Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe!...

142
Estimation of sex from the morphometric assessment of hand bones in a Western Australian population Rebecca DeSilva (BSc, GDipForSci) Centre for Forensic Science University of Western Australia This thesis is presented for the degree of Master of Forensic Science

Transcript of Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe!...

Page 1: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

Estimation  of  sex  from  the  

morphometric  assessment  of  hand  

bones  in  a  Western  Australian  

population    

Rebecca  DeSilva  (BSc,  GDipForSci)    

 

 

 

 

 

 

 

 

 

 

 

 

Centre  for  Forensic  Science  

 

University  of  Western  Australia    

 

 

This  thesis  is  presented  for  the  degree  of  

Master  of  Forensic  Science

Page 2: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

Page 3: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  i  

 

DECLARATION    

I  declare  that  the  research  presented  in  this  thesis,  for  the  Master  of  Forensic  

Science  at  the  University  of  Western  Australia,  is  my  own  work.  The  results  of  the  

work  have  not  been  submitted  for  assessment,  in  full  or  part,  within  any  other  

tertiary  institute,  except  where  due  acknowledgement  has  been  made  in  the  text.  

 

 

 

………………………………………………  

Rebecca  DeSilva  

 

 

 

 

 

 

 

 

 

 

Page 4: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 ii  

 

 

 

Page 5: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

ABSTRACT  

  iii  

ABSTRACT    

The  role  of  a  forensic  anthropologist  in  medico-­‐legal  investigations  is  to,  ultimately  

contribute  toward  establishing  the  identity  of  unknown  skeletal  remains  by  

constructing  a  biological  profile;  which  involves  estimations  of  sex,  age,  stature  

and  ancestry.  Recent  research  relating  to  the  formulation  of  sex  estimation  

standards  has  focussed  on  the  morphological  assessment  of  bones  other  than  the  

pelvis  and  cranium,  such  as  the  long  bones  of  the  appendicular  skeleton.  In  

particular,  sex  estimation  standards  based  on  morphometric  data  from  the  

metacarpals  and  phalanges  have  reported  classification  accuracy  rates  of  80%  and  

above.  As  it  has  been  established  that  the  application  of  foreign  skeletal  standards  

can  result  in  the  misclassification  of  sex,  the  purpose  of  this  study  is  to  produce  

population  specific  sex  estimation  standards  for  a  contemporary  Western  

Australian  population.  The  age  at  which  hand  bones  are  metrically  sexually  

dimorphic  is  also  examined  to  determine  the  minimum  age  at  which  sex  can  be  

reliably  estimated.    

The  present  study  examines  digital  right  hand  x-­‐rays  of  300  adults  and  100  sub-­‐

adults,  equally  represented  by  sex.  A  total  of  40  measurements  are  taken  in  the  

metacarpals  and  proximal  phalanges  of  each  hand  x-­‐ray  using  the  OsiriX®  

software.  The  measurements  are  analysed  using  univariate  statistics  and  cross-­‐

validated  direct  and  stepwise  discriminant  function  analysis.  In  the  adult  sample,  

all  of  the  hand  bone  measurements  were  significantly  dimorphic  with  a  tendency  

for  the  width  measurements  to  express  a  higher  degree  of  sexual  dimorphism  than  

the  length  measurements.  A  maximum  classification  accuracy  of  91.00%  was  

achieved  (using  a  stepwise  discriminant  function  consisting  of  8  measurements)  

with  a  sex  bias  of  -­‐6.00%.  Analysis  of  the  sub-­‐adult  data  suggested  that  the  hand  

bones  start  to  become  metrically  sexually  dimorphic  between  the  ages  of  14  to  15  

years;  stepwise  discriminant  function  analysis  produced  a  maximum  classification  

accuracy  of  95.00%,  with  a  sex  bias  of  10.00%.  However,  when  attempting  to  

classify  sex  in  sub-­‐adults  using  an  adult  function,  males  were  likely  to  be  

misclassified  as  females,  and  the  highest  classification  achieved  was  65.00%  with  a  

sex  bias  of  -­‐35.00%.  This  would  suggest  that  the  functions  developed  using  adult  

Page 6: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

ABSTRACT  

 

 iv  

data  are  not  forensically  viable  for  sex  estimation  in  sub-­‐adult  skeletal  remains  in  a  

Western  Australian  population.    

The  results  of  the  current  study  indicate  that  sex  can  be  accurately  estimated  

based  on  the  morphometric  analysis  of  hand  bones  in  a  Western  Australian  

population.  The  cross-­‐validated  classification  accuracies  are  both  within  the  

acceptable  range  of  classification  accuracies  previously  published  for  sex  

estimation  based  on  morphometric  hand  bone  data  and  comparable  to  

classification  accuracy  ranges  found  for  other  skeletal  elements  such  as  the  skull.  It  

also  demonstrates  that  the  hand  bones  start  to  express  sexual  dimorphism  in  sub-­‐

adults  from  the  age  of  14  years.  The  standards  produced  from  this  study  can  be  

used  in  forensic  investigations  that  require  sex  estimation  standards  specific  to  a  

Western  Australian  population.    

Page 7: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

ACKNOWLEDGEMENTS  

  v  

ACKNOWLEDGEMENTS    

This  project,  which  has  been  overwhelming  at  times,  has  been  made  possible  by  

the  never-­‐ending  support  of  my  family,  peers  and  supervisors.  I  will  now  take  a  

moment  to  express  my  gratitude  and  utmost  appreciation  to  anyone  that  has  

helped  me  along  the  way  over  this  past  year.  

Professional  Acknowledgements  

First,  I  would  like  to  thank  my  co-­‐ordinating  supervisor,  Professor  Daniel  Franklin  

and  my  co-­‐supervisor,  Miss  Ambika  Flavel  for  their  patience,  understanding  and  

the  wealth  of  knowledge  they  did  not  hesitate  to  share  throughout  the  duration  of  

my  post-­‐graduate  studies.  As  a  team,  they  were  able  to  provide  constructive  

criticism  that  was  both  balanced  and  productive.  I  would  have  not  been  able  to  

reach  my  full  potential  without  their  efforts  

I  would  also  like  to  thank  those  that  have  provided  academic  and  administrative  

support  during  my  time  at  the  Centre  for  Forensic  Science;  in  particular  Professor  

Ian  Dadour,  the  director  of  the  Centre  for  Forensic  Science,  Mr  Algis  Kuliukas  and  

Miss  Bonnie  Knott.  I  am  grateful  for  the  resources  made  accessible  by  the  Centre  of  

Forensic  Science  to  complete  this  research  and  also  for  the  technical  support  

readily  available  when  any  issues  arose.  Thank  you  to  Adjunct  Associate  Professor  

Robin  Hart  as  well,  for  providing  digital  hand  x-­‐rays  from  the  Picture  Archiving  

and  Communication  Systems  (PACS)  database  with  efficiency  and  resolving  any  

issues  that  occurred  without  hesitation.    

Lastly,  I  would  like  to  thank  my  peers;  specifically  Alex,  Elsie,  Siobhan  and  other  

members  of  the  ‘forensic  anthropology  research  group’  at  the  Centre  for  Forensic  

Science.  My  peers  not  only  provided  different  perspectives  and  academic  

assistance,  they  made  this  year  of  post-­‐graduate  study  seem  less  impossible.    

   

Page 8: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

ACKNOWLEDGEMENTS  

 

 vi  

Personal  Acknowledgements  

First  and  foremost  I  would  like  to  thank  my  family;  my  mum  and  sister,  Michelle  

and  Taylor,  for  being  incredibly  supportive  for  the  entire  duration  of  my  tertiary  

studies  and  for  their  undying  love,  encouragement  and  patience.  Special  thanks  

also  goes  to  Dave  for  his  contagious  optimism  and  for  always  showing  a  genuine  

interest  in  this  research  project.    I  also  wish  to  acknowledge  my  partner  David  for  

listening  to  my  intolerable  ramblings  and  always  providing  a  shoulder  to  lean  on.  

To  all  of  the  above  people,  thank  you!  

Finally,  to  family,  friends  and  anyone  that  was  the  victim  of  one  of  my  many  thesis  

tangents,  thank  you  for  listening.    

Page 9: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

TABLE  OF  CONTENTS  

  vii  

TABLE  OF  CONTENTS  

DECLARATION  .........................................................................................................................  i  

ABSTRACT  ..............................................................................................................................  iii  

ACKNOWLEDGEMENTS  ........................................................................................................  v  

Professional  Acknowledgements  .............................................................................................  v  

Personal  Acknowledgements  ....................................................................................................  vi  

TABLE  OF  CONTENTS  ........................................................................................................  vii  

LIST  OF  FIGURES  ...................................................................................................................  xi  

LIST  OF  TABLES  .................................................................................................................  xiii  

CHAPTER  ONE  .........................................................................................................................  1  

Introduction:  research  objectives  and  outline  ............................................................  1  1.1  The  modern  role  of  forensic  anthropology  ....................................................................  1  

1.2  The  estimation  of  skeletal  sex  ............................................................................................  2  

1.2.1  Sex  estimation  potential  of  the  metacarpals  .........................................................................  3  

1.3  Research  aims  ..........................................................................................................................  4  

1.4  Data  collection  .........................................................................................................................  5  

1.5  Limitations  ................................................................................................................................  6  

1.6  Thesis  outline  ...........................................................................................................................  7  

CHAPTER  TWO  .......................................................................................................................  9  

A  brief  introduction  to  the  anatomy  of  the  hand  ........................................................  9  

2.1  Introduction  ..............................................................................................................................  9  

2.2  Skeletal  anatomy  of  the  hand  ..............................................................................................  9  

2.3  Anatomical  position  and  directionality  .........................................................................  10  

2.4  Muscles  acting  on  the  hand  ................................................................................................  12  

2.4.1  Anterior  compartment  of  the  forearm  .................................................................................  12  

2.4.2  Posterior  compartment  of  the  forearm  ................................................................................  16  

2.4.3  Intrinsic  muscles  of  the  hand  ...................................................................................................  19  

CHAPTER  THREE  ................................................................................................................  21  

Sexual  dimorphism  and  sex  estimation  methods:  a  review  of  previous  

research  .................................................................................................................................  21  3.1  Introduction  ............................................................................................................................  21  

Page 10: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

TABLE  OF  CONTENTS  

 viii  

3.2  Sexual  dimorphism  ..............................................................................................................  21  

3.2.1  The  pelvis  ..........................................................................................................................................  22  

3.2.2  The  skull  .............................................................................................................................................  23  

3.2.3  Long  bones  ........................................................................................................................................  24  

3.3  Sex  estimation  based  on  the  analysis  of  the  hand  .....................................................  24  

3.3.1  Fleshed  hand  ....................................................................................................................................  25  

3.3.2  Hand  bones  .......................................................................................................................................  28  

CHAPTER  FOUR  ...................................................................................................................  33  

Materials  and  Methods  .....................................................................................................  33  

4.1  Introduction  ...........................................................................................................................  33  

4.2  Materials  .................................................................................................................................  33  

4.3  Methods  ...................................................................................................................................  34  

4.3.1  Landmark  definitions  and  typology  .......................................................................................  34  

4.3.2  Measurement  definitions  ...........................................................................................................  36  

4.3.3  Measurement  acquisition  –  OsiriX®  .......................................................................................  37  

4.4  Statistical  analyses:  precision  test  .................................................................................  39  

4.5  Statistical  analyses:  measurement  data  .......................................................................  42  

4.5.1  Normality  tests  ................................................................................................................................  42  

4.5.2  Significance  tests  ............................................................................................................................  43  

4.5.3  Discriminant  function  analyses  ...............................................................................................  44  

CHAPTER  FIVE  .....................................................................................................................  49  

Results  ....................................................................................................................................  49  

5.1  Introduction  ...........................................................................................................................  49  

5.2  Measurement  precision  .....................................................................................................  49  

5.3  Descriptive  statistics  for  the  adult  data  ........................................................................  52  

5.3.1  Age  distribution  ..............................................................................................................................  52  

5.3.2  Measurement  Normality  .............................................................................................................  52  

5.3.3  Univariate  comparisons  ..............................................................................................................  53  

5.3.4  Discriminant  function  analyses  ...............................................................................................  56  

5.3.5  Posterior  probabilities  .................................................................................................................  58  

5.4  Population  differences  .......................................................................................................  62  

5.4.1  Measurement  differences  ...........................................................................................................  62  

5.4.2  Variation  in  the  expression  of  sexual  dimorphism  .........................................................  63  

5.4.3  Classification  accuracy  .................................................................................................................  64  

5.5  Sub-­‐adult  analyses  ...............................................................................................................  65  

Page 11: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

TABLE  OF  CONTENTS  

  ix  

5.5.1  Age  distribution  ..............................................................................................................................  65  

5.5.2  Measurement  normality  .............................................................................................................  65  

5.5.3  Univariate  comparisons  ..............................................................................................................  66  

5.6  Sex  classification  accuracy  in  the  sub-­‐adult  hand  ......................................................  66  

5.7  Interaction  effects  .................................................................................................................  68  

CHAPTER  SIX  ........................................................................................................................  69  

Discussion  and  conclusions  ............................................................................................  69  

6.1  Introduction  ............................................................................................................................  69  

6.2  Measurement  precision  ......................................................................................................  69  

6.3    Adult  data  ...............................................................................................................................  71  

6.3.1  Sexual  dimorphism  in  the  hand  ...............................................................................................  71  

6.3.2  Morphometric  population  variation  ......................................................................................  76  

6.3.3  Importance  of  population  specific  standards  ....................................................................  83  

6.4  Sub-­‐adult  sample  ..................................................................................................................  84  

6.5  Forensic  applications  ..........................................................................................................  86  

6.6  Limitations  and  future  research  ......................................................................................  87  

6.7  Conclusions  .............................................................................................................................  88  

REFERENCES  ........................................................................................................................  91  

Appendix  One  ....................................................................................................................  105  

Appendix  Two  ...................................................................................................................  109  

Appendix  Three  ................................................................................................................  111  

Appendix  Four  ...................................................................................................................  113  

 

 

 

 

 

 

 

 

 

 

 

Page 12: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 x  

 

 

 

 

 

 

 

 

 

 

 

Page 13: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

LIST  OF  FIGURES  

  xi  

LIST  OF  FIGURES  

 Figure  2.1                   10  

Dorsal  view  of  the  bones  of  the  right  hand.  

Figure  2.2                     11  

Dorsal  view  of  the  left  hand  with  terms  used  to  define  the  anatomical  

position  of  the  hand.    

Figure  2.3                     13  

The  most  superficial  layer  of  muscles  in  the  anterior  forearm.  

Figure  2.4                     15  

The  second  layer  of  muscle  in  the  anterior  forearm.  

Figure  2.5                     15  

The  third  layer  of  muscle  in  the  anterior  forearm.  

Figure  2.6                     17  

The  lateral  superficial  layer  of  muscles  in  the  posterior  forearm.  

Figure  2.7                     18  

The  medial  superficial  layer  of  muscles  in  the  posterior  forearm.  

Figure  2.8                     19  

The  deep  muscle  layer  of  posterior  forearm.  

Figure  4.1                     36  

Antero-­‐posterior  view  of  metacarpal  two,  metacarpal  one  and  

proximal  phalanx  one  (from  left  to  right)  illustrating  the  eight  

landmarks  defined  in  Table  4.2..  

Figure  4.2                     38  

Antero-­‐posterior  view  of  metacarpal  two  illustrating  the  

measurements  acquired  for  the  study;  defined  in  Table  4.3.  

 

Page 14: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

LIST  OF  FIGURES  

 xii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

LIST  OF  TABLES  

  xiii  

LIST  OF  TABLES    

Table  2.1                       11  

Terms  used  to  describe  anatomical  positioning.  

Table  4.1                       34  

The  number  of  individuals  in  each  age  group  in  the  sub-­‐adult  sample.  

Table  4.2                       37  

Definitions  of  the  landmarks  acquired  for  metacarpal  two.  

Table  4.3                     38  

Definitions  of  acquired  measurements  for  metacarpal  two.  

Table  5.1                       50  

Measurement  precision  (TEM,  rTEM  &  R)  for  the  landmark  

measurement  method.  

Table  5.2                       51  

Measurement  precision  (TEM,  rTEM  &  R)  for  the  line-­‐tool  

measurement  method.  

Table  5.3                       53  

Distribution  of  age  (in  years)  of  the  adult  Western  Australian  sample.  

Table  5.4                       54  

Descriptive  statistics  and  means  comparison  of  mean  hand  bone  

measurements  (in  mm).  

Table  5.5                       57  

Direct  single  variable  discriminant  analyses  of  individual  hand  

bones,  including  demarking  point  values  (in  mm).  

Table  5.6                       57  

Direct  multiple  variable  discriminant  analysis  of  metacarpals.  

 

Page 16: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

LIST  OF  TABLES  

 

 xiv  

Table  5.7                       59  

Stepwise  discriminant  function  analysis  of  the  Western  Australian  

adult  sample.  

Table  5.8                       63  

Five  comparative  populations  (including  source  of  data  and  sample  

size).  

Table  5.9                       64  

Classification  accuracies  when  applying  foreign  standards  to  a  

Western  Australian  population.  

Table  5.10                       65  

Distribution  of  age  (in  years)  for  each  of  the  three  age  groups  within  

the  sub-­‐adult  data  sample.  

Table  5.11                       67  

Stepwise  discriminant  functions  based  on  the  analysis  of  the  sub-­‐

adult  sample.  

Table  5.12                       68  

Sex  classification  accuracies  of  adult  Function  13  to  the  sub-­‐adult  

sample.  

Table  6.1                       75  

Sex  classification  accuracy  of  hand  bone  measurements  in  a  variety  

of  global  populations.      

Table  6.2                       78  

Quality  of  life  statistics,  quality  of  life  index  and  human  development  

index  for  each  of  the  five  comparative  populations.  

Table  6.3                     82  

Year  of  birth  and  year  of  death  ranges  of  the  present  study  and  the  

three  temporally  different  comparative  studies.  

   

Page 17: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

LIST  OF  TABLES  

 

  xv  

Table  A1.1                     105  

Posterior  probabilities  calculated  for  the  adult  discriminant  

Functions  1  to  18.  

Table  A2.1                     109  

Unpaired  t-­‐test  results  for  the  comparison  of  metacarpal  one,  two  

and  four  lengths  from  the  current  study  to  four  previously  published  

studies.  

Table  A3.1                     111  

Unpaired  t-­‐test  results  for  the  comparison  of  males  and  females  for  

each  of  the  five  comparative  populations.  

Table  A4.1                     113  

Descriptive  statistics  of  mean  sub-­‐adult  hand  bone  measurements  (in  

mm)  for  Group  A.  

Table  A4.2                     117  

Descriptive  statistics  of  mean  sub-­‐adult  hand  bone  measurements  (in  

mm)  for  Group  B.  

Table  A4.3                     121  

Descriptive  statistics  of  mean  sub-­‐adult  hand  bone  measurements  (in  

mm)  for  Group  C.  

Page 18: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 xvi  

 

Page 19: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  1  

CHAPTER  ONE  

Introduction:  research  objectives  and  outline  

1.1  The  modern  role  of  forensic  anthropology  

The  use  of  forensic  anthropology  in  medico-­‐legal  investigations  has  become  more  

common  over  time,  with  an  increasing  number  of  referred  cases  involving  remains  

that  are  ‘problematic’  for  a  forensic  pathologist  (Braz  2009;  Dirkmaat  et  al.  2008).  

These  ‘problematic’  cases  include  those,  for  example,  requiring  the  assessment  of  

skeletal,  partially  fleshed,  charred  or  dismembered  remains.  Forensic  

anthropology  is  the  application  of  concepts  derived  from  the  theory  and  methods  

of  physical  anthropology  to  a  forensic  investigative  context  that  requires  the  

analysis  of  skeletal  remains  (Cattaneo  2007;  Dirkmaat  et  al.  2008).  The  analysis  of  

human  skeletal  remains  by  a  forensic  anthropologist  involves  (amongst  other  

factors)  the  construction  of  a  biological  profile,  which  aids  in  establishing  a  

possible  identity  in  conjunction  with  missing  persons  information  and  other  lines  

of  forensic  evidence  (SWGANTH  2011;  Scheuer  2002).    

A  biological  profile  involves  estimating  sex,  age,  stature  and  ancestry  through  

metric  and  non-­‐metric  analyses  of  skeletal  remains.  Prior  to  constructing  a  

biological  profile  the  forensic  anthropologist  must  first  confirm  that  the  remains  

are  in  fact  bone  and  then  establish  whether  or  not  the  skeletal  remains  are  of  

human  origin  (Bass  2005).  Once  the  remains  are  confirmed  to  be  human  in  origin,  

a  biological  profile  is  formulated,  which  will  essentially  narrow  the  pool  of  possible  

matching  identities.  For  example,  by  estimating  sex,  a  forensic  anthropologist  

eliminates  all  individuals  present  in  the  potential  pool  that  are  of  the  opposite  sex.  

As  the  primary  focus  of  the  present  thesis  is  on  methods  for  skeletal  sex  

estimation,  the  latter  is  considered  in  more  detail  below.  

 

 

Page 20: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

 2  

1.2  The  estimation  of  skeletal  sex  

The  estimation  of  skeletal  sex  is  generally  the  first  component  of  a  biological  

profile  performed  because  statistics  for  estimating  other  biological  attributes  (e.g.  

age,  stature  and  ancestry)  are  generally  sex-­‐specific  (Braz  2009;  Franklin  2010).  

Sexual  dimorphism  is  the  biological  foundation  of  sex  estimation  and  is  defined  as  

physical  and  behavioural  differences  occurring  between  males  and  females  

(Glücksman  1981;  Frayer  &  Wolpoff  1985).    Sex  differences  in  the  shape,  size  and  

appearance  of  bones  arise  during  development  according  to  individual  genetic  

markers  and  in  response  to  sex  hormones  during  puberty.  This  is  due  to  bone  

development  being  dependent  on  a  combination  of  genetic  markers  and  hormone  

exposure  (Frayer  &  Wolpoff  1985).  The  age  at  which  these  sex-­‐specific  

morphological  changes  occur  is  dependent  on  a  number  of  genetic  and  

environmental  factors  that  are  population  specific  (Frayer  &  Wolpoff  1985).  

Skeletal  sex  is  estimated  using  both  a  metric  and/or  non-­‐metric  assessment.    

Metric  analyses  involve  taking  a  series  of  skeletal  measurements  that  are  

compared  to  pre-­‐existing  standards  relevant  to  the  population  concerned  (Braz  

2009;  Stojanowski  1999).  The  visual  analyses  of  morphological  traits  (such  as  the  

shape,  size  and  specific  bony  protrusions  or  features)  are  used  to  estimate  sex  by  

comparing  these  morphological  traits  to  those  that  are  known  to  be  male  or  female  

(White  &  Folkens  2005).  For  example,  with  regard  to  sex  estimation,  non-­‐metric  

analyses  involve  the  visual  assessment  of  the  gross  morphology  of  the  pelvis  or  

skull,  which  are  both  known  to  be  sexually  dimorphic.  More  specifically,  with  

regards  to  the  pelvis,  such  an  assessment  of  traits  could  involve  applying  the  

Phenice  (1969)  method.  This  method  is  based  on  assessing  whether  certain  

morphological  traits  (ventral  arc;  subpubic  concavity;  medial  aspect  of  the  

ischiopubic  ramus)  are  present  in  the  pelvis  (Phenice  1969).  Metric  analyses  of  

those  same  bones  would  involve  taking  defined  measurements  and  inputting  them  

into  a  discriminant  standard;  the  values  obtained  are  used  to  statistically  assign  an  

unknown  to  a  particular  group  (e.g.  male  or  female)  (Roussas  1997).      

As  the  expression,  magnitude  and  age  at  initial  appearance  of  sexual  dimorphism  

varies  between  populations,  sex  estimation  standards  are  required  to  be  

Page 21: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

  3  

population  specific  (Franklin  et  al.  2012a;  Lazenby  2002).  Standards  used  to  

classify  morphometric  data  according  to  sex  are  most  accurate  when  applied  to  the  

population  from  which  they  are  derived  (Lazenby  2002;  Burrows  et  al.  2003).    This  

is  based  on  evidence  that  males  and  females  can  be  more  or  less  dimorphic  within  

a  given  population  (Franklin  et  al.  2012b;Walker  2008;  SWGANTH  2011).    

1.2.1  Sex  estimation  potential  of  the  metacarpals  

Although  the  pelvis  and  the  skull  are  considered  to  be  the  most  sexually  dimorphic  

bones  and  therefore  preferred  for  sex  estimation,  recent  research  has  worked  

towards  quantifying  the  sex  estimation  potential  of  other  bones.  For  example,  it  

has  been  demonstrated  that  the  sternum  (Franklin  et  al.  2012b),  femur  (Asala  et  al.  

2004),  metatarsals  (Robling  &  Ubelaker  1997)  and  metacarpals  (Case  &  Ross  

2007)  can  be  used  to  correctly  classify  sex  with  a  high  degree  of  expected  accuracy  

(above  80%)  and  they  thus  have  obvious  forensic  potential.  Differential  

preservation  of  remains  (or  the  absence  of  the  pelvis  and  cranium)  can  make  sex  

estimation  more  difficult.  In  response  to  this,  this  thesis  will  focus  on  the  sex  

estimation  potential  of  the  metacarpals  of  the  hands  as  data  can  be  readily  

acquired  from  radiographs  and  their  exhibited  ‘resistance’  to  decomposition.  Due  

to  their  small  tubular  structure,  metatarsals  and  metacarpals  often  exhibit  less  

postmortem  damage  at  recovery  (compared  to  larger  appendicular  bones)  and  are  

known  to  be  sexually  dimorphic  (in  particular  their  interarticular  length  and  

breadth).  

Previous  research  specifically  examining  the  sex  estimation  potential  of  the  

metacarpals  have  all  reported  accuracy  rates  above  80%;  for  example;  Scheuer  and  

Elkington  1993  (British  population);  Falsetti  1995;  Stojanowski  1999;  Case  and  

Ross  2007  (American  populations);  Barrio  2006  (Spanish  population);  and  

Khanpetch  et  al.  2011  (Thai  population).  However,  Burrows  et  al.  (2003)  showed  

that  the  application  of  skeletal  standards  based  one  population  to  another  can  lead  

to  the  statistical  misclassification  of  sex.  The  discriminant  function  standards  from  

the  previous  research  of  Scheuer  and  Elkington  (1993),  Falsetti  (1995)  and  

Stojanowski  (1999)  were  applied  to  a  sample  group  consisting  of  modern  

American  cadavers  that  had  died  no  more  than  three  years  prior  to  the  study  

Page 22: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

 4  

(Burrows  et  al.  2003).  The  accuracy  of  those  standards  ranged  from  63  to  95%.  

The  differences  in  the  range  of  accuracies  between  the  ‘foreign  standards’  and  the  

study  conducted  by  Burrows  et  al.  (2003)  can  be  attributed  to  population  and  

temporal  differences  between  the  samples  used  in  the  different  studies.  The  errors  

highlighted  by  Burrows  et  al.  (2003)  have  a  potentially  significant  impact  on  the  

admissibility  of  anthropological  evidence.    

1.3  Research  aims  

i)  To  statistically  quantify  the  accuracy  and  reliability  of  two  measurement  methods  of  acquiring  measurements  in  digital  x-­‐rays  

Prior  to  data  collection,  an  intra-­‐observer  precision  test  must  be  conducted  to  

quantify  the  accuracy  and  reliability  of  using  either  a  landmark  or  line-­‐measure  

approach  to  measure  hand  bones  in  digital  x-­‐rays.  The  former  method  requires  the  

identification  of  defined  landmarks  that  are  then  mathematically  transformed  to  

acquire  linear  inter-­‐landmark  measurements.  In  contrast,  the  latter  method  only  

requires  a  line  to  be  drawn  between  two  landmarks  that  provides  a  direct  

measurement  value  (See  Chapter  Four  for  more  details).    Based  on  the  results  of  

the  intra-­‐observer  precision  test,  the  method  that  is  the  most  reliable,  accurate  and  

practical  will  be  used  for  all  subsequent  data  collection.  

ii)  To  quantify  the  expression  and  magnitude  of  sexual  dimorphism  in  the  hand  bones  (metacarpals  and  phalanges)  

Although  the  pelvis  and  cranium  are  considered  to  be  the  most  sexually  dimorphic  

bones,  the  appendicular  skeleton  can  also  be  used  to  estimate  sex.  Scheuer  and  

Elkington  (1993),  Falsetti  (1995)  and  Case  and  Ross  (2007)  have  all  conducted  

studies  resulting  in  the  production  of  discriminant  functions  for  estimating  sex  in  

the  metacarpals  and  phalanges  that  correctly  classify  sex  with  up  to  87%  accuracy.  

However  Lazenby  (2002)  and  Burrows  et  al.  (2003)  demonstrated  that  

discriminant  functions  based  on  one  population  cannot  be  applied  to  ‘foreign’  

populations  because  a  loss  of  accuracy  ensues.  To  this  end,  the  present  study  will  

assess  sexual  dimorphism  in  the  metacarpals  and  phalanges  of  Western  Australian  

Page 23: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

  5  

individuals.  The  main  aim  is  to  formulate  population  specific  sex  estimation  

standards  for  this  population,  as  they  do  not  currently  exist.    

iii)  To  statistically  quantify  the  age  at  which  the  hand  bones  are  metrically  sexually  dimorphic  

Some  sexually  dimorphic  traits  in  the  size,  shape  and  behaviour  of  males  and  

females  are  evident  in  the  early  stages  of  development.  However,  the  majority  of  

the  differences  that  occur  between  the  sexes  are  known  to  develop  under  

hormonal  influences  during  puberty  (Frayer  &  Wolpoff  1985).  If  the  latter  applies  

to  the  development  of  the  hand  bones,  one  would  expect  sex  specific  

morphological  differences  in  the  finger  bones  to  manifest  at  around  14  or  15  years  

of  age  (Schwartz  2007).  This  study  will  investigate  the  minimum  age  at  which  sex  

can  be  reliably  estimated  in  the  hand  bones  and,  therefore,  the  age  at  which  

discriminant  functions  based  on  a  Western  Australian  population  can  be  

accurately  applied  in  a  forensic  context.  

