarin BARBARINO Assistant Project ManagerKevin HARVEY Assistant Project Manager

EEUURROOCCOONNTTRROOLL –– EExxppeerriimmeennttaall CCeennttrree BBrreettiiggnnyy

Roger LANE RTS Project ManagerSteven BANCROFT Assistant Project ManagerVeronique BEGAULT Map PreparationJosee BRALET Pilot SupervisorChristine CHEVALIER Simulation Technical CoordinatorRobin DERANSY Data AnalysisSandrine GUIBERT Data AnalysisMarie Christine LEDUC Data PreparationHugh O’CONNOR Assistant Project ManagerElisabeth PLACHINSKI Mission OfficeFrancoise ROTH AdministrationPeter SLINGERLAND OPS Room Supervisor

SSEESSSSIIOONN 11

Bertram UNFRIED DFS – Munich Supervisor and FeedRalf BECKER DFS Munich ControllerRalf EVERLING DFS Munich ControllerHans ZABL DFS Munich ControllerSabine ZÄCH DFS Munich ControllerHerbert FORSTER DFS Munich – Feed ControllerHans Joachim KOCH DFS Munich – Feed ControllerWolfgang NOLTE DFS Munich – Feed Controller

Ernst HOFMANN Austro Control Vienna– Supervisor

Austro Control Vienna Controllers

Andreas BAUER Günter MELCHERTAlex GESSKY Ralph MICHALKEThomas HOFBAUER Erwin OBERGRUBERBernhard HOFMANN Nikolaus REIDINGERThomas HORVATH Wolfgang SCHEIDLGerald KASCHA Nikolaus SELINGERAlexander KANTZ Andreas STUHLIKThomas KIHR Günter VONESPeter KNEZEK Harald WITTMANN

SSEESSSSIIOONN 22

Klaus LIENEN DFS Karlsruhe –Supervisor/ControllerMarkus BADER DFS Karlsruhe ControllerCindy BLECH DFS Karlsruhe ControllerGerhard LEIPERT DFS Karlsruhe ControllerHeinz STEHR DFS Karlsruhe Controller

Bernd FREESE DFS Munich Supervisor and FeedUli DIETMAR DFS Munich ControllerThomas HOPF DFS Munich ControllerTheo KEBER DFS Munich ControllerWIRSCHING STUMBAUM DFS Munich ControllerKarl-Heinz LOHÖFER DFS Munich – Feed Controller

Page 83: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

Anton MAAG Swisscontrol SupervisorJudith BAUMANN Swisscontrol Zurich ControllerSimon SPIRI Swisscontrol Zurich ControllerErnst HINNEN Swisscontrol Zurich ControllerSabine ZIMMERMANN Swisscontrol Zurich ControllerJean Pierre GRAF Swisscontrol Genève ControllerErwin SCHÄR Swisscontrol Genève ControllerGeorgio BRUDERER Swisscontrol Genève Feed Controller

Philippe DALMONT CRNA-E Reims Feed Controller

Pietro PAGLIA ENAV Milano – SupervisorGiusepe NOCERINO ENAV Milano ControllerStefano GHILARDI ENAV Milano ControllerFabio MASCELLI ENAV Milano ControllerCarlo DE VITA ENAV Milano ControllerMichele FILETI ENAV Milano Feed ControllerFabio STRAPPA ENAV Padua ControllerMassimo MANICCIA ENAV Padua ControllerWalter RECCHIA ENAV Padua ControllerLuca CAVESTRO ENAV Padua ControllerPaolo PINNA ENAV Padua Controller

SSEESSSSIIOONN 33

Kurt DUSS Swisscontrol -Zurich – SupervisorErnst HINNEN Swisscontrol Zurich ControllerA. HABERMACHER Swisscontrol Zurich ControllerW. MÜLLER Swisscontrol Zurich ControllerR. SIMMLER Swisscontrol Zurich ControllerR. STAUFFER Swisscontrol Zurich ControllerGeorgio BRUDERER Swisscontrol Genève Feed Controller

Cindy BLECH DFS Karlsruhe Feed Controller

SSEESSSSIIOONN 33 aanndd 44

Herve GRANGE CRNA-E Reims Supervisor

CRNA-E Reims Controllers

Gérard BARZELLINO Véronique MEYERXavier COTTON Joseph ROCHELLEXavier ESTIENNE Yves SANJIVYCyril GAUTRON Max SINTESPhilippe GONDOIN

