ET201 Electrical Circuits

download ET201 Electrical Circuits

of 241

Transcript of ET201 Electrical Circuits

  • 7/23/2019 ET201 Electrical Circuits

    1/241

    1

    ELECTRICAL CIRCUIT

    ET 201

    Define and explain characteristics of

    sinusoidal wave, phase relationships

    and phase shifting

    http://modul2poli.blogspot.com/ Page 1 of 241

  • 7/23/2019 ET201 Electrical Circuits

    2/241

    2

    (CHAPTER 1.1 ~ 1.4)

    SINUSOIDAL ALTERNATING

    WAVEFORMS

    http://modul2poli.blogspot.com/ Page 2 of 241

  • 7/23/2019 ET201 Electrical Circuits

    3/241

    Understand Alternating Current

    DIRECT CURRENT (DC)IS WHEN THE CURRENTFLOWS IN ONLY ONE DIRECTION. Constant flow of

    electric charge

    EX: BATTERY ALTERNATING CURRENT AC)THE CURRENT

    FLOWS IN ONE DIRECTION THEN THE OTHER.

    Electrical current whose magnitude and direction varycyclically, as opposed to direct current whose direction

    remains constant.

    EX: OUTLETS

    http://modul2poli.blogspot.com/ Page 3 of 241

    http://en.wikipedia.org/wiki/Electric_chargehttp://en.wikipedia.org/wiki/Electric_charge
  • 7/23/2019 ET201 Electrical Circuits

    4/241

    Sources of alternating current

    By rotating a magnetic field within astationary coil

    By rotating a coil in a magnetic field

    http://modul2poli.blogspot.com/ Page 4 of 241

  • 7/23/2019 ET201 Electrical Circuits

    5/241

    Generation of Alternating

    Current A voltage supplied by a battery or other

    DC source has a certain polarity and

    remains constant.

    Alternating Current (AC) varies in polarityand amplitude.

    AC is an important part of electrical andelectronic systems.

    http://modul2poli.blogspot.com/ Page 5 of 241

  • 7/23/2019 ET201 Electrical Circuits

    6/241

    Faradays Laws of electromagneticInduction.

    Induced electromotive fieldAny change in the magnetic environment of a coil of wire will cause a

    voltage (emf) to be "induced" in the coil.

    e.m.f, e = -N d

    N = Number of turn

    dt = Magnetic Flux

    Lenzs law

    An electromagnetic field interacting with a conductor will generate

    electrical current that induces a counter magnetic field that opposes

    the magnetic field generating the current.

    Faradays and Lenzs Lawinvolved in generating a.c current

    http://modul2poli.blogspot.com/ Page 6 of 241

  • 7/23/2019 ET201 Electrical Circuits

    7/241

    Sine Wave Characteristics

    The basis of an AC alternator is a loop ofwire rotated in a magnetic field.

    Slip rings and brushes make continuouselectrical connections to the rotatingconductor.

    The magnitude and polarity of the

    generated voltage is shown on thefollowing slide.

    http://modul2poli.blogspot.com/ Page 7 of 241

  • 7/23/2019 ET201 Electrical Circuits

    8/241

    Sine Wave Characteristics

    http://modul2poli.blogspot.com/ Page 8 of 241

  • 7/23/2019 ET201 Electrical Circuits

    9/241

    Sine Wave Characteristics

    The sine wave at theright consists of two,

    opposite polarity,alternations.

    Each alternation iscalled a half cycle.

    Each half cycle has amaximum value calledthepeak value.

    http://modul2poli.blogspot.com/ Page 9 of 241

  • 7/23/2019 ET201 Electrical Circuits

    10/241

    Sine Wave Characteristics

    Sine waves may represent voltage,current, or some other parameter.

    Theperiodof a sine wave is the time fromany given point on the cycle to the same

    point on the following cycle.

    The period is measured in time (t), and inmost cases is measured in seconds or

    fractions thereof.

    http://modul2poli.blogspot.com/ Page 10 of 241

  • 7/23/2019 ET201 Electrical Circuits

    11/241

    Frequency

    The frequencyof a sine wave is thenumber of complete cycles that occur inone second.

    Frequency is measured in hertz(Hz). Onehertz corresponds to one cycle persecond.

    Frequency and period have an inverserelationship. t= 1/f, and f= 1/t.

    Frequency-to-period and period-to-frequency conversions are common in

    electronic calculations.http://modul2poli.blogspot.com/ Page 11 of 241

  • 7/23/2019 ET201 Electrical Circuits

    12/241

    Peak Value

    The peak value of a sine wave is themaximum voltage (or current) it reaches.

    Peak voltages occur at two different pointsin the cycle.

    One peak is positive, the other is negative. The positive peak occurs at 90 and the

    negative peak at 270. The positive and negative have equal

    amplitudes.

    http://modul2poli.blogspot.com/ Page 12 of 241

  • 7/23/2019 ET201 Electrical Circuits

    13/241

    Chapter 6 -13

    Average Values

    The average value of any measuredquantity is the sum of all of the

    intermediate values.

    The average value of a full sine wave iszero.

    The average value of one-half cycle of asine wave is:

    Vavg= 0.637Vpor Iavg= 0.637Ip

    http://modul2poli.blogspot.com/ Page 13 of 241

  • 7/23/2019 ET201 Electrical Circuits

    14/241

    Chapter 6 -14

    rms Value

    One of the most important characteristicsof a sine wave is its rms or effectivevalue.

    The rms value describes the sine wave in

    terms of an equivalent dc voltage. The rms value of a sine wave producesthe same heating effect in a resistance asan equal value of dc.

    The abbreviation rms stands for root-mean-square, and is determined by: Vrms=0.707Vp or Irms= 0.707Ip

    http://modul2poli.blogspot.com/ Page 14 of 241

  • 7/23/2019 ET201 Electrical Circuits

    15/241

    Peak-to-Peak Value

    Another measurement used to describe sine waves aretheir peak-to-peak values.

    The peak-to-peak value is the difference between thetwo peak values.

    http://modul2poli.blogspot.com/ Page 15 of 241

  • 7/23/2019 ET201 Electrical Circuits

    16/241

    Form Factor

    Form Factor is defined as the ratio of r.m.svalue to the average value.

    Form factor = r.m.s value = 0.707 peak value

    average value 0.637 peak valur = 1.11

    http://modul2poli.blogspot.com/ Page 16 of 241

  • 7/23/2019 ET201 Electrical Circuits

    17/241

    Peak Factor

    Crest or Peak or Amplitude Factor

    Peak factor is defined as the ratio of peakvoltage to r.m.s value.

    http://modul2poli.blogspot.com/ Page 17 of 241

  • 7/23/2019 ET201 Electrical Circuits

    18/241

    18

    13.1 Introduction

    Alternating waveforms

    Alternating signal is a signal that varies with respect to time. Alternating signal can be categories into ac voltage and ac

    current.

    This voltage and current have positive and negative value.

    http://modul2poli.blogspot.com/ Page 18 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    19/241

    19

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    volts or amperes

    units of time

    Voltage and current value is represent by vertical axis and timerepresent by horizontal axis.

    In the first half, current or voltage will increase into maximum positivevalue and come back to zero.

    Then in second half, current or voltage will increase into negativemaximum voltage and come back to zero.

    One complete waveform is called one cycle.

    http://modul2poli.blogspot.com/ Page 19 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    20/241

    20

    Defined Polarities and Direction

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    The voltage polarity and current direction will be for an instantin time in the positive portion of the sinusoidal waveform.

    In the figure, a lowercase letter is employed for polarity and

    current direction to indicate that the quantity is time dependent;that is, its magnitude will change with time.

    http://modul2poli.blogspot.com/ Page 20 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    21/241

    21

    Defined Polarities and Direction

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    For a period of time, a voltage has one polarity, while for thenext equal period it reverses. A positive sign is applied if the

    voltage is above the axis.

    For a current source, the direction in the symbolcorresponds with the positive region of the waveform.

    http://modul2poli.blogspot.com/ Page 21 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    22/241

    There are several specification in sinusoidal

    waveform:

    1. period

    2. frequency

    3. instantaneous value

    4. peak value

    5. peak to peak value6. angular velocity

    7. average value

    8. effective value 22

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 22 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    23/241

    Period (T) Period is defines as the amount of time is take to go through

    one cycle.

    Period for sinusoidal waveform is equal for each cycle.

    Cycle

    The portion of a waveform contained in one period of time.

    Frequency (f)

    Frequency is defines as number of cycles in one seconds.

    It can derives as

    23

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Hzhertz,1

    Tf

    f = Hz

    T = seconds (s)http://modul2poli.blogspot.com/ Page 23 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    24/241

    24

    The cycles within T1, T2, and T3may appear different in

    the figure above, but they are all bounded by one period of time

    and therefore satisfy the definition of a cycle.