1.4  Data  collection  

The  sample  for  the  current  study  consists  of  300  antero-­‐posterior  digital  hand  x-­‐

rays  (150  males  and  150  females)  of  adult  individuals.  These  hand  x-­‐rays  are  

acquired  from  the  Picture  Archiving  and  Communication  Systems  (PACS)  database,  

which  contains  medical  scans  from  various  Western  Australian  hospitals.  A  further  

sub-­‐set  of  younger  individuals  are  also  examined;  100  hand-­‐wrist  digital  x-­‐rays  of  

individuals  between  the  13  to  18  years  of  age.  Approximately  20  x-­‐rays  are  

acquired  for  each  age  group  between  the  ages  of  13  and  18  years  inclusive;  this  

sample  was  used  to  explore  the  age  at  which  the  metacarpals  and  phalanges  are  

quantifiably  sexually  dimorphic  (see  above).  Only  radiographs  of  hands  that  show  

little  (or  no)  skeletal  trauma  or  anomalies  in  the  metacarpals  and  proximal  

phalanges  are  used.  Additional  to  these  requirements,  the  selected  radiographs  

had  to  clearly  show  the  landmarks  that  define  the  required  measurements.  The  

hand  x-­‐rays  obtained  from  the  PACS  database  are  anonymised  with  only  age  and  

sex  data  retained.  The  specific  ancestry  of  each  individual  is  not  known,  but  the  

sample  is  taken  as  approximating  the  current  Western  Australian  population.    This  

Page 24: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

 6  

study  was  approved  by  the  Human  Research  Ethics  Committee  of  the  University  of  

Western  Australia;  Project  Number  RA/4/1/4362.  

1.5  Limitations  

As  with  any  research,  there  are  limitations  with  this  study  that  must  be  taken  into  

consideration.  Firstly,  the  ancestry  of  an  individual  is  not  recorded  when  medical  

x-­‐rays  are  conducted,  as  it  not  a  medical  requirement.  The  Western  Australian  

sample  examined  in  the  present  study,  are  thus  assumed  to  be  representative  of  

the  current  Western  Australian  population.  The  Western  Australian  population  

comprises  3.1%  indigenous  Australians,  which  is  higher  than  the  Australian  

average  (2.5%).  The  Australian  Bureau  of  Statistics  (Australian  Bureau  of  Statistics  

2013)  data  indicate  that  56.2%  of  the  WA  population  have  one  or  more  parent  

born  overseas  and  75%  have  an  ancestry  other  than  Australian  (within  2  

generations).  This  compares  with  Australia  as  a  whole  where  46.2%  of  people  have  

one  or  more  parent  born  overseas.  In  broad  terms  of  ancestry  (Australian  Bureau  

of  statistics  2011),  the  population  is  predominantly  Caucasian  in  all  Australian  

states  (but  not  territories).  

The  second  limitation  is  the  effect  of  skeletal  maturation  and  degeneration;  data  

collection  involves  acquiring  the  maximum  length  or  width  measurements  of  the  

hand  bones.  It  is  thus  required  that  the  digital  x-­‐rays  examined  are  from  

individuals  who  have  reached  skeletal  maturity  which  ensures  that  the  hand  bones  

are  of  their  maximum  dimensions  and  epiphyseal  fusion  has  occurred.  As  an  

individual  ages,  degenerative  bone  changes  can  occur  which  would  also  affect  the  

acquisition  of  the  maximum  dimensions  of  the  hand  bones  (through  age-­‐related  

bone  degeneration  or  loss  such  as  osteopenia  or  osteoporosis).  For  the  this  reason,  

the  age  range  of  the  adult  sample  was  limited  to  between  18  and  67  years  of  age,  

thus  generally  ensuring  skeletal  maturity  and  the  avoidance  of  degenerative  bone  

changes.  Hand  x-­‐rays  belonging  to  individuals  over  65  years  of  age  were  subject  to  

rigorous  scrutiny,  to  make  sure  the  linear  measurements  required  were  

adequately  represented.  

Page 25: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

  7  

1.6  Thesis  outline  

This  study  is  presented  in  six  chapters,  the  first  being  an  introduction  to  the  

background  of  this  study  and  the  purpose  of  this  thesis;  to  develop  sex  estimation  

standards  for  a  Western  Australian  population  based  on  measurements  taken  from  

the  metacarpals.  Chapters  Two  covers  the  basic  anatomy  of  the  hand  bones  

including  anatomical  terminology,  directionality  and  muscles  associated  with  the  

hand.  Chapter  Three  considers  sex  estimation  methods,  and  more  specifically  

previous  studies  involving  sex  estimation  of  hand  bones.  Chapter  Four  is  the  

materials  and  methods  section  that  outlines  the  data  collection  and  analysis  

protocols.  The  results  of  this  study  and  the  subsequent  discussion  and  conclusions  

are  presented  in  Chapters  Five  and  Six  respective  

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 26: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  ONE  

 

 8  

 

Page 27: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  9  

 

CHAPTER  TWO    

A  brief  introduction  to  the  anatomy  of  the  hand  

2.1  Introduction  

The  present  study  concerns  with  the  sex  estimation  potential  of  the  hand  bones  

within  a  Western  Australian  population;  the  latter  accordingly  requires  an  

understanding  of  basic  hand  anatomy.  This  chapter  will  outline  the  skeletal  and  

muscular  components  of  the  hand,  in  addition  to  providing  an  understanding  of  

terminology  used  to  describe  anatomical  position,  directionality  and  muscle  

movements  in  that  particular  region.  

2.2  Skeletal  anatomy  of  the  hand  

The  hand  is  anatomically  defined  as  the  terminus  of  the  upper  limb,  with  each  

hand  consisting  of  27  bones  (White  et  al.  2012).  These  27  bones  are  sub-­‐divided  

into  three  groups:  the  wrist  or  the  carpus,  the  palm  or  metacarpus,  and  the  fingers  

or  phalanges  (Figure  2.1)  (Schwartz  2007;  Gray  2010).  There  are  eight  carpal  (or  

wrist)  bones  that  provide  the  foundation  for  the  five  digits  of  the  hand.  Two  carpal  

bones  in  particular  (the  scaphoid  and  lunate)  articulate  with  the  radius  and  form  

the  wrist  joint  (Gray  2010).    

The  next  segment  of  the  hand  (the  metacarpus)  comprises  five  metacarpals  within  

the  palm  of  the  hand;  metacarpal  1  (thumb  side)  through  metacarpal  5.    The  

metacarpals  are  long  tubular  bones  with  a  rounded  distal  articular  surface  (head)  

and  a  more  rigid  proximal  articular  surface  (base)(White  et  al.  2012;  Gray  2010).  

Each  metacarpal  can  be  distinguished  by  their  size  and  specific  morphological  

characteristics  present  in  the  base  of  each  bone.  (White  et  al.  2012).  

 

Page 28: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

 10  

 Figure  2.1  Dorsal  view  of  the  bones  of  the  right  hand:  (a)  phalanges;  

(b)  metacarpus;  (c)  carpus.  Source:  White  et  al.  2012    

The  third  and  last  segment  of  the  hand  is  made  up  of  the  phalanges  (fingers).  Each  

finger  has  three  phalanges;  the  proximal,  medial  and  distal  phalanx  (Schwartz  

2007;  White  et  al.  2012).  The  thumb,  however,  only  has  a  proximal  and  distal  

phalanx  (Figure  2.1)  (White  et  al.  2012).  

2.3  Anatomical  position  and  directionality  

The  anatomical  position  is  an  orientation  of  the  human  body  where  it  is  displayed  

as  standing  upright  with  both  feet  facing  forward  and  arms  are  extended  along  the  

sides  of  the  torso  with  palms  facing  forward  (Ramones  1986).  It  is  this  position  

that  acts  as  a  reference  for  describing  parts  of  the  body  in  relation  to  each  other,  or  

in  what  direction  they  are  facing.  For  instance  if  an  organ  or  bone  is  in  front  of  

another,  it  is  described  as  anterior  (or  ventral)  that  reference  point.  Table  2.1  

below  outlines  these  directional  terms.  

In  describing  the  hand  bones  in  this  study,  the  thumb  (or  first  digit)  is  lateral  and  

the  little  finger  (or  fifth  digit)  is  medial,  see  Figure  2.2.  The  heads  of  the  

metacarpals  and  phalanges  are  the  distal  ends  of  the  bones;  the  bases  are  thus  the  

proximal  ends.    

 

Page 29: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

  11  

Table  2.1  Terms  used  to  describe  anatomical  positioning  (Source:  Ramones  

1986)  

Anatomical  term   Description  

Anterior  or  Ventral   In  front  of  

Posterior  or  Dorsal   Behind  

Superior  or  Cranial  (towards  the  head)   Above  

Inferior  or  Caudal  (towards  the  tail)   Below  

Medial   Towards  the  midline  

Lateral   Further  from  the  midline  

Proximal   End  closest  to  the  head  or  torso  

Distal   End  furthest  from  the  head  or  torso  

 

 

 

Figure  2.  2  Dorsal  view  of  the  left  hand  with  terms  used  to  define  the  

anatomical  position  of  the  hand  bones.  Source:  Bass  2005  

 

 

 

Distal  

Proximal  

Lateral  Medial  

Page 30: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

 12  

2.4  Muscles  acting  on  the  hand  

The  muscles  that  act  on  the  hand  originate  in  the  forearm  and  are  generally  

considered  to  be  a  part  of  either  the  anterior  or  posterior  compartments  of  the  

forearm  (Ramones  1986;  Agur  &  Dalley  2009).  Muscle  positions  are  described  

according  to  their  origin  and  insertion,  which  are  the  points  of  attachment  of  

muscles  to  bone  or  fascia.  The  origin  of  a  muscle  is  the  point  from  which  a  muscle  

arises  and  is  considered  to  be  the  fixed  point  of  attachment  with  regards  to  

movement  (Gray  2010).  Insertion  refers  to  the  point  at  which  a  muscle  ends  (or  

inserts)  and  is  the  point  of  skeletal  movement  (Gray  2010).    

Muscles  allow  for  several  movements  along  the  joints  of  the  upper  and  lower  

limbs,  which  include  flexion,  extension,  abduction,  adduction,  pronation  and  

supination  (Gray  2010;  Ramones  1986).  Flexion  is  the  movement  of  articulating  

bones  that  acts  to  decrease  the  angle  between  the  bones  that  make  up  a  joint.  

Conversely,  extension  is  the  movement  that  increases  the  angle  between  the  

articulating  bones  (Gray  2010;  Leversedge  et  al.  2010).  Abduction  is  the  lateral  

movement  of  bones  away  from  the  mid-­‐line  and  adduction  is  when  a  movement  

results  in  moving  a  body  part  toward  the  mid-­‐line.  Pronation  and  supination  are  

rotation  movements  with  pronation  used  to  describe  rotation  towards  the  mid-­‐line  

and  supination  used  to  describe  rotations  away  from  the  midline  (Gray  2010;  Agur  

&  Dalley  2009).    

The  muscles  in  the  anterior  compartment  of  the  forearm  and  the  palmar  side  of  the  

hand  are  generally  flexors  and  pronators,  whilst  the  muscles  found  in  the  posterior  

compartment  of  the  forearm  and  the  dorsal  side  of  the  hand  are  extensors  and  

supinators  (Gray  2010;  Cael  2010).  The  main  muscles  that  act  on  the  hand  at  both  

the  carpometacarpal  (wrist)  and  metacarpophalangeal  (knuckle)  joints  are  

outlined  below.  

2.4.1  Anterior  compartment  of  the  forearm  

The  anterior  compartment  of  the  forearm  consists  of  muscles  that  act  to  flex  (or  

pronate)  the  hand  at  the  wrist  and  the  knuckle  joint  (Cael  2010;  Leversedge  et  al.  

2010).  There  are  two  layers  of  muscles  in  the  anterior  compartment  of  the  

Page 31: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

  13  

forearm;  superficial  and  deep.  The  superficial  layer  is  the  layer  of  muscles  closest  

to  the  skin  and  consists  of  flexor  carpi  ulnaris,  flexor  carpi  radialis,  flexor  digitorum  

superficialis,  and  palmaris  longus  (Figure  2.3).  The  muscles  in  this  superficial  layer  

have  a  common  flexor  origin,  which  is  the  medial  epicondyle  of  the  humerus.  The  

deep  layer  of  muscles  lies  beneath  the  superficial  layer  and  consists  of  flexor  

digitorum  profundus  and  flexor  pollicis  longus.    

   

Figure  2.3  The  most  superficial  layer  of  muscles  in  the  anterior  

forearm.  Source:  Agur  &  Dalley  (2009).  

 

Flexor  carpi  ulnaris  is  the  most  medial  of  the  superficial  layer  of  muscles  within  the  

anterior  compartment  of  the  forearm  (Ramones  1986;  Agur  &  Dalley  2009).  This  

muscle  has  two  heads  that  arise  from  two  origins;  the  humeral  head  starts  from  

the  medial  epicondyle  of  the  humerus  and  the  ulnar  head  starts  from  the  olecranon  

process  of  the  ulna  (Cael  2010;  Gray  2010).  The  muscle  runs  from  these  two  points  

of  attachment  to  two  of  the  carpal  bones  (pisiform  and  the  hook  of  hamate),  as  well  

as  the  base  of  metacarpal  five.  Flexor  carpi  ulnaris  acts  on  the  hand  by  allowing  

flexion  and  adduction  at  the  wrist  (Cael  2010;  Agur  &  Dalley  2009).    

Page 32: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

 14  

Flexor  carpi  radialis  (like  flexor  carpi  ulnaris)  also  allows  flexion  at  the  wrist  joint  

and  is  positioned  on  the  lateral  side  of  the  anterior  compartment  of  the  forearm  

(Cael  2010;  Gray  2010;  Agur  &  Dalley  2009).  Flexor  carpi  radialis,  however,  only  

has  the  one  head  arising  from  the  medial  epicondyle  of  the  humerus  and  inserts  at  

the  base  of  metacarpals  two  and  three  (Leversedge  et  al.  2010).    As  it  is  located  on  

the  lateral  side  of  the  forearm,  flexor  carpi  radialis  abducts  the  hand  at  the  wrist  

joint.  

Palmaris  longus  is  a  muscle  found  between  flexor  carpi  ulnaris  and  flexor  carpi  

radialis  that  flexes  the  hand  at  the  wrist  joint  (Cael  2010).  Palmaris  longus  runs  

from  the  medial  epicondyle  of  the  humerus  to  the  flexor  retinaculum  and  palmar  

aponeurosis.  The  flexor  retinaculum  is  a  fibrous  band  (or  ligament)  that  covers  the  

carpus  and  the  palmar  aponeurosis  is  a  layer  of  fibrous  tissue  found  in  the  palm  of  

the  hand  (Leversedge  et  al.  2010;  Cael  2010;  Gray  2010).    

Flexor  digitorum  superficialis  (Figure  2.4)  also  originates  from  the  common  flexor  

origin  and  has  two  additional  heads  that  arise  from  the  coronoid  process  of  the  

ulna  and  the  radial  tuberosity  of  the  radius  (Cael  2010;  Leversedge  et  al.  2010).  

Flexor  digitorum  superficialis  inserts  into  medial  phalanges  two  through  five  and  

allows  flexion  at  the  interphalangeal  joints  and  metacarpophalangeal  joints  of  

digits  two  through  five.    

Flexor  digitorum  profundus  (Figure  2.5)  runs  from  the  medial  surface  of  the  

proximal  region  of  the  ulna  and  the  interosseous  membrane  (the  fibrous  joint  

between  the  ulna  and  the  radius)  and  inserts  at  the  base  of  distal  phalanges  two  

through  five  (Leversedge  et  al.  2010;  Gray  2010).  As  it  inserts  at  the  base  of  the  

distal  phalanges,  flexor  digitorum  profundus  mainly  acts  to  flex  the  fingers  at  the  

distal  interphalangeal  joint.  However,  the  latter  muscle  also  aids  in  the  flexion  of  

the  proximal  phalangeal  and  the  metacarpophalangeal  joints  of  the  fingers.    

 

Page 33: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

  15  

 

Figure  2.4  The  second  layer  of  muscle  in  the  anterior  forearm.  Source:  

Agur  &  Dalley  (2009).  

 

 Figure  2.5  The  third  layer  of  muscle  in  the  anterior  forearm.  Source:  

Agur  &  Dalley  (2009).  

Page 34: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

 16  

Flexor  pollicis  longus  (Figure  2.5)  allows  flexion  of  the  thumb  at  the  

carpometacarpal,  metacarpophalangeal  and  intercarpal  joints  (Cael  2010;  Gray  

2010;  Agur  &  Dalley  2009).  Flexor  pollicis  longus  inserts  at  the  anterior  surface  of  

the  radius  and  the  interosseous  membrane  and  attaches  at  the  base  of  the  distal  

phalanx  located  in  the  thumb.    

2.4.2  Posterior  compartment  of  the  forearm  

The  muscles  in  the  posterior  compartment  of  the  forearm  work  opposite  to  those  

in  the  anterior  compartment  -­‐  rather  than  flex  and  pronate  the  posterior  forearm  

muscles  extend  and  supinate  (Gray  2010;  Cael  2010;  Agur  &  Dalley  2009).  The  

muscles  are  separated  into  three  main  groups:  the  lateral  superficial;  the  medial  

superficial;  and  the  deeper  muscle  groups.    

The  lateral  superficial  group  consists  of  extensor  carpi  radialis  longus  and  extensor  

carpi  radialis  brevis  (Figure  2.6).  Extensor  carpi  radialis  longus  is  the  longer  muscle  

and  extends  from  the  lateral  supracondylar  ridge  of  the  humerus  to  the  base  of  

metacarpal  two  (Cael  2010).  Extensor  carpi  radialis  brevis  arises  just  inferior  to  the  

origin  of  extensor  carpi  radialis  longus  (at  the  lateral  epicondyle  of  the  humerus)  

and  inserts  at  the  base  of  metacarpal  three  (Leversedge  et  al.  2010;  Cael  2010).  

Both  muscles  extend  and  abduct  the  hand  at  the  wrist  joint.    

The  medial  superficial  group  of  muscles  in  the  posterior  compartment  of  the  

forearm  includes  extensor  carpi  ulnaris  (Figure  2.6),  extensor  digitorum  and  

extensor  digiti  minimi  (Figure  2.7).  These  muscles  allow  extension  of  the  hand  at  

the  wrist  joint,  with  additional  movement  specific  to  their  insertions  (Ramones  

1986).  Extensor  carpi  ulnaris  originates  in  the  lateral  epicondyle  of  the  humerus  

and  inserts  at  the  base  of  metacarpal  five.  Additional  to  extension,  it  also  acts  to  

adduct  the  hand  at  the  wrist  joint  (Cael  2010;  Agur  &  Dalley  2009).    The  lateral  

epicondyle  is  also  the  origin  for  extensor  digitorum  and  extensor  digiti  minimi.  

Extensor  digitorum  inserts  at  the  bases  if  the  middle  phalanges  and  distal  

phalanges  two  through  five.  It  extends  the  fingers  at  the  metacarpophalangeal,  

proximal  interphalangeal  and  distal  interphalangeal  joints  (Cael  2010;  Gray  2010).  

Extensor  digiti  minimi  inserts  at  the  base  of  proximal  phalanx  five  and  extends  the  

little  finger  at  both  the  metacarpophalangeal  and  interphalangeal  joints.    

Page 35: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

  17  

 

 

Figure  2.6  The  lateral  superficial  layer  of  muscles  in  the  posterior  

forearm.  From  left  to  right:  Extensor  carpi  radialis  longus;  Extensor  carpi  

radialis  brevis;  and  Extensor  carpi  ulnaris.  Source:  Agur  &  Dalley  (2009).  

The  final  group  of  muscles  in  the  posterior  compartment  of  the  forearm  are  the  

deeper  muscles  that  include  extensor  indicis,  extensor  pollicis  longus,  extensor  

pollicis  brevis  and  abductor  pollicis  longus  (Figure  2.8).  Extensor  indicis  runs  from  

the  posterior  surface  of  the  ulna  and  the  interosseous  membrane  and  inserts  at  the  

base  of  proximal  phalanx  two  and  extensor  indicis  extends  the  index  finger  (Cael  

2010).  

Extensor  pollicis  brevis  and  longus  extend  the  thumb  by  inserting  at  the  base  of  

proximal  and  distal  phalanx  one  respectively.  Both  stem  from  the  interosseous  

membrane,  however  extensor  pollicis  brevis  also  attaches  to  the  posterior  surface  

of  the  radius,  and  extensor  pollicis  longus  attaches  to  the  posterior  surface  of  the  

ulna  (Cael  2010;  Agur  &  Dalley  2009).  Extensor  pollicis  brevis  has  the  additional  

role  of  extending  (abducting)  the  thumb.    

Page 36: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

 18  

 Figure  2.7  The  medial  superficial  layer  of  muscles  in  the  posterior  

forearm.  From  left  to  right:  Extensor  digiti  minimi:  Extensor  digitorum.  

Source:  Agur  &  Dalley  (2009).  

 

Abductor  pollicis  longus  further  assists  extensor  pollicis  brevis  in  both  the  extension  

and  abduction  of  the  carpometacarpal  joint  in  the  thumb.  Abductor  pollicis  longus  

originates  from  the  posterior  surface  of  the  ulna,  radius  and  interosseous  

membrane  and  insets  at  the  base  of  metacarpal  one  (Gray  2010;  Cael  2010;  Agur  &  

Dalley  2009).  

 

Page 37: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  TWO  

 

  19  

 

Figure  2.8  The  deep  muscle  layer  of  the  posterior  forearm.  From  left  to  

right:  Extensor  indicis;  Extensor  pollicis  longus;  Extensor  pollicis  brevis;  

Abductor  pollicis  longus;  Supinator;  and  Anconeus.    Source:  Agur  &  

Dalley  (2009).  

 

2.4.3  Intrinsic  muscles  of  the  hand  

In  addition  to  the  forearm  muscles,  there  are  muscles  that  allow  more  flexion  (or  

abduction)  of  the  thumb  and  little  finger.  These  intrinsic  muscles  facilitate  

specialised  movement  of  the  fingers,  which  in  turn  allow  precision  gripping,  

grasping  and  opposition  of  the  thumb  (Cael  2010).  The  intrinsic  muscles  of  the  

hand  are  either  hypothenar  or  thenar  muscles;  hypothenar  muscles  acting  on  the  

little  finger  and  thenar  muscles  acting  on  the  thumb  (Ramones  1986;  Cael  2010).  

The  hypothenar  muscles  include  opponens  digiti  minimi,  flexor  digiti  minimi  brevis  

and  abductor  digiti  minimi  which  allow  opposition,  flexion  and  abduction  of  the  

little  finger  (Cael  2010;  Gray  2010).  The  thenar  muscles  consist  of  opponens  

pollicis,  flexor  pollicis  brevis  and  abductor  pollicis  brevis  which  allow  opposition,  

flexion  and  abduction  of  the  thumb  (Cael  2010;  Agur  &  Dalley  2009).

Page 38: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 20  

Page 39: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  21  

 

CHAPTER  THREE    

Sexual  dimorphism  and  sex  estimation  methods:  a  review  of  

previous  research  

3.1  Introduction  

Sex  estimation  is  an  integral  component  in  constructing  a  biological  profile  from  

skeletal  tissue  and  has  been  extensively  researched  using  both  metric  and  non-­‐

metric  approaches.  This  chapter  discusses  the  concept  of  sexual  dimorphism  and  

the  expression  of  sexual  dimorphism  in  skeletal  elements,  followed  by  a  review  of  

literature  specifically  concerning  sex  estimation  methods  based  on  the  analysis  of  

the  fleshed  hand  and  its  bones.  

3.2  Sexual  dimorphism      

Sexual  dimorphism  is  the  behavioural  and  physical  difference  (other  than  the  

reproductive  organs  and  genitalia)  that  occurs  between  males  and  females  within  

a  species  (Frayer  &  Wolpoff  1985;  Glücksmann  1981;  Park  2013).  In  general  these  

differences  relate  to  the  size  and  robusticity  of  males  and  females  within  a  species  

-­‐  in  hominid  species  males  generally  being  larger  than  females  (Krogman  1978;  

Park  2013).  The  extent  to  which  sexual  dimorphism  is  expressed  differs  between  

hominid  species,  but  it  can  also  differ  within  a  species,  as  the  expression  and  

magnitude  of  sexual  dimorphism  is  affected  by  multiple  factors  including  sexual  

selection  and  socio-­‐economic  role  differences  (Frayer  &  Wolpoff  1985).    

Human  males  (like  males  of  most  other  hominid  species)  tend  to  have  a  larger  

overall  body  size  and  exhibit  greater  muscle  mass  or  robusticity  (Plavcan  2001).  

This  size  difference  is  considered  to  be  a  secondary  sexual  characteristic,  however,  

it  is  also  evident  during  postnatal  growth  (Wells  2007).  These  size  differences  are  

apparent  in  bones  -­‐  most  obvious  in  cortical  thickness  (Wells  2007).  Skeletal  

dimorphism  can  be  attributed  to  the  difference  in  the  onset  and  duration  of  

puberty  between  males  and  females.    The  male  pubertal  growth  spurt  tends  to  

Page 40: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

 22  

begin  2  years  later  than  the  female  pubertal  growth  spurt  (Wells  2007).  However,  

the  male  pubertal  growth  spurt  lasts  longer  than  their  female  counterparts,  which  

results  (on  average)  in  males  growing  more  and  for  longer  than  females.  (Bogin  

1999).  The  latter  can  result  in  size  sexual  dimorphism.  Bones  exhibiting  clear  

sexual  dimorphism  include  the  pelvis,  skull  and  long  bones;  these  are  discussed  

below.  

3.2.1  The  pelvis  

The  pelvis  is  potentially  the  most  sexually  dimorphic  bone  in  the  skeleton  and  is  

therefore  the  preferred  element  for  sex  estimation  (Scheuer  2002;  Bruzek  2002;  

Reichs  1998).  Differences  in  the  male  and  female  pelvis  are  primarily  related  to  

sex-­‐specific  functional  roles;  the  pelvis  has  to  accommodate  both  bipedal  

locomotion  and  childbirth  in  females.  This  requires  a  specific  morphology,  which  

in  females  includes  flared  iliac  blades,  a  concave  sub-­‐pubic  angle  shape,  an  obtuse  

sub-­‐pubic  angle  and  a  pelvic  inlet  that  is  broad  mediolaterally  (White  et  al.  2012;  

Plavcan  2001;  Reichs  1998).  Conversely,  male  pelvis  exhibits  morphological  traits  

that  are  at  the  opposite  end  of  the  spectrum  of  the  features  described  above.  

 Differences  in  male  and  female  pelvic  bones  are  visually  quantifiable;  a  number  of  

non-­‐metric  sex  estimation  methods  are  available.  Phenice  (1969)  examined  the  

pelvic  bones  of  275  adults  from  the  Terry  Collection,  which  consists  primarily  of  

Caucasian  American  individuals.  A  classification  accuracy  of  96%  was  reported  

based  on  the  assessment  of  three  morphological  features  in  the  pubis:  the  ventral  

arc:  sub-­‐pubic  cavity:  and  ischio-­‐pubic  ramus  ridge.  Recently,  however,  the  latter  

method  has  yielded  poorer  classification  results,  with  accuracies  ranging  from  60  

to  80%  when  applied  to  a  mixed  French  and  Portuguese  population  (Bruzek  2002).  

Such  differences  in  classification  accuracies,  however,  highlights  the  population  

specific  nature  of  these  traits  and  thus  the  need  for  local  standards.    

The  other  main  approach  to  quantify  pelvic  sexual  dimorphism  is  the  statistical  

analysis  of  linear  measurements.  Steyn  and  Işcan  (2008)  formulated  discriminant  

sex  estimation  functions  applicable  to  a  modern  Greek  population;  classification  

accuracies  ranged  from  79.7  to  95.9%.  Albanese  et  al.  (2003)  examined  232  

Portuguese  and  324  Caucasian  American  skeletons  and  produced  logistic  

Page 41: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

  23  

regression  equations  based  on  the  premise  of  having  only  fragments  of  the  pelvis  

and  femur  available  for  analysis.  This  resulted  in  a  correct  classification  accuracy  

of  95%,  thus  reiterating  the  well-­‐known  fact  that  the  pelvis  is  highly  sexually  

dimorphic.    