SSEESSSSIIOONN 44

Georgio BRUDERER Swisscontrol Genève – Supervisor

Swisscontrol Genève Controllers

Daniel ARN Gregor MÖGLILukas BISSIG Bernard PATTUSCHAlain GABERELL Bruno PULIAFITOEric JEMELIN Erwin SCHÄRRené LEHNER

W. MÜLLER Swisscontrol Zurich Feed Controller

Pietro PAGLIA ENAV Milano – Supervisor

Ugo DI LABIO ENAV Milano ControllerMario CONSOLI ENAV Milano ControllerAndrea QUERCIA ENAV Milano ControllerGiulio CILIA ENAV Milano ControllerMichele FILETI ENAV MilanoFeed Controller

Page 84: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

Annex D: SIMULATION SCHEDULE

Page 85: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area
Page 86: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

Date START STOP SCENARIO/ACTIVITY TRAFFICCODE

WEEK 1 SESSION 1MON 4 Oct 0915 1030 INTRODUCTION TO RVSM5 AND THE EEC

1100 1200 Training exercise TTNG11330 1445 Training exercise TTNG11500 1615 Training exercise TTNG1

TUE 5 Oct 1000 1130 Exercise 1 TMR11300 1430 Exercise 2 TAR11500 1630 Exercise 3 TMR1

WED 6 Oct 0930 1045 Exercise 1 TAR11115 1230 Exercise 2 TMR11345 1415 RVSM Presentation (Ireland) AE031415 1530 Exercise 3 TAR11545 1630 Debrief

THU 7 Oct 0930 1045 Exercise 1 TMS11115 1230 Exercise 2 TAS11400 1530 Exercise 3 TMS11545 1630 Debrief

FRI 8 Oct 0900 1030 Exercise 1 TAS11100 1230 Exercise 2 TMS11345 1415 RVSM Presentation (ATC Procedures) AE041415 1530 Exercise 3 TAS1

WEEK 2 SESSION 1MON 11 Oct 0900 1015 Exercise 1 TMS1

1045 1230 Exercise 2 TAS11330 1400 Training Exercise for Hard FLAS TTNGH11445 1600 Exercise 3 TMH11600 1630 Debrief

TUE 12 Oct 0900 1030 Exercise 1 TAH11045 1200 Exercise 2 TMH11330 1445 Exercise 3 TAH11500 1600 RVSM Presentation (Height monitoring) AE04

WED 13 Oct 0905 1020 Exercise 1 TMH11045 1200 Exercise 2 TAH11345 1500 Exercise 3 TMH11515 1600 Debrief

THU 14 Oct 0900 1030 Exercise 1 TMR11100 1230 Exercise 2 TAS11400 1515 Exercise 3 TMS11530 1600 RVSM Presentation (RVSM Programme) AE04

FRI 15 Oct 0900 1030 Exercise 1 TAS11100 1200 Debrief

Page 87: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

WEEK 3 SESSION 2MON 18 Oct 0915 1030 INTRODUCTION TO RVSM5 AND THE EEC

1100 1200 Training exercise TTNG21330 1445 Training exercise TTNG21500 1615 Training exercise TTNG2

TUE 19 Oct 0900 0930 RVSM Presentation (Ireland) AE040930 1045 Exercise 1 TMR21100 1215 Exercise 2 TAR21400 1530 Exercise 3 TMR21545 1630 Debrief

WED 20 Oct 0900 1030 Exercise 1 TAR21100 1230 Exercise 2 TMR21345 1530 Exercise 3 TAR21530 1600 Debrief (Questionnaire)

THU 21 Oct 0900 1015 Exercise 1 TMS21100 1230 Exercise 2 TAS21400 1530 Exercise 3 TMS21530 1600 Debrief

FRI 22 Oct 0905 1015 Exercise 1 TAS21045 1200 Exercise 2 TMS21330 1500 Exercise 3 TAS2

WEEK 4 SESSION 2MON 25 Oct 0900 1030 Exercise 1 TMS2

1100 1230 Training Exercise Hard FLAS TTNGH21400 1530 Exercise 2 TAH21545 1630 Debrief

TUE 26 Oct 0900 1030 Exercise 1 TMH21045 1200 Exercise 2 TAH21330 1400 RVSM Presentation (ATC Procedures) AE041400 1530 Exercise 3 TMH21530 1600 Debrief