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 24 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    25/241

    25

    Frequency = 1 cycle

    per second

    Frequency = 21/2cycles

    per second

    Frequency = 2 cycles

    per second

    1 hertz (Hz) = 1 cycle per second (cps)

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Signal with lower frequency Signal with higher frequency

    http://modul2poli.blogspot.com/ Page 25 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    26/241

    Instantaneous value

    Instantaneous value is magnitude value of waveform atone specific time.

    Symbol for instantaneous value of voltage is v(t) andcurrent is i(t).

    26

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    V8)1.1(

    V0)6.0(

    V8)1.0(

    v

    v

    v

    http://modul2poli.blogspot.com/ Page 26 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    27/241

    27

    Peak Value

    The maximum instantaneous value of a function as measuredfrom zero-volt level.

    For one complete cycle, there are two peak value that ispositive peak value and negative peak value.

    Symbol for peak value of voltage is Emor Vm and current is Im.

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Peak value, Vm= 8 V

    http://modul2poli.blogspot.com/ Page 27 of 241

    13 2 Si id l AC V lt

  • 7/23/2019 ET201 Electrical Circuits

    28/241

    28

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Peak to peak value The full voltage between positive and negative peaks of the

    waveform, that is, the sum of the magnitude of the positive and

    negative peaks.

    Symbol for peak to peak value of voltage is Ep-por Vp-p andcurrent is Ip-pPeak to peak value, Vp-p = 16 V

    http://modul2poli.blogspot.com/ Page 28 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    29/241

    29

    Angular velocity Angular velocity is the velocity with which the radius vector

    rotates about the center.

    Symbol of angular speed is and units is

    radians/seconds (rad/s) Horizontal axis of waveform can be represent by time and

    angular speed.

    360radian2

    142.3,3.572

    360radian1 0

    0

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 29 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    30/241

    30

    Angular velocity

    Degree Radian90 (/180) x ( 90) = /2 rad

    60 (/180) x ( 60) = /3 rad

    30 (/180) x (30) = /6 rad

    Radian Degree

    /3 (180/) x ( /3) = 60

    (180/) x ( ) = 180

    3 /2 (180/) x (3 /2) = 270

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 30 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    31/241

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Plotting a sine wave versus (a) degrees and (b) radians.

    http://modul2poli.blogspot.com/ Page 31 of 241

    13 2 Si id l AC

  • 7/23/2019 ET201 Electrical Circuits

    32/241

    The sinusoidal wave formcan be derived from thelength of the vertical

    project ionof a radius vector

    rotating in a uniform circular

    motion about a fixed point.

    Waveform picture with respect to angular velocity

    13.2 Sinusoidal AC

    Voltage

    Characteristics andDefinitions

    http://modul2poli.blogspot.com/ Page 32 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    33/241

    33

    Angular velocity

    Formula of angular velocity

    Since () is typically provided in radians/second, theangle obtained using = tis usually in radians.

    t

    t

    (seconds)time

    )radiansordegrees(distance,degreeangular

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 33 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    34/241

    34T

    2 or f 2 (rad/s)

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Angular velocity

    The time required to complete one cycle is equal to theperiod (T) of the sinusoidal waveform.

    One cycle in radian is equal to2(360o

    ).

    http://modul2poli.blogspot.com/ Page 34 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    35/241

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Angular velocityDemonstrating the effect of on the frequency fand period T.

    http://modul2poli.blogspot.com/ Page 35 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    36/241

    36

    Example 13.6Given = 200 rad/s, determine how long it will take the

    sinusoidal waveform to pass through an angle of 90

    Solut ion

    t

    rad2

    90

    ms85.7200

    2/

    t

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 36 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    37/241

    37

    Example 13.7Find the angle through which a sinusoidal waveform of

    60 Hz will pass in a period of 5 ms.

    Solut ion

    rad885.11056022 3 ftt

    108180

    885.1

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 37 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    38/241

    38

    Average value Average value is average value for all instantaneous value in

    half or one complete waveform cycle.

    It can be calculate in two ways:1. Calculate the area under the graph:

    Average value = area under the function in a period

    period

    2. Use integral method

    For a symmetry waveform, area upper section equal to area

    under the section, so just take half of the period only.

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    T

    dttvT

    valueaverage0

    )(1

    _

    http://modul2poli.blogspot.com/ Page 38 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    39/241

    39

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    Average value Example: Calculate the average value of the waveform below.

    Vm

    Vm

    rad 2

    Solution:

    voltvv

    v

    dv

    dv

    dttvT

    valueaverage

    mm

    om

    m

    m

    T

    637.02

    cos

    sin

    sin1

    )(1

    _

    0

    0

    0

    For a sinus waveform , average value can

    be calculate by

    mm

    average VV

    V 637.0 http://modul2poli.blogspot.com/ Page 39 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    40/241

    40

    Effective value The most common method of specifying the amount of sine wave ofvoltage or current by relating it into dc voltage and current that will

    produce the same heat effect.

    Effective value is the equivalent dc value of a sinusoidal current or

    voltage, which is 1/2 or 0.707 of its peak value. The equivalent dc value is called rms valueor effective value.

    The formula of effective value for sine wave waveform is;

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    mm

    mm

    EEE

    III

    707.02

    1

    707.02

    1

    rms

    rms

    rmsrms

    rmsrms

    414.12

    414.12

    EEE

    III

    m

    m

    http://modul2poli.blogspot.com/ Page 40 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    41/241

    41

    Example 13.21The 120 V dc source delivers 3.6 W to the load. Find Emand Imof

    the ac source, if the same power is to be delivered to the load.

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 41 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    42/241

    42

    Example 13.21so lu t ion

    W6.3dcdc PIE mA30120

    6.3

    dc

    dc E

    PI

    2dcrms

    mEEE

    V7.169120414.12 dc EEm

    and2

    dcrmsmIII

    mA43.4230414.12 dc IIm

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    http://modul2poli.blogspot.com/ Page 42 of 241

    13 2 Sinusoidal AC Voltage

  • 7/23/2019 ET201 Electrical Circuits

    43/241

    43

    Example 13.21solut ion

    2dcrms

    mIII 2

    dcrmsmEEE

    mA43.42

    30414.1

    2 rms

    IIm

    13.2 Sinusoidal AC Voltage

    Characteristics and Definitions

    V7.169

    120414.1

    2 rms

    EEm

    http://modul2poli.blogspot.com/ Page 43 of 241

    13 5 General Format for the

  • 7/23/2019 ET201 Electrical Circuits

    44/241

    44

    13.5 General Format for the

    Sinusoidal Voltage or Current

    The basic mathematicalformat for the sinusoidal

    waveform is:

    where:

    Am: peak value of thewaveform

    : angle from the

    horizontal axis

    volts or amperes

    Basic sine wave for current or voltage

    http://modul2poli.blogspot.com/ Page 44 of 241

    13 5 General Format for the

  • 7/23/2019 ET201 Electrical Circuits

    45/241

    45

    The general format of a sine wave can also be as:

    General format for electrical quantities such as currentand voltage is:

    where: and is the peak value of current

    and voltage while i(t) and v(t) is the instantaneous

    value of current and voltage.

    sinsin mm ItIti

    sinsin mm EtEte

    13.5 General Format for the

    Sinusoidal Voltage or Current

    = t

    mI

    mE

    http://modul2poli.blogspot.com/ Page 45 of 241

    13 5 General Format for the

  • 7/23/2019 ET201 Electrical Circuits

    46/241

    46

    Example 13.8

    Given e(t)= 5 sin, determine e(t)at = 40and = 0.8.

    Solut ion

    For = 40, V21.340sin5 te

    For = 0.8

    144180

    8.0

    V94.2144sin5 te

    13.5 General Format for the

    Sinusoidal Voltage or Current

    http://modul2poli.blogspot.com/ Page 46 of 241

    13 5 General Format for the

  • 7/23/2019 ET201 Electrical Circuits

    47/241

    47

    Example 13.9

    (a) Determine the angle at which the magnitude of the

    sinusoidal function v(t)= 10 sin 377tis 4 V.

    (b) Determine the time

    at which the magnitude

    is attained.

    13.5 General Format for the

    Sinusoidal Voltage or Current

    http://modul2poli.blogspot.com/ Page 47 of 241

    13 5 General Format for the

  • 7/23/2019 ET201 Electrical Circuits

    48/241

    48

    Example 13.9 - so lu t ion

    Vsin tVtv m rad/s377V;10 mV

    Hence, V377sin10 ttv When v(t)= 4 V,

    t377sin104

    4.0104sin377sin t

    58.234.0sin 11

    13.5 General Format for the

    Sinusoidal Voltage or Current

    42.15658.231802

    http://modul2poli.blogspot.com/ Page 48 of 241

    13 5 General Format for the

  • 7/23/2019 ET201 Electrical Circuits

    49/241

    49

    Example 13.9solut ion (contd)

    ms24.7

    377

    73.2

    ms1.09377

    412.0

    2

    1

    t

    t

    13.5 General Format for the

    Sinusoidal Voltage or Current

    (a) But is in radian, so must be calculate in radian:

    (b) Given, , sot

    t

    rad73.242.156rad412.058.23377

    2

    1

    t

    http://modul2poli.blogspot.com/ Page 49 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    50/241

    13.6 Phase Relationship

    Phase angle

    Phase angle is a shifted angle waveform from referenceorigin.