3.2.2  The  skull  

Sex  estimation  methods  utilising  measurements  (or  observations)  of  cranial  

features  are  generally  considered  accurate  due  to  high  levels  of  size  and  shape  

dimorphism  present  in  the  skull.  Difference  in  muscle  size  and  shape  between  

males  and  females  are  attributable  to  the  increased  levels  of  testosterone  that  

males  are  exposed  to  during  puberty,  which  promotes  increased  muscle  mass  

(Glücksmann  1981;  Braz  2009).  Male  skulls  (on  average)  exhibit  a  larger  muscle  

mass  and  thus  larger  attachment  sites  such  as  a  more  prominent  glabella  (Frontalis  

muscle),  heavier  temporal  crests  (Temporalis,  digastric  and  occipitalis  muscles),  

more  pronounced  nuchal  lines  (Frontalis,  occipitalis,  sternocleidomastoid  and  

trapezius  muscles),  square-­‐shaped  mandible  (Masseter,  mentalis,  temporalis  and  

mylohyoid  muscles),  a  more  robust  mastoid  (Splenius  capitis,  longissimus  capitis  

and  sternocleidomastoid  muscles)  and  styloid  process  (Stylohyoid,  styloglossus  and  

stylopharyngeus  muscles)  and  a  large  zygomatic  arch  (Masseter,  zygomaticus  major  

and  minor  muscles)  (Gray  2010;  White  et  al  2012).    

One  of  the  earliest  morphometric  sex  estimation  studies  examined  Caucasian-­‐

American  and  African  American  skulls;  a  total  of  eight  linear  measurements  

resulted  in  a  classification  accuracy  of  82  to  89%  (Giles  &  Elliot  1963).  Franklin  et  

al.  (2005),  when  applying  a  re-­‐defined  set  of  measurements  based  on  those  of  Giles  

and  Elliot  (1963)  to  a  South  African  population,  found  that  accuracies  were  slightly  

lower  at  77-­‐80%.  Kranioti  et  al.  (2008)  examined  a  Greek  population  and  reported  

a  classification  accuracy  of  88.2%.  Variation  in  classification  accuracies  across  

populations  is  largely  due  to  differences  in  the  expression  and  magnitude  of  

sexually  dimorphic  cranial  traits,  thus  again  highlighting  the  necessity  for  

population  specific  standards.  

Page 42: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

 24  

3.2.3  Long  bones  

Krogman  (1978,  pp.143)  defines  male  long  bones  as  “longer  and  more  massive”  

than  female  long  bones.  Males,  as  a  result  of  periosteal  apposition  during  puberty,  

tend  to  have  long  bones  with  greater  articular  end  and  mid-­‐shaft  diameters,  as  

well  as  greater  maximum  lengths,  compared  to  females.    The  average  size  

difference  in  long  bones  is  evident  in  a  number  of  forensic  anthropological  studies.  

For  example,  Krogman  (1978)  achieved  80%  classification  accuracy  based  on  

measurements  acquired  from  the  femur  and  humerus.  Discriminant  function  

analyses  of  humeral  epiphyses  and  femoral  epiphyses  in  a  Greek  population  have  

resulted  in  classification  accuracies  above  80%  (Kranioti  et  al.  2009;  Kranioti  et  al.  

2011).  Calculations  based  on  the  measurements  of  maximum  head  diameter  and  

base  width  of  the  femur  resulted  in  classification  accuracies  of  85.7  and  84.3%;  

these  two  measurements  were  considered  the  most  accurate  variables  of  this  

study  (Kranioti  et  al.  2011).  The  latter  studies  clearly  demonstrate  high  levels  of  

sexual  dimorphism  in  a  variety  of  long  bones.  

3.3  Sex  estimation  based  on  the  analysis  of  the  hand    

The  following  section  is  an  overview  of  select  literature  relating  to  sexual  

dimorphism  in  the  hand,  as  evidenced  through  the  morphometric  analysis  of  the  

fleshed  hand  and  its  skeletal  structure.  Published  literature  based  on  the  analysis  

of  the  fleshed  hand  is  predominantly  concerned  with  the  estimation  of  stature  

rather  than  sex.  However,  there  are  a  number  of  anthropometric  studies  that  have  

reported  sex  differences  in  the  dimensions  of  the  palm  and  hand.  Such  studies  

provide  some  degree  of  useful  comparative  information  for  the  present  study.  

Thereafter,  research  based  on  the  analysis  of  the  hand  bones  is  presented  

chronologically;  progressing  from  assessing  sexual  dimorphism  in  the  hand  bones  

to  producing  sex  estimation  standards  that  are  specific  to  various  global  

populations.    

Page 43: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

  25  

3.3.1  Fleshed  hand  

i)  Kanchan  et  al.  (2008)  

This  study  examined  the  relationship  between  sex  and  index-­‐ring  finger  ratios  in  a  

South  Indian  population.  A  total  of  150  male  (18  to  51  years  of  age)  and  150  female  

(18  to  45  years  of  age)  individuals  were  examined  from  the  Karnataka  coastal  

region  in  South  India.  The  length  of  the  index  and  ring  fingers  were  measured  in  

each  hand  and  the  index-­‐ring  finger  ratio  was  calculated.  

The  results  adhere  to  the  general  consensus  that  males  are  larger  than  females,  

with  mean  values  for  both  length  measurements  being  significantly  larger  in  the  

former  sex.  There  was  no  evidence  of  significant  bilateral  variation.  Sex  

classification  accuracy  (left  and  right  hand)  in  the  male  sample  was  80%;  for  

females  the  classification  accuracy  for  the  left  hand  was  slightly  higher  (78%)  than  

for  the  right  (74%).  The  results  of  this  study  suggest  that  the  index  and  ring  finger  

ratio  can  be  used  to  classify  sex;  a  ratio  of  0.97  or  less  indicative  of  males  and  a  

ratio  more  than  0.97  indicative  of  females.    

ii)  Kanchan  and  Rastogi  (2009)  

The  aim  of  this  study  was  to  establish  if  hand  dimensions  and  indices  were  

sexually  dimorphic  in  a  North  and  South  Indian  population.  The  sample  consisted  

of  500  students;  120  males  and  100  females  from  a  North  Indian  population,  and  

110  males  and  170  females  from  a  South  Indian  population.  As  the  effect  of  

bilateral  asymmetry  due  to  hand  dominance  was  not  known,  only  right-­‐handed  

students  were  examined.  Hand  length,  hand  breadth  and  palm  length  were  

measured,  from  which  hand  and  palm  indices  were  calculated;  associated  

sectioning  points  were  established  and  their  classification  accuracy  was  reported.    

In  general,  the  results  of  this  study  showed  that  male  hand  dimensions  were  on  

average  significantly  larger  than  females  for  both  populations.  The  highest  

classification  accuracy  was  88.7%  for  males  (hand  breadth  in  the  left  hand)  and  

91.9%  for  females  (palm  length  in  the  left  hand).  Index  values  were  found  to  be  

less  accurate  and  therefore  not  applicable  for  estimating  sex  in  an  Indian  

population.  Only  the  index  value  for  the  left  hand  in  both  males  and  females  was  

Page 44: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

 26  

found  to  be  statistically  significant.  Using  the  sectioning  point  based  on  the  hand  

indices,  the  classification  accuracies  were  only  53.9%  and  55.9%  for  males  and  

females  respectively;  the  latter  indices  thus  have  no  forensic  value.    

iii)  Kanchan  et  al.  (2010)  

This  study  is  a  continuation  of  Kanchan  et  al.  (2008;  see  above)  albeit  the  methods  

are  applied  to  a  South  Indian  adolescent  population.  The  aim  was  to  evaluate  if  sex  

estimation  methods  using  the  index-­‐ring  finger  ratio  are  applicable  to  sub-­‐adults.  

The  sample  consisted  of  175  males  and  175  females  between  13  to  18  years  of  age.  

In  the  adolescent  sample,  the  index  length  was  not  significantly  different  between  

the  sexes.  However,  the  difference  in  ring  finger  length  was  highly  significant  (p≤  

0.001)  and  there  were  no  significant  bilateral  difference  in  either  sex.  Classification  

accuracy  for  males  was  83%  in  the  right  hand  and  82%  in  the  left  hand.  

Classification  accuracy  for  females  was  74%  in  the  right  hand  and  80%  in  the  left.  

The  results  from  this  study  appear  to  suggest  that  the  index-­‐ring  finger  ratio  

approach  to  sex  estimation  could  be  applied  to  a  sub-­‐adult  South  Indian  

population,  as  the  ratio  does  not  appear  to  fluctuate  due  to  aging  or  the  cessation  

of  puberty.  It  is  important  to  note  that  accuracy  rates  were  not  cross-­‐validated,  

which  perhaps  suggests  that  the  classification  rates  are  over-­‐inflated.  

iv)  Aboul-­‐Hagag  et  al.  (2011)  

The  aim  of  this  study  was  to  examine  sexual  dimorphism  in  the  hand  of  individuals  

drawn  from  an  Egyptian  population.  Data  was  acquired  from  a  total  of  500  

students  (250  males  and  250  females)  from  Sohag  University;  the  subjects  are  

stated  to  be  older  than  18  years  of  age.  The  age  range,  mean  age  or  maximum  age  

of  the  subjects  was  not  provided.  Measurements  acquired  included  hand  length  

and  breadth  and  index  finger  and  ring  finger  lengths.  Hand  index  and  index-­‐ring  

finger  ratios  were  also  calculated.  

Hand  length,  breadth  and  the  hand  index  were  all  significantly  larger  (p≤  0.05)  in  

males  for  both  hands.  There  was  no  significant  bilateral  difference  in  those  

measurements.  Classification  of  sex  using  the  hand  index  resulted  in  an  accuracy  of  

80%  and  81.2%  in  males  for  the  right  and  left  hands  respectively.  Classification  of  

Page 45: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

  27  

females  was  80%  for  the  right  and  78%  for  the  left  hand.  Classification  of  sex  based  

on  the  index-­‐ring  finger  ratios  had  higher  maximum  accuracies  for  both  sexes  than  

the  hand  index;  90.4%  (male  right  hand)  and  85.6%  (female  right  hand).  The  

results  of  this  study  are  consistent  with  previous  research;  mean  male  hand  

dimensions  were  significantly  greater  than  the  mean  dimensions  obtained  in  

females.  The  results  of  this  study  confirm  that  the  hand  is  sexually  dimorphic  in  an  

Egyptian  population,  however,  the  discriminant  functions  were  not  cross-­‐validated  

and  thus  the  stated  accuracy  may  be  over  inflated.    

v)  Ishak  et  al.  (2012)  

Ishak  et  al.  (2012)  assessed  whether  sex  could  be  accurately  estimated  using  

measurements  acquired  in  hands  and  handprints  for  a  Western  Australian  

population.  The  sample  comprised  91  males  (age  range  19-­‐68  years)  and  110  

females  (age  range  18-­‐63  years).  Hand  breadth,  hand  length,  palm  length  and  the  

lengths  of  the  thumb,  middle  and  ring  finger  were  measured  in  both  hands.  

Handprints  were  acquired  using  a  flatbed  scanner  and  the  aforementioned  

measurements  were  also  taken  in  the  handprints.  

All  hand  and  handprint  measurements  were  found  to  be  statistically  significantly  

different  between  males  and  females  (p  <  0.001).  ANOVA  F-­‐statistic  values  suggest  

that  hand  breadth,  hand  length,  palm  length,  handprint  breadth  and  handprint  

length  express  the  greatest  sexual  dimorphism.  Univariate  functions  were  

reported  to  have  expected  sex  classification  accuracies  of  82.6%  to  94.0%;  hand  

breadth  was  considered  to  be  the  most  sexually  dimorphic  measurement.  A  cross-­‐

validated  stepwise  discriminant  function  analysis  resulted  in  a  very  high  

classification  accuracy  of  96.5%.  

It  was  concluded  that  within  the  Western  Australian  sample,  hand  length  and  hand  

breadth  are  more  dimorphic  than  the  lengths  of  the  individual  fingers;  this  accords  

with  previously  published  literature  (ie.  Aboul-­‐Hagag  et  al.  2011).  The  results  also  

indicate  that  anthropometric  measurements  taken  in  the  hand  can  be  used  to  

accurately  estimate  sex  in  a  Western  Australian  population.  The  study  also  offers  a  

“novel”  sex  estimation  method  that  can  be  applied  to  handprints  found  in  a  forensic  

context  (e.g.  at  a  crime  scene).  

Page 46: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

 28  

3.3.2  Hand  bones  

i)  Scheuer  and  Elkington  (1993)  

These  authors  suggest  that  smaller  long  bones  (such  as  metacarpals,  metatarsals  

and  phalanges)  are  more  likely  to  be  recovered  intact  than  the  larger  long  bones  in  

appendicular  skeleton.  Therefore,  the  aim  of  this  study  was  to  establish  if  bones  of  

the  hand  are  sexually  dimorphic  and  to  formulate  sex  estimation  standards.  The  

sample  comprised  60  cadavers  (of  Caucasian  British  ancestry)  from  various  

medical  schools  in  the  United  Kingdom.  After  defleshing,  measurements  were  

taken  of  all  five  metacarpals  and  the  first  proximal  phalanx.  There  were  six  

measurements  taken  and  the  acquired  data  were  used  to  calculate  an  ‘index  of  

separation’  (male  mean  value  minus  the  female  mean  value,  divided  by  the  

combined  standard  deviation).  Measurements  that  resulted  in  a  higher  index  of  

separation  were  considered  to  be  more  dimorphic.  Multiple  regression  analysis  

was  used  to  formulate  equations,  the  performance  of  which  were  tested  on  a  

relatively  small  sample  (a  hold-­‐out  sample  of  20  individuals).    

The  measurement  that  had  the  highest  index  of  separation  was  the  mediolateral  

base  of  metacarpal  two  (1.41)  followed  by  the  mid-­‐shaft  width  of  metacarpal  one  

(1.29).  Overall,  the  mid-­‐shaft  widths  of  all  the  digits  (except  metacarpal  five)  had  

indices  of  separation  higher  when  compared  to  the  other  measurements  

(maximum  length,  width  of  the  head  and  width  of  the  base).  The  top  five  

classification  accuracies  of  the  test  sample  ranged  from  74%  (proximal  phalanx  

one)  to  94%  (metacarpal  one).    A  multiple  regression  equation  formulated  from  

the  mid-­‐shaft  width  measurements  of  each  hand  bone  classified  sex  at  80%  

accuracy.  The  results  of  this  study  suggest  that  in  the  hand  bones  measures  of  

breadth  are  more  likely  to  exhibit  dimorphism  than  those  of  length.  

ii)  Smith  (1996)  

The  aim  of  this  study  was  to  produce  sex  estimation  models  for  the  hand  bones.  A  

total  of  120  individuals  were  sampled;  40  males  and  40  females  of  both  Caucasian  

American  and  African  American  ancestry  groups.    The  age  range  of  the  subjects  

was  21  to  50  years.  The  upper  age  limit  of  50  years  was  implemented  in  the  

Page 47: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

  29  

attempt  to  ensure  that  bones  had  not  undergone  degeneration  associated  with  

advanced  age.  Antero-­‐posterior  and  mediolateral  widths  of  the  head,  mid-­‐shaft  and  

base  of  the  five  metacarpals  and  14  phalanges  of  each  hand  were  measured.  

Maximum  lengths  were  also  acquired.  Significant  bilateral  differences  were  found  

in  measurements  taken  in  the  middle  phalanges.  Stepwise  discriminant  function  

analysis  was  conducted  and  eight  classification  models  produced.    

The  metacarpal  models  for  both  hands  were  the  most  accurate  (87-­‐89%),  although  

there  was  a  large  difference  in  classification  accuracies.  The  metacarpal  models  

assigned  sex  correctly  at  89%  in  the  left  hand,  and  at  72%  in  the  right.  The  phalanx  

measurements  had  a  sex  classification  accuracy  of  >80%.  Smith  tested  the  

accuracy  of  models  produced  on  opposite  hands;  classification  accuracies  reached  

86%  for  the  metacarpal  models,  81%  for  the  distal  phalanges,  78%  for  the  

proximal  phalanges  and  73%  for  the  middle  phalanges.  This  study  concluded  that  

linear  measurements  acquired  from  hand  bones  can  be  used  to  accurately  classify  

both  sex  and  ancestry;  with  the  models  derived  from  metacarpal  data  achieving  

the  highest  accuracy.    

iii)  Stojanowski  (1999)  

Falsetti  (1995)  followed  the  methods  of  Scheuer  and  Elkington  (1993)  and  applied  

it  to  a  North  American  population.  The  aim  of  the  study  by  Stojanowski  (1999)  was  

to  build  upon  the  work  of  Falsetti  by  applying  the  same  methods  to  a  larger  and  

‘more  contemporary’  sample.  A  total  of  approximately  200  subjects  from  the  

Maxwell  Museum  of  Anthropology  were  examined.  The  exact  sample  composition,  

however,  was  not  stipulated;  Stojanowski  estimated  maximum  sub-­‐sample  

numbers  as  55  Caucasian-­‐American  males,  22  African-­‐American  males,  30  

Caucasian-­‐American  females  and  15  African-­‐American  females.  The  individuals  

studied  were  of  European-­‐American  and  African  American  ancestry  born  after  

1900;  the  extent  to  which  this  sample  is  considered  ‘contemporary’,  however,  is  

debatable.  Stojanowski  (1999)  also  proposed  models  are  able  to  be  used  in  

fragmented  or  poorly  preserved  remains.    

No  significant  population  differences  were  found;  sex,  however,  was  significantly  

different  for  all  dimensions.  Seven  discriminant  functions  for  each  metacarpal  

Page 48: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

 30  

were  produced.  The  highest  classification  was  achieved  using  measurements  of  the  

articulate  ends  of  the  metacarpals  (89%)  and  the  lowest  classification  was  found  

using  combined  measurements  (maximum  length,  base  length,  head  length)  for  

metacarpals  two  and  five  (74%).  Although  the  functions  produced  are  unlikely  to  

be  applicable  to  a  ‘modern’  American  population,  the  functions  developed  by  

Stojanowski  (1999)  provide  sex  estimation  standards  that  are  suitable  for  

application  in  fragmented  bones  and  this  has  potential  forensic  utility.  

iv)  Burrows  et  al.  (2003)  

The  aim  of  this  study  was  to  test  previously  published  standards  (e.g.  Scheuer  and  

Elkington  (1993),  Falsetti  (1995)  and  Stojanowski  (1999))  to  determine  which  is  

most  accurate.  The  objective  was  to  establish  which  metacarpal  should  be  used  in  

preference  for  sex  estimation.  A  very  small  sample  of  23  individuals  of  American  

ancestry  (it  is  not  stipulated  whether  they  were  Caucasian  or  African  American)  

were  classified  using  measurements  taken  from  the  published  literature.  It  is  

important  to  note  that  the  small  sample  size  may  have  an  affect  on  the  statistical  

reliability  of  the  results.    

Sex  classification  accuracy  achieved  using  Scheuer  and  Elkington  (1993)  and  

Falsetti  (1995)  was  9%  and  5%  lower  than  the  rates  reported  by  these  authors.  

The  sex  classification  accuracies  achieved  using  methods  from  Stojanowski  (1999)  

were  also  slightly  different;  ranging  from  65  to  95%  rather  than  75  to  90%.  This  

study  essentially  highlights  the  need  for  sex  estimation  standards  to  be  both  

population  specific  and  contemporary  in  order  to  avoid  inaccuracies  in  sex  

estimation.  The  sample  used  by  Scheuer  and  Elkington  (1993)  was  from  a  different  

population  and  the  sample  used  by  Falsetti  (1995)  came  from  a  different  time  

period.  These  are  the  likely  reasons  for  the  differences  in  the  reported  sex  

classification  accuracies.  

v)  Barrio  et  al.  (2006)  

The  aim  of  this  study  was  to  produce  sex  estimation  functions  applicable  to  a  

Spanish  population.  Eight  bilateral  measurements  were  taken  in  697  metacarpals  

of  79  adults  (37  male  and  42  female).  The  metacarpals  were  from  a  skeletal  

Page 49: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

  31  

collection  of  individuals  who  had  died  between  1975  and  1985;  the  stated  age  at  

death  ranged  from  20  to  91  years.  Univariate  discriminant  functions  were  

produced  and  were  cross-­‐validated  using  a  leave-­‐one-­‐out  protocol.  A  total  of  120  

discriminant  functions  were  produced  based  on  only  one  measurement  each;  40  

functions  from  the  right  hand,  40  functions  from  the  left,  and  40  based  on  pooled  

side  data.  The  function  that  had  the  highest  classification  accuracy  was  based  on  

data  acquired  from  the  mediolateral  diameter  of  the  base  of  left  metacarpal  two  

(sex  classification  accuracy  of  91%).  These  results  follow  the  trend  that  measures  

of  width  and  breadth  are  more  sexually  dimorphic  than  measures  of  length  in  both  

the  fleshed  and  skeletal  hand.  It  was  concluded  that  metacarpal  morphometric  

data  could  be  used  to  accurately  estimate  the  sex  of  Spanish  individuals.  

vi)  Case  and  Ross  (2007)  

The  aim  of  this  study  was  to  produce  discriminant  functions  for  sex  estimation  

with  length  as  the  only  variable.  The  maximum  axial  length  of  the  metacarpals  and  

phalanges  of  both  hands  were  acquired  in  in  a  total  of  259  subjects  (123  females  

and  136  males)  of  Caucasian  American  or  Caucasian  European  ancestry.  The  male  

sample  ranged  in  age  from  18  to  60  years;  for  the  female  sample  the  range  was  27  

to  72  years.    

Sex  was  estimated  more  accurately  in  the  left  (85.7%)  compared  to  the  right  

(84.3%)  hand.  Case  and  Ross  (2007)  concluded  that  discriminant  functions  based  

on  length  measurements  alone  could  accurately  estimate  sex  and  suggested  that  

lengths  be  used  in  preference  to  transverse  measurements.  Although  previous  

literature  indicated  that  transverse  measurements  are  the  most  dimorphic  

dimensions  in  the  hand,  Case  and  Ross  suggest  that  this  is  likely  due  to  the  impact  

of  functional  loading  on  these  dimensions.  As  length  measurements  have  a  

tendency  to  remain  unaffected  by  functional  loading  due  to  “activity-­‐variation”  

(Case  &  Ross  2007,  pp.269),  discriminant  functions  based  on  length  are  less  likely  

to  be  affected  by  population  and  temporal  differences.  

Page 50: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  THREE  

 

 32  

vii)  El  Morsi  and  Hawary  (2012)  

The  aim  of  this  study  was  to  produce  sex  estimation  predictive  models  for  the  hand  

bones  of  individuals  from  an  Egyptian  population.  A  total  of  100  Egyptian  

individuals  (50  male  and  50  female)  were  x-­‐rayed  and  the  maximum  lengths  of  the  

five  metacarpals  and  14  phalanges  were  acquired.  Student’s  t-­‐tests  were  used  to  

assess  if  there  was  any  significant  differences  between  male  and  female  

measurements  prior  to  performing  multiple  logistic  regression  analyses.  All  mean  

male  measurements  were  significantly  larger  than  mean  female  measurements  (p  

≤  0.05).  A  test  was  also  conducted  to  compare  the  mean  values  obtained  for  the  

right  and  left  sides  of  the  pooled  sample;  the  first  metacarpal  in  male  subjects  was  

the  only  bone  reported  to  have  any  significant  bilateral  variance.  The  bilateral  

predictive  models  derived  from  the  data  acquired  resulted  in  correct  classification  

accuracies  of  94%  for  males  and  88%  for  females.  When  predictive  models  of  the  

right  hand  alone  were  used,  a  classification  accuracy  of  88%  was  achieved  for  both  

males  and  females.  The  predictive  models  from  the  left  hand  data,  however,  

correctly  classified  90%  and  88%  of  males  and  females  respectively.  The  

predictive  models  based  on  the  lengths  of  the  first  proximal  phalanx,  first  distal  

phalanx,  metacarpal  three  and  metacarpal  four  were  the  most  reliable  models  for  

the  estimation  of  sex  in  the  Egyptian  population.  

This  study  confirms  that  sex  can  be  estimated  from  length  measurements  of  the  

metacarpals  and  phalanges  from  individuals  of  an  Egyptian  origin.  The  results  

from  this  study  also  suggest  morphometric  data  can  be  accurately  acquired  in  

radiographs.  This  may  be  useful  in  a  forensic  context  whereby  both  a  forensic  

anthropologist  and  forensic  pathologists  require  access  to  an  individual  for  

examination;  x-­‐rays  are  non-­‐invasive  and  would  allow  for  adherent  soft  tissue  to  

remain  intact,  or  for  skeletal  elements  to  be  examined  remotely  if  required.  

 

 

Page 51: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  33  

CHAPTER  FOUR    

Materials  and  Methods  

4.1  Introduction  

The  primary  objective  of  the  present  research  thesis  is  to  quantify  the  expression  

and  magnitude  of  sexual  dimorphism  in  the  metacarpals  and  phalanges.  This  

chapter,  therefore,  accordingly  outlines  the  data  collection  methods  and  the  

subsequent  statistical  analyses.  The  materials  studied  are  digital  antero-­‐posterior  

x-­‐rays  of  the  right  hand.  Validation  of  the  data  acquisition  methods  is  also  

considered  in  this  chapter.  

4.2  Materials  

The  individuals  examined  were  separated  into  two  sub-­‐groups:  an  adult  (300  

individuals)  and  a  sub-­‐adult  (100  individuals)  sample.  The  adult  sample  comprises  

digital  hand  x-­‐rays  of  150  males  and  150  females;  the  age  range  for  males  was  18.3  

to  64.3  years  (mean  41.9)  and  for  females  was  18.5  to  68.4  years  (mean  42.8).  The  

sub-­‐adult  sample  comprises  100  digital  x-­‐rays  of  individuals  between  13  and  18  

years  of  age  (Table  4.1).  The  sub-­‐adult  x-­‐rays  were  sorted  into  three  age  groups:  

Group  A  for  12  to  14  years  of  age;  Group  B  for  14  to  16  years  of  age;  and  Group  C  

for  16  to  18  years  of  age.  The  sub-­‐adult  x-­‐rays  were  grouped  into  these  two-­‐year  

intervals  to  allow  for  more  robust  statistical  analyses  of  the  sub-­‐adult  data  (as  

analyses  would  be  conducted  on  a  larger  sample  than  if  data  was  grouped  into  one  

year  intervals)  and  to  account  for  the  stages  of  maturation  that  can  occur  at  

variable  ages  between  individuals.  The  sub-­‐adult  sample  is  used  to  quantify  the  

age  at  which  the  hand  bones  are  sexually  dimorphic  and  therefore  the  youngest  

age  at  which  sex  estimation  discriminant  functions  can  be  reliably  applied  to  a  

Western  Australian  population.    

The  digital  hand  x-­‐rays  analysed  were  acquired  from  a  Picture  Archiving  and  

Communication  Systems  (PACS)  database;  this  contains  medical  scans  from  

various  Western  Australian  hospitals  and  is  maintained  by  the  Department  of  

Page 52: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     34  

Health  (DOH).  Radiographs  of  hands  that  showed  little  to  no  skeletal  trauma  in  the  

metacarpals  and  phalanges,  and  had  no  obvious  anomalies  (such  as  abnormal  

osseous  growths),  were  included  in  the  study.  Additional  to  the  latter  inclusion  

requirements,  the  selected  radiographs  had  to  present  clear  identification  of  the  

landmarks  defining  the  required  linear  measurements.    

Table  4.1  The  number  individuals  in  each  age  group  in  the  sub-­‐adult  sample.  

Age  group   Sex   n  

Group  A     Male   10  

(12  –  14  years)   Female   11  

Group  B   Male   20  

(14  –  16  years)   Female   20  

Group  C   Male   20  

(16  –  18  years)   Female   19  

 

As  this  study  was  based  on  human  subjects,  approval  was  required  from  the  

Human  Research  Ethics  Committee  (HREC)  of  the  University  of  Western  Australia.  

Approval  was  granted  on  11th  October  2012  (Project  No:  RA/4/1/4362)  and  data  

collection  commenced  thereafter.  

4.3  Methods  

The  two  methods  evaluated  for  their  suitability  for  the  acquisition  of  linear  

measurements  in  digital,  as  well  as  the  definitions  of  the  measurements  

subsequently  calculated,  are  outlined  below.  A  precision  study  was  first  performed  

to  assess  which  of  the  two  available  methods  for  data  acquisition  provided  the  

most  accurate  and  reliable  data.  The  statistical  approaches  for  the  precision  test,  

and  the  subsequent  analysis  of  sexual  dimorphism  in  the  hand  bones,  are  outlined  

below.    

4.3.1  Landmark  definitions  and  typology  

i)  Landmark  definition  

Landmarks,  in  an  anatomical  context,  are  “biologically  meaningful”  (Valeri  et  al.  

1998)  points  that  can  be  readily  identified  and  are  considered  homologous  

Page 53: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     35  

between  specimens  (O’Higgins  2000;  Richtmeier  et  al.  1995)  The  acquisition  of  

landmarks  facilitates  the  analysis  of  variance  in  biological  forms  with  landmark  

data  being  “a  representation  of  homologous  structures”  (Richtmeier  et  al.  1995,  

pp.218).  Bookstein  (1991)  defines  three  categories  of  landmarks  commonly  

recognised  within  morphometric  analyses:  Type  I;  Type  II;  and  Type  III.  

Type  I:  These  landmarks  are  considered  to  be  points  that  can  be  readily  identified  

as  their  location  is  based  on  their  immediate  surroundings  that  are  typically  

recognisable  anatomical  features;  such  as  the  point  at  which  different  tissues,  

structures  or  bones  meet  (Bookstein  1991;  O’Higgins  2000;  Ross  &  Williams  

2008).  Examples  of  Type  I  landmarks  include  anatomical  features  such  as  cranial  

sutures  (Coronal  suture,  Bregma,  etc.)  and  blood  vessel  branches  (Aorta)  or  

foramina  (Foramen  magnum)  (Bookstein  1991;  Valeri  et  al.  1998).  Type  I  

landmarks  are  reproducible  because  they  represent  anatomical  features  that  are  

normally  considered  to  be  the  same  between  specimens;  for  example,  if  the  

bregma  (the  junction  of  the  sagittal  and  coronal  sutures)  is  used  as  a  landmark,  

then  it  must  follow  the  same  definition  between  all  specimens  in  the  study  

(Cramon-­‐Taubadel  et  al.  2007;  O’Higgins  2000).    