WED 27 Oct 0900 1030 Exercise 1 TAH21100 1230 Exercise 2 TMH21330 1500 Exercise 3 TAH21515 1600 Debrief (Questionnaire)

THU 28 Oct 0900 1030 Exercise 1 TAH2B1100 1230 Exercise 2 TAH2B1400 1530 Exercise 3 TMR21545 1630 Debrief

FRI 29 Oct 0900 1030 Exercise 1 TAR21100 1200 Debrief

Page 88: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

WEEK 5 SESSION 3MON 8 Nov 0915 1030 INTRODUCTION TO RVSM5 AND THE

EEC1045 1200 Training exercise TTNG31330 1445 Training exercise TTNG31500 1615 Exercise 1 TMR3

TUE 9 Nov 0900 1030 Exercise 1 TMR31100 1230 Exercise 2 TMR31330 1500 Exercise 3 TAH31515 1645 Exercise 4 TMH3

WED 10 Nov 0900 1030 Exercise 1 TAH31100 1230 Exercise 2 TMH31400 1530 Exercise 3 TAH31545 1630 Debrief

THU 11 Nov 0900 1000 Training Exercise Inversion TNG3i1110 1230 Exercise 1 TIMR31330 1445 Exercise 2 TIMR31500 1615 Exercise 3 TIMR3

FRI 12 Nov 0900 1015 Exercise 1 TIAH31045 1230 Exercise 2 TIAH31330 1500 Exercise 3 TIAH3

TSAM RVSM SOFT HARD RVSM-INV SOFT-INV HARD-INVM 3 3 2 3 3 3A 3 3 3 3 3 3

WEEK 6 SESSION 4MON 15 Nov 0915 1030 INTRODUCTION TO RVSM5 AND THE

EEC1100 1200 Training exercise TNG41330 1445 Training exercise with ISA TNG41500 1615 Busy Training exercise TAR4

TUE 16 Nov 0900 1015 Exercise 1 TAR41045 1200 Exercise 2 TMR41330 1400 RVSM Presentation (Ireland) AE041400 1515 Exercise 3 TAR41530 1600 Debrief

WED 17 Nov 0915 1030 Exercise 1 TMR41115 1230 Exercise 2 TAR41400 1530 Exercise 3 TMR41545 1630 Debrief (Questionnaire)

THU 18 Nov 0930 1045 Exercise 1 TAS41100 1230 Exercise 2 TMS41330 1400 RVSM Presentation (ATC Procedures) AE041400 1530 Exercise 3 TAS41545 1630 Debrief

FRI 19 Nov 0900 1015 Exercise 1 TMS41045 1200 Exercise 2 TAS41330 1500 Exercise 3 TMS4

Page 89: EUROCONTROL ·  · 2008-09-01RVSM5 Real-Time Simulation EUROCONTROL Project NAV-2-E4 – EEC Report n° 349 v SUMMARY The RVSM5 Simulation was the final phase of the RVSM Core area

WEEK 7 SESSION 4MON 22 Nov 0900 0915 Hard FLAS Briefing AE04

0930 1045 Training Exercise Hard FLAS TNG4H1300 1415 Exercise 1 TAH41415 1530 Exercise 2 TMH41500 1615 Exercise 3 TAH4

TUE 23 Nov 0900 1015 Exercise 1 TMH41045 1215 Exercise 2 TAH41330 1400 Questionnaire AE041400 1515 Exercise 3 TMH41530 1600 RVSM Presentation (Height Monitoring) AE04

WED 24 Nov 0930 1015 Training Exercise Inversion TNG4i1030 1200 Exercise 1 TIAR41330 1500 Exercise 2 TIMR41515 1645 Exercise 3 TIAR4

THU 25 Nov 1000 1115 Exercise 1 TIMR41300 1415 Exercise 2 TIAR41445 1600 Exercise 3 TIMR41600 1630 Debrief

FRI 26 Nov 1000 1200 Presentation of Initial results AE41/42

TSAM RVSM SOFT HARD RVSM-INV SOFT-INV HARD-INVM 3 3 3 3A 3 3 3 3

Traffic sample data decode

Traffic sample data is displayed by an orderly group of letters/numbers e.g. T

T = TrafficTNG = TrainingA = Afternoon TrafficM = Morning TrafficR = Org 1-RVSMH = Org 2-HARD FLASS = Org 3-SOFT FLASIMR = RVSM with InversionIMH = HARD FLAS with inversionIMS = SOFT FLAS with inversion1-4 = Session number