    Phase angle is been represent by symbol or

    Units is degreeor radian

    Two waveform is called in phase if its have a samephase degree or different phase is zero

    Two waveform is called out of phase if its have adifferent phase.

    http://modul2poli.blogspot.com/ Page 50 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    51/241

    51

    13.6 Phase Relationship

    tAa m sin

    The unshifted sinusoidal waveform is

    represented by the expression:

    t

    http://modul2poli.blogspot.com/ Page 51 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    52/241

    52

    13.6 Phase Relationship

    where is the angle (in degrees or radians) that

    the waveform has been shifted.

    Sinusoidal waveform which is shiftedto the

    right or left of 0is represented by theexpression:

    tAa m sin

    http://modul2poli.blogspot.com/ Page 52 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    53/241

    53

    13.6 Phase Relationship

    If the wave form passes through the horizontal axis

    with apositive-going(increasing with the time)slope before 0:

    tAa m sin

    t

    tAa m sin

    http://modul2poli.blogspot.com/ Page 53 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    54/241

    54

    13.6 Phase Relationship

    t

    If the waveform passes through the horizontal axis

    with a positive-going slope after 0

    :

    tAa m sin

    http://modul2poli.blogspot.com/ Page 54 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    55/241

    55

    13.6 Phase Relationship

    t

    2

    cos90cossin

    cos2

    sin90sin

    ttt

    ttt

    http://modul2poli.blogspot.com/ Page 55 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    56/241

    56

    13.6 Phase Relationship

    The terms leadingand laggingare used to

    indicate the relationship between two sinusoidalwaveforms of the same frequency for angular

    velocity )plotted on the same set of axes.

    The cosine curve is said to leadthe sine curveby 90.

    The sine curve is said to lagthe cosine curve

    by 90. 90is referred to as the phase angle between

    the two waveforms.

    http://modul2poli.blogspot.com/ Page 56 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    57/241

    57

    13.6 Phase Relationship

    + cos

    + sin

    - cos

    - sin

    cos (-90o)

    sin (+90o)

    90sin270sincos

    180sinsin90cossin

    90sincos

    Start at + sin position;

    Note:

    sin (- ) = - sin

    cos(- ) = cos

    http://modul2poli.blogspot.com/ Page 57 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    58/241

    58

    13.6 Phase Relationship

    If a sinusoidal expression should appear as

    the negative sign is associated with the sine

    portion of the expression, not the peak value Em,i.e.

    And, since;

    tEe m sin

    tEetEe mm sinsin

    180sinsin tt

    180sinsin tEtEmm

    http://modul2poli.blogspot.com/ Page 58 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    59/241

    59

    13.6 Phase Relationship

    Determine the phase relationship between the following waveforms

    70sin530sin10(a)

    titv

    Example 13.2

    20sin10

    60sin15(b)

    tv

    ti

    10sin310cos2(c)

    tvti

    10sin230sin(d)

    tvti

    http://modul2poli.blogspot.com/ Page 59 of 241

    13 6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    60/241

    60

    13.6 Phase Relationship

    70sin5

    30sin10(a)

    ti

    tv

    Example 13.2so lu t ion

    ileadsvby 40or

    vlagsiby 40

    http://modul2poli.blogspot.com/ Page 60 of 241

    13.6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    61/241

    61

    13.6 Phase Relationship

    Example 13.2so lu t ion (contd)

    ileadsvby 80or

    vlagsiby 80

    20sin10

    60sin15(b)

    tv

    ti

    http://modul2poli.blogspot.com/ Page 61 of 241

    13.6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    62/241

    62

    13.6 Phase Relationship

    Example 13.2solut ion (contd)

    ileadsvby 110or

    vlagsiby 110

    10sin3

    10cos2(c)

    tv

    ti

    http://modul2poli.blogspot.com/ Page 62 of 241

    13.6 Phase Relationship

  • 7/23/2019 ET201 Electrical Circuits

    63/241

    63

    13.6 Phase Relationship

    Example 13.2so lu t ion (contd)

    10sin2

    30sin(d)

    tv

    ti

    ORvleadsiby 160

    Or

    ilagsvby 160

    ileadsvby 200Or

    vlagsiby 200

    http://modul2poli.blogspot.com/ Page 63 of 241

  • 7/23/2019 ET201 Electrical Circuits

    64/241

    1

    ELECTRICAL CIRCUIT

    ET 201

    - Identify common oscilloscope controls- Use an oscilloscope to measure the

    amplitude of a waveform

    - Use an oscilloscope to measure theperiod and frequency of a waveform

    http://modul2poli.blogspot.com/ Page 64 of 241

  • 7/23/2019 ET201 Electrical Circuits

    65/241

    2

    (CHAPTER 1.7)

    OSCILLOSCOPE TOMEASURE WAVEFORMS

    http://modul2poli.blogspot.com/ Page 65 of 241

    Oscilloscope

  • 7/23/2019 ET201 Electrical Circuits

    66/241

    OscilloscopeOscilloscopes are

    commonly used to

    observe the

    exact wave

    shapeof an

    electrical signal.

    Type of electronic

    test instrumentthat

    allows observation

    of constantly

    varying

    signal voltageshttp://modul2poli.blogspot.com/ Page 66 of 241

    http://en.wikipedia.org/wiki/Waveformhttp://en.wikipedia.org/wiki/Waveformhttp://en.wikipedia.org/wiki/Electronic_test_instrumenthttp://en.wikipedia.org/wiki/Electronic_test_instrumenthttp://en.wikipedia.org/wiki/Voltagehttp://en.wikipedia.org/wiki/Voltagehttp://en.wikipedia.org/wiki/Electronic_test_instrumenthttp://en.wikipedia.org/wiki/Electronic_test_instrumenthttp://en.wikipedia.org/wiki/Waveformhttp://en.wikipedia.org/wiki/Waveform
  • 7/23/2019 ET201 Electrical Circuits

    67/241

    http://modul2poli.blogspot.com/ Page 67 of 241

    Focus control

  • 7/23/2019 ET201 Electrical Circuits

    68/241

    Focus control

    This control adjusts CRT focus to obtain

    the sharpest, most-detailed trace. I Intensity control

    This adjusts trace brightness. Slow traces

    on CRT 'scopes need less, and fast ones,especially if they don't repeat very often.

    http://modul2poli.blogspot.com/ Page 68 of 241

    ET 201 ELECTRICAL

  • 7/23/2019 ET201 Electrical Circuits

    69/241

    1

    ET 201 ~ ELECTRICAL

    CIRCUITSCOMPLEX NUMBER SYSTEM

    Define and explain complex numberRectangular form

    Polar form

    Mathematical operations

    (CHAPTER 2)

    http://modul2poli.blogspot.com/ Page 69 of 241

  • 7/23/2019 ET201 Electrical Circuits

    70/241

    2

    COMPLEX

    NUMBERS

    http://modul2poli.blogspot.com/ Page 70 of 241

    2. Complex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    71/241

    3

    p

    A complex number

    represents a point ina two-dimensionalplane located withreference to two

    distinct axes.

    This point can alsodetermine a radius

    vector drawn from theorigin to the point.

    The horizontal axis iscalled the realaxis,while the vertical axisis called the

    imaginary ( j )axis.http://modul2poli.blogspot.com/ Page 71 of 241

    2.1 Rectangular Form

  • 7/23/2019 ET201 Electrical Circuits

    72/241

    4

    g

    The format for the

    rectangular formis

    The letter Cwas

    chosen from the

    word complex

    The bold face (C)

    notation is for anynumber with

    magnitude and

    direction.

    The italicnotation isfor magnitudeonly.

    http://modul2poli.blogspot.com/ Page 72 of 241

    2.1 Rectangular Form

  • 7/23/2019 ET201 Electrical Circuits

    73/241

    5

    g

    Example 14.13(a)

    Sketch the complex number C= 3 +j4in the

    complex plane

    Solut ion

    http://modul2poli.blogspot.com/ Page 73 of 241

    2.1 Rectangular Form

  • 7/23/2019 ET201 Electrical Circuits

    74/241

    6

    g

    Example 14.13(b)

    Sketch the complex number C= 0j6in the

    complex plane

    Solut ion

    http://modul2poli.blogspot.com/ Page 74 of 241

    2.1 Rectangular Form

  • 7/23/2019 ET201 Electrical Circuits

    75/241

    7

    g

    Example 14.13(c)

    Sketch the complex number C= -10

    j20in

    the complex plane

    Solut ion

    http://modul2poli.blogspot.com/ Page 75 of 241

    2.2 Polar Form

  • 7/23/2019 ET201 Electrical Circuits

    76/241

    8

    The format for thepolar formis

    Where:

    Z : magnitude only

    q: angle measuredcounterclockwise(CCW)from the

    positive real axis.