 

Type  II:  Type  II  and  Type  III  landmarks  tend  to  be  more  ambiguous  to  locate  and  

identify  than  Type  I  landmarks  (Cramon-­‐Taubadel  et  al.  2007).  The  Type  II  

landmarks  category  is  the  intermediate  category,  consisting  of  anatomical  points  

that  are  homologous  between  specimens  based  on  their  geometric  relationship  

with  their  immediate  surroundings  (Bookstein  1991;  Ross  &  Williams  2008).  

Bookstein  (1991)  refers  to  Type  II  landmarks  as  “maxima  of  curvature  of  other  

local  morphometric  processes”  (pp.64)  and  such  landmarks  include,  for  example,  

points  of  muscle  attachment  (O’Higgins  2000;  Ross  &  Williams  2008).    

Type  III:  These  landmarks  are  “extremal  points”  (Bookstein  1991,  pp.65)  that  

points  are  most  likely  to  be  endpoints  of  an  overall  distance,  or  a  point  that  is  

defined  as  furthest  away  from  another  (Bookstein  1991;  O’Higgins  2000).  Type  III  

landmarks  have  at  least  one  coordinate  that  is  inconsistent  (Bookstein  1991).  This  

means  that  the  location  of  a  landmark  can,  at  most,  be  narrowed  down  to  a  border,  

surface  or  end  point;  the  landmark  is  therefore  less  likely  to  be  reproducible  or  

Page 54: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     36  

remain  consistent  between  specimens  (Valeri  et  al.  1998;  Slice  et  al.  2004).  The  

medial  point  of  an  epiphysis,  an  end  point  of  a  diameter  or  location  of  a  fissure  are  

all  examples  of  Type  III  landmarks.  

In  the  present  study  a  total  of  80  landmarks  were  acquired  in  each  digital  hand  x-­‐

ray;  eight  landmarks  in  each  of  the  five  metacarpals  and  five  proximal  phalanges.  

The  definitions  of  those  landmarks  are  based  on  previously  published  papers  –  see  

Figure  4.1  and  Table  4.2,  which  outlines  the  landmarks  acquired  using  metacarpal  

two  as  an  example.  The  landmarks  acquired  in  this  study  are  predominately  Type  

III  landmarks  (Table  4.2),  which  gives  reason  to  expect  relatively  lower  intra-­‐

observer  accordance  and  measurement  accuracy.  However,  a  precision  test  was  

conducted  prior  to  data  acquisition  in  order  to  statistically  quantify  the  accuracy  

and  reliability  of  landmark  acquisition  –  see  Section  4.5  below.  

             

Figure  4.1  Antero-­‐posterior  view  of  metacarpal  two,  metacarpal  one  

and  proximal  phalanx  one  (from  left  to  right)  illustrating  the  eight  

landmarks  defined  in  Table  4.2.  

4.3.2  Measurement  definitions  

The  linear  measurements  acquired  in  this  study  largely  follow  established  

definitions  (Scheuer  &  Elkington  1993;  Case  &  Ross  2007)  and  any  modifications  

are  accordingly  noted.  There  are  four  measurements  taken  in  each  of  the  five  

metacarpals  and  proximal  phalanges;  each  measurement  corresponds  to  the  linear  

MDMC1  

MPMC1  

MHMC1  LHMC1  

MBMC1  LBMC1  

MSMC1  LSMC1  

MDPP1  

MHPP1  

MPPP1  

MBPP1  

MSPP1  

LHPP1  

LBPP1  

LSPP1  

Page 55: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     37  

distance  between  two  pre-­‐determined  landmarks.  Figure  4.2  and  Table  4.3  outline  

the  measurements  acquired  using  metacarpal  two  as  an  example.  

Table  4.2  Definitions  of  the  landmarks  acquired  for  metacarpal  two  

Landmark  Name   Code   Description  

Most  distal  point  of  metacarpal  twoi,  ii  

MDMC2  The  point  of  metacarpal  two  that  is  furthest  from  the  carpus  when  the  hand  is  in  anatomical  position.  

Most  proximal  point  of  metacarpal  twoi,  ii  

MPMC2  The  point  of  metacarpal  two  that  is  closest  to  the  carpus  when  the  hand  is  in  anatomical  position.  

Most  medial  point  of  the  head  of  metacarpal  twoi,  ii,  iii  

MHMC2  The  point  of  the  head  that  is  closest  to  the  5th  digit  or  mid-­‐line  of  the  body  when  the  hand  is  in  anatomical  position.  

Most  lateral  point  of  the  head  of  metacarpal  twoi,  ii,  iii  

LHMC2  The  point  of  the  head  that  is  on  the  side  on  the  thumb  side  of  the  bone  or  furthest  from  the  mid-­‐line  of  the  body  when  the  hand  is  in  anatomical  position.  

Most  medial  point  of  the  base  of  metacarpal  twoi,  ii,  iii  

MBMC2  The  point  of  the  base  that  is  on  the  side  on  the  little  finger  side  of  the  bone  or  closest  the  mid-­‐line  of  the  body  when  the  hand  is  in  anatomical  position.  

Most  lateral  point  of  the  base  of  metacarpal  twoi,  ii,  iii  

LBMC2  The  point  of  the  base  that  is  on  the  side  on  the  thumb  side  of  the  bone  or  furthest  from  the  mid-­‐line  of  the  body  when  the  hand  is  in  anatomical  position.  

Most  medial  point  of  the  mid-­‐shaft  region  of  metacarpal    twoi,  ii,  iii,  iv  

MSMC2  Point  in  the  mid-­‐shaft  region  that  is  on  the  side  on  the  little  finger  side  of  the  bone  or  closest  the  mid-­‐line  of  the  body  when  the  hand  is  in  anatomical  position.  

Most  lateral  point  of  the  mid-­‐shaft  region  of  metacarpal    twoi,  ii,  iii,  iv  

LSMC2  Point  in  the  mid-­‐shaft  region  that  is  on  the  side  on  the  thumb  side  of  the  bone  or  furthest  from  the  mid-­‐line  of  the  body  when  the  hand  is  in  anatomical  position.  

Key:  i.  Falsetti,  1995;  ii.  Smith,  1996;  iii.  Scheuer  &  Elkington,  1993;  iv.  Lazenby,  1994.  

 

4.3.3  Measurement  acquisition  –  OsiriX®  

The  medical  image  processing  software  OsiriX®  offers  a  number  of  different  

approaches  to  measurement  acquisition;  the  validity  of  two  approaches  were  

tested.  

 

 

Page 56: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     38  

   Figure  4.2  Antero-­‐posterior  view  of  metacarpal  two  illustrating  the  

four  measurements  (See  Table  4.3  for  definitions)  

 

Table  4.3  Definitions  of  acquired  measurements  for  metacarpal  two  

Measurement  name   Code   Definition   #Landmarks  

Maximum  length  of  metacarpal  twoi,  ii,  iii  

MLMC2  

The  maximum  linear  distance  between  the  most  distal  point  of  the  bone  to  the  most  proximal  point  of  the  bone.  

MPMC2  -­‐  MDMC2  

Mediolateral  head  width  of  metacarpal  twoii,  iii,  iv,  v  

WHMC2  

The  maximum  linear  distance  between  the  most  medial  point  and  the  most  lateral  point  of  the  head  of  the  bone.  

MHMC2  -­‐  LHMC2  

Mediolateral  base  width  of  metacarpal  twoii,  iii,  iv,  v  

WBMC2  

The  maximum  linear  distance  between  the  most  medial  point  and  the  most  lateral  point  of  the  base  of  the  bone.  

MBMC2  -­‐  LBMC2  

Mediolateral  mid-­‐shaft  width  of  metacarpal  twoii,  iii,  iv,  v  

WMMC2  The  maximum  linear  distance  between  the  most  medial  and  most  lateral  point  of  the  mid-­‐shaft  region.  

MSMC2  -­‐  LSMC2  

Key:  i.  Case  &  Ross,  2007;  ii.  Falsetti,  1995;  iii.  Smith,  1996;  iv.  Scheuer  &  Elkington,  1993;  v.  

Lazenby,  1994.  #  Landmarks  defined  in  Table  4.2  

 

MLMC2  

WHMC2  

WMMC2  

WBMC2  

Page 57: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     39  

i)  Landmark  acquisition    

The  landmark  method  involves  identifying  and  recording  the  three-­‐dimensional  

(3D  -­‐  x,  y,  z)  coordinates  of  landmarks  that  define  a  particular  measurement  in  the  

digital  hand  x-­‐rays.  The  3D  coordinates  of  each  landmark  is  exported  from  OsiriX®  

(in  a  ‘csv’  format)  into  MorphDB  which  is  a  program  used  to  calculate  linear  inter-­‐

landmark  distances.  MorphDB  is  a  Centre  for  Forensic  Science  (UWA)  developed  

programme  that  calculates  linear  measurements  from  x,  y,  z  coordinate  data  

exported  from  OsiriX®  and  also  produces  data  files  suitable  for  direct  import  into  

the  Statistical  Package  for  the  Social  Sciences  (SPSS)  software.  

For  example,  with  reference  to  metacarpal  two,  maximum  length  (MLMC2)  is  

defined  as  the  distance  between  the  most  distal  and  proximal  points  (MDMC2  to  

MPMC2).  In  this  instance,  MorphDB  would  calculate  the  inter-­‐landmark  distance  

between  the  3D  coordinates  of  the  MDMC2  and  MPMC2  landmarks  resulting  in  a  

value  for  MLMC2.  The  landmark  method  required  80  landmarks  to  be  located,  

labelled  and  imported  into  MorphDB  for  each  digital  hand  x-­‐rays.    

ii)  Measurement  acquisition  

The  line-­‐tool  method  is  a  standard  inclusion  in  the  software  (OsiriX®)  that  allows  

direct  measurements  in  any  medical  modality.  A  line  is  drawn  between  the  

landmarks  that  define  any  measurement;  the  position  of  either  landmark  can  be  

moved  medio-­‐laterally  to  find  the  maximum  length  or  in  a  proximal/distal  

direction  for  a  maximum  width.  The  line-­‐tool  method  was  used  to  directly  acquire  

a  total  of  40  measurements  in  each  digital  hand  x-­‐ray.    

 

4.4  Statistical  analyses:  precision  test  

Prior  to  data  collection  a  precision  study  was  performed  to  statistically  quantify  

the  intra-­‐observer  error  and  thus  determine  data  quality.  In  general  there  are  two  

main  sources  of  measurement  error;  human  error  or  “intra-­‐individual  variation”  

(Liu  1988)  and  error  resulting  from  inaccurate  measuring  equipment  (Liu  1988;  

Goto  &  Mascie-­‐Taylor  2007).  It  is  important  to  conduct  a  precision  study  prior  to  

data  collection,  as  sources  of  error  need  to  be  quantified.  High  percentages  of  

Page 58: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     40  

measurement  error  can  affect  statistical  validity,  as  variation  may  be  more  

representative  of  measurement  error  rather  than  the  genetic  and  environmental  

factors  it  is  meant  to  represent  (Weinberg  et  al.  2005;  Franklin  et  al.  2012a).  A  

precision  study  also  allows  for  measurements  to  be  re-­‐defined,  or  methods  of  data  

collection  to  be  altered,  if  they  are  found  to  be  inaccurate  and  unreliable.    

To  quantify  measurement  error,  six  randomly  selected  hand  x-­‐rays  were  measured  

a  total  of  six  times  each,  with  a  minimum  of  1  day  between  repeats  to  minimise  

data  recall.  As  there  is  a  potential  for  the  current  study  to  produce  population  

specific  standards  that  can  be  used  for  further  forensic  applications,  the  precision  

test  was  practiced  with  caution.  A  six  by  six  precision  test  format  was  chosen  to  

ensure  statistics  quantifying  intra-­‐observer  error  were  based  on  reliable  data.  

Measurements  were  acquired  using  both  measurement  methods  (see  above);  the  

technical  error  of  measurement  (TEM),  the  relative  technical  error  of  

measurement  (rTEM)  and  the  coefficient  of  reliability  (R)  were  then  calculated.  

These  statistics  are  accordingly  defined  below.  

i)  Technical  error  of  measurement  

The  technical  error  measurement  (TEM)  provides  a  measure  of  “the  magnitude  of  

error”  (Weinberg  et  al.  2005,  pp.369)  and  is  presented  in  the  units  of  the  original  

measurement.  This  is  used  to  estimate  any  intra-­‐  or  inter-­‐observer  precision  by  

measuring  the  standard  deviation  between  repeated  measurements  (Goto  &  

Mascie-­‐Taylor  2007).  The  TEM  calculated  by  considering  the  difference  between  

the  measurements  taken  along  with  the  number  of  measurements  and  the  number  

replicates.  TEM  is  considered  to  be  an  “accuracy  index”  (Goto  &  Mascie-­‐Taylor  

2007,  pp.254)  and  is  an  indication  of  how  much  variation  in  a  trait  can  be  

attributed  to  observer  error,  rather  than  genetic  or  environmental  factors.  The  

𝑇𝐸𝑀  is  calculated  as:  

TEM  =  √(∑D)2  

xN    

Key:     D:  difference  between  measurements  

Page 59: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     41  

  N:  number  of  replicates  

  x  :  number  of  measurements  taken  or  number  of  subjects  

 

ii)  Relative  technical  of  error  of  measurement  

The  relative  technical  error  of  measurement  is  a  standardisation  of  the  TEM  where  

the  TEM  is  expressed  as  a  percentage  (Goto  &  Mascie-­‐Taylor  2007;  Arroyo  et  al.  

2010).  This  allows  comparison  between  measurements  of  a  different  size,  as  TEM  

is  positively  related  to  measurement  size;  e.g.  larger  measurements  (such  as  

maximum  length)  having  a  larger  TEM.  Previous  studies  (e.g.  Ulijaszek  &  Kerr  

1999;  Goto  &  Mascie-­‐Taylor  2007)  have  suggested  that  an  rTEM  value  higher  than  

5%  is  an  indicator  of  “imprecise”  data  collection.  The  formula  for  the  calculation  of  

rTEM  is:  

rTEM  =  TEM  

x100  VAV  

 

Key:     VAV:  variable  average  value  

   

iii)  Coefficient  of  reliability    

The  coefficient  of  reliability  is  an  estimation  of  how  much  variation  is  not  

attributable  to  measurement  error  (Weinberg  et  al.  2005).  The  value  of  ‘R’  ranges  

from  0  to  1;  a  value  of  0  (or  closer  to  0)  would  suggest  that  any  between  subject  

measurement  variation  is  most  likely  due  to  measurement  error  (Marks  et  al.  

1989).  A  value  of  1  (or  close  to  1),  therefore,  indicates  that  any  variation  found  

between  subjects  is  not  present  due  to  measurement  error  (Marks  et  al.  1989).  For  

example,  an  ‘R’  of  0.95  suggests  that  95%  of  any  variation  is  a  result  of  genetic  or  

environmental  factors  rather  than  observer  error.  This  leaves  5%  variation  

accounted  for  by  observer  (or  measurement)  error,  thus  suggesting  that  only  5%  

of  measurement  variation  is  due  to  imprecision.  Ulijaszek  and  Kerr  (1999)  suggest  

that  a  coefficient  of  reliability  of  0.9  (or  higher)  is  required  for  data  to  be  

Page 60: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     42  

considered  accurate  and  reliable  (Weinberg  et  al.  2005;  Franklin  et  al.  2012a;  

Marks  et  al.  1989).    

 

 

The  coefficient  of  reliability  formula  is:  

R  =  total  TEM2  

 SD2  

 

Key:     SD2    –  population  variation  of  the  trait  that  was  measured.    

4.5  Statistical  analyses:  measurement  data  

Prior  to  subsequent  statistical  analyses,  descriptive  statistics  such  as  the  mean,  

standard  deviation  and  range  are  first  calculated.  Normality  was  also  tested  using  

the  Shapiro-­‐Wilk  test,  which  is  discussed  below.  Further  statistical  analyses  were  

conducted  to  assess  the  significance  of  difference  in  measurement  data  between  

males  and  females,  as  well  as  the  relationship  between  sex  and  the  linear  

measurements.  All  statistical  analyses  were  performed  using  the  Statistical  Package  

for  the  Social  Sciences  (SPSS)  version  19.0.  

4.5.1  Normality  tests  

In  order  to  perform  analyses  such  as  an  ANOVA  or  discriminant  function  analysis,  

it  is  recommended  that  the  data  are  normally  distributed.  The  SPSS  software  offers  

two  tests  of  normality;  the  Kolmogorov-­‐Smirnov  and  Shapiro-­‐Wilk  tests.  Both  are  

applicable  to  the  data  acquired,  however,  the  Shapiro-­‐Wilk  test  is  considered  to  be  

more  robust  for  data  sets  with  less  than  2000  samples.  It  is  for  the  latter  reason  

that  this  test  was  used  instead  of  the  Kolmogorov-­‐Smirnov  statistic  (Shapiro,  Wilk  

&  Chen  1968).  The  Shapiro-­‐Wilk  statistic  standardises  the  test  data  and  compares  

it  to  a  normal  distribution.  The  variance  between  the  two  distributions  is  reported,  

along  with  a  p-­‐value  indicating  statistical  significance.  The  Shapiro-­‐Wilk  test  

assumes  that  the  data  is  from  a  normal  distribution  as  its  null  hypothesis.  

Therefore,  if  the  p-­‐value  reported  is  statistically  significant  (p<0.05),  the  null  

Page 61: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     43  

hypothesis  is  rejected,  and  that  measurement  violates  assumptions  of  a  normal  

distribution.  

4.5.2  Significance  tests  

i)  Independent  sample  t-­‐test  

An  independent  sample  t-­‐test  is  used  to  assess  the  differences  in  the  means  of  a  

dependent  variable  between  two  samples  from  different  populations.  For  this  

particular  study,  the  mean  hand  bone  measurements  acquired  from  the  males  and  

females  sampled  from  the  Western  Australian  population  are  compared  to  the  

mean  measurements  acquired  from  five  foreign  populations.  In  addition,  the  mean  

hand  bone  measurements  of  males  and  females  within  the  same  population  are  

also  compared  using  a  t-­‐test  and  the  magnitude  of  differences  is  compared  

between  five  comparative  populations.  As  the  comparison  is  performed  using  data  

from  previously  published  papers,  independent  t-­‐tests  will  be  calculated  using  the  

mean,  standard  deviation  and  n  values  (sample  size)  as  the  raw  measurement  data  

is  not  presented  in  the  published  literature.    

The  null  hypothesis  is  that  there  is  no  significant  difference  between  the  two  

sample  means  and  any  variance  is  due  to  factors  other  than  the  independent  

variable  (sex)  (Lucy  2005;  Townend  2003).  The  alternate  hypothesis,  therefore,  is  

that  there  is  a  significant  difference  between  sample  means  (hand  bone  

measurements)  and  the  variance  may  be  due  to  a  sex  difference.  From  a  t-­‐test  a  p-­‐

value  is  obtained  which  indicates  the  likelihood  the  means  of  the  samples  vary  due  

factors  other  than  the  independent  variable;  i.e.  chance  or  measurement  error  

(Madrigal  2012;  Lucy  2005).  A  p-­‐value  greater  than  0.05  suggests  that  there  is  no  

significant  difference  between  the  samples,  as  the  evident  variance  is  likely  related  

to  factors  other  than  sex  5%  of  the  time  or  higher  (Madrigal  2012;  Townend  2003).  

A  p-­‐value  of  less  than  0.05  is  associated  with  a  significant  difference  between  two  

populations.  

ii)  Analysis  of  variance  (ANOVA)  

An  ANOVA,  like  an  independent  sample  t-­‐test,  compares  the  means  of  two  samples  

to  determine  if  there  is  a  significant  difference  (DeVeaux  et  al.  2012;  Madrigal  

Page 62: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     44  

2012).  The  ANOVA  expresses  the  dispersion  of  sample  means  around  the  mean  of  

all  observations  (e.g.  males  and  females  combined,  or  the  total  data  set.)  (Lucy  

2005).  An  ANOVA,  however,  generally  provides  a  more  robust  statistical  analysis  

than  an  independent  sample  t-­‐test,  due  to  an  additional  statistics  -­‐  the  F-­‐ratio.  The  

F-­‐ratio  expresses  the  dependence  of  a  variable  on  the  factors  the  study  is  based  on  

(Madrigal  2012).  For  this  study,  the  F-­‐ratio  would  indicate  how  dependent  the  

variance  in  measurement  data  between  the  male  and  female  sample  is  on  the  sex  

difference  between  the  groups.  The  F-­‐ratio  is  calculated  by  comparing  the  variance  

within  a  sample  with  the  variance  between  the  samples  (Madrigal  2012).  The  

equation  is  as  follows;  

F  =  between  sample  variance  within  sample  variance  

 

A  high  F-­‐value  thus  suggests  that  the  ‘between  sample’  variance  is  greater  than  the  

‘within  sample’  variance.  A  p-­‐value  is  also  calculated  and  is  used  to  assess  whether  

the  variance  between  means  (and  thus  the  high  F-­‐score)  is  likely  to  have  occurred  

due  to  error  or  an  independent  variable  (Ramsey  &  Schafer  2002).  F-­‐ratios  also  

allow  for  the  identification  of  measurements  that  are  more  likely  to  express  sexual  

dimorphism  (Franklin  et  al.  2008).  This  assists  in  interpreting  which  

measurements  of  the  hand  bones  are  likely  to  be  the  most  accurate  for  estimating  

sex.  

In  the  present  study,  a  one-­‐way  ANOVA  is  used  with  sex  as  the  dependent  variable  

and  the  hand  bone  measurements  as  the  independent  variables.  The  null  

hypothesis  of  the  one-­‐way  ANOVA  model  is  that  sample  means  are  identical  and  

imply  that  there  is  no  significant  difference  between  male  and  female  

measurement  values  (Lucy  2005).    

4.5.3  Discriminant  function  analyses  

Discriminant  function  analysis  (DFA)  involves  establishing  a  function  that  includes  

a  combination  of  variables  for  discriminating  between  two  (or  more)  groups  

(Agresti  2002;  Slaus  &  Tomicic  2005;  Pietrusewsky  2008).  A  DFA  allows  for  the  

formulation  of  a  prediction  model  that,  in  reference  to  the  present  study,  facilitates  

Page 63: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     45  

sex  estimation  based  on  hand  bones  (Patriquin  et  al.  2005;  Slaus  &  Tomicic  2005).  

This  statistic  allocates  group  membership  and  also  provides  an  indication  of  the  

strength  of  a  relationship  that  a  dependent  variable  has  with  the  independent  

variable;  the  variables  most  likely  to  accurately  predict  group  membership  are  

more  heavily  weighted  in  the  discriminant  function  (e.g.  higher  unstandardized  

coefficient  values)  (Işcan  et  al.1998).  

The  discriminant  scores  produced  from  a  discriminant  function  are  classified  

based  on  their  relationship  to  a  sectioning  point.  The  sectioning  point  of  this  study,  

as  per  previously  published  studies,  is  established  as  a  value  that  is  halfway  

between  the  male  and  female  mean  scores  (Slaus  &  Tomicic  2005).  If  the  

discriminant  score  is  lower  than  the  sectioning  point,  the  discriminant  score  is  

likely  to  represent  a  female  individual  (Agresti  2002).  Two  DFA  approaches  were  

applied  and  cross-­‐validation  for  both  methods  was  conducted  to  ensure  the  

validity  of  the  predictive  models  produced.  The  cross-­‐validation  gives  an  estimate  

of  how  accurately  a  function  will  allocate  group  membership  by  testing  the  model  

on  a  variable  that  was  leave  out  of  the  sample  during  the  discriminant  function  

analysis  (Agresti  2002;  Patriquin  et  al.  2005).  Posterior  probabilities  are  calculated  

to  also  assess  how  accurate  and  effective  a  predictive  model  is  in  classifying  

variables.  A  score  is  given  between  0  and  1,  with  scores  closer  to  one  suggesting  

that  a  variable  is  further  away  from  the  sectioning  point  than  variables  with  scores  

closer  to  0.  If  a  variable  is  further  from  the  sectioning  point,  the  associated  function  

the  likelihood  of  classification  due  to  chance  decreases.  This  renders  the  function  

effective.  

i)  Direct  discriminant  function  analysis    

Direct  DFA  is  the  production  of  a  predictive  model  based  on  the  individual  needs  of  

the  user,  with  variables  in  the  discriminant  function  manually  selected.  Direct  DFA  

would  be  considered  in  situations  such  as  those  published  by  Stojanowski  (1999),  

who  formulated  seven  discriminant  functions  designed  for  the  application  in  

metacarpals  in  different  stages  of  preservation.  Direct  DFA  essentially  allows  for  

the  manipulation  of  a  predictive  model  based  on  what  data  is  available.  The  

predictive  models  used  as  a  result  of  direct  DFA  are  not  necessarily  the  most  

Page 64: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     46  

accurate;  this  is  because  the  variables  inputted  may  not  be  the  most  accurate  

predictors  of  group  membership.  In  some  instances,  a  discriminant  function  using  

only  one  variable  is  required  and  with  these  cases  a  demarking  point  is  calculated  

(Patriquin  et  al.  2005).  The  demarking  point  is  essentially  the  sectioning  point  for  

the  discriminant  scores  using  the  single  variable  discriminant  function  and  is  the  

halfway  point  between  the  combined  male  and  female  mean  measurement  value  

for  that  variable  (Franklin  et  al.  2008).  

ii)  Stepwise  discriminant  function  analysis  

Stepwise  DFA  is  a  method  where  the  discriminant  function  is  generated  

sequentially  through  a  method  of  variable  selection  or  elimination  (Ramsey  &  

Schafer  2002;  Agresti  2002).  A  stepwise  DFA  generally  results  in  functions  that  

provide  the  highest  classification  accuracy  as  the  independent  variables  with  the  

highest  F-­‐vales  are  selected  (Işcan  et  al.  1998).  Inclusion  of  variables  in  the  

predictive  model  is  based  on  the  Wilk’s  lambda  statistic;  this  is  a  measure  of  how  

much  variance  in  discriminant  scores  cannot  be  attributed  to  the  differences  that  

exist  between  the  groups  considered  (Ramsey  &  Schafer  2002;  Agresti  2002).  A  

lower  Wilk’s  lambda  value  would,  therefore,  suggest  that  there  is  a  lower  

percentage  of  variance  that  can  be  explained  by  something  other  than  the  

difference  between  groups.  Independent  variables  that  result  in  a  lower  Wilk’s  

lambda  value  are  included  in  the  predictive  model  due  to  their  existing  

relationship  with  the  dependent  variable.  A  low  Wilk’s  lambda  value,  however,  

does  not  necessarily  suggest  that  a  predictive  model  has  high  classification  

accuracy  (Ramsey  &  Schafer  2002).  Rather,  the  classification  accuracy  of  

discriminant  functions  developed  will  be  calculated  as  the  percentage  of  subjects  

from  the  data  sample  that  can  be  correctly  classified  using  the  developed  

discriminant  functions.    

iii)  Testing  of  foreign  discriminant  function  analyses  

Previously  published  predictive  models  based  on  populations  foreign  to  Western  

Australia  were  applied  to  the  Western  Australian  data  acquired.  This  was  to  

further  establish  the  need  for  population  specific  sex  estimations  standards.  From  

each  of  the  comparative  populations  chosen,  the  function  that  had  the  highest  

Page 65: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     47  

classification  accuracy  and  measurements  in  common  with  the  current  study  was  

used  to  classify  the  individual  sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 66: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FOUR  

 

     48  

       

Page 67: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  49  

   

CHAPTER  FIVE    

Results  

5.1  Introduction  

This  chapter  outlines  the  results  from  each  of  the  statistical  analyses  conducted  in  

this  study,  including  the  precision  test,  comparison  of  mean  male  and  female  data,  

the  assessment  of  population  differences,  and  the  results  of  the  various  

discriminant  function  analyses.  The  dataset  used  in  this  study  consisted  of  two  

groups;  adults  (150  males  and  150  females)  and  sub-­‐adults  (50  males  and  50  

females).  The  groups  were  analysed  separately  in  order  to  fulfil  the  required  aims  

of  the  study  (see  Chapter  One).  The  results  from  the  precision  test  are  presented  

first,  followed  by  the  results  from  the  analysis  of  the  adult,  and  then  the  sub-­‐adult,  

data.    

5.2  Measurement  precision  

Two  measurement  methods  (landmark  and  line-­‐tool  -­‐  see  Chapter  Four)  were  

evaluated  prior  to  data  acquisition  to  assess  which  produced  the  most  accurate  

and  reliable  data.  Measurement  precision  was  quantified  using  the  technical  and  

relative  technical  error  of  measurement  (TEM;  rTEM)  and  the  coefficient  of  

reliability  (R)  (Table  5.1  and  Table  5.2).    

i)  Landmark  method  

The  results  from  the  precision  test  for  the  landmark  method  are  shown  in  Table  

5,1.  The  rTEM  values  ranged  from  0.49%  (maximum  length  of  metacarpal  three)  to  

3.26%  (maximum  mid-­‐shaft  width  of  proximal  phalanx  one).  The  mean  rTEM  was  

1.77%.  The  lowest  R-­‐value  was  0.96  for  the  maximum  mid-­‐shaft  width  of  proximal  

phalanx  one.  The  highest  R-­‐value  of  1.00  was  shared  by  12  measurements  (Table  

5.1).  The  mean  R-­‐value  for  measurements  acquired  using  the  landmark  method  

was  0.99.    

Page 68: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     50  

Table  5.1  Measurement  precision  (TEM,  rTEM  and  R)  for  the  landmark  measurement  method.    Measurement   TEM   R   rTEM  MC1  Maximum  Length  (MLMC1)   3.05   1.00   0.76  MC1  Mediolateral  Width  Head  (WHMC1)   2.20   0.99   1.70  MC1  Mediolateral  Width  Base  (WBMC1)   3.07   0.99   2.31  MC1  Maximum  Mid-­‐Shaft  Width  (WMMC1)   1.97   0.99   2.42  MC2  Maximum  length  (MLMC2)   3.16   1.00   0.51  MC2  Mediolateral  Width  Head  (WHMC2)   3.18   0.99   2.43  MC2  Mediolateral  Width  Base  (WBMC2)   4.19   0.98   2.61  MC2  Maximum  Mid-­‐shaft  Width  (WMMC2)   2.01   0.98   2.58  MC3  Maximum  length  (MLMC3)   2.84   1.00   0.49  MC3  Mediolateral  Width  Head  (WHMC3)   2.53   0.99   1.86  MC3  Mediolateral  Width  Base  (WBMC3)   3.23   0.98   2.66  MC3  Maximum  Mid-­‐shaft  Width  (WMMC3)   1.09   0.99   1.47  MC4  Maximum  length  (MLMC4)   3.59   1.00   0.70  MC4  Mediolateral  Width  Head  (WHMC4)   2.95   0.99   2.50  MC4  Mediolateral  Width  Base  (WBMC4)   2.62   0.99   2.37  MC4  Maximum  Mid-­‐shaft  Width  (WMMC4)   1.34   0.99   2.21  MC5  Maximum  length  (MLMC5)   3.62   1.00   0.77  MC5  Mediolateral  Width  Head  (WHMC5)   1.89   0.99   1.61  MC5  Mediolateral  Width  Base  (WBMC5)   3.08   0.97   2.59  MC5  Maximum  Mid-­‐shaft  Width  (WMMC5)   1.74   0.98   2.55  PP1  Maximum  Length  (MLPP1)   2.16   1.00   0.77  PP1  Mediolateral  Width  Head  (WHPP1)   2.21   0.98   2.27  PP1  Mediolateral  Width  Base  (WBPP1)   2.84   0.98   2.29  PP1  Maximum  Mid-­‐shaft  Width  (WMPP1)   2.14   0.96   3.26  PP2  Maximum  Length  (MLPP2)   2.33   1.00   0.64  PP2  Mediolateral  Width  Head  (WHPP2)   2.08   0.98   2.17  PP2  Mediolateral  Width  Base  (WBPP2)   1.62   1.00   1.15  PP2  Maximum  Mid-­‐shaft  Width  (WMPP2)   1.59   0.99   1.99  PP3  Maximum  Length  (MLPP3)   2.87   1.00   0.71  PP3  Mediolateral  Width  Head  (WHPP3)   2.54   0.98   2.42  PP3  Mediolateral  Width  Base  (WBPP3)   1.77   1.00   1.28  PP3  Maximum  Mid-­‐shaft  Width  (WMPP3)   1.52   0.99   1.84  PP4  Maximum  Length  (MLPP4)   2.23   1.00   0.58  PP4  Mediolateral  Width  Head  (WHPP4)   1.33   1.00   1.34  PP4  Mediolateral  Width  Base  (WBPP4)   1.77   0.99   1.36  PP4  Maximum  Mid-­‐shaft  Width  (WMPP4)   1.52   0.99   1.95  PP5  Maximum  Length  (MLPP5)   1.95   1.00   0.65  PP5  Mediolateral  Width  Head  (WHPP5)   2.08   0.98   2.53  PP5  Mediolateral  Width  Base  (WBPP5)   2.31   0.99   1.87  PP5  Maximum  Mid-­‐shaft  Width  (WMPP5)   1.67   0.98   2.53  

 

Page 69: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     51  

Table  5.2  Measurement  precision  (TEM,  rTEM  and  R)  for  the  line-­‐tool  measurement  method.  Measurement   TEM   R   rTEM  MC1  Maximum  Length  (MLMC1)   2.54   1.00   0.63  MC1  Mediolateral  Width  Head  (WHMC1)   2.48   0.99   1.87  MC1  Mediolateral  Width  Base  (WBMC1)   1.36   1.00   1.02  MC1  Maximum  Mid-­‐Shaft  Width  (WMMC1)   1.44   0.99   1.81  MC2  Maximum  length  (MLMC2)   1.94   1.00   0.31  MC2  Mediolateral  Width  Head  (WHMC2)   2.30   0.99   1.73  MC2  Mediolateral  Width  Base  (WBMC2)   2.08   1.00   1.29  MC2  Maximum  Mid-­‐shaft  Width  (WMMC2)   2.11   0.98   2.79  MC3  Maximum  length  (MLMC3)   1.40   1.00   0.24  MC3  Mediolateral  Width  Head  (WHMC3)   1.95   1.00   1.41  MC3  Mediolateral  Width  Base  (WBMC3)   2.99   0.98   2.40  MC3  Maximum  Mid-­‐shaft  Width  (WMMC3)   2.48   0.97   3.34  MC4  Maximum  length  (MLMC4)   1.96   1.00   0.38  MC4  Mediolateral  Width  Head  (WHMC4)   1.35   1.00   1.11  MC4  Mediolateral  Width  Base  (WBMC4)   2.34   0.99   2.02  MC4  Maximum  Mid-­‐shaft  Width  (WMMC4)   0.92   0.99   1.54  MC5  Maximum  length  (MLMC5)   2.45   1.00   0.52  MC5  Mediolateral  Width  Head  (WHMC5)   1.06   1.00   0.89  MC5  Mediolateral  Width  Base  (WBMC5)   1.37   0.99   1.14  MC5  Maximum  Mid-­‐shaft  Width  (WMMC5)   1.47   0.98   2.12  PP1  Maximum  Length  (MLPP1)   1.38   1.00   0.49  PP1  Mediolateral  Width  Head  (WHPP1)   1.55   0.99   1.57  PP1  Mediolateral  Width  Base  (WBPP1)   1.55   0.99   1.23  PP1  Maximum  Mid-­‐shaft  Width  (WMPP1)   1.67   0.98   2.59  PP2  Maximum  Length  (MLPP2)   1.37   1.00   0.38  PP2  Mediolateral  Width  Head  (WHPP2)   1.60   0.99   1.61  PP2  Mediolateral  Width  Base  (WBPP2)   1.17   1.00   0.82  PP2  Maximum  Mid-­‐shaft  Width  (WMPP2)   0.98   1.00   1.24  PP3  Maximum  Length  (MLPP3)   1.67   1.00   0.41  PP3  Mediolateral  Width  Head  (WHPP3)   1.60   0.99   1.48  PP3  Mediolateral  Width  Base  (WBPP3)   1.07   1.00   0.76  PP3  Maximum  Mid-­‐shaft  Width  (WMPP3)   1.10   1.00   1.33  PP4  Maximum  Length  (MLPP4)   1.26   1.00   0.33  PP4  Mediolateral  Width  Head  (WHPP4)   1.48   0.99   1.46  PP4  Mediolateral  Width  Base  (WBPP4)   1.34   1.00   1.02  PP4  Maximum  Mid-­‐shaft  Width  (WMPP4)   1.07   1.00   1.39  PP5  Maximum  Length  (MLPP5)   1.26   1.00   0.42  PP5  Mediolateral  Width  Head  (WHPP5)   1.94   0.98   2.33  PP5  Mediolateral  Width  Base  (WBPP5)   1.38   1.00   1.12  PP5  Maximum  Mid-­‐shaft  Width  (WMPP5)   1.81   0.98   2.75  

 

Page 70: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     52  

ii)  Line-­‐tool  method  

The  results  of  the  precision  test  for  the  line-­‐tool  method  are  shown  in  Table  5.2.  

The  lowest  rTEM  (0.24%)  was  for  the  maximum  length  of  metacarpal  three.  The  

highest  rTEM  (3.34%)  was  for  the  maximum  mid-­‐shaft  width  of  metacarpal  four.  

The  mean  rTEM  was  1.33%.  The  R-­‐values  for  the  line-­‐tool  method  measurements  

from  0.97  (maximum  mid-­‐shaft  width  of  metacarpal  three)  to  1.00;  the  highest  R-­‐

value  is  shared  by  20  measurements  (Table  5.2).  

iii)  Summary  

Both  measurement  methods  yielded  results  with  rTEM  values  on  average  much  

less  than  5%  and  R-­‐values  that  were  equal  (or  close)  to  1.  Overall,  the  line-­‐tool  

method  is  the  most  precise  and  reproducible  of  the  two  methods  examined  (lower  

mean  rTEM  and  higher  R-­‐values).  For  this  reason,  subsequent  data  collection  

conducted  was  performed  using  the  line-­‐tool  measurement  method.  

5.3  Descriptive  statistics  for  the  adult  data  

5.3.1  Age  distribution    

The  mean  age,  standard  deviation  and  range  for  the  male  and  female  individuals  

are  shown  in  Table  5.3.  The  adult  males  ranged  from  18.34  to  64.34  years  of  age  

(mean  41.94  years).  The  age  range  for  the  adult  females  was  from  18.00  to  68.36  

(mean  42.26  years).    

Table  5.3  Distribution  of  age  (in  years)  of  the  adult  Western  Australian  sample.  

Sex   n   Range   Mean   Standard  Deviation  

Male   150   18.34  –  64.34   41.94   14.11  

Female   150   18.00  –  68.36   42.26   14.19  

 

5.3.2  Measurement  Normality  

Measurement  normality  was  tested  using  the  Shapiro-­‐Wilk  method;  the  data  is  

standardised  and  compared  to  a  normal  distribution.  Of  the  40  measurements  

acquired  in  the  male  sample,  a  total  of  37  were  normally  distributed.  The  three  

Page 71: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     53  

male  measurements  that  violate  assumptions  of  normality  are  the  base  width  of  

metacarpal  one,  base  width  of  metacarpal  three  and  the  head  width  of  metacarpal  

five.  For  the  female  sample,  a  total  of  two  measurements  were  not  normally  

distributed;  the  base  width  of  metacarpal  one  and,  the  head  width  of  proximal  

phalanx  two.  

Inspection  of  the  raw  data  for  these  five  measurements  indicated  no  outliers  

outside  of  three  standard  deviations  of  the  mean.  As  ANOVA  and  discriminant  

function  analyses  are  relatively  robust  to  violations  of  normality,  the  five  

measurements  were  retained  (Ramsey  and  Schafer  2002;  DeVeaux  et  al.  2012).  

Subsequent  analyses  performed  using  these  measurements  were  duly  scrutinised  

to  ensure  their  robustness  to  prevent  potentially  erroneous  results.  

5.3.3  Univariate  comparisons  

The  descriptive  statistics  for  the  adult  hand  bone  measurements  are  presented  in  

Table  5.4.  Overall,  the  mean  male  values  were  larger  than  those  of  the  female  

individuals  for  all  measurements.  The  maximum  length  of  metacarpal  three  had  

the  largest  mean  sex  difference  (5.77  mm)  and  maximum  mid-­‐shaft  width  of  

metacarpal  three  had  the  smallest  mean  sex  difference  (1.07  mm).  In  general  the  

maximum  length  and  base  width  measurements  had  larger  mean  differences  

between  the  sexes,  compared  to  the  head  and  mid-­‐shaft  width  measurements  

(Table  5.4).  

To  assess  the  extent  of  morphometric  sexual  dimorphism,  an  ANOVA  was  

conducted  to  compare  the  adult  male  and  female  data.  All  measurements  were  

statistically  significantly  different  (Table  5.4).  The  most  sexually  dimorphic  

measurement  was  the  base  width  of  proximal  phalanx  two  (F=363.88;  p<0.001).  

The  least  sexually  dimorphic  measurement  was  the  maximum  length  of  metacarpal  

five  (F=61.35;  P<0.001).    Sex  differences  explain  17  –  55%  of  sample  variance.    

 

Page 72: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

CHAPTER  FIVE  

 54  

Table  5.4  Descriptive  statistics  and  means  comparison  of  mean  hand  bone  measurements  (in  mm).    

Measurement  a   Male  (n  =  150)   Female  (n=150)   F   R-­‐square   p-­‐value  

    Mean   SD   Range   Mean   SD   Range              MLMC1   48.86   3.21   40.50  –  57.81   44.6   2.88   36.72  –  51.90   146.13   0.33   ***  WHMC1   17.03   1.41   12.97  –  20.73   14.92   1.11   11.81  –  17.64   207.59   0.32   ***  WBMC1   16.61   1.6   13.76  –  21.77   14.7   1.2   12.69  –  18.14   137.31   0.41   ***  WMMC1   9.91   1   7.38  –  13.03   8.78   0.76   6.83  –  10.81   121.6   0.29   ***  MLMC2   74.75   4.55   62.66  –  88.17   68.98   3.96   60.42  –  78.40   137.62   0.32   ***  WHMC2   21.09   1.58   14.11  –  20.23   18.55   1.27   11.93  –  17.98   234.42   0.33   ***  WBMC2   17.12   1.35   17.56  –  25.36   15.32   1.2   15.09  –  22.03   147.63   0.44   ***  WMMC2   9.45   0.82   7.68  –  11.89   8.23   0.7   6.64  –  10.46   191.69   0.39   ***  MLMC3   69.16   4.4   57.26  –  82.90   63.83   3.65   55.37  –  74.86   130.23   0.3   ***  WHMC3   15.83   1.35   14.38  –  21.27   13.98   1.18   11.20  –  17.11   160.04   0.39   ***  WBMC3   17.38   1.32   13.52  –  20.06   15.4   1.17   12.39  –  18.56   189.27   0.35   ***  WMMC3   9.05   0.71   7.41  –  10.88   8.04   0.64   6.36  –  10.00   169.59   0.36   ***  MLMC4   61.56   4.39   50.46  –  75.21   56.75   3.37   49.45  –  64.91   113.25   0.28   ***  WHMC4   14.25   1.25   12.06  –  19.24   12.63   1.02   10.69  –  15.55   151.46   0.35   ***  WBMC4   14.92   1.3   11.41  –  17.61   13.19   1.04   9.92  –  15.19   159.9   0.34   ***  WMMC4   7.53   0.73   5.49  –  9.28   6.5   0.57   5.24  –  8.21   183.1   0.38   ***  MLMC5   56.23   5.68   46.28  –  68.80   51.95   3.53   35.77  –  60.70   61.35   0.17   ***  WHMC5   15.3   1.28   11.79  –  18.37   13.42   1.05   10.13  –  15.23   194.78   0.38   ***  WBMC5   14.83   1.3   12.26  –  18.51   12.99   1.05   11.07  –  17.05   181.03   0.4   ***  WMMC5   8.74   0.93   6.97  –  11.20   7.45   0.73   5.71  –  9.45   179.56   0.38   ***  MLPP1   34.38   2.31   29.53  –  39.86   31.55   2.14   26.80  –  37.24   120.85   0.29   ***  

Page 73: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

CHAPTER  FIVE  

     55  

Measurement  a   Male  (n  =  150)   Female  (n=150)   F   R-­‐square   p-­‐value  

    Mean   SD   Range   Mean   SD   Range              WHPP1   15.41   1.23   8.56  –  15.73   13.66   0.97   7.19  –  13.84   186.55   0.3   ***  WBPP1   12.27   1.25   11.90  –  19.09   10.79   0.99   10.01  –  15.62   129.26   0.38   ***  WMPP1   8.27   0.91   5.98  –  10.75   7.15   0.81   4.98  –  8.92   128.01   0.3   ***  MLPP2   43.3   2.47   37.42  –  49.53   40.52   2.49   34.64  –  47.65   93.84   0.24   ***  WHPP2   17.89   1.02   9.68  –  15.44   15.8   0.87   9.62  –  13.05   363.88   0.39   ***  WBPP2   12.46   0.94   15.41  –  20.96   11.15   0.68   13.70  –  18.01   191.18   0.55   ***  WMPP2   10.37   0.78   7.95  –  12.42   9.08   0.68   7.27  –  11.11   233.75   0.44   ***  MLPP3   48.24   2.99   40.68  –  56.09   44.85   2.61   38.96  –  52.13   109.6   0.27   ***  WHPP3   17.55   1.11   10.67  –  16.10   15.4   0.86   10.22  –  13.62   353.43   0.41   ***  WBPP3   13.23   0.97   15.15  –  20.16   11.78   0.75   13.34  –  17.85   210.08   0.54   ***  WMPP3   10.61   0.86   8.56  –  12.57   9.1   0.73   7.11  –  10.71   268.07   0.33   ***  MLPP4   45.36   2.85   37.91  –  52.40   41.68   2.44   35.68  –  48.19   158.22   0.33   ***  WHPP4   16.23   1.08   10.19  –  15.37   14.32   0.93   9.35  –  12.88   268.68   0.42   ***  WBPP4   12.35   0.88   13.87  –  19.58   10.98   0.72   12.19  –  16.43   214.88   0.47   ***  WMPP4   9.94   0.86   7.58  –  12.22   8.36   0.72   6.21  –  10.13   297.82   0.5   ***  MLPP5   36.05   2.16   29.04  –  42.20   32.82   2.16   27.89  –  39.77   158.22   0.35   ***  WHPP5   15.31   0.99   8.15  –  12.70   13.45   0.82   7.54  –  11.52   314.58   0.29   ***  WBPP5   10.38   0.84   13.27  –  18.88   9.35   0.75   11.50  –  16.13   124.17   0.51   ***  WMPP5   8.53   0.84   6.41  –  11.07   7.16   0.74   5.16  –  8.97   223.08   0.43   ***  

Key:  a  Definition  of  measurements  in  Table  5.1;  NS  =  not  significant;  *P<0.05,  **P<0.01,  ***P<0.001  

Page 74: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

 56  

5.3.4  Discriminant  function  analyses  

Discriminant  function  analyses  were  performed  using  different  measurement  

combinations.  As  it  is  possible  that  a  complete  hand  may  not  always  be  available  

for  assessment  in  a  forensic  or  archaeological  context,  demarking  points  were  

calculated  for  each  individual  hand  bone  measurement;  only  the  most  accurate  

function  for  each  bone  is  reported.  Thereafter,  a  series  of  direct  multiple  variable  

and  stepwise  discriminant  analyses  were  performed  using  measurements  acquired  

from  the  metacarpals  alone,  as  these  bones  are  more  likely  to  be  recovered  in  a  

forensic  or  archaeological  context.  

i)  Direct  single  variable  functions  

Demarking  points  were  calculated  for  each  of  the  40  measurements  acquired  in  

the  hand  to  assess  whether  sex  could  be  accurately  estimated  using  a  single  

measurement.  The  combined  cross-­‐validated  accuracy  for  the  most  accurate  

variable  for  each  bone  is  reported  in  Table  5.5,  and  ranged  from  76.70  (Function  4;  

WMMC4)  to  85.70%  (Function  7;  WBPP2).  Function  10  (requiring  the  base  width  

of  proximal  phalanx  five  WBPP5)  is  considered  to  be  the  most  accurate  variable  for  

estimating  sex,  as  it  had  both  a  combined  cross-­‐validated  accuracy  above  80%  

(85.30%)  and  a  sex  bias  below  5%  (-­‐4.00%).  Of  the  ten  most  accurate  functions,  

eight  involve  base  width  measurements.    

ii)  Direct  multiple  variable  functions  

A  series  of  direct  multiple  variable  discriminant  analyses  were  performed  for  the  

combined  metacarpal  measurements.  There  were  only  two  metacarpals  that  

yielded  accuracy  above  80%;  metacarpals  two  and  five  (Table  5.6).  Functions  11  

and  12  have  classification  accuracies  of  84.00%  and  84.30%  respectively.  

However,  Function  11  should  be  used  in  preference  to  Function  12,  as  it  has  a  

considerably  smaller  sex  bias  (-­‐4.00%  compared  to  -­‐8.70%).  

 

 

Page 75: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     57  

Table  5.5  Direct  single  variable  discriminant  analyses  of  individual  hand  bones,  including  demarking  point  values  (in  mm).  

 

Measurement#  Demarking  

points  

Combined  cross-­‐

validated  accuracy  Sex  bias  

Metacarpal  

Function  1.   WBMC1   ♀ <15.98<  ♂ 81.70%   -­‐  2.00%  

Function  2.   WBMC2   ♀ <19.82<  ♂   81.30%   -­‐  4.00%  

Function  3.   WHMC3   ♀  <16.22<  ♂   81.30%   -­‐  6.70%  

Function  4.   WMMC4   ♀    <  7.02<  ♂   76.70%   -­‐  6.70%  

Function  5.   WBMC5   ♀ <14.36<  ♂   80.30%   -­‐  7.30%  

Proximal  Phalanx  

Function  6.   WBPP1   ♀  <14.53<  ♂   78.30%   -­‐  0.70%  

Function  7.   WBPP2   ♀  <16.84<  ♂   85.70%   -­‐  6.00%  

Function  8.   WBPP3   ♀  <16.48<  ♂   87.00%   -­‐  7.40%  

Function  9.   WBPP4   ♀  <15.27<  ♂   81.30%   -­‐  4.00%  

Function  10.   WBPP5   ♀  <14.38<  ♂   85.30%   -­‐  4.00%  

Key:  #Definition  of  measurements  in  Table  5.1;  ♂  =  Male,  ♀  =  Female  

 

Table  5.6  Direct  multiple  variable  discriminant  analysis  of  metacarpals.  

#Equation:  unstandardised  coefficients  and  constant  

Group  centroids  &  

sectioning  point  

Correctly  assigned  

Sex  bias  

Function  11.                    Metacarpal  Two  

(0.41  x  MLMC2)  +  (0.315  x  WBMC2)  +  (0.181  x  

WHMC2)  +    (0.567  x  WMMC2)  -­‐17.108  

♂  1.024   ♂  123/150;  -­‐  4.00%  0.00   ♀  129/150  

♀  1.024 [84.0%]

Function  12.                    Metacarpal  Five  

(0.037  x  MLMC5)  +  (0.375  x  WBMC5)  +  (0.244  x  

WHMC5)  +  (0.525  x  WMMC5)  15.005  

♂  0.994   ♂  120/150;  -­‐  8.70%  0.00   ♀  133/150  

♀  0.994 [84.3%]  

Key:  #Definition  of  measurements  in  Table  5.1;  ♂  =  Male,  ♀  =  Female  

 

Page 76: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     58  

iii)  Stepwise  discriminant  analysis  

A  stepwise  discriminant  function  analysis  was  performed,  for  the  complete  hand  

(Function  13)  and  for  each  individual  digit  (Functions  14  to  18)  (Table  5.7).  The  

stepwise  discriminant  function  analysis  of  the  complete  hand  selected  eight  

variables  and  achieved  a  cross-­‐validated  classification  accuracy  of  91.00%  with  a  

sex  bias  of  -­‐6.00%.    The  stepwise  discriminant  function  analysis  of  measurements  

from  each  of  the  five  digits  resulted  in  classification  accuracies  from  79.70  to  

87.70%.  The  highest  sex  classification  accuracy  was  achieved  for  the  fifth  digit  

using  six  variables  (see  Function  18;  Table  5.7)  with  a  cross-­‐validated  accuracy  of  

87.70%  and  a  sex  bias  of  -­‐2.00%  (Table  5.7).  

5.3.5  Posterior  probabilities    

Posterior  probability  intervals  for  the  18  functions  are  provided  in  Appendix  One  

(Table  A1.1).  The  overall  percentage  of  individuals  classified  with  a  certainty  of  

above  80%  for  each  of  the  direct  discriminant  functions  (1-­‐12)  was  less  than  that  

calculated  for  the  stepwise  functions  (13-­‐18).  Function  13  had  the  highest  

percentage  of  correctly  classified  individuals  within  the  ‘0.80-­‐1.00’  interval  for  

both  males  (91.73%)  and  females  (89.44%).  The  lowest  percentage  of  individuals  

classified  with  80%  and  above  certainty  for  males  (54.17%)  was  calculated  for  

Function  1  and  for  females  it  was  Function  3  (54.33%).  There  were  no  individuals  

correctly  classified  in  any  discriminant  function  with  less  than  40%  certainty.    

 

Page 77: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

CHAPTER  FIVE  

  59  

Table  5.7    Stepwise  discriminant  function  analysis  of  the  Western  Australian  adult  sample.  

  Step   #Variables  Unstandardised  coefficient  

Standardised  coefficient  

Wilk’s  lambda  

Structure  point  

Group  centroids  

Sectioning  point  

Correctly  assigned  

Sex  bias  

Complete  Hand  

 Function  13.  

1  2  3  4  5  6  7  8    

WBPP2  WMPP4  MLPP5  WHPP5  WBPP1  MLPP2  WBPP3  MLMC1  Constant  

0.325  0.610  0.257  -­‐0.590  0.190  -­‐0.199  0.327  0.090  -­‐18.107  

0.308  0.486  0.572  -­‐0.470  0.210  -­‐0.495  0.325  0.275  

0.450  0.411  0.395  0.378  0.369  0.360  0.352  0.346    

0.803  0.727  0.530  0.469  0.575  0.408  0.792  0.509  

♂  1.371  ♀  -­‐1.371  

0.00   91.00%   -­‐6.00%  

Individual  Digits  

                     Function  14.      

1  2  3    

WBMC1  MLMC1  WBPP1  Constant  

0.400  0.112  0.336  -­‐16.51  

 

0.507  0.342  0.371  

0.589  0.544  0.522  

0.873  0.732  0.828  

♂    0.953  ♀  -­‐0.953  

   

0.00   79.70%   -­‐8.70%  

Page 78: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

CHAPTER  FIVE  

     60  

  Step   #Variables  Unstandardised  coefficient  

Standardised  coefficient  

Wilk’s  lambda  

Structure  point  

Group  centroids  

Sectioning  point  

Correctly  assigned  

Sex  bias  

Function  15.  

1  2    

WBPP2  WMMC2  Constant  

0.866  0.379  -­‐17.94  

0.823  0.289  

0.450  0.434  

0.968  0.703  

♂    1.137  ♀ -­‐1.137  

0.00   86.70%   -­‐8.00%  

                   

Function  16.  

1  2  3    

WBPP3  WMPP3  MLMC3  Constant  

0.576  0.530  0.058  -­‐18.56  

0.573  0.423  0.233    

0.457  0.429  0.418  

0.923  0.804  0.561  

♂ 1.175 ♀ -1.175

0.00   86.00%   -­‐5.40%      

                   

Function  17.  

1  2  3  

WMPP4  MLPP4  WBPP4  Constant  

0.759  0.141  0.306  -­‐17.74  

0.604  0.373  0.310      

0.500  0.441  0.427  

0.864  0.601  0.820  

♂ 1.154  ♀  -­‐1.154

0.00   85.70%   -­‐6.00%  

                   

 Function  18.  

1  2  3  4  

WBPP5  WMMC5  WBMC5  WMPP5  

0.580  0.295  0.226  0.391  

0.527  0.246  0.265  0.309  

0.486  0.454  0.446  0.437  

0.872  0.659  0.686  0.734  

♂ 1.175  ♀  -­‐1.175  

 

0.00   87.70%   -­‐2.00%  

Page 79: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

CHAPTER  FIVE  

     61  

  Step   #Variables  Unstandardised  coefficient  

Standardised  coefficient  

Wilk’s  lambda  

Structure  point  

Group  centroids  

Sectioning  point  

Correctly  assigned  

Sex  bias  

5  6    

WHPP5  MLPP5  Constant  

-­‐0.425  0.113  -­‐16.75  

-­‐0.338  0.251    

0.429  0.419  

0.548  0.618  

 Key:  #Definition  of  measurements  in  Table  5.1;  ♂  =  Male,  ♀  =  Female    

 

Page 80: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

 62  

5.4  Population  differences  

5.4.1  Measurement  differences  

To  evaluate  the  significance  of  metrical  population  variation  the  mean  adult  

metacarpal  length  measurements  were  compared  to  previously  published  data  

from  a  selection  of  populations  foreign  to  Australia  (Table  5.8);  the  results  are  

outlined  in  Appendix  Two  (Table  A2.1).  Metacarpal  length  was  the  one  

measurement  common  to  the  five  comparative  studies  and  was  therefore  

compared  using  a  series  of  unpaired  t-­‐tests.  The  t-­‐values  reported  for  each  of  the  

significance  tests  is  an  indication  of  the  size  of  the  difference  between  the  two  

means  that  were  compared.  A  high  positive  t-­‐value  suggests  that  Western  

Australian  mean  metacarpal  length  values  are  statistically  significantly  different  

than  their  foreign  counterparts.    

Metacarpal  length  measurements  were  statistically  significantly  different  for  all  

comparisons  between  Western  Australian  males  and  females  and  the  comparative  

populations,  with  the  exception  of  the  maximum  length  of  metacarpal  one  between  

Western  Australian  and  Egyptian  populations.  The  largest  t-­‐values,  and  thus  

largest  differences,  were  reported  for  the  comparison  of  male  mean  metacarpal  

one  and  two  lengths  between  the  Western  Australian  and  the  British  populations  

(t  =  7.46  and  t  =  8.62  respectively).  The  largest  t-­‐value  (t  =  6.70)  was  found  when  

comparing  the  male  mean  for  metacarpal  four  maximum  lengths  between  Western  

Australian  and  American  populations.  The  lowest  t-­‐values,  and  therefore  smallest  

differences,  were  calculated  when  comparing  Western  Australian  males  to  

Egyptian  males  for  all  three  mean  metacarpal  length  measurements.    