    Angles measured in

    the clockwisedirectionfrom the positive realaxis must have anegative sign

    associated with them.http://modul2poli.blogspot.com/ Page 76 of 241

    2.2 Polar Form

  • 7/23/2019 ET201 Electrical Circuits

    77/241

    9

    180 qq ZZC

    http://modul2poli.blogspot.com/ Page 77 of 241

    2.2 Polar Form

  • 7/23/2019 ET201 Electrical Circuits

    78/241

    10

    Example 14.14(a)

    305C

    Counterclockwise (CCW)

    http://modul2poli.blogspot.com/ Page 78 of 241

    2.2 Polar Form

  • 7/23/2019 ET201 Electrical Circuits

    79/241

    11

    Example 14.14(b)

    1207 C

    Clockwise (CW)

    http://modul2poli.blogspot.com/ Page 79 of 241

    2.2 Polar Form 180 qq ZZC

  • 7/23/2019 ET201 Electrical Circuits

    80/241

    12

    Example 14.14(c)

    602.4 C

    180602.4

    2402.4

    180 qq ZZC

    http://modul2poli.blogspot.com/ Page 80 of 241

    14.9 Conversion Between Forms

  • 7/23/2019 ET201 Electrical Circuits

    81/241

    13

    1. Rectangular to Polar

    http://modul2poli.blogspot.com/ Page 81 of 241

    14.9 Conversion Between Forms

  • 7/23/2019 ET201 Electrical Circuits

    82/241

    14

    2. Polar to Rectangular

    http://modul2poli.blogspot.com/ Page 82 of 241

    2.3 Conversion Between Forms

  • 7/23/2019 ET201 Electrical Circuits

    83/241

    15

    Example 14.15

    Convert C= 4 +j4to polar form

    543 23 Z

    Solut ion

    13.533

    4

    tan

    1

    q

    13.535Chttp://modul2poli.blogspot.com/ Page 83 of 241

    2.3 Conversion Between Forms

  • 7/23/2019 ET201 Electrical Circuits

    84/241

    16

    Example 14.16

    Convert C= 1045to rectangular form

    07.745cos10 X

    Solut ion

    07.745sin10 Y

    07.707.7 jC

    http://modul2poli.blogspot.com/ Page 84 of 241

    2.3 Conversion Between Forms

  • 7/23/2019 ET201 Electrical Circuits

    85/241

    17

    Example 14.17

    Convert C= - 6 +j3to polar form

    71.636 22 Z

    Solut ion

    6

    3

    tan180

    1

    q

    43.153

    43.15371.6 C

    http://modul2poli.blogspot.com/ Page 85 of 241

    2.3 Conversion Between Forms

  • 7/23/2019 ET201 Electrical Circuits

    86/241

    18

    Example 14.18

    Convert C= 10 230to rectangular form

    43.6230cos10

    Solut ion

    66.7230sin10 Y

    66.743.6 jC

    http://modul2poli.blogspot.com/ Page 86 of 241

    2.4 Mathematical Operations with

  • 7/23/2019 ET201 Electrical Circuits

    87/241

    19

    Complex Numbers

    Complex numbers lend themselves readily tothe basic mathematical operations of addition,

    subtraction, multiplication, and division.

    A few basic rules and definitions must be

    understood before considering these

    operations:

    http://modul2poli.blogspot.com/ Page 87 of 241

    2.4 Mathematical Operations with

  • 7/23/2019 ET201 Electrical Circuits

    88/241

    20

    Complex Conjugate

    The conjugateor complex conjugateof

    a complex number can be found by simplychanging the signof the imaginary part in

    the rectangular formor by using the

    negative of the angle of the polar form

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 88 of 241

    2.4 Mathematical Operations with

  • 7/23/2019 ET201 Electrical Circuits

    89/241

    21

    Complex Conjugate

    In rectangular form, the

    conjugate of:

    C= 2 +j3

    is 2j3

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 89 of 241

    2.4 Mathematical Operations with

  • 7/23/2019 ET201 Electrical Circuits

    90/241

    22

    Complex Conjugate

    In polar form, the

    conjugate of:

    C= 2 30o

    is 2 30o

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 90 of 241

    2.4 Mathematical Operations with

  • 7/23/2019 ET201 Electrical Circuits

    91/241

    23

    Reciprocal

    The reciprocalof a complex number is 1

    divided by the complex number.

    In rectangular form, the reciprocal of:

    In polar form, the reciprocal of:

    jYXC isjYX

    1

    qZC isqZ

    1

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 91 of 241

    2.4 Mathematical Operations with

    C l N b

  • 7/23/2019 ET201 Electrical Circuits

    92/241

    24

    Addition

    To add two or more complex numbers, simply

    add the real and imaginary parts separately.

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 92 of 241

    2.4 Mathematical Operations with

    C l N b

  • 7/23/2019 ET201 Electrical Circuits

    93/241

    25

    Example 14.19(a)

    13;4221 jj CC

    143221 jCC

    55 j

    Find C1+ C2.

    Solut ion

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 93 of 241

    2.4 Mathematical Operations with

    C l N b

  • 7/23/2019 ET201 Electrical Circuits

    94/241

    26

    Example 14.19(b)

    36;63 21 jj CC

    366321

    jCC

    93 j

    FindC

    1+ C

    2

    Solut ion

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 94 of 241

    2.4 Mathematical Operations with

    C l N b

  • 7/23/2019 ET201 Electrical Circuits

    95/241

    27

    Subtraction

    In subtraction, the real and imaginary parts are

    again considered separately .

    Complex Numbers

    NOTE

    Addition or subtraction cannot be performed in polar form

    unless the complex numbers have the same angle or

    unless they differ only by multiples of 180http://modul2poli.blogspot.com/ Page 95 of 241

    2.4 Mathematical Operations with

    C l N b

  • 7/23/2019 ET201 Electrical Circuits

    96/241

    28

    Example 14.20(a)

    41;6421 jj CC

    461421

    jCC

    23 j

    FindC

    1- C

    2

    Solut ion

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 96 of 241

    2.4 Mathematical Operations withC l N b

  • 7/23/2019 ET201 Electrical Circuits

    97/241

    29

    Example 14.20(b)

    52;3321 jj CC

    532321

    jCC

    25 j

    FindC

    1- C

    2

    Solut ion

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 97 of 241

    2.4 Mathematical Operations withC l N b

  • 7/23/2019 ET201 Electrical Circuits

    98/241

    30

    Example 14.21(a)

    455453452

    Complex Numbers

    NOTE

    Addition or subtraction cannot be performed in polar form

    unless the complex numbers have the same angle or

    unless they differ only by multiples of 180http://modul2poli.blogspot.com/ Page 98 of 241

    2.4 Mathematical Operations withC l N b

  • 7/23/2019 ET201 Electrical Circuits

    99/241

    31

    Complex Numbers

    06180402

    NOTE

    Addition or subtraction cannot be performed in polar form

    unless the complex numbers have the same angle or

    unless they differ only by multiples of 180

    Example 14.21(b)

    http://modul2poli.blogspot.com/ Page 99 of 241

    2.4 Mathematical Operations withC l N b

  • 7/23/2019 ET201 Electrical Circuits

    100/241

    32

    Multiplication To multiply two complex numbers in rectangular

    form, multiply the real and imaginary parts of one

    in turn by the real and imaginary parts of the

    other.

    In rectangular form:

    In polar form:

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 100 of 241

    2.4 Mathematical Operations withC l N b

  • 7/23/2019 ET201 Electrical Circuits

    101/241

    33

    Example 14.22(a)

    105;3221 jj CC

    Find C1C2.Solut ion

    1053221 jj CC

    3520 j

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 101 of 241

    2.4 Mathematical Operations withC l N b

  • 7/23/2019 ET201 Electrical Circuits

    102/241

    34

    Example 14.22(b)

    64;3221 jj CC

    Find C1C2.

    Solut ion

    643221 jj CC

    1802626

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 102 of 241

    2.4 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    103/241

    35

    Example 14.23(a)

    3010;20521 CC

    Find C1C2.

    Solut ion

    302010521

    CC

    5050

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 103 of 241

    14.10 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    104/241

    36

    Example 14.23(b)

    1207;40221

    CC

    Find C1C2.