A  different  trend  was  found  when  comparing  the  Western  Australian  female  data  

to  the  four  comparative  populations.  Western  Australian  female  mean  values  were  

significantly  larger  than  the  Spanish  population  for  metacarpal  one  (t  =  5.34),  two  

(t  =  10.14)  and  four  (t  =  7.01).  Metacarpal  one  length  values  between  the  Western  

Australian  and  Egyptian  were  not  significant  (t=0.09);  corresponding  p-­‐value  

indicating  that  these  mean  values  were  not  statistically  significantly  different.  In  

Page 81: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     63  

considering  the  lengths  of  metacarpal  two  and  four,  the  Western  Australian  

females  were  most  similar  to  the  British  population.    

Table  5.8  Four  comparative  populations  (including  source  of  data  and  sample  size)  

#Caucasian  or  African  American  not  stipulated  

5.4.2  Variation  in  the  expression  of  sexual  dimorphism  

The  significance  of  sex  differences  in  mean  metacarpal  within  the  Western  

Australian  and  comparative  populations  were  also  evaluated  using  a  series  of  

independent  sample  t-­‐test.  The  results  are  presented  in  Appendix  Three  (Table  

A3.1)  and  offer  an  indication  of  the  magnitude  of  sexual  dimorphism  expressed  by  

the  maximum  length  of  metacarpals  one,  two  and  four  for  each  five  population.      

All  comparisons  were  found  to  be  statistically  significantly  different  for  metacarpal  

one;  the  largest  difference  was  found  when  comparing  male  and  female  mean  

values  within  the  American  population  (t  =  10.36;  p  <0.05).  However,  the  largest  

sex  in  metacarpal  two  and  four  was  found  in  the  Egyptian  population  (t  =  11.96,  p  

<0.05  and  t  =  13.61,  p  <0.05  respectively).  Overall,  the  British  population  had  the  

lowest  level  of  sexual  dimorphism  in  the  three  metacarpal  lengths  compared  

(Appendix  Three,  Table  A3.1).  It  is  also  evident  that  the  magnitude  of  sexual  

dimorphism  expressed  in  the  hand  bones  of  Western  Australian  individuals  was  

most  similar  to  the  level  of  sexual  dimorphism  expressed  in  the  British  population  

as  demonstrated  by  the  similar  t-­‐values  reported.    

Publication   Population   Males   Females  

Scheuer  and  Elkington  (1993)   Caucasian-­‐British   33   27  

Barrio  et  al.  (2006)   Spanish  ancestry   36   36  

Case  and  Ross  (2007)  Caucasian  American  and  European  

133   116  

El  Morsi  and  Hawary  (2012)   Egyptian  Ancestry   100   100  

Page 82: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     64  

5.4.3  Classification  accuracy  

To  further  explore  the  need  for  population  specific  sex  estimation  standards,  

discriminant  functions  for  populations  foreign  to  Western  Australia  were  used  to  

classify  individuals  in  the  present  study.  The  function  that  had  measurements  in  

common  with  the  current  study,  and  the  highest  stated  classification  accuracy,  

were  used  to  classify  the  Western  Australian  sample.  It  was  found  that  the  

achieved  classification  accuracy  is  considerably  lower  than  classification  

accuracies  originally  reported  (Table  5.9).  The  discriminant  functions  applied  to  

the  current  sample,  excluding  the  North  American  discriminant  function  of  Case  

and  Ross  (2007),  had  a  tendency  to  misclassify  males  as  females.  Conversely,  the  

Case  and  Ross  (2007)  function  misclassified  more  than  half  the  female  sample  as  

male;  overall  the  application  of  all  the  foreign  functions  resulted  in  extremely  large  

sex-­‐bias  values  (Table  5.9).    

Table  5.9  Classification  accuracies  when  applying  foreign  standards  to  a  Western  Australian  population  

Reference  Published  Accuracy  

Achieved  Accuracy  on  the  current  population  Sex  Bias  

Male   Female   Pooled  

Scheuer  and  Elkington  1993  

80.00%   5.33%  [8/150]   100%  [150/150]   52.66%   -­‐94.77%  

Barrio  et  al.  2006  

91.40%   0.00%  [0/150]   100%  [150/150]   50.00%   -­‐100%  

Case  and  Ross  2007  

83.10%   96.00%  [144/150]   47.33%  [71/150]   71.67%   48.67%  

El  Morsi  and  Hawary  2012  

83.90%   2.67%  [4/150]   68.00%  [102/150]   35.34%   -­‐65.33%  

 

The  function  that  achieved  the  highest  classification  accuracy  (71.67%)  when  

applied  to  the  Western  Australian  population  was  that  of  Case  and  Ross  (North  

American)  (2007).  This  function  also  achieved  the  smallest  sex  bias  value  of  

48.67%.  However,  this  considerably  large  sex  bias  renders  the  function  

inapplicable  to  a  Western  Australian  population,  as  female  individuals  are  likely  to  

be  misclassified  as  males.  The  largest  sex  bias  value  (-­‐100%)  was  found  when  

using  the  Spanish  function  of  Barrio  et  al.  (2006).  The  lowest  overall  classification  

accuracy  was  35.34%  when  the  Egyptian  function  of  El  Morsi  and  Hawary  (2012)  

Page 83: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     65  

standard  was  applied.  Overall,  it  is  clearly  evident  that  all  four  foreign  standards  

are  completely  unacceptable  for  application  in  a  Western  Australian  population.    

5.5  Sub-­‐adult  analyses  

Another  aim  of  the  present  study  was  to  assess  the  age  at  which  sex  can  be  

accurately  estimated  in  the  sub-­‐adult  hand.  A  series  of  ANOVA’s  were  performed  to  

assess  the  significance  of  metric  dimorphism  at  different  ages:  Group  A  (12-­‐14  

years);  Group  B  (14-­‐16  years);  Group  C  (16-­‐18  years).  This  was  then  followed  by  a  

series  of  discriminant  function  analyses  to  quantify  sex  classification  accuracy  with  

these  age  groups.  The  effect  of  classifying  the  sub-­‐adults  in  each  age  group  using  an  

adult  discriminant  function  was  also  evaluated.  

5.5.1  Age  distribution  

As  discussed  in  Chapter  Four,  the  sub-­‐adult  sample  was  split  into  three  groups  to  

quantify  the  age  at  which  the  hand  bones  are  significantly  sexually  dimorphic.  The  

mean,  range  and  standard  deviation  for  each  of  the  three  age  groups  is  outlined  in  

Table  5.10.    

Table  5.10  Distribution  of  age  (in  years)  for  each  of  the  sex-­‐specific  sub-­‐adult  groups.  

Age  group   Sex   n   Range   Mean  Standard    Deviation  

Group  A     Male   10   13.10  –  13.80   13.52   0.30  

(12  –  14  years)   Female   11   12.70  –  13.80   13.46   0.35  

Group  B   Male   20   14.10  –  15.60   14.92   0.51  

(14  –  16  years)   Female   20   14.20  –  15.70   15.08   0.49  

Group  C   Male   20   16.10  -­‐17.90   17.09   0.59  

(16  –  18  years)   Female   19   16.10  –  17.60   16.87   0.49  

 

5.5.2  Measurement  normality  

Normality  was  tested  using  the  Shapiro-­‐Wilk  method.  In  the  male  sample  39  out  of  

40  measurements  were  normally  distributed.  The  base  width  of  proximal  phalanx  

five  was  the  only  measurement  that  was  not  normally  distributed.  A  total  of  five  

Page 84: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

     66  

measurements  in  the  female  sample  were  found  to  violate  assumptions  of  

normality;  the  base  width  of  metacarpal  two,  proximal  phalanx  two  and  proximal  

phalanx  three,  and  the  head  width  of  proximal  phalanx  two  and  four.  These  

measurements  were  not  removed  as  further  analyses  of  these  measurements  were  

considered  to  be  relatively  robust  to  violations  of  normality  (as  discussed  above).    

5.5.3  Univariate  comparisons  

The  descriptive  statistics  for  the  sub-­‐adult  hand  bone  measurements  are  presented  

in  Appendix  Four.  In  Group  ‘A’,  the  males  have  (in  general)  smaller  mean  

measurement  values  than  the  females  of  the  same  age  group.  It  is  evident  that  from  

approximately  14  years  of  age,  however,  males  have  larger  mean  measurement  

values  than  females.  The  results  from  the  ANOVA  comparisons  show  a  tendency  

for  F-­‐statistic  values  to  increase  as  the  age  of  the  sample  group  increases  

(Appendix  Four).  The  majority  of  mean  differences  between  males  and  females  in  

Group  ‘A’  were  found  to  be  insignificant  and  more  measurements  start  to  become  

statistically  significantly  different  between  males  and  females  in  Group  ‘B’.  All  

comparisons  in  Group  ‘C’  were  found  to  be  statistically  significantly  different.    

5.6  Sex  classification  accuracy  in  the  sub-­‐adult  hand  

i)  Discriminant  function  analysis  

Stepwise  discriminant  function  analysis  was  conducted  for  each  of  the  three  sub-­‐

adult  age  groups  (Table  5.11).  The  function  produced  for  group  ‘B’  had  the  highest  

cross-­‐validated  accuracy  of  95.00%  using  five  measurements;  however,  the  sex  

bias  was  10.00%.  Group  ‘A’  had  the  lowest  cross-­‐validated  accuracy  of  76.20%  and  

an  associated  sex  bias  of  8.30%.  Group  ‘C’  had  a  cross-­‐validated  classification  

accuracy  of  92.30%,  but  also  had  the  largest  sex  bias  value  of  the  three  groups    

(-­‐15.00%).  

Page 85: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

CHAPTER  FIVE  

  67  

  Table  5.11  Stepwise  discriminant  functions  based  on  the  analysis  of  the  sub-­‐adult  sample  

Groups   Step   #Variables  Unstandardised  coefficient  

Standardised  coefficient  

Wilk’s  lambda  

Structure  point  

Group  centroids  

Sectioning  point  

Correctly  assigned  

Sex  bias  

                   Function  19.  

(Group  A)    

1    

WMPP4  Constant  

1.332  -­‐10.738  

1.000   0.655    

1.000    

♂    0.723  ♀  -­‐0.658  

0.0325   76.20%   8.30%  

                   Function  20.  

(Group  B)    

1  2  3  4  5    

WBMC1  WMMC4  WHPP4  WBMC4  WMPP3  Constant  

0.587  1.210  -­‐1.221  0.720  0.922  -­‐20.614  

 

0.516  0.791  -­‐1.213  0.671  0.762    

0.482  0.381  0.325  0.263  0.216  

0.545  0.471  0.200  0.322  0.490      

♂  1.857  ♀-­‐1.857  

 

0.00    

95.00%      

-­‐10.00%            

                 Function  21.  

(Group  C)    

1  2  3  

WHPP2  WBMC2  WMMC1  Constant

0.917  0.405  0.583  -­‐23.560  

0.599  0.490  0.453  

0.318  0.285  0.280  

0.724  0.687  0.507  

♂ 1.706  ♀-­‐1.795  

-­‐0.0445        

92.30%        

-­‐15.00%          

   Key:  #Definition  of  measurements  in  Table  5.1;  ♂  =  Male,  ♀  =  Female  

Page 86: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  FIVE  

 

 68  

ii)  Classifying  sub-­‐adults  using  an  adult  classification  model  

To  explore  the  effect  of  applying  an  adult  discriminant  function  to  sub-­‐adults,  the  

adult  stepwise  discriminant  function  (Table  5.7,  Function  13)  was  used  to  classify  

the  sub-­‐adults  in  each  age  group.  For  all  three  groups,  the  female  individuals  were  

all  correctly  classified  and  for  the  males  the  highest  classification  accuracy  

achieved  was  65.00%  for  Group  ‘C’.  Group  ‘C’  also  had  the  smallest  sex  bias  (-­‐

35.00%),  whilst  group  ‘A’  had  the  largest  sex  bias  (-­‐70.00%).  Clearly,  however,  all  

of  the  sex  bias  values  render  this  function  not  forensically  applicable  to  the  sub-­‐

adult  population.    

Table  5.12    Sex  classification  accuracies  of  adult  Function  13  to  the  sub-­‐adult  sample  

Group   Number  of  males  correctly  classified  

Number  of  females  correctly  classified  

Sex  bias  

A   3/10      (30.00%)   10/10  (100.00%)   -­‐70.00%  B   9/20      (45.00%)   20/20  (100.00%)   -­‐55.00%  C   13/20  (65.00%)   19/19  (100.00%)   -­‐35.00%    

5.7  Interaction  effects  

Regression  analysis  was  performed  to  test  for  interaction  effects  between  sex  and  

age  to  evaluate  whether  age  has  any  effect  on  strength  of  the  relationship  between  

hand  size  and  sex.  No  statistically  significant  interactions  were  found  between  age  

and  sex  for  group  ‘A’,  ‘B’  or  ‘C’.  This  suggests  that  any  statistically  significant  

differences  found  between  sub-­‐adult  males  and  females  are  independent  of  age.    

 

Page 87: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  69  

CHAPTER  SIX    

Discussion  and  conclusions  

6.1  Introduction  

The  purpose  of  the  present  study  was  to  quantify  the  magnitude  of  hand  bone  

sexual  dimorphism  and  to  concurrently  establish  sex  estimation  standards  for  a  

Western  Australian  population.  The  latter  is  important  because  sex  estimation  is  

more  accurate  when  the  standards  applied  are  population  specific.  A  precision  test  

was  conducted  prior  to  data  collection  to  establish  the  most  reliable  method  for  

acquiring  linear  data  from  hand  x-­‐rays.  Thereafter,  the  ‘line-­‐tool’  method  was  used  

to  acquire  adult  and  sub-­‐adult  measurements  that  were  statistically  analysed  to  

quantify  the  level  of  morphometric  dimorphism.  Discriminant  function  analysis  

was  then  performed  to  quantify  the  accuracy  of  sex  estimation;  the  results  of  those  

analyses  are  discussed,  in  addition  to  considering  forensic  applications,  limitations  

and  future  research  directions.  A  final  conclusion  is  then  presented.  

6.2  Measurement  precision  

The  first  aim  of  the  present  study  was  to  assess  which  method  of  acquiring  

measurements  in  digital  x-­‐rays  was  the  most  accurate,  reliable  and  practical  for  

data  acquisition.  A  precision  test  (technical  error  of  measurement,  relative  

technical  error  of  measurement  and  coefficient  of  reliability)  was  performed  using  

the  landmark  and  line-­‐tool  acquisition  methods.  This  was  important  because  

unacceptably  high  measurement  error  can  affect  the  validity  of  the  study;  

specifically  the  robustness  of  the  subsequent  statistical  analyses  and  prediction  

models.    

All  hand  bone  measurements  acquired  using  both  methods  produced  ‘acceptable’  

rates  of  measurement  error  (See  Table  5.1  and  5.2).  The  rTEM  is  a  standardised  

version  of  TEM  and  measurements  are  considered  imprecise  if  this  statistic  is  

above  5%  (Goto  &  Mascie-­‐Taylor  2007;  Ulijaszek  &  Kerr  1999).  The  R  value  

provides  an  estimation  of  how  much  variation  is  not  attributable  to  measurement  

Page 88: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     70  

error  and  thus  R  values  closer  to  1  are  indicative  of  precise  measurement  

acquisition.  Overall,  the  line-­‐tool  method  had  a  lower  average  rTEM  (1.33%)  than  

the  landmark  method  (1.77%)  and  more  measurements  with  an  R  value  equal  to  1  

(20  compared  to  12  for  the  landmark  method).  The  slight  difference  in  these  

statistics  between  the  line-­‐tool  and  landmark  methods  are  likely  related  to  

differences  in  the  measurement  system  affecting  repeatability.  For  example,  the  

landmark  method  required  the  location  of  extremal  landmarks  in  each  hand  bone,  

which  are  known  as  “Type  III  landmarks”  (Bookstein  1991,  pp.65;  O’Higgins  2000).  

The  3D  (x,  y,  z)  co-­‐ordinates  of  the  landmarks  were  then  used  to  calculated  the  

inter-­‐landmark  distances,  without  knowing  whether  the  placement  of  those  

landmarks  would  result  in  a  true  maximum  linear  distance.  The  line-­‐tool  method,  

however,  involves  drawing  a  line  between  two  landmarks,  which  enables  a  direct  

measurement.  Once  the  line  was  drawn,  each  end  of  the  line  could  be  moved  

medio-­‐laterally  or  in  a  proximal/distal  direction  in  order  to  find  a  true  maximum  

linear  distance.  The  latter  resulted  in  greater  consistency  between  the  repeated  

measurements,  as  verified  by  the  precision  test  results  (Table  5.2).    

The  rTEM  and  R  values  in  the  present  study  are  consistent  with  previous  research;  

R  values  >  0.9  and  rTEM  values  <  5%  for  linear  measurement  acquisition  (e.g.  

Arroyo  et  al.  2010;  Franklin  et  al.  2012b;  Ulijaszek  and  Kerr  1999;  Ishak  et  al.  

2012).  The  precision  test  confirms  that  accurate  measurements  can  be  taken  in  

digital  hand  x-­‐rays,  as  previously  suggested  by  Verhoff  et  al.  (2008)  and  Franklin  et  

al.  (2012c),  who  both  examined  measurement  precision  in  actual  bone  specimens  

and  multi-­‐slice  computer  tomography  scans.  Verhoff  et  al.  (2008)  assessed  the  

variance  between  measurements  acquired  from  actual  skull  specimens  and  their  

three  dimensional  (MSCT)  reconstructions.  The  physical  and  digital  measurements  

varied  on  average  by  1-­‐3mm.  Franklin  et  al.  (2012c)  reported  an  even  smaller  

difference  when  comparing  traditional  cranial  measurements  acquired  in  physical  

bone  specimens  and  their  MSCT  counterparts  (digitised  in  OsiriX®);  the  mean  

difference  was  only  0.9mm  and  statistically  non-­‐significant  between  the  two  

acquisition  methods.    

 

Page 89: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     71  

6.3    Adult  data  

6.3.1  Sexual  dimorphism  in  the  hand  

As  the  overall  purpose  of  this  study  was  to  produce  population-­‐specific  sex  

estimation  standards,  the  magnitude  and  expression  of  sexual  dimorphism  in  the  

hand  bones  was  first  quantified.  The  ability  to  accurately  estimate  sex  in  the  

human  skeleton  is  inherently  related  to  sex-­‐specific  morphological  and  

behavioural  differences  (Glücksmann  1981;  Frayer  &  Wolpoff  1985).  The  degree  to  

which  sexual  dimorphism  is  expressed,  and  the  age  at  which  males  and  females  

begin  to  vary  morphologically,  is  dependent  on  genetic  and  environmental  factors  

that  differ  between  populations.  For  this  reason,  therefore,  it  is  recommended  that  

sex  estimation  standards  are  population  specific,  which  affords  the  most  accurate  

possible  sex  classification  (Burrows  et  al.  2003;  Franklin  et  al.  2012b;  Franklin  et  

al.  2013).  

i)  Hand  bone  measurements  

In  the  present  study  mean  male  measurements  were  significantly  larger  than  their  

female  counterparts  (See  Table  5.4).  In  general,  the  base  width,  head  width  and  

mid-­‐shaft  width  measurements  were  more  dimorphic  (greater  ‘between-­‐sex’  

variance)  compared  to  the  maximum  length  measurements.  The  latter  is  congruent  

with  previous  research  in  British  (Scheuer  and  Elkington  1993),  Spanish  (Barrio  et  

al.  2006)  and  Greek  (Manolis  et  al.  2009)  populations.  Scheuer  and  Elkington  

(1993)  reported  their  highest  index  of  separation  (the  difference  between  the  male  

and  female  mean  divided  by  the  pooled  standard  deviation)  for  the  mediolateral  

base  width  of  metacarpal  two,  whilst  Barrio  et  al.  (2006)  reported  that  this  same  

measurement  resulted  in  the  highest  sex  classification  accuracy  (91.00%).  Manolis  

et  al.  (2009)  also  suggest  that  epiphyseal  widths  are  the  most  accurate  indicators  

of  sex,  as  they  generally  exhibit  morphometric  sexual  dimorphism  to  a  greater  

extent  than  length  measurements.  Previous  studies  examining  the  fleshed  hand  

also  suggest  that  width  and  breadth  measurements  are  more  sexually  dimorphic  

than  length  measurements.  (e.g.  Ishak  et  al.  2012,  Alboul-­‐Hagag  et  al.  2011).  

Page 90: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     72  

The  observation  that  hand  width  measurements  (both  skeletal  and  fleshed)  

express  a  greater  degree  of  sexual  dimorphism  could  be  related  to  functional  

loading  in  response  to  mechanical  stimulus  (e.g.,  Moss  1980;  Trinkaus  et  al.  1994;  

DiBennardo  &  Taylor  1979;  Carter  et  al.  1996).  Functional  loading  (put  simply)  is  

the  transformation  in  size,  shape  or  mass  reflected  in  the  distribution  of  cortical  

bone  that  skeletal  tissue  can  potentially  undergo  in  response  to  mechanical  loading  

or  “…patterns  of  habitual  biomechanical  stress”  (Trinkaus  et  al.  1994,  pp.2;  see  also  

Moss  1980).    

Trinkaus  et  al.  (1994)  and  Wilczak  (1998)  suggest  that  longitudinal  measurements  

(such  as  maximum  length)  are  less  likely  to  be  affected  by  any  physical  stresses  

resulting  from  habitual  activity.  Trinkaus  et  al.  (1994),  in  particular,  compared  the  

humeral  diaphyseal  and  articular  dimensions  in  six  different  groups;  a  

Neanderthal  sample  and  five  recent  human  groups  from  different  populations  (one  

of  which  consisted  entirely  of  professional  tennis  players).  Trinkaus  et  al.  (1994)  

concluded  that  variance  in  diaphyseal  measurements  were  heavily  influenced  by  

mechanical  loading,  as  evidenced  by  the  high  level  of  bilateral  asymmetry  

exhibited  by  the  professional  tennis  players  (maximum  of  57%  difference  in  

diaphyseal  dimensions),  as  compared  to  the  four  ‘recent’  human  samples  

(maximum  of  14%  difference).  Maximum  bone  length  and  articular  dimensions  

were  found  to  exhibit  minimal  levels  of  asymmetry  across  all  six  samples.    

Wilczak  (1998)  reported  similar  results  when  comparing  mean  muscle  insertion  

areas,  as  well  as  length  and  articular  dimensions,  of  African-­‐American,  Euro-­‐

American  and  four  American  Indian  populations.  Not  only  did  diaphyseal  (muscle  

insertion)  areas  differ  between  individuals  of  a  different  ancestral  background  

(African-­‐American,  Euro-­‐American  and  American  Indian),  they  also  differed  within  

the  four  Native  American  groups.  They  suggest  that  this  was  likely  due  to  different  

subsistence  methods,  and  concluded  that  diaphyseal  breadths  are  more  sensitive  

to  mechanical  stresses  (after  skeletal  maturation)  than  are  length  and  articular  

dimensions  (Wilczak  1998).  

Page 91: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     73  

ii)  Sex  estimation  potential  

Sex  is  often  the  first  component  of  the  biological  profile  estimated  because  the  

remaining  elements  (age,  stature  and  ancestry)  are  generally  estimated  using  sex-­‐

specific  methods  (Franklin  2012a,  Braz  2009).  It  is  important,  therefore,  to  use  the  

most  accurate  sex  estimation  standards,  because  misclassification  may  have  a  flow  

on  effect  that  reduces  the  accuracy  of  the  estimation  of  other  biological  attributes.    

A  series  of  single  variable  discriminant  analyses  were  performed  to  derive  a  

classification  function  for  each  metacarpal  and  phalanx  analysed  (See  Table  5.5);  

combined  cross-­‐validated  accuracies  ranged  from  76.70%  (mid-­‐shaft  width  of  

metacarpal  four)  to  87.00%  (base  width  of  proximal  phalanx  three).  The  

classification  potential  of  using  all  four  measurements  from  a  single  metacarpal  

was  also  considered;  however,  only  two  of  the  resulting  functions  had  cross-­‐

validated  accuracies  over  80%  (See  Table  5.6).  A  series  of  stepwise  discriminant  

function  analyses  based  on  measurements  from  the  complete  hand,  and  from  each  

individual  digit,  were  also  performed  (See  Table  5.7).  The  stepwise  analysis  of  all  

hand  bone  measurements  resulted  in  the  highest  cross-­‐validated  accuracy  

(91.00%;  sex  bias  -­‐6.00%)  based  on  the  analysis  of  eight  variables.    

As  discussed  previously  (see  above)  the  width  measurements  were  more  sexually  

dimorphic  than  the  maximum  length  measurements.  This  was  further  confirmed  

by  examining  the  functions  that  had  accuracy  rates  above  85%;  there  were  more  

width  measurements  included  in  these  functions,  which  also  had  higher  

standardised  coefficient  values  than  the  length  measurements  (if  length  

measurements  were  included  at  all).  However,  functions  with  classification  

accuracies  over  85%  are  not  necessarily  reliable  if  they  misclassify  either  males  or  

females  at  disproportionate  levels.  For  this  reason,  the  sex  bias  was  calculated  and  

functions  with  a  bias  greater  than  ±  5%  (such  as  Function  8;  classification  accuracy  

of  87.00%  and  sex  bias  of  -­‐7.40%)  should  thus  be  applied  with  caution,  despite  a  

high  degree  of  expected  cross-­‐validated  accuracy.  

In  the  present  study,  the  lowest  cross-­‐validated  classification  accuracy  (76.70%)  

was  for  Function  4  based  on  the  measurement  of  the  mid-­‐shaft  width  of  

metacarpal  four  (See  Table  5.5).  The  highest  cross-­‐validated  classification  accuracy  

Page 92: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     74  

(91.00%)  was  for  Function  13,  requiring  a  total  of  eight  hand  measurements  in  the  

hand  (See  Table  5.7).  Generally,  the  functions  that  included  multiple  

measurements  achieved  a  higher  accuracy;  this  observation  is  also  consistent  with  

previous  research  (e.g.  Scheuer  &  Elkington  1993;  Barrio  et  al.  2006;  Case  &  Ross  

2007).  

There  are  a  number  of  studies  that  have  examined  the  sex  estimation  potential  of  

hand  bones  within  different  ethnic  groups,  including:  Caucasian  British  (Scheuer  

and  Elkington  1993);  Caucasian  and  African  American  (Burrows  et  al.  2003;  Case  

and  Ross  2007);  Spanish  (Barrio  et  al.  2006);  and  Egyptian  (El  Morsi  and  Hawary  

2012)  populations.  The  results  of  the  latter  studies  are  summarised  in  Table  6.1.  

The  range  of  sex  classification  accuracy  in  the  present  study  (76.70  -­‐  91.00%)  is  

well  within  that  of  the  published  literature.  When  comparing  the  results  of  the  

present  study  to  the  global  populations  in  Table  6.1,  the  classification  accuracy  

range  for  the  Egyptian  population  (66.80  -­‐  83.90%)  is  clearly  the  most  different.  

However,  the  results  of  the  latter  study  are  obviously  different  compared  to  all  of  

the  global  populations  listed.  This  is  likely  due  to  the  lack  of  stepwise  discriminant  

functions  in  the  Egyptian  study  or  the  exclusion  of  width  measurements.  As  

already  discussed,  width  measurements  were  found  to  be  the  most  dimorphic  

variables  ;  and  as  they  were  not  considered  in  the  Egyptian  study,  this  may  be  why  

classification  accuracies  were  not  as  high  as  that  of  the  current  study.  From  Table  

6.1  it  is  evident  that  the  classification  accuracy  ranges  achieved  for  the  current  

study  were  most  similar  to  those  of  Scheuer  and  Elkington  (1993).  This  similarity  

could  be  due  to  the  common  ethnic  origin  of  both  populations,  which  is  supported  

by  2011  census  statistics  for  Western  Australia,  where  79%  of  that  population  are  

self-­‐reported  to  be  of  English  ancestry  (ABS  2012).    

The  current  study  achieved  the  third  highest  classification  accuracy  (91.00%)  of  

the  five  studies  listed  in  Table  6.1.  However,  the  two  studies  that  reported  higher  

classification  accuracies  were  based  on  considerably  smaller  samples  (n<72),  as  

opposed  to  the  present  study  (n  =  300).  In  considering  a  larger  sample  size,  the  

results  from  the  current  study  are  more  statistically  robust,  as  they  are  based  on  a  

broader  cross-­‐section  of  the  local  population.  The  discriminant  functions  produced  

Page 93: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     75  

are,  therefore,  more  likely  to  perform  with  comparable  accuracy  when  applied  to  

the  broader  Western  Australian  population.  

Table  6.1  Sex  classification  accuracy  of  adult  hand  bone  measurements  in  a  variety  of  global  populations.  

Publication   Population   Sample  size  (n)  Classification  accuracy  range  

Current  study   Western  Australian   ♂  =150  ♀  =  150   76.70  -­‐  91.00%  

Scheuer  and  Elkington  1993  

Caucasian-­‐British   ♂  =33  ♀  =  27   74.00  -­‐  94.00%  

Barrio  et  al.  2006    

Spanish   ♂  =36  ♀  =  36   81.20  -­‐  91.40%  

Case  and  Ross  2007  Caucasian-­‐American  and  European  

♂  =133  ♀  =  116   77.90  -­‐  84.30%  

El  Morsi  and  Hawary  2012  

Egyptian   ♂  =  100  ♀  =  100   66.80  –  83.90%  

 

In  the  present  study  posterior  probabilities  were  calculated  for  all  18  functions  

(see  Appendix  One);  these  are  used  as  a  statistical  indication  of  confidence  in  

classifications.  Higher  posterior  probability  values  are  indicative  of  a  discriminant  

score  that  is  well  above  (or  below)  the  sectioning  point  (Patriquin  et  al.  2005).  The  

function  that  produced  the  highest  classification  accuracy  (Function  13)  had  the  

highest  percentage  of  individuals  classified  at  80%  certainty  and  above  (90.59%),  

thus  suggesting  it  is  unlikely  those  individuals  were  classified  by  chance.  No  

individuals  within  the  sample  were  classified  at  lower  than  40%  certainty.  This  

provides  some  degree  of  statistical  confidence  that  functions  derived  from  the  

Western  Australian  sample  should  be  applicable  to  the  broader  population  in  a  

forensic  context.  Functions  1  to  6  had  the  lowest  percentages  of  individuals  

(ranging  from  55.80  to  64.82%)  classified  at  80%  certainty  or  above.  This  would  

suggest  that  the  functions  based  on  a  sole  metacarpal  variable  are  not  as  robust  as  

the  direct  multiple  variable  and  stepwise  discriminant  functions.  

In  considering  the  accuracy  of  skeletal  sex  assessments  in  general,  the  pelvis  and  

cranium  are  the  preferred  bones  used  to  estimate  that  particular  biological  

attribute  (Franklin  et  al.  2014).  The  pelvis,  in  particular,  is  considered  the  most  

dimorphic  bone  as  it  has  a  specific  morphology  related  to  biological  function  (e.g.  

Page 94: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     76  

accommodating  childbirth  in  females).  For  the  pelvis  alone,  sex  classification  

accuracy  rates  have  been  reported  between  90  to  95%  (Phenice  1969;  Lovell  

1989;  Ubelaker  &  Volk  2002).  High  classification  accuracies  have  also  been  

reported  for  the  skull,  ranging  from  75  to  90%  (e.g.  Giles  &  Elliot  1963;  Franklin  et  

al.  2005)  and  the  long  bones:  between  83  to  96%  for  the  humerus  (Spradley  &  

Jantz  2011;  Robinson  &  Bidmos  2008;  Albanese  et  al.  2005);  85  to  94%  for  the  

radius  (Spradley  &  Jantz  2011);  76  to  97%  for  the  femur  (Albanese  et  al.  2008;  

Robinson  &  Bidmos  2011;  Spradley  &  Jantz  2011);  and  54  to  91%  for  the  tibia  

(Robinson  &  Bidmos  2011;  Spradley  &  Jantz  2011).  The  range  of  classification  

accuracies  resulting  from  the  standards  presented  in  the  present  study  are  

comparable  to  those  previously  reported  for  other  skeletal  elements;  further  

confirming  that  hand  bones  from  a  Western  Australian  population  are  sexually  

dimorphic  and  can  be  used  to  accurately  estimate  sex.    

6.3.2  Morphometric  population  variation  

A  series  of  independent  sample  t-­‐tests  were  conducted  to  investigate  the  

significance  of  population  variation  in  hand  bone  measurements.  It  should  be  

noted  that  not  all  of  the  comparative  studies  acquired  data  from  radiographs.  

Comparisons  are  therefore  made  with  caution.  The  maximum  length  

measurements  of  metacarpals  one,  two  and  four  were  compared,  because  they  

were  measurements  common  to  the  present  study  and  the  four  comparative  

studies.  When  comparing  Western  Australian  male  mean  metacarpal  length  values  

to  the  four  comparative  populations,  all  but  one  comparison  was  statistically  

significantly  larger  (maximum  length  of  metacarpal  one  for  the  Western  Australian  

and  Egyptian  individuals.).  A  similar  trend  was  also  examined  when  comparing  

Western  Australian  females  to  the  comparative  populations;  again,  the  only  

statistically  insignificant  difference  was  found  for  metacarpal  one  to  the  Egyptian  

population.  

The  relative  magnitude  of  sexual  dimorphism  expressed  in  the  hand  bones  was  

also  compared  between  populations;  Western  Australian  population  was  most  

similar  to  the  British  population.  The  purpose  of  these  t-­‐tests  was  to  observe  if  

there  was  a  difference  in  both  mean  metacarpal  values  and  the  magnitude  of  

Page 95: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     77  

sexual  dimorphism  expressed  between  populations.  Due  to  the  degree  of  variation  

between  these  populations  (both  morphometrically  and  in  the  relative  magnitude  

of  sexual  dimorphism  expressed  by  the  hand  bones),  life-­‐time  activity,  prevalence  

of  malnutrition,  climate  and  temporal  (or  secular)  variation  are  all  considered  as  

potential  contributors  to  the  variation  assessed  and  are  further  discussed  below.    

i)  Life-­‐time  activity  

Life-­‐time  activity,  both  during  and  after  skeletal  maturation,  can  affect  bone  size  

and  shape  (Wells  2007).  Based  on  the  analysis  of  the  effect  of  improved  nutrition  

over  time  on  the  length  and  proportion  of  long  bones,  Jantz  and  Jantz  (1999)  

suggest  that  longitudinal  bone  dimensions  (such  as  length)  are  less  likely  to  be  

affected  by  “patterns  of  habitual  biomechanical  stress”  once  skeletal  maturation  has  

been  reached.  Both  male  and  female  long  bone  lengths  were  found  to  increase  by  

less  than  1%  per  decade.  Studies  that  have  examined  population  variation  in  

skeletal  robusticity  (e.g.  Collier  1989;  Wilczak  1998)  independently  confirm  this  

trend,  as  both  studies  demonstrated  population  variation  in  diaphyseal  and  

epiphyseal,  rather  than  length,  measurements.  For  this  reason,  life-­‐time  activity  

was  dismissed  as  a  factor  affecting  the  morphometric  variation  in  length  

measurements  between  the  populations  examined  in  the  present  study.  

ii)  Malnutrition  and  quality  of  life  

Malnutrition  is  a  health  issue  concerned  with  the  disproportionate  consumption  of  

nutrients;  either  too  much,  not  enough,  in  the  wrong  proportions,  or  affected  by  

malabsorption  (World  Health  Organisation  2014).  Malnutrition  is  measured  by  the  

World  Health  Organisation  (2013a)  as  the  occurrence  of  height  stunting;  

calculated  as  the  percentage  of  children  under  five  years  old  who  were  more  than  

two  standard  deviations  shorter  than  the  expected  height  for  their  age.  World  

Health  Organisation  statistics  (2013a),  however,  suggest  that  malnutrition  in  

children  under  five  years  of  age  in  Australian  and  American  populations  is  

minimal;  metacarpal  length  differences  between  these  populations  is  therefore,  

most  likely  a  result  of  factors  other  than  inadequate  nutrition.  Data  acquired  from  

an  Australian  sample  in  2007  indicated  that  only  1.8%  of  children  under  the  age  of  

five  fell  into  this  category.  For  America,  the  same  statistic  (as  of  2002)  is  3.9%  

Page 96: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     78  

(World  Health  Organisation  2013a).  No  such  statistics  were  found  for  Spain  and  

the  United  Kingdom.  However,  as  Western  Europe  (as  for  Australia  and  America)  

is  considered  a  developed  region,  it  is  unlikely  that  Spain  and  the  United  Kingdom  

would  have  a  significantly  high  prevalence  of  malnutrition.  It  is  therefore  also  

unlikely  that  malnutrition  is  a  causative  factor  for  the  existing  morphometric  

variation  between  the  current  study  and  the  aforementioned  comparative  studies.  

Egypt  had  the  highest  percentage  of  children  with  a  height  less  than  two  standard  

deviations  expected  for  their  age  with  the  World  Health  Organisation  (2013a;  

2013c)  reporting  30.7%  of  children  under  five  exhibiting  height  stunting  as  of  

2010.  It  is  possible  that  malnutrition  has  been  an  influencing  factor  on  metacarpal  

length.  

Along  with  malnutrition,  the  difference  in  ‘how  developed’  the  five  populations  are  

was  also  considered.  Comparative  measures  (such  as  the  quality  of  life  index  and  

the  human  development  index)  and  statistics  such  as  mortality  rate,  and  life  

expectancy  at  birth,  are  presented  in  Table  6.2.  

 

Table  6.2  Quality  of  life  statistics,  quality  of  life  index  and  human  development  

index  for  each  of  the  five  comparative  populations.  

    Australia   Egypt   Spain   United  Kingdom  

United  States  

           

Mortality  rate#  i,  ii,  iii,  iv,  v.   5   21   4   5   8              

Life  expectancy  at  birthvi   82   73   82   80   79              

Quality  of  Life  Indexvii  Score     7.925   5.605   7.727   6.917   7.615  Rank   6   80   10   29   13  

             

Human  Development    Indexviii  

Score   0.938   0.662   0.885   0.875   0.937  Rank   2   112   23   26   3  

Key:  #.  Mortality  rate  of  children  under  five  per  1000  live  births;  i.  WHO  2013b;  ii.  WHO  2013c;  iii.  

WHO  2013d;  iv.  WHO  2013e;  v.  WHO  2013f;  vi.  OECD  2006;  vii.  The  Economist  2005;  viii.  UNDP  

2011.  

 

The  quality  of  life  index  is  a  score  (out  of  10)  that  is  calculated  using  information  

including  (but  not  limited  to)  overall  population  well-­‐being,  health,  family  

Page 97: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     79  

relations,  job  security,  and  political  freedom  (The  Economist  2005).  Out  of  111  

countries,  Australia  is  ranked  the  highest  of  the  five  populations  considered  at  

number  six  with  a  score  of  7.925  (Table  6.2).  Spain  (number  10),  America  (number  

13)  and  the  United  Kingdom  (number  29)  all  rank  in  the  top  30%  of  countries  with  

scores  of  7.727,  7.615  and  6.917  respectively.  Egypt,  however,  is  within  the  bottom  

30%  (number  80)  with  a  score  of  5.605.    

The  human  development  index  is  another  comparative  measure  based  on  factors  

such  as  life  expectancy,  literacy  skills,  education,  standards  of  living,  and  overall  

quality  of  life.  This  index  is  on  a  scale  from  zero  to  one;  values  closer  to  zero  are  

indicative  of  an  underdeveloped  country  and  vice  versa.  Australia  has  the  highest  

human  development  index  (0.938)  and  is  placed  at  number  two  out  of  186  

countries  (UNDP  2011).  Egypt  is,  once  again,  the  lowest  ranked  out  of  the  five  

countries  considered  (number  112),  with  the  lowest  human  development  index  of  

0.662,  suggesting  it  is  the  least  developed  of  the  five  populations.  Quality  of  life  is  

also  expressed  through  life  expectancy  and  child  mortality  statistics.  Egyptians  

have  a  lower  quality  of  life  than  Australian,  Spanish,  British  and  American  

individuals.  For  instance,  not  only  do  Egyptians  have  a  lower  life  expectancy  at  

birth  (73  years  old)  than  the  four  ‘more  developed’  populations,  the  mortality  rate  

for  children  under  five  years  is  much  higher  (21  per  1000  live  births)  than  any  of  

the  other  populations  considered.  

 

The  statistics  and  indices  outlined  in  Table  6.2  suggest  that  the  quality  of  life  in  

Australia  is  similar  to  the  quality  of  life  in  Spain,  the  United  Kingdom  and  the  

United  States.  It  is,  therefore,  unlikely  (as  with  the  prevalence  of  malnutrition)  that  

difference  in  quality  of  life  is  a  contributing  factor  to  the  morphometric  differences  

and  differences  in  the  expression  of  sexual  dimorphism  that  exist  between  the  

Western  Australian  population  and  the  Spanish,  British  and  American  populations.  

Whether  prevalence  of  malnutrition  and  difference  in  quality  of  life  are  factors  

relating  to  the  unexpected  similarities  between  the  Western  Australian  and  

Egyptian  populations  is  uncertain.  However,  when  considering  the  prevalence  of  

malnutrition  and  quality  of  life,  it  was  expected  that  the  Egyptian  population  

would  exhibit  the  smallest  magnitude  of  sexual  dimorphism.  Individuals  of  an  

Page 98: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     80  

Egyptian  population  are  more  likely  to  be  subjected  to  poor  nutrition,  inadequate  

access  to  water  and  lower  quality  of  life  than  individuals  from  the  more  

‘developed’  comparative  populations.  It  is  therefore  possible  that  individuals  from  

the  Egyptian  population  study  would  not  reach  their  full  “genetic  potential  for  

growth”  (Mielke  et  al.  2011,  pp.274)  as  a  result  of  poor  nutrition  and  quality  of  life.  

Populations  from  countries  that  are  considered  to  be  less  (or  under)  developed  

have  a  tendency  to  express  sexual  dimorphism  at  a  smaller  magnitude  than  

populations  from  developed  countries.  This  a  reflection  of  males  being  more  

susceptible  to  growth  stunting  factors  (such  as  poor  nutrition)  than  females  

(Harrison  et  al.  1977)  resulting  in  males  and  females  being  morphometrically  

similar  and  less  sexually  dimorphic.  This,  however,  was  not  what  the  results  of  the  

t-­‐test  depicted.    

iii)  Climate  

Another  factor  that  can  affect  levels  of  morphometric  variation,  or  the  degree  of  

sexual  dimorphism  expressed  by  the  hand  bones  in  different  populations,  is  

climate.  With  regards  to  biological  and  morphological  variation,  Allen  (1877)  and  

Bergmann  (1847;  cited  in  Collier  1989)  proposed  rules  concerning  body  

composition  in  relation  to  climate.  Bergmann’s  rule  suggests  that  individuals  with  

a  larger  body-­‐weight  in  proportion  to  their  overall  body  size  are  more  suited  to  

cooler  climates,  and  individuals  with  a  smaller  body  weight  in  proportion  to  their  

overall  body  size,  are  more  suited  to  a  warmer  climate.  This  negative  correlation  

between  body-­‐weight  and  mean  temperature  was  confirmed  by  Roberts  (1953);  

the  mean  body-­‐weight  of  populations  from  Africa,  South-­‐East  Asia  and  Australia  

were  significantly  lower  than  the  mean  body-­‐weight  of  American  and  European  

populations.  As  the  present  interpretation  is  focussing  on  population  variation  in  

metacarpal  length,  Allen’s  rule  is  more  relevant  to  this  comparison  than  

Bergmann’s  rule.  

Allen’s  rule  concerns  the  length  of  extremities  in  relation  to  climate;  individuals  

subject  to  cooler  climates  are  expected  to  have  shorter  limbs,  along  with  a  lower  

surface  area  to  allow  for  sufficient  heat  retention  (Allen  1877).  In  warmer  climates,  

the  opposite  is  expected;  longer  extremities  coupled  with  a  larger  surface  area  

Page 99: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     81  

(relative  to  body  size)  to  decrease  heat  retention  (Allen  1877;  Collier  1989).  It  is,  

therefore,  expected  that  taller  individuals  would  have  longer  limb  bones  and  by  

association  (resulting  from  a  scaling  effect)  longer  hand  bones.  Both  Western  

Australia  and  Spain  are  considered  to  have  Mediterranean  climates,  and  it  was  

therefore  expected  that  the  mean  metacarpal  length  values  may  be  similar  (Bureau  

of  Meteorology  2014).  As  the  Egyptian  population  are  subject  to  a  more  arid  

climate,  reaching  higher  maximum  temperatures  than  Western  Australia,  Egyptian  

mean  metacarpal  length  values  were  expected  to  be  larger  than  their  Western  

Australian  counterparts  (Egyptian  Meteorological  Authority  2014;  AEMET  2014).    

The  results  of  the  present  study,  however,  do  not  reflect  the  latter  relationship.  

The  results  (Appendix  Two)  suggest  that  Western  Australian  metacarpal  lengths  

for  both  males  and  females  are  significantly  larger  than  those  of  Spanish  

individuals.  The  metacarpal  lengths  of  Western  Australian  individuals  were  

actually  found  to  be  most  similar  to  the  Egyptian  individuals,  despite  the  

expectation  that  the  Western  Australian  population  would  be  significantly  smaller.  

As  with  the  previous  factors  discussed,  climate  alone  cannot  explain  the  

differences  and  similarities  (and  dissimilarities)  found  when  comparing  the  

Western  Australian  and  comparative  populations.  Whether  climate  actually  has,  or  

the  extent  climate  does  have,  an  effect  on  hand  bone  size  is  uncertain.  In  a  

historical  context,  this  relationship  between  climate  and  body  shape  and  size  

would  have  been  more  likely.  However,  in  a  modern  context,  humans  can  

effectively  adapt  their  environments  to  suit  them;  thus  minimising  the  effect  

climate  has  on  body  type  and  size  (i.e.  Allen’s  and  Bergmann’s  rules).  

iv)  Secular  variation  

In  examining  the  comparative  populations  it  is  evident  that  the  Caucasian-­‐British  

(Scheuer  &  Elkington  1993),  Spanish  (Barrio  et  al.  2006)  and  Caucasian-­‐American  

(Case  &  Ross  2007)  are  temporally  removed  to  the  contemporary  Western  

Australian  sample  (Table  6.3).  This  temporal  difference  may  be  the  reason  for  the  

size  difference  examined;  secular  changes  in  height  as  well  as  long  bone  size  and  

proportion  are  all  well  documented  (e.g.  Tanner  1962;  Van  Wieringen  1986;  Jantz  

&  Jantz  1999;  Bielecki  et  al.  2012).  Secular  changes  in  height  have  been  established  

Page 100: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     82  

as  a  positive  linear  trend  with  an  average  1-­‐1.5cm  increase  in  mean  height  every  

decade,  regardless  of  population  (Tanner  1962;  Van  Wieringen  1986).  In  Polish  

school-­‐aged  boys  an  increase  of  up  to  3.43cm  in  mean  height  was  found  when  

compared  data  from  the  previous  decade  (Bielecki  et  al.  2012).  Ljung  et  al.  (1974)  

also  found  a  secular  change  in  mean  height  in  Swedish  children  (measured  

between  1965  and  1971)  who  had  a  larger  mean  height  (an  average  increase  of  

2.5cm  every  decade)  than  Swedish  children  measured  in  1938.  Similar  results  

were  found  when  comparing  data  on  stature  and  weight  acquired  from  Melbourne  

school  students  (5  to  17  years  of  age)  with  data  acquired  from  up  to  100  years  

prior;  from  1970  to  1992,  a  1.2  centimetre  increase  per  decade  was  for  found  for  

male  height  at  age  17  and  a  0.2  centimetre  increase  per  decade  was  found  for  

females  height  at  age  17  in  the  Victorian  (Australian)  population  (Loesch  et  al.  

2000).    

Table  6.3  Year  of  birth  and  year  of  death  ranges  of  the  three  temporally  different  comparative  studies.      

Publication   Sample  Year  of  birth  

range  Year  of  

death  range  

Current  Study  Digital  hand  x-­‐rays  from  various  hospitals  in  Western  Australia    

1948  –  1995   NA  

Scheuer  and  Elkington  1993  

Cadavers  from  various  medical  schools  in  United  Kingdom  

1844  –  1930   1926  -­‐  1988  

Barrio  et  al.  2006  Skeletal  collection  from  Complutense  University  of  Madrid  

Unknown   1975  –  1985  

Case  and  Ross  2007   Terry  anatomical  collection   1840  –  1950   1920  -­‐  1965  

Key:  NA  =  Not  Applicable  

 

With  gradual  secular  generational  increases  in  mean  height  values,  it  is  likely  that  

changes  have  concurrently  occurred  in  mean  metacarpal  length  values.  For  

example,  Jantz  and  Jantz  (1999)  found  that  the  secular  increase  in  long  bone  length  

for  both  lower  and  upper  limb  bones  had  a  similar  gradual  increase  as  height  when  

comparing  generations.  This  may  explain  the  more  significant  differences,  between  

mean  metacarpal  lengths  from  the  current  study  and  Scheuer  and  Elkington  

Page 101: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     83  

(1993),  Barrio  et  al.  (2006)  and  Case  and  Ross  (2007)  (See  Appendix  Two).  Due  to  

a  temporal  variation  between  the  latter  three  studies  and  the  contemporary  data  

examined  in  the  present  study,  differences  in  mean  metacarpal  lengths  could  be  

the  result  of  secular  variation.  With  improved  nutrition,  sanitation,  accessible  

medical  facilities  and  reduced  incidence  of  childhood  or  infectious  diseases,  

contemporary  populations  have  a  tendency  to  exhibit  larger  bone  dimensions  than  

previous  generations  by  reaching  their  full  “genetic  growth  potential”(Mielke  et  al.  

2011,  pp.274;  Eveleth  &  Tanner  1976;  Malina  1979).      

v)  Summary  

The  results  from  the  independent  sample  t-­‐tests  confirm  morphometric  variation  

in  the  hand  bones.  Furthermore,  t-­‐test  results  also  confirm  population  differences  

in  the  magnitude  of  sexual  dimorphism.  Differences  in  life-­‐time  activity,  the  

prevalence  of  malnutrition,  climatic  and  temporal  variation  were  all  considered.  

However,  morphometric  differences  and  variation  in  the  magnitude  of  sexual  

dimorphism  is  likely  the  result  of  multiple  and  largely  unpredictable  factors.  

Without  knowing  which  factors  have  had  an  effect  on  each  of  the  populations,  and  

how  much  these  factors  have  contributed  to  the  expression  of  sexual  dimorphism,  

sex  estimation  standards  based  on  morphometric  hand  bone  data  cannot  be  

accurately  applied  to  foreign  populations.  This  further  emphasises  the  need  for  

population  specific  standards  (see  below).  

6.3.3  Importance  of  population  specific  standards  

Non-­‐population  specific  standards  may  result  in  inaccurate  results  because  

populations  are  known  to  differ  in  the  expression  and  magnitude  of  sexual  

dimorphism  (Frayer  &  Wolpoff  1985).  This  issue  has  been  investigated  previously;  

for  example,  Burrows  et  al.  (2003)  tested  the  applicability  of  previously  

established  sex  estimation  standards  based  on  populations  foreign  to  their  

American  sample.  Sex-­‐estimation  standards  for  Caucasian-­‐British  (Scheuer  and  

Elkington  1993),  mixed  Caucasian-­‐European  and  Caucasian-­‐American  (Case  and  

Ross  2007)  and  Caucasian-­‐American  and  African-­‐American  were  evaluated  

(Stojanowski  1999).  Sex  estimation  accuracy  using  the  foreign  models  were  up  to  

9.00%  lower  and  the  range  of  achieved  accuracies  was  wider  (e.g.  Burrows  

Page 102: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     84  

reported  an  accuracy  range  of  65.2  to  95.7%  when  the  original  reported  accuracy  

range  was  75  to  90%),  indicating  less  consistency  than  originally  reported.  

However,  the  foreign  estimation  standards  were  tested  on  a  relative  small  sample  

(n=23),  which  had  an  age  at  death  range  of  64-­‐93  years.    

In  the  present  study  there  was  a  tendency  (similar  to  that  demonstrated  by  

Burrows  et  al.  2003)  for  classification  accuracies  to  be  lower  than  initially  reported  

when  foreign  standards  were  applied  to  the  Western  Australian  population.  The  

most  accurate  foreign  standards  (when  applied  to  Western  Australia)  were  those  

of  a  North-­‐American  Caucasian  population  (Case  and  Ross  2007)  however,  due  to  

its  extremely  high  sex-­‐bias  (48.67%),  it  would  be  completely  unacceptable  to  use  

this  standard  to  estimate  sex  in  Western  Australian  individuals.    

6.4  Sub-­‐adult  sample  

i)  Sexual  dimorphism    

Another  aim  of  the  present  study  was  to  assess  whether  sex  can  be  accurately  

estimated  in  sub-­‐adults  and  to  determine  at  what  age  the  hand  bones  are  

quantifiably  dimorphic.  The  results  from  the  univariate  comparisons  suggest  that  

the  hand  bones  are  sexually  dimorphic  at  approximately  14  to  16  years  of  age  

(Group  B;  14-­‐16  years).    The  number  of  statistically  significant  sex  differences  

increased  with  increasing  age.  This  likely  related  to  the  age  of  pubertal  onset  in  

both  males  and  females  and  the  difference  that  exists  in  both  pubertal  and  skeletal  

growth  between  males  and  females  (Gasser  et  al.  2013).    

Franklin  et  al.  (2007)  examined  the  sex  estimation  potential  of  the  mandible  in  

sub-­‐adults  from  three  separate  populations,  with  results  also  suggesting  that  

males  and  females  become  morphologically  dimorphic  around  the  age  of  15  years.  

Although  in  that  study  multivariate  regression  analyses  indicated  that  there  were  

no  statistically  significant  differences  between  sub-­‐adult  males  and  females,  it  was  

suggested  that  sex  estimation  could  be  possible  at  the  age  of  15  years,  as  p-­‐values  

for  this  age  group  were  approaching  significance.  Franklin  et  al.  (2007)  proposed  

that  statistically  significant  differences  may  have  been  found  had  a  larger  sample  

been  considered.    

Page 103: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     85  

Gasser  et  al.  (2013)  documented  the  appearance  of  several  stages  of  pubertal  

growth  and  the  pubertal  growth  spurt  in  120  boys  and  112  girls  from  a  Swiss  

population.  Females  within  this  study  were  found  to  begin  their  pubertal  growth  

spurt  approximately  one  year  earlier  than  males,  with  their  peak  growth  velocity  

occurring  between  12  to  12.5  years  of  age.  The  onset  of  the  pubertal  growth  spurt  

for  the  males  in  that  study  was  between  10.75  and  11  years,  with  their  peak  

growth  velocity  occurring  between  13.5  and  14  years  of  age.  In  considering  the  

results  of  the  present  study,  the  latter  may  explain  the  few  statistically  significant  

differences  between  the  male  and  female  mean  values  in  Group  ‘A’  (12  to  14  years)  

as  opposed  to  Groups  ‘B’  (14  to  16  years)  and  ‘C’  (16  to  18  years).  Data  acquired  

from  this  same  Swiss  sub-­‐adult  sample  was  assessed  for  the  onset,  peak  growth  

velocity  and  maximal  deceleration  of  skeletal  growth,  resulting  in  similar  ages  to  

the  stages  of  pubertal  growth  (Molinari  et  al.  2013).  Peak  skeletal  growth  occurred  

at  approximately  12.2  years  in  females  and  14  years  in  males,  which  once  again  is  

reflected  in  the  increase  of  statistically  significant  differences  between  the  sexes  as  

age  increases.  

ii)  Sex  classification  accuracy    

Stepwise  discriminant  functions  were  formulated  for  the  three  sub-­‐adult  age  

groups.    Group  ‘B’  and  ‘C’  had  classification  rates  above  90%,  which  would  suggest  

that  from  14  years  of  age  sex  can  be  accurately  estimated.  Despite  achieving  cross-­‐

validated  accuracies  over  80%  for  Groups  ‘B’  and  ‘C’,  their  associated  sex  bias  

values  were  greater  than  ±  5%,  suggesting  that  these  functions  should  be  used  

with  due  caution.  When  considering  the  sex  bias  values  (-­‐35  to  -­‐70%)  sex  

estimation  of  sub-­‐adults  is  deemed  to  be  unreliable  and  inaccurate.  This  may  be  

due  to  variation  in  the  onset  of  pubertal  growth  and  skeletal  maturation,  and  the  

ages  associated  with  these  two  stages  of  development  (see  above).    It  is  possible  

that  sex  bias  values  would  decrease  if  a  larger  sample  for  each  age  group  was  

considered,  as  a  larger  sample  would  include  a  broader  cross-­‐section  of  the  sub-­‐

adult  population  and  therefore  more  variation.  

Additionally,  the  adult  sexing  standard  (Function  13)  was  also  applied  to  the  sub-­‐

adult  sample  to  establish  whether  the  former  is  applicable  to  the  non-­‐skeletally  

Page 104: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     86  

mature  hand.  It  was  clear  the  function  based  on  the  adult  data  is  not  suitable  for  

the  application  to  sub-­‐adults.  For  all  three  groups,  the  total  number  of  females  was  

correctly  classified  (100%  correctly  classified).  However,  across  the  three  groups,  

the  highest  number  of  males  correctly  classified  using  the  adult  discriminant  

function  was  65.00%.  This  tendency  for  males  to  be  misclassified  as  females  may  

be  due  to  their  later  pubertal  growth  spurt  and  therefore,  their  later  completion  of  

skeletal  growth  (Molinari  et  al.  2013).    At  the  final  stages  of  the  pubertal  growth  

spurt,  females  were  found  to  have  reached  97%  of  their  total  adult  height  at  the  

age  of  13.5  years,  and  males  were  found  to  have  reached  96%  of  their  total  adult  

height  at  15.5  years.  As  the  age  limit  of  the  individuals  included  in  the  sub-­‐adult  

sample  was  17.90  years,  it  is  possible  that  some  of  the  male  sub-­‐adults  classified  

using  the  adult  function  were  still  growing  and,  therefore,  were  classified  as  female  

due  to  their  smaller  hand  dimensions.    