    Solut ion

    120407221

    CC

    8014

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 104 of 241

    14.10 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    105/241

    37

    Division To divide two complex numbers in rectangular

    form, multiply the numerator and denominator

    by the conjugate of the denominator and the

    resulting real and imaginary parts collected.

    In rectangular form:

    In polar form:

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 105 of 241

    2.4 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    106/241

    38

    Example 14.24(a)

    54;4121 jj CC Find

    Solut ion

    2

    1

    C

    C

    5454

    5441

    54

    54

    54

    41

    2

    1

    jj

    jj

    j

    j

    j

    j

    C

    C

    27.059.02516

    1124j

    j

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 106 of 241

    2.4 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    107/241

    39

    Example 14.24(b)

    16;8421 jj CC Find

    Solut ion

    2

    1

    C

    C

    1616

    1684

    16

    16

    16

    84

    2

    1

    jj

    jj

    j

    j

    j

    j

    C

    C

    41.143.0136

    5216j

    j

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 107 of 241

    2.4 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    108/241

    40

    Example 14.25(a)

    72;101521 CC Find

    Solut ion

    2

    1

    C

    C

    7102

    15

    72

    1015

    2

    1

    C

    C

    33.7

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 108 of 241

    2.4 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    109/241

    41

    Example 14.25(b)

    5016;120821 CC Find

    Solut ion

    2

    1

    C

    C

    5012016

    8

    5016

    1208

    2

    1

    C

    C

    1705.0

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 109 of 241

    2.4 Mathematical Operations withComplex Numbers

  • 7/23/2019 ET201 Electrical Circuits

    110/241

    42

    )()( 212121 yyjxxzz

    )()( 212121 yyjxxzz

    212121 rrzz

    21

    2

    1

    2

    1 r

    r

    z

    z

    rz

    11

    jrerjyxz

    sincos je j

    Addition

    Subtraction

    Multiplication

    Division

    Reciprocal

    Complex conjugate

    Eulers identity

    Complex Numbers

    http://modul2poli.blogspot.com/ Page 110 of 241

  • 7/23/2019 ET201 Electrical Circuits

    111/241

    1

    ELECTRICAL TECHNOLOGYET 201

    Define series impedances and analyzeseries AC circuits using circuit

    techniques.

    http://modul2poli.blogspot.com/ Page 111 of 241

    14.3 Response of Basic R, L and C Elementsto a Sinusoidal Voltage or Current (review)

  • 7/23/2019 ET201 Electrical Circuits

    112/241

    2

    g ( )

    FIG. 15.46 Reviewing the frequency response of the basic elements.http://modul2poli.blogspot.com/ Page 112 of 241

  • 7/23/2019 ET201 Electrical Circuits

    113/241

    3

    (CHAPTER 15)

    SERIES

    AC CIRCUITS

    http://modul2poli.blogspot.com/ Page 113 of 241

    15.3 Series Impedances

  • 7/23/2019 ET201 Electrical Circuits

    114/241

    4

    The overall properties of series AC circuits are

    the same as those for DC circuits. For instance, the total impedance of a system is

    the sum of the individual impedances:

    []

    http://modul2poli.blogspot.com/ Page 114 of 241

    15.3 Series Impedances

  • 7/23/2019 ET201 Electrical Circuits

    115/241

    5

    Example 15.7

    Draw the impedance diagramand find the total impedance.

    84

    900

    21

    j

    jXR

    XR

    L

    L

    T

    ZZZ

    34.6394.8

    TZ

    Solut ion

    http://modul2poli.blogspot.com/ Page 115 of 241

    15.3 Series Impedances

  • 7/23/2019 ET201 Electrical Circuits

    116/241

    6

    26

    12106

    90900

    321

    j

    jj

    jXjXR

    XXR

    CL

    CL

    T

    ZZZZ

    Example 15.8

    Draw the impedance diagramand find the total impedance.

    43.1832.6

    TZ

    Solut ion

    http://modul2poli.blogspot.com/ Page 116 of 241

    15.3 Series AC Circuit

  • 7/23/2019 ET201 Electrical Circuits

    117/241

    7

    In a series AC configuration having two

    impedances, the current Iis the samethrough

    each element (as it was for the series DC circuit)

    The current is determined by Ohms Law:

    21 ZZZ T

    ????,21

    VV

    http://modul2poli.blogspot.com/ Page 117 of 241

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    118/241

    8

    Kirchhoffs Voltage Law can be applied in thesame manner as it is employed for a DC circuit.

    The power to the circuit can be determined by:

    Where

    E, I : effective values (Erms, Irms)

    T : phase angle between Eand I

    http://modul2poli.blogspot.com/ Page 118 of 241

    14.5 Power FactorF f tP

  • 7/23/2019 ET201 Electrical Circuits

    119/241

    9

    For a purely resistive load;

    Hence;

    For purely inductive or purely capacitive load;

    Hence;

    TpF cosfactorPower

    0T

    1cos TPF

    Trmsrms IEP cos

    rmsrmsTrmsrms IEIEP cos

    90T

    0cos Trmsrms

    IEP

    0cos TP

    F

    http://modul2poli.blogspot.com/ Page 119 of 241

    14.5 Power Factor

  • 7/23/2019 ET201 Electrical Circuits

    120/241

    10

    Power factor can be lagging orleading.

    Defined by the current through the load.

    Lagging power factor:

    Current lags voltage

    Inductive circuit

    Leading power factor:

    Current leads voltage Capacitive circuit

    http://modul2poli.blogspot.com/ Page 120 of 241

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    121/241

    11

    R-L

    1. Phasor Notation

    te sin4.141 0V100 E

    Series R-Lcircuit Apply phasor notation

    http://modul2poli.blogspot.com/ Page 121 of 241

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    122/241

    12

    R-L

    2. ZT

    Impedance diagram:

    43

    )904()03(

    21

    j

    T

    ZZZ

    13.535 T

    Z

    http://modul2poli.blogspot.com/ Page 122 of 241

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    123/241

    13

    R-L

    3. I

    13.535

    0V100

    T

    Z

    E

    I

    13.53A20 I

    http://modul2poli.blogspot.com/ Page 123 of 241

    R L

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    124/241

    14

    R-L

    4. VRand VL

    Ohms Law:

    )03)(13.53A20(

    RR ZIV

    V13.5360

    R

    V

    )904)(13.53A20(

    LL ZIV

    V87.3680

    L

    V

    http://modul2poli.blogspot.com/ Page 124 of 241

    R L

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    125/241

    15

    R-L

    Kirchhoffs voltage law:

    Or;

    In rectangular form,

    0 LR VVEV

    LR VVE

    V;483613.53V60 jR

    V

    V486487.36V80 jL

    V

    LR VVE

    0V100

    0100)4864()4836(

    jjj

    http://modul2poli.blogspot.com/ Page 125 of 241

    R L

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    126/241

    16

    R-L

    Phasor diagram:

    I is in phase with the VRand lags the VLby 90o.

    I lags Eby 53.13o.

    13.53A20 I

    V13.5360

    R

    V

    V87.3680

    L

    V

    0V100 E

    http://modul2poli.blogspot.com/ Page 126 of 241

    R L

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    127/241

    17

    R-L

    Power: The total power delivered to the circuit is

    Where

    E, I : effective values;

    T : phase angle between E and I

    Or;

    W1200

    13.53cos)20)(100(

    cos

    TT EIP

    W120032022

    RIPT

    http://modul2poli.blogspot.com/ Page 127 of 241

    R L

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    128/241

    18

    R-L

    Power factor:

    13.53cos

    cos

    Tp

    F

    lagging6.0p

    F

    TZ

    R

    IE

    R

    E

    IR

    EI

    RI

    EI

    P

    EIP

    2

    cos

    cos

    T

    TP

    Z

    RF cos

    http://modul2poli.blogspot.com/ Page 128 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    129/241

    19

    R-C

    1. Phasor Notation

    A13.53sin07.7 ti A13.535 I

    Series R-Ccircuit Apply phasor notation

    http://modul2poli.blogspot.com/ Page 129 of 241

    R-C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    130/241

    20

    R-C

    2. ZT

    Impedance diagram:

    86

    )908()06(

    21

    j

    T

    ZZZ

    13.5310

    TZ

    http://modul2poli.blogspot.com/ Page 130 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    131/241

    21

    R-C

    3. E

    )13.5310)(13.535(

    T

    IZE

    V050

    E

    http://modul2poli.blogspot.com/ Page 131 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    132/241

    22

    R-C

    4. VRand VC

    Ohms Law:

    )06)(13.535(

    RR

    ZIV

    V13.5330

    R

    V

    )908)(13.535(

    CC ZIV

    V87.3640

    C

    V

    http://modul2poli.blogspot.com/ Page 132 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    133/241

    23

    R-C

    Kirchhoffs voltage law:

    Or;

    0 CR VVEV

    CR VVE

    http://modul2poli.blogspot.com/ Page 133 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    134/241

    24

    R-C

    Phasor diagram:

    I is in phase with the VRand leads the VCby 90o.

    I leads Eby 53.13o.

    A13.535

    I

    V050

    E

    V13.5330

    R

    V

    V87.3640

    CV

    http://modul2poli.blogspot.com/ Page 134 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    135/241

    25

    R-C

    Time domain: V050

    E

    V13.5330

    R

    V

    V87.3640

    C

    V

    Vsin7.70 te

    V13.53sin42.42 tvR

    V87.36sin56.56 tvC

    http://modul2poli.blogspot.com/ Page 135 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    136/241

    26

    R-C

    Power:The total power delivered to the circuit is

    Or;

    W150

    13.53cos)5)(50(

    cos

    T

    EIP

    W1506522

    RIP

    http://modul2poli.blogspot.com/ Page 136 of 241

    R C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    137/241

    27

    R-C

    Power factor:

    Or;

    13.53cos

    cos

    Tp

    F

    leading6.0p

    F

    T

    TP

    Z

    RF cos

    leading6.0

    10

    6

    PF

    http://modul2poli.blogspot.com/ Page 137 of 241

    R L C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    138/241

    28

    R-L-C

    1. Phasor Notation

    TIME DOMAIN

    PHASOR DOMAIN

    http://modul2poli.blogspot.com/ Page 138 of 241

    R L C Impedance diagram:

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    139/241

    29

    R-L-C Impedance diagram:

    2. ZT

    43

    373

    90900

    321

    j

    jj

    XXR CL

    T

    ZZZZ

    13.535T

    Zhttp://modul2poli.blogspot.com/ Page 139 of 241

    R-L C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    140/241

    30

    R-L-C

    3. I

    13.535

    050

    TZ

    E

    I

    A13.5310

    I

    http://modul2poli.blogspot.com/ Page 140 of 241

    R-L-C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    141/241

    31

    R-L-C

    4. VR, VLand VC

    Ohms Law:

    V13.5330

    R

    V

    V13.14330

    C

    V

    )907)(13.5310(

    LL

    IZV

    )03)(13.5310(

    RR

    IZV

    )903)(13.5310(

    CC

    IZV

    V87.3670

    L

    V

    http://modul2poli.blogspot.com/ Page 141 of 241

    R-L-C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    142/241

    32

    R-L-C

    Kirchhoffs voltage law:

    Or;

    0 CLR VVVEV

    CLR VVVE

    http://modul2poli.blogspot.com/ Page 142 of 241

    R-L-C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    143/241

    33

    R-L-C

    Phasor diagram:

    I is in phase with the VR, lags the VLby 90o, leads the VC by 90

    o

    I lags Eby 53.13o.

    A13.5310

    I

    V13.5330

    R

    V

    V13.14330

    CV

    V87.3670

    L

    V

    V050 E

    http://modul2poli.blogspot.com/ Page 143 of 241

    R-L-C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    144/241

    34

    R L C

    Time domain:

    http://modul2poli.blogspot.com/ Page 144 of 241

    R-L-C

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    145/241

    35

    R L C

    Power:The total power delivered to the circuit is

    Or;

    Power factor:

    W30013.53cos)10)(50(cos

    TT EIP

    W30031022

    RIPT

    13.53coscos Tp

    F

    lagging6.0p

    F

    http://modul2poli.blogspot.com/ Page 145 of 241

    The basic format for the VDR in AC circuits is

    15.4 Voltage Divider Rule

  • 7/23/2019 ET201 Electrical Circuits

    146/241

    36

    The basic format for the VDR in AC circuits is

    exactly the same as that for the DC circuits.

    Where

    Vx: voltage across one or more elements in a series that

    have total impedance ZxE: total voltage appearing across the series circuit.

    ZT: total impedance of the series circuit.

    E

    Z

    Z

    V

    T

    x

    x

    http://modul2poli.blogspot.com/ Page 146 of 241

    Example 15.11(a)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    147/241

    37

    Example 15.11(a)

    Calculate I, VR, VLand VCin phasor form.

    http://modul2poli.blogspot.com/ Page 147 of 241

    Example 15.11(a) - Solut ion

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    148/241

    38

    Example 15.11(a) Solut ion

    Combined the Rs, Ls and Cs.

    T TCT

    10 0.1 H 100 mF

    202sin377tv i

    H1.005.005.0

    21

    LLLT

    1046

    21 RRR

    T

    21

    111

    CCCT

    F100200200

    200200

    21

    21m

    CC

    CCC

    T

    e

    http://modul2poli.blogspot.com/ Page 148 of 241

    Example 15.11(a) Solut ion (contd)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    149/241

    39

    Example 15.11(a) Solut ion (cont d)

    Find the reactances.

    1. Transform the circuit into phasor domain.

    7.37

    )1.0(377TL

    LX

    53.26)10100(377

    11

    6

    T

    C

    CX

    V377sin220 te V020

    E

    i I

    T L C

    10 37.7 26.53

    200V

    VI

    E

    http://modul2poli.blogspot.com/ Page 149 of 241

    Example 15.11(a) Solut ion (contd)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    150/241

    40

    Example 15.11(a) Solut ion (cont d)

    2. Determine the total impedance.

    3. Calculate I.

    17.1110

    53.267.3710

    j

    jj

    jXjXRCLTT

    Z

    16.4815

    TZ

    T L C

    10 37.7 26.53

    200VV

    I

    16.4815

    020

    TZ

    EI A16.481.33

    I

    E

    http://modul2poli.blogspot.com/ Page 150 of 241

    Example 15.11(a) Solut ion (contd)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    151/241

    41

    Example 15.11(a) Solut ion (cont d)

    4. Calculate VR, VLand VC

    V16.483.13

    R

    V

    )010)(16.4833.1(

    RR

    IZV

    T L C

    10 37.7 26.53

    200VV

    I

    V84.4114.50

    L

    V

    )907.37)(16.4833.1(

    LL

    IZV

    V16.13828.35

    C

    V

    )9053.26)(16.4833.1(

    CC

    IZV

    E

    http://modul2poli.blogspot.com/ Page 151 of 241

    15.3 Series ConfigurationExample 15.11(b)

  • 7/23/2019 ET201 Electrical Circuits

    152/241

    42

    Example 15.11(b)

    Calculate the total power factor.

    Solut ion

    Angle between Eand Iis

    16.48coscos Tp

    F

    lagging667.0p

    F

    A16.481.33

    IV020

    E

    16.48

    http://modul2poli.blogspot.com/ Page 152 of 241

    Example 15.11(c)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    153/241

    43

    a p e 5 (c)

    Calculate the average power delivered to the circuit.

    Solut ion

    16.48cos)33.1)(20(cos TT EIP

    W74.17T

    P

    A16.481.33

    IV020

    E

    http://modul2poli.blogspot.com/ Page 153 of 241

    Example 15.11(d)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    154/241

    44

    p ( )

    Draw the phasor diagram.

    Solut ion

    A16.481.33

    I

    V16.483.13

    R

    V

    V84.4114.50

    L

    V

    V16.13828.35

    C

    V

    V020

    E

    http://modul2poli.blogspot.com/ Page 154 of 241

    Example 15.11(e)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    155/241

    45

    p ( )Obtain the phasor sum of VR, VLand VCand show

    that it equals the input voltage E.

    Solut ion

    V933.9894.8V16.483.13 jR

    V

    V446.33355.37V84.4114.50 jL

    V

    V534.23284.26V16.13828.35 jC

    V

    534.23446.33933.9284.26355.37894.8 jjj

    CLR

    VVVE

    V020020021.0965.19

    jjEhttp://modul2poli.blogspot.com/ Page 155 of 241

    Example 15.11(f)

    15.3 Series Configuration

  • 7/23/2019 ET201 Electrical Circuits

    156/241

    46

    p ( )Find VRand VCusing voltage divider rule.

    Solut ion

    T L C

    10 37.7 26.53

    200VV

    IE

    16.4815

    TZ

    )020(

    16.4815

    010

    E

    Z

    ZV

    T

    R

    RV16.483.13

    R

    V

    )020(16.4815

    9053.26

    E

    Z

    Z

    V

    T

    C

    CV16.13837.35

    C

    V

    http://modul2poli.blogspot.com/ Page 156 of 241

    15.6 Summaries of Series AC Circuits

    F i AC i it ith ti l t

  • 7/23/2019 ET201 Electrical Circuits

    157/241

    47

    For a series AC circuits with reactive elements:

    The total impedance will be frequency dependent.

    The impedance of any one element can begreater than the total impedance of the network.

    The inductive and capacitive reactances arealways in direct opposition on an impedancediagram.

    Depending on the frequency applied, the samecircuit can be either predominantly inductive orpredominantly capacitive.

    http://modul2poli.blogspot.com/ Page 157 of 241

    15.6 Summaries of Series AC Circuits

    (continued )

  • 7/23/2019 ET201 Electrical Circuits

    158/241

    48

    (continued)

    At lower frequencies, the capacitive elementswill usually have the most impact on the total

    impedance.

    At high frequencies, the inductive elements willusually have the most impact on the total

    impedance.

    The magnitude of the voltage across any oneelement can be greater than the applied voltage.

    http://modul2poli.blogspot.com/ Page 158 of 241

    15.6 Summaries of Series AC Circuits

    (continued )

  • 7/23/2019 ET201 Electrical Circuits

    159/241

    49

    (continued)

    The magnitude of the voltage across an elementas compared to the other elements of the circuitis directly related to the magnitude of itsimpedance; that is, the larger the impedance of

    an element , the larger the magnitude of thevoltage across the element.

    The voltages across an inductor or capacitor arealways in direct opposition on a phasor diagram.

    http://modul2poli.blogspot.com/ Page 159 of 241

    15.6 Summaries of Series AC Circuits

    (continued )

  • 7/23/2019 ET201 Electrical Circuits

    160/241

    50

    (continued)

    The current is always in phase with the voltageacross the resistive elements, lags the voltageacross all the inductive elements by 90, andleads the voltage across the capacitive elements

    by 90.

    The larger the resistive element of a circuit

    compared to the net reactive impedance, thecloser the power factor is to unity.

    http://modul2poli.blogspot.com/ Page 160 of 241

  • 7/23/2019 ET201 Electrical Circuits

    161/241

  • 7/23/2019 ET201 Electrical Circuits

    162/241

    1. Explain AC circuit concept and their

    analysis using AC circuit law.

    2. Apply the knowledge of AC circuit in so

    problem related to AC electrical circuit

  • 7/23/2019 ET201 Electrical Circuits

    163/241

    RESONANCE

    Understandresonance in series

    and parallel

    circuits

    Resonanphenomeno

    functio

    Effect of chthe frequ

    Graph impedanc

    frequen

    Resonanfrequency e

    Determine Q

  • 7/23/2019 ET201 Electrical Circuits

    164/241

  • 7/23/2019 ET201 Electrical Circuits

    165/241

    Resonance is a condition in RLC circuit in which the cap

    inductive reactance are equal in magnitude, thereby res

    purely resistive impedance.

    Z = R + j( ) ; note: = 0

  • 7/23/2019 ET201 Electrical Circuits

    166/241

    Current will be maximum & offering min

    impedance.

  • 7/23/2019 ET201 Electrical Circuits

    167/241

    Current will be minimum & offering max

    impedance.

  • 7/23/2019 ET201 Electrical Circuits

    168/241

    Resonance circuit serves as stable freque

    source.

    Resonance circuit serves as filter.

    The

    circu

  • 7/23/2019 ET201 Electrical Circuits

    169/241

    A series RLC circuits reactance changes you change the voltage sources frequen

    Its total impedance also changes.

  • 7/23/2019 ET201 Electrical Circuits

    170/241

    At low frequencies, Xc > XL

    and the circuprimarily capacitive.

    At high frequencies, XL > Xc and the circ

    primarily inductive.

  • 7/23/2019 ET201 Electrical Circuits

    171/241

    Reactance change as you change the vol

    sources frequency.

    At low frequencies, XL < Xc and the circu

    primarily inductive.

    At high frequencies, Xc< XL and the circu

    primarily capacitive.

  • 7/23/2019 ET201 Electrical Circuits

    172/241

    A series RLC circuit contains both inductive reacand capacitive reactance (Xc).

    Since XL and Xc have opposite phase angles, the

  • 7/23/2019 ET201 Electrical Circuits

    173/241

    The smaller reactance dominates, since

    reactance results in a larger branch curr

  • 7/23/2019 ET201 Electrical Circuits

    174/241

  • 7/23/2019 ET201 Electrical Circuits

    175/241

  • 7/23/2019 ET201 Electrical Circuits

    176/241

    (a) Q factor:

    - Q is the ratio of power stored to power dissipated

    reactance and resistance.- Q is the ratio of its resonant frequency to its band

    SERIES CIRCUIT:

    IF;

    PARALLEL CIRCUIT:

  • 7/23/2019 ET201 Electrical Circuits

    177/241

    PARALLEL CIRCUIT:

    (a) Quality factor: the ratio of the circulating branch currents t

    current .

    (b) Frequency bandwidth, B = f2 f1:

  • 7/23/2019 ET201 Electrical Circuits

    178/241

    Bandwidth, f is measured between the 70.7% amof series resonant circuit.

    The difference between the two half-powe

    Lower cut-off frequency ( ):

  • 7/23/2019 ET201 Electrical Circuits

    179/241

    Lower cut-off frequency, (L):

    Upper cut-off frequency, (H):

  • 7/23/2019 ET201 Electrical Circuits

    180/241

    BW = fc/Q

    Where:

    fc = resonan

    Q = quality f

  • 7/23/2019 ET201 Electrical Circuits

    181/241

  • 7/23/2019 ET201 Electrical Circuits

    182/241

    In Figure above, the 100% current point is 50 mA. The 70.7% level is 0

    mA)=35.4 mA. The upper and lower band edges read from the curve are 291 Hz for f

    for fh. The bandwidth is 64 Hz, and the half power points are 32 Hz o

    resonant frequency

    BW = f = fh-fl = 355-291 = 64

    fl = fc - f/2 = 323-32 = 291

    (c) The dissipation factor, D:

  • 7/23/2019 ET201 Electrical Circuits

    183/241

    - The ratio of the power loss in a dielectric material topower transmitted through the dielectric.

  • 7/23/2019 ET201 Electrical Circuits

    184/241

    CHARACTERISTIC SERIES CIRCUIT PARALLEL C

    Resonant frequency,

    fr

    Quality factor,Q

    Bandwidth, BW

    Half power

    frequency,fL & fH&

  • 7/23/2019 ET201 Electrical Circuits

    185/241

    A series resonance network consisting of a resistor of 30, a of 2uF and an inductor of 20mH is connected across a sinuso

    voltage which has a constant output of 9 volts at all frequen

    Calculate, the resonant frequency, the current at resonance

    voltage across the inductor and capacitor at resonance, the factor and the bandwidth of the circuit. Also sketch the corr

    current waveform for all frequencies.

  • 7/23/2019 ET201 Electrical Circuits

    186/241

    Resonant Frequency,r

    Circuit Current at Resonance, Im

    Inductive Reactance at Resonance, XL

    Voltages across the inductor and the

    capacitor, VL, VC

    Bandwidth, BW

    The upper and low

    points, H and L

    Current Waveform

  • 7/23/2019 ET201 Electrical Circuits

    187/241

    A series circuit consists of a resistance of 4, an inductanc

    a variable capacitance connected across a 100V, 50Hz supp

    the capacitance require to give series resonance and the v

    generated across both the inductor and the capacitor.

    Solution:

    Resonant Frequency, r

    Voltages across the inductor and the capacitor, VL, VC

  • 7/23/2019 ET201 Electrical Circuits

    188/241

    A parallel resonance network consisting of a resistor of 60, a 120uF and an inductor of 200mH is connected across a sinusoid

    voltage which has a constant output of 100 volts at all frequen

    Calculate, the resonant frequency, the quality factor and the b

    the circuit, the circuit current at resonance and current magni

    The upper and lowepoints and

  • 7/23/2019 ET201 Electrical Circuits

    189/241

    Resonant Frequency, r

    Inductive Reactance at Resonance,XL

    Quality factor, Q

    Bandwidth, BW

    points, H and L

    Circuit Current at RAt resonance the dyimpedance of the ciR

    Current Magnificatio

    We can check this vcalculating the curr

  • 7/23/2019 ET201 Electrical Circuits

    190/241

    For resonance to occur in any circuit it must have at

    one inductor and one capacitor.

    Resonance is the result of oscillations in a circuit as energy is passed from the inductor to the capacitor.

    Resonance occurs when XL = XC and the imaginary pa

    transfer function is zero.

    At resonance the impedance of the circuit is equal to

    resistance value as Z = R.

    LOGO

    CHAPTER 5 : THREE PHASE

    SYSTEM

  • 7/23/2019 ET201 Electrical Circuits

    191/241

    Objectives:

    Know basic principles of 3system

    List advantages and application of 3

    system compared to 1systemKnow 3e.m.f generation

    Identify star & delta connection

    Determine VPH, IPH, VL,IL & power in

    3system

    SYSTEM

    http://modul2poli.blogspot.com/ Page 191 of 241

    INTRODUCTION

  • 7/23/2019 ET201 Electrical Circuits

    192/241

    3system is a combination of three 1system

    In 3system balanced system, power

    comes from 3AC generator

    3generators have 3 coils fixed at 120 to

    each other rotating in magnetic field.

    3system are use for transmission and

    distribution of electricity and also in industry

    http://modul2poli.blogspot.com/ Page 192 of 241

    ADVANTAGES OF 3SYSTEMvs 1SYSTEM

  • 7/23/2019 ET201 Electrical Circuits

    193/241

    Weight less than 1circuit of same powerrating

    Have wide range of voltages

    Smaller in size &higher power factor thus

    more efficient

    Steady torque output and ability to self start

    Inherent benefits for high power transmission

    Produce constant amount of power in theload

    http://modul2poli.blogspot.com/ Page 193 of 241

    GENERATION OF 3SUPPLY

    There are two ways to generate 3supply.

    Moving magnetic field while coil is permanent

  • 7/23/2019 ET201 Electrical Circuits

    194/241

    Moving magnetic field while coil is permanent.

    Moving coil while magnetic field is permanent.

    http://modul2poli.blogspot.com/ Page 194 of 241

    GENERATION OF 3SUPPLY

  • 7/23/2019 ET201 Electrical Circuits

    195/241

    Generation for R phase (same as single phase generation)

    http://modul2poli.blogspot.com/ Page 195 of 241

    GENERATION OF 3SUPPLY

  • 7/23/2019 ET201 Electrical Circuits

    196/241

    Generation for Y phase (coil rotate 120 so that it will equal with Rphase, thus Y lags R by 120)

    http://modul2poli.blogspot.com/ Page 196 of 241

    GENERATION OF 3SUPPLY

  • 7/23/2019 ET201 Electrical Circuits

    197/241

    Generation for B phase (coil rotate 240 so that it will equal with Rphase, thus B lags R by 240)

    http://modul2poli.blogspot.com/ Page 197 of 241

    GENERATION OF 3SUPPLY

  • 7/23/2019 ET201 Electrical Circuits

    198/241

    Phasor diagram for 3 phase system

    http://modul2poli.blogspot.com/ Page 198 of 241

    CONNECTION IN 3system

    Physically 3 system

  • 7/23/2019 ET201 Electrical Circuits

    199/241

    Physically 3system

    consist ofthree different coils.

    Each phase coils have 2

    terminal and required 2

    conductor as connection

    So 6 conductors will be used

    as

    in 3connection

    This kind of connection is

    difficult and will cost more.

    To overcome this problem,

    3

    supply usually connected in

    DELTAor STARconnection

    http://modul2poli.blogspot.com/ Page 199 of 241

    CONNECTION IN 3system

    a) STAR/ WYE Connection

  • 7/23/2019 ET201 Electrical Circuits

    200/241

    Physical connection Conventional representation

    diagramhttp://modul2poli.blogspot.com/ Page 200 of 241

    CONNECTION IN 3system

    b) DELTA Connection

  • 7/23/2019 ET201 Electrical Circuits

    201/241

    Physical connectionConventional representation

    diagram

    http://modul2poli.blogspot.com/ Page 201 of 241

    REVIEW

  • 7/23/2019 ET201 Electrical Circuits

    202/241

    Two ways to generate AC rotating coil,permanent magnet field or vice versa.

    Each voltage separed by 120

    IN equal to zero when load is balanced.

    http://modul2poli.blogspot.com/ Page 202 of 241

    CALCULATION

  • 7/23/2019 ET201 Electrical Circuits

    203/241

    STAR CONNECTION DELTA CONNECTION

    Relationship between VLand Vph Relationship between ILand Iph

    http://modul2poli.blogspot.com/ Page 203 of 241

    FORMULA USE IN THREE PHASE

    CALCULATION

  • 7/23/2019 ET201 Electrical Circuits

    204/241

    http://modul2poli.blogspot.com/ Page 204 of 241

  • 7/23/2019 ET201 Electrical Circuits

    205/241

    EXERCISE

    http://modul2poli.blogspot.com/ Page 205 of 241

  • 7/23/2019 ET201 Electrical Circuits

    206/241

    http://modul2poli.blogspot.com/ Page 206 of 241

  • 7/23/2019 ET201 Electrical Circuits

    207/241

    http://modul2poli.blogspot.com/ Page 207 of 241

  • 7/23/2019 ET201 Electrical Circuits

    208/241

    http://modul2poli.blogspot.com/ Page 208 of 241

  • 7/23/2019 ET201 Electrical Circuits

    209/241

    http://modul2poli.blogspot.com/ Page 209 of 241

  • 7/23/2019 ET201 Electrical Circuits

    210/241

    http://modul2poli.blogspot.com/ Page 210 of 241

  • 7/23/2019 ET201 Electrical Circuits

    211/241

    http://modul2poli.blogspot.com/ Page 211 of 241

  • 7/23/2019 ET201 Electrical Circuits

    212/241

    http://modul2poli.blogspot.com/ Page 212 of 241

  • 7/23/2019 ET201 Electrical Circuits

    213/241

    http://modul2poli.blogspot.com/ Page 213 of 241

  • 7/23/2019 ET201 Electrical Circuits

    214/241

    http://modul2poli.blogspot.com/ Page 214 of 241

  • 7/23/2019 ET201 Electrical Circuits

    215/241

    http://modul2poli.blogspot.com/ Page 215 of 241

  • 7/23/2019 ET201 Electrical Circuits

    216/241

    http://modul2poli.blogspot.com/ Page 216 of 241

  • 7/23/2019 ET201 Electrical Circuits

    217/241

    http://modul2poli.blogspot.com/ Page 217 of 241

  • 7/23/2019 ET201 Electrical Circuits

    218/241

    http://modul2poli.blogspot.com/ Page 218 of 241

  • 7/23/2019 ET201 Electrical Circuits

    219/241

    http://modul2poli.blogspot.com/ Page 219 of 241

  • 7/23/2019 ET201 Electrical Circuits

    220/241

    http://modul2poli.blogspot.com/ Page 220 of 241

  • 7/23/2019 ET201 Electrical Circuits

    221/241

    http://modul2poli.blogspot.com/ Page 221 of 241

  • 7/23/2019 ET201 Electrical Circuits

    222/241

    http://modul2poli.blogspot.com/ Page 222 of 241

  • 7/23/2019 ET201 Electrical Circuits

    223/241

    http://modul2poli.blogspot.com/ Page 223 of 241

  • 7/23/2019 ET201 Electrical Circuits

    224/241

    http://modul2poli.blogspot.com/ Page 224 of 241

  • 7/23/2019 ET201 Electrical Circuits

    225/241

    http://modul2poli.blogspot.com/ Page 225 of 241

  • 7/23/2019 ET201 Electrical Circuits

    226/241

    http://modul2poli.blogspot.com/ Page 226 of 241

  • 7/23/2019 ET201 Electrical Circuits

    227/241

    http://modul2poli.blogspot.com/ Page 227 of 241

  • 7/23/2019 ET201 Electrical Circuits

    228/241

    http://modul2poli.blogspot.com/ Page 228 of 241

  • 7/23/2019 ET201 Electrical Circuits

    229/241

    http://modul2poli.blogspot.com/ Page 229 of 241

  • 7/23/2019 ET201 Electrical Circuits

    230/241

    http://modul2poli.blogspot.com/ Page 230 of 241

  • 7/23/2019 ET201 Electrical Circuits

    231/241

    http://modul2poli.blogspot.com/ Page 231 of 241

  • 7/23/2019 ET201 Electrical Circuits

    232/241

    http://modul2poli.blogspot.com/ Page 232 of 241

  • 7/23/2019 ET201 Electrical Circuits

    233/241

    http://modul2poli.blogspot.com/ Page 233 of 241

  • 7/23/2019 ET201 Electrical Circuits

    234/241

    http://modul2poli.blogspot.com/ Page 234 of 241

  • 7/23/2019 ET201 Electrical Circuits

    235/241

    http://modul2poli.blogspot.com/ Page 235 of 241

  • 7/23/2019 ET201 Electrical Circuits

    236/241

    http://modul2poli.blogspot.com/ Page 236 of 241

  • 7/23/2019 ET201 Electrical Circuits

    237/241

    http://modul2poli.blogspot.com/ Page 237 of 241

  • 7/23/2019 ET201 Electrical Circuits

    238/241

    http://modul2poli.blogspot.com/ Page 238 of 241

  • 7/23/2019 ET201 Electrical Circuits

    239/241

    http://modul2poli.blogspot.com/ Page 239 of 241

  • 7/23/2019 ET201 Electrical Circuits

    240/241

    http://modul2poli.blogspot.com/ Page 240 of 241

  • 7/23/2019 ET201 Electrical Circuits

    241/241