In  light  of  this  possibility,  Group  C  was  scrutinised  for  skeletal  maturity;  all  20  

females  were  observed  to  be  skeletally  mature  (complete  epiphyseal  fusion)  and  

18  of  the  20  males  were  skeletally  mature.  However,  both  male  individuals  with  

incomplete  fusion  were  correctly  classified  by  the  adult  Function  13,  negating  the  

suggestion  that  skeletal  maturity  is  responsible  for  the  sex  bias  observed.  It  is  

beyond  the  scope  of  this  research  study  to  evaluate  the  reasons  for  the  high  degree  

of  male  misclassification  in  skeletally  mature  sub-­‐adults,  although  it  is  inevitably  

related  to  small  sample  size,  in  collaboration  with  factors  such  as  ancestry.            

6.5  Forensic  applications  

The  classification  models  produced  in  this  study  are  designed  for  forensic  

application  when  assessing  sex  from  digital  hand  radiographs  in  Western  

Australia.  The  functions  presented  are  suited  to  varying  levels  of  bone  

preservation.    In  an  ideal  situation,  data  would  be  acquired  from  the  complete  

hand  in  order  to  classify  sex  using  the  stepwise  model  (Function  13)  as  it  had  the  

highest  classification  accuracy  and  a  reasonable  sex  bias  value.    However,  the  

likelihood  of  recovering  a  complete  skeletal  hand  when  a  human  body  has  already  

progressed  to  the  skeletal  stage  of  decomposition  is  relatively  lower  compared  to  

other  larger  and  more  robust  skeletal  elements.  Waldron  (1987)  calculated  

Page 105: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     87  

percentage  recovery  rates  for  different  archaeological  skeletal  elements  and  found  

a  relatively  strong  correlation  between  the  survival  of  skeletal  elements  and  their  

size.  The  phalanges  were  among  the  least  well-­‐represented  skeletal  elements,  

likely  due  to  their  smaller  size.  Metacarpals  were  considered  to  be  ‘fairly’  resistant  

to  post-­‐mortem  damage  with  recovery  rates  ranging  from  39.80%  for  the  right  

fifth  metacarpal  to  63.60%  for  the  left  third  metacarpal.  Forensic  cases  are  likely  to  

exhibit  percentage  recovery  rates  similar  to  those  found  by  Waldron  (1987)  or  

perhaps  even  worse  depending  on  the  manner  of  death  (e.g.  post-­‐blast  remains).  

For  this  reason,  sex  estimation  standards  were  formulated  based  on  a  single  hand  

bone;  as  these  models  do  not  require  a  complete  hand,  they  can  be  applied  in  

situations  where  the  hand  bones  have  been  disarticulated,  fractured  or  in  cases  of  

co-­‐mingled  amputated  limbs,  such  as  what  may  occur  in  disaster  victim  

identification  (DVI)  situations  (Blau  &  Briggs  2011).    

6.6  Limitations  and  future  research  

The  current  study  examined  both  adult  and  sub-­‐adult  Western  Australian  

individuals.  The  large  adult  sample  (n=300)  afforded  a  robust  analysis  of  the  data  

acquired,  as  potential  sampling  error  would  have  been  minimised.  The  number  of  

sub-­‐adults  from  each  of  the  three  age  groups  examined,  however,  was  

comparatively  small  (approximately  20-­‐40).  Further  research  into  the  sex  

estimation  potential  of  the  sub-­‐adult  hand,  based  on  the  analysis  of  a  larger  

sample,  would  be  beneficial.  Research  into  bilateral  asymmetry  could  also  be  

performed  to  assess  the  applicability  of  classification  models  from  this  study  

(based  on  right  hand  measurements)  to  the  left  hand.  Ishak  et  al.  (2012)  confirmed  

that  bilateral  asymmetry  had  minimal  effect  on  measurements  from  the  fleshed  

hand  in  a  Western  Australian  population.  This  is  also  likely  to  occur  for  the  hand  

bones,  but  it  is  yet  to  be  statistically  quantified.    

Another  consideration  for  future  research  would  be  to  conduct  a  longitudinal  

study  on  morphometric  differences  in  long  bones,  specifically  including  the  

metacarpals  and  phalanges,  to  assess  the  magnitude  of  secular  differences  in  

Western  Australian  individuals  across  generations.  This  may  give  an  indication  of  

how  reliable  the  classification  models  produced  would  be  to  past  and  future  

Page 106: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     88  

generations,  and  perhaps  necessitate  the  formulation  of  updated  contemporary  

classification  models  in  the  future.  

Finally,  it  would  be  of  interest  to  acquire  data  from  an  adult  sample  of  known  

ancestry.  From  the  2011  census,  the  Australian  Bureau  of  Statistics  reported  that  

over  25%  of  the  Western  Australian  population  were  born  overseas,  whilst  20%  of  

the  remaining  population  had  at  least  one  parent  born  overseas  (Australian  

Bureau  of  Statistics  2013).  It  would  be  to  ascertain  if  accuracy  varies  between  the  

different  ethnic  groups  in  the  Western  Australian  population  (e.g.  Asian  and  

European  ancestry).  Furthermore,  the  standards  produced  from  this  study  should  

be  used  to  classify  individuals  from  different  states  within  Australia  to  establish  if  

these  standards  can  be  applied  to  the  Australian  population  as  a  whole,  as  opposed  

to  just  solely  individuals  from  Western  Australia.      

6.7  Conclusions  

Sex  is  generally  the  first  component  of  the  biological  profile  estimated;  it  is  

required  to  be  highly  accurate  and  reliable,  as  remaining  biological  profile  

components  (age,  stature  and  ancestry)  are  often  based  on  sex-­‐specific  standards.  

The  results  of  the  present  study  clearly  demonstrates  that  precise  and  accurate  

linear  measurements  can  be  acquired  from  digital  hand  x-­‐rays.  Measurement  

precision  values  (rTEM  and  R)  for  both  acquisition  methods  tested  (landmark  and  

line-­‐tool  method)  were  high  and  comparable  to  measurement  precision  results  

from  previously  published  sex  estimation  studies  (e.g.  Ishak  et  al.  2012;  Franklin  et  

al.  2012b).    

The  present  thesis  has  also  demonstrated  that  the  hand  bones  are  sexually  

dimorphic  in  a  Western  Australian  population  and  can  be  used  to  classify  sex  with  

a  high  degree  of  expected  accuracy.  Cross-­‐validated  classification  accuracies  range  

between  76.7  to  91%  for  the  18  functions  presented;  the  highest  classification  

accuracy  resulting  from  a  combination  of  eight  measurements  in  the  complete  

hand.  Although  the  majority  of  the  functions  presented  had  cross-­‐validated  

classification  accuracies  above  80%,  not  all  were  forensically  applicable;  functions  

with  a  sex  bias  value  greater  than  ±5%  should  only  be  used  with  due  caution,  as  

Page 107: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

CHAPTER  SIX  

 

     89  

they  have  a  tendency  to  misclassify  either  males  or  females  at  disproportionate  

levels.    

The  final  objective  of  this  thesis  was  to  determine  the  minimum  age  at  which  sex  

can  be  reliably  estimated  in  the  hand  bones.  A  series  of  ANOVAS  were  performed  

to  determine  the  age  at  which  hand  bones  were  metrically  sexually  dimorphic.  

Males  were  found  to  have  larger  hand  bone  measurements  from  approximately  14  

to  15  years  of  age.  However,  sex  could  not  accurately  be  estimated  when  applying  

stepwise  discriminant  functions  based  on  sub-­‐adult  (or  adult)  data,  as  sex  bias  

values  were  considerably  high  (ranging  from  8.3  to  70%).    

The  present  study  has  formulated  population  specific  sexing  standards  based  on  

morphometric  hand  bone  measurements  for  a  Western  Australian  population;  

such  data  did  not  previously  exist.  This  represents  a  valuable  addition  to  the  

database  of  human  identification  protocols  currently  being  developed  as  part  of  

on-­‐going  research  projects  at  the  Centre  for  Forensic  Science  at  the  University  of  

Western  Australia.  The  standards  presented  here  can  be  used  to  classify  sex  in  

unknown  remains  in  many  different  forensic  and/or  archaeological  scenarios.  

Importantly,  these  standards  are  based  on  data  that  is  representative  of  the  

contemporary  Western  Australian  population  and  are  thus  the  most  appropriate  

method  of  skeletal  sex  estimation  using  the  hand  bones.      

 

Page 108: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 90  

 

Page 109: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  91  

REFERENCES  

Aboul-­‐Hagag,  KE,  Mohamed,  SA,  Hilal,  MA  &  Mohamed,  EA  2011,  ‘Determination  of  

sex  from  hand  dimensions  and  index/ring  finger  length  ratio  in  upper  Egyptians’,  

Egyptian  Journal  of  Forensic  Sciences,  vol.1,  pp.80-­‐86.  

Agencia  Estata  de  Meteorologia  (AEMET)  2014,  Weather  Observation,  AEMET,  

Available  from:  <  http://www.aemet.es/en/eltiempo/observacion>  [16th  January  

2014].  

Agnihotri,  A,  Purwar,  B,  Jeebun,  N,  &  Agnihotri,  S  2006,  ‘Determination  of  sex  by  

hand  dimensions’,  Internet  Journal  of  Forensic  Science,  vol.1,  no.2,  Available  from:  <  

http://ispub.com/IJFS/1/2/9047>  [22nd  March  2013].    

Agresti,  A  2002,  Categorical  Data  Analysis,  2nd  edn,  John  Wiley  and  Sons,  United  

States  of  America.  

Agur,  AMR  &  Dalley,  AF  2009,  Grant’s  Atlas  of  Anatomy,  12th  edn,  Wolters  Kluwer  

Health,  Philadelphia.  

Albanese,  J,  Cardoso,  H  &  Saunders,  S  2005,  ‘Universal  methodology  for  developing  

univariate  sample-­‐specific  sex  determination  methods:  an  example  using  the  

epicondylar  breadth  of  the  humerus’,  Journal  of  Archaeological  Sciences,  vol.32,  pp.  

143-­‐152.  

Albanese,  J,  Eklics,  G  &  Tuck,  A  2008,  ‘A  metric  method  for  sex  determination  using  

the  proximal  femur  and  fragmentary  hipbone’,  Journal  of  Forensic  Science,  vol.  53,  

no.  6,  pp.  1283-­‐1288.  

Allen,  JA  1877,  ‘The  influence  of  physical  conditions  in  the  genesis  of  species’,  

Radical  Review,  vol.1,  pp.108-­‐140.  

Arroyo,  M,  Freire,  M,  Ansotegui,  L  &  Rocandio,  AM  2010,  'Intraobserver  error  

associated  with  anthropometric  measurements  made  by  dietitians',  Nutrición  

Hospitalaria,  vol.  25,  no.  6,  pp.  1053-­‐1056.  

Page 110: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     92  

 

Asala,  SA,  Bidmos,  MA,  &  Dayal,  MR  2004,  ‘Discriminant  function  sexing  of  

fragmentary  femur  of  South  African  blacks’,  Forensic  Science  International,  vol.  145,  

no.1,  pp.  25-­‐29.  

Australian  Bureau  of  Statistics  (ABS)  2011,  Australian  Bureau  of  Statistics  –  Table  

builder  basic:  online  database,  ABS,  Available  from:  <http://www.abs.gov.au/>.  

[20th  October  2013].  

Australian  Bureau  of  Statistics  (ABS)  2013,  2011  Census  QuickStats  –  Western  

Australia,  ABS,  Available  from:  <  http://www.censusdata.abs.gov.au/  

census_services/getproduct/census/2011/quickstat/5?opendocument&navpos=2

20>.  [16th  January  2014].  

Barrio,  P,  Trancho,  G  &  Sanchez,  J  2006,  ‘Metacarpal  sexual  determination  in  a  

Spanish  population’,  Journal  of  Forensic  Science,  vol.  51,  no.5,  pp.  990-­‐995.  

Bass,  W  2005,  Human  Osteology:  A  Laboratory  and  Field  Manual  of  the  Human  

Skeleton,  Missouri  Archaeological  Society,  United  States  of  America.  

Bielicki,  T,  Szklarska,  A,  Welon,  Z,  &  Malina,  RM,  2012,‘Variation  in  the  body  mass  

index  among  young  adult  Polish  males  between  1965  and  1995’,  International  

Journal  of  Obesity,  vol.24,  pp.658–662.  

Blau,  S  &  Briggs,  CA  2011,  ‘The  role  of  forensic  anthropology  in  Disaster  Victim  

Identification  (DVI)’,  Forensic  Science  International,  vol.  205,  pp.29-­‐35.  

Bogin,  B  1999,  Patterns  of  Human  Growth,  Cambridge  University  Press,  Cambridge.  

Bookstein,  FL  1991,  Morphometric  Tools  for  Landmark  Data:  Geometry  and  Biology,  

Cambridge  University  Press,  Cambridge.  

Braz,  VS  2009,  'Anthropological  estimation  of  sex',  in  Handbook  of  Forensic  

Anthropology  and  Archaeology,  ed.  S.  Blau  &  DH.  Ubelaker,  Left  Coast  Press  Inc.,  

California,  United  States  of  America,  pp.  201-­‐207.  

Bruzek,  J  2002,  'A  method  for  visual  determination  of  sex,  using  the  human  hip  

bone',  American  Journal  of  Physical  Anthropology,  vol.  117,  no.  2,  pp.  157-­‐168.  

Page 111: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     93  

Bruzek,  J  &  Murail,  P  2006,  ‘Methodology  and  reliability  of  sex  determination  from  

the  skeleton’  in  Forensic  Anthropology  and  Medicine:  Complementary  Sciences  from  

Recovery  to  Cause  of  Death,  eds.  Schmitt,  Cunha  &  Pinheiro,  Humana  Press,  Totowa,  

pp.  225-­‐242.  

Bureau  of  Meteorology  2014,  Climate  Statistics  for  Australian  Locations,  Bureau  of  

Meteorology,  Available  from:  <http://www.bom.gov.au/climate/averages  

/tables/cw_009225.shtml>  [16th  January  2014]  

Burrows,  AM,  Zanella,  VP  &  Brown,  TM  2003,  'Testing  the  validity  of  metacarpal  

use  in  sex  assessment  of  human  skeletal  remains',  Journal  of  Forensic  Sciences,  vol.  

48,  no.  1,  pp.  17-­‐20.  

Cael,  C  2010,  Functional  Anatomy:  Musculoskeletal  Anatomy,  Kinesiology,  and  

Palpation  for  Manual  Therapists,  Wolters  Kluwer  Health,  Baltimore.  

Carter,  DR,  Van  Der  Meulen,  MCH  &  Beaupré,  GS  1996,  ‘Mechanical  factors  in  bone  

growth  and  development’,  Bone,  vol.  18,  no.1,  pp.5S-­‐10S  

Case,  DT  &  Ross,  AH  2007,  'Sex  determination  from  hand  and  foot  bone  lengths*',  

Journal  of  Forensic  Sciences,  vol.  52,  no.  2,  pp.  264-­‐270.  

Cattaneo,  C  2007,  'Forensic  anthropology:  developments  of  a  classical  discipline  in  

the  new  millennium',  Forensic  Science  International,  vol.  165,  no.  2-­‐3,  pp.  185-­‐193.  

Collier,  S  1989,  ‘The  influence  of  economic  behaviour  and  environment  upon  

robusticity  of  the  post-­‐cranial  skeleton:  a  comparison  of  Australian  Aborigines  and  

other  populations’,  Archaeology  in  Oceania,  vol.24,  no.1,  pp.17-­‐30.  

Cramon-­‐Taubadel,  NV,  Frazier,  BC,  &  Lahr,  MM  2007,  ‘The  problem  of  assessing  

landmark  error  in  geometric  morphometrics:  theory,  methods  and  modifications”,  

American  Journal  of  Physical  Anthropology,  vol.134,  pp.24-­‐35.  

Danborno,  B  &  Elukpo,  A  2008,  ‘Sexual  dimorphism  in  hand  and  foot  Length,  

indices,  stature-­‐ratio  and  relationship  to  height  in  Nigerians’,  Internet  Journal  of  

Forensic  Science,  vol.3,  no.1,  pp.5-­‐10.    

Page 112: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     94  

DiBennardo,  R  &  Taylor,  JV  1979,  ‘Sex  assessment  of  the  femur:  a  test  of  a  new  

method.’  American  Journal  of  Physical  Anthropology,  vol.50,  pp.  635-­‐638  

Dirkmaat,  DC,  Cabo,  LL,  Ousley,  SD  &  Symes,  SA  2008,  ‘New  perspectives  in  

forensic  anthropology’,  Yearbook  of  Physical  Anthropology,  vol.  51,  pp.33-­‐52.  

Egyptian  Meteorological  Authority  2013,  Climate  Monthly  Reports,  Available  from:  

<http://www.ema.gov.eg/productview?menu=73&lang=en>  [16th  January  2014]  

El  Morsi,  D  &  Hawary,  A  2012,  ‘Sex  determination  by  the  length  of  metacarpals  and  

phalanges:  x-­‐ray  study  on  Egyptian  population’,  Journal  of  Forensic  and  Legal  

Medicine,  vol.  20,  no.  1,  pp.6-­‐13.  

Eveleth,  P  &  Tanner,  J  1976,  Worldwide  Variation  in  Human  Growth,  Cambridge  

University  Press,  New  York.    

Falsetti,  AB  1995,  'Sex  assessment  from  metacarpals  of  the  human  hand',  Journal  of  

Forensic  Sciences,  vol.  40,  no.  5,  p.  774-­‐776.  

Franklin,  D,  Freedman,  L  &  Milne,  N  2005,  'Sexual  dimorphism  and  discriminant  

function  sexing  in  indigenous  South  African  crania',  HOMO-­‐Journal  of  Comparative  

Human  Biology,  vol.  55,  no.  3,  pp.  213-­‐228.  

Franklin,  D,  Oxnard,  CE,  O’Higgins,  P  &  Dadour,  I  2007,  ‘Sexual  dimorphism  in  the  

subadult  mandible:  quantification  using  geometric  morphometrics*’,  Journal  of  

Forensic  Sciences,  vol.52,  no.1,  pp.6-­‐10.  

Franklin,  D,  O’Higgins,  P,  Oxnard,  CE,  &  Dadour,  I  2008,  ‘Discriminant  function  

sexing  of  the  mandible  of  indigenous  South  Africans’,  Forensic  Science  

International,  vol.170,  pp.84.e1-­‐84.e5.  

Franklin,  D  2010,  ‘Forensic  age  estimation  in  human  skeletal  remains:  Current  

concepts  and  future  directions’,  Legal  Medicine,  vol.12,  pp.1-­‐7.  

Franklin,  D,  Cardini,  A,  Flavel,  A  &  Kuliukas,  A  2012a,  'The  application  of  traditional  

and  geometric  morphometric  analyses  for  forensic  quantification  of  sexual  

dimorphism:  preliminary  investigations  in  a  Western  Australian  population',  

International  Journal  of  Legal  Medicine,  pp.  1-­‐10.  

Page 113: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     95  

Franklin,  D,  Flavel,  A,  Kuliukas,  A,  Cardini,  A,  Marks,  MK,  Oxnard,  C  &  O’Higgins,  P  

2012b,  ‘Estimation  of  sex  from  sternal  measurements  in  a  Western  Australian  

population’,  Forensic  Science  International,  vol.217,  pp.230.e1-­‐230.e5.  

Franklin,  D,  Cardini,  A,  Flavel,  A,  Kuliukas,  A,  Marks,  MK,  Hart,  R,  Oxnard,  C  &  

O’Higgins,  P  2012c,  ‘Concordance  of  traditional  osteometric  and  volume-­‐rendered  

MSCT  interlandmark  cranial  measurements’,  International  Journal  of  Legal  

Medicine,  vol.127,  no.2,  pp.505-­‐521.  

Franklin,  D,  Cardini,  A,  Flavel,  A  &  Kuliukas,  A  2013,  ‘Estimation  of  sex  from  cranial  

measurements  in  a  Western  Australian  population’,  Forensic  Science  International,  

vol.  229,  pp.158.e1-­‐158.e8.  

Franklin,  D.,  Cardini,  A.,  Flavel,  A.,  &  Marks,  MK.  In  Review  04/02/2014.  

‘Morphometric  analysis  of  pelvic  sexual  dimorphism  in  a  contemporary  Western  

Australian  population’  International  Journal  of  Legal  Medicine,  vol.127,  pp.505-­‐520.    

Frayer,  DW  &  Wolpoff,  MH  1985,  'Sexual  dimorphism',  Annual  Review  of  

Anthropology,  vol.  14,  pp.  429-­‐473.  

Gasser,  T,  Kneip,  A,  Binding,  A,  Prader,  A  &  Molinari,  L  1991,  ‘The  dynamics  of  

linear  growth  in  distance,  velocity  and  acceleration’,  Annals  of  Human  Biology,  

vol.18,  pp.129-­‐148.  

Gasser,  T,  Molinari,  L  &  Largo,  R  2013,  ‘A  comparison  of  pubertal  maturity  and  

growth’,  Annals  of  Human  Biology,  vol.40,  no.4,  pp.341-­‐347.  

Giles,  E  &  Elliot,  O  1963,  'Sex  determination  by  discriminant  function  analysis  of  

crania',  American  Journal  of  Physical  Anthropology,  vol.  21,  no.  1,  pp.  53-­‐68.  

Glücksmann,  A  1981,  'Part  I  -­‐  Sex  Differences  in  human  and  mammalian  biology',  in  

Sexual  Dimorphism  in  the  Human  and  Mammalian  Biology  and  Pathology,  Academic  

Press  Inc.,  London,  Great  Britain,  pp.  9-­‐134.  

Goto,  R  &  Mascie-­‐Taylor,  CN  2007,  'Precision  of  measurement  as  a  component  of  

human  variation',  Journal  of  Physiological  Anthropology,  vol.  26,  no.  2,  pp.  253-­‐256.  

Page 114: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     96  

Gray,  H  2010,  Gray’s  Anatomy;  with  Original  Illustrations  by  Henry  Carter,  Arcturus  

Publishing  Limited,  London.  

Harrison,  GA,  Weiner,  JS,  Tanner,  JM  &  Barnicot,  NA  1977,  Human  Biology;  An  

introduction  to  human  evolution,  variation,  growth  and  ecology,  2ndedn,  Oxford  

University  Press,  Oxford.  

Human  Development  Programme  2013,  Human  Development  Report  2013;  The  Rise  

of  the  South,  Gilmore  Printing  Services  Inc.,  Canada.  

Işcan,  MY,  Loth,  SR,  King,  CA,  Shihai,  D  &  Yoshino,  M  1998,  ‘Sexual  dimorphism  in  

the  humerus:  A  comparative  analysis  of  Chinese,  Japanese  and  Thais’,  Forensic  

Science  International,  vol.98,  pp.17-­‐29.  

İşcan,  MY  2005,  'Forensic  anthropology  of  sex  and  body  size',  Forensic  Science  

International,  vol.  147,  no.  2,  pp.  107-­‐112.  

Ishak,  NI,  Hemy,  N  &  Franklin,  D  2012,  ‘Estimation  of  sex  from  hand  and  handprint  

dimensions  in  a  Western  Australian  population’,  Forensic  Science  International,  vol.  

221,  pp.154.e1-­‐154.e6.  

Jantz,  LM  &  Jantz,  RL  1999,  ‘Secular  change  in  long  bone  length  and  proportion  in  

the  United  States,  1800-­‐1970’,  American  Journal  of  Physical  Anthropology,  vol.110,  

no.1,  pp57-­‐67.  

Jowaheer,  V  &  Agnihotri,  AK  2011,  ‘Sex  identification  on  the  basis  of  hand  and  foot  

measurements  in  Indo-­‐Mauritian  population  –  a  model  based  approach’,  Journal  of  

Forensic  and  Legal  Medicine,  vol.18,  pp.173-­‐176.  

Kanchan,  T,  Kumar,  G  &  Menezes,  R  2008,  ‘Index  and  ring  finger  ratio  –  A  new  sex  

determinant  in  south  Indian  population’,  Forensic  Science  International,  vol.181,  

pp53.e1-­‐53.e4.  

Kanchan,  T  &  Rastogi,  P  2009,  ‘Sex  determination  from  hand  dimensions  of  north  

and  South  Indians’,  Journal  of  Forensic  Science,  vol.54,  no.3,  pp.546-­‐551  

Page 115: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     97  

Kanchan,  T,  Kumar,  G,  Menezes,  R,  Rastogi,  P,  Rao,  P,  Menon,  A,  Shetty,  B,  Babu,  Y,  

Monteiro,  F,  Bhagavath,  P  &  Nayak,  V  2010,  ‘Sexual  dimorphism  of  the  index  to  ring  

finger  ratio  in  South  Indian  adolescents’,  Journal  of  Forensic  and  Legal  Medicine,  

vol.17,  pp.  243-­‐246.  

Khanpetch,  P,  Prasitwattanseree,  D,  Case,  T  &  Mahakkanukrauh,  P  2012,  

‘Determination  of  sex  from  the  metacarpals  in  a  Thai  population’,  Forensic  Science  

International,  vol.217,  pp.229e.1-­‐229e.8.  

Kranioti,  EF,  Işcan,  MY,  Michalodimitrakis,  M  2008,  ‘Craniometric  analysis  of  the  

modern  Cretan  population’,  Forensic  Science  International,  vol.  180,  pp.110.e1-­‐

110.e5  

Kranioti,  EF,  Vorniotakis,  N,  Galiatsou,  C,  Işcan,  MY  &  Michalodimatrakis,  M  2009,  

‘Sex  indentification  and  software  development  using  digital  femoral  head  

radiographs’,  Forensic  Science  International,  vol.  189,  pp.113.e1-­‐113.e7  

Kranioti,  EF,  Nathena,  D,  &  Michalodimitrakis,  M  2011,  ‘Sex  estimation  of  the  

Cretan  humerus:  digital  radiometric  study’,  International  Journal  of  Legal  Medicine,  

vol.125,  pp.659-­‐667  

Krishan,  K  &  Sharma,  A  2007,  ‘Estimation  of  stature  from  dimensions  of  hands  and  

feet  in  a  North  Indian  population’,  Journal  of  Forensic  Legal  Medicine,  vol.14,  

pp.327-­‐32.  

Krogman,  WM  1978,  The  Human  Skeleton  in  Forensic  Medicine,  CC  Thomas,  United  

States  of  America.  

Lazenby,  R  1994,  ‘Identification  of  sex  from  metacarpals:  effect  of  side  asymmetry’,  

Journal  of  Forensic  Science,  vol.39,  pp.1188-­‐94.  

Lazenby,  RA  2002,  'Population  variation  in  second  metacarpal  sexual  size  

dimorphism',  American  Journal  of  Physical  Anthropology,  vol.  118,  no.  4,  pp.  378-­‐

384.  

 

Page 116: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     98  

 

Lazenby,  RA,  Cooper,  DM,  Angus,  S  &  Hallgrímsson,  B  2008,  'Articular  constraint,  

handedness,  and  directional  asymmetry  in  the  human  second  metacarpal',  Journal  

of  Human  Evolution,  vol.  54,  no.  6,  pp.  875-­‐885.  

Leversedge,  FJ,  Goldfarb,  CA  &  Boyer,  MI  2010,  A  Pocketbook  Manual  of  Hand  and  

Upper  Extremity  Anatomy;  Primus  Manus,  Wolters  Kluwer  Health,  United  States  of  

America.  

Liu,  K  1988,  'Measurement  error  and  its  impact  on  partial  correlation  and  multiple  

linear  regression  analyses',  American  Journal  of  Epidemiology,  vol.  127,  no.  4,  pp.  

864-­‐874.  

Ljung,  BO,  Bergsten-­‐Brucefors,  A  &  Lindgren,  G  1974,  ‘The  secular  trend  in  physical  

growth  in  Sweden’,  Annals  of  Human  Biology,  vol.1,  no.3,  pp.245-­‐256.  

Loesch,  DZ,  Stokes,  K  &  Huggins,  RM  2000,  ‘Secular  trend  in  body  height  and  

weight  of  Australian  children  and  adolescents’,  American  Journal  of  Physical  

Anthropology,  vol.  111,  no.4,  pp.545-­‐556.  

Lovell,  NC  1989,  ‘Test  of  Phenice’s  technique  for  determining  sex  from  the  os  

pubis’,  American  Journal  of  Physical  Anthropology,  vol.79,  pp.117-­‐120.  

Lucy,  D  2005,  Introduction  to  Statistics  for  Forensic  Scientists,  John  Wiley  and  Sons,  

United  Kingdom.  

Madrigal,  L  2012,  Statistics  for  Anthropology,  Cambridge  University  Press,  United  

Kingdom.  

Malina,  RM  1979,  ‘Secular  changes  in  size  and  maturity:  Cause  and  effects’,  

Monographs  of  the  Society  for  Research  in  Child  Development,  vol.44,  pp.59-­‐102.  

Manolis,  SK,  Eliopoulos,  C,  Koilias,  CG  &  Fox,  SC  2009,  ‘Sex  determination  using  

metacarpal  biometric  data  from  the  Athens  collection’,  Forensic  Science  

International,  vol.193,  pp.130.e1-­‐130.e6.  

Page 117: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     99  

Marks,  GC,  Habicht,  J-­‐P  &  Mueller,  WH  1989,  ‘Reliability,  dependability  and  

precision  of  anthropometric  measurements;  The  second  National  Health  and  

Nutrition  Examination  Survey  1976-­‐1980’,  American  Journal  of  Epidemiology,  

vol.130,  no.3,  pp.578-­‐587.  

Mielke,  JH,  Konigsberg,  LW,  &  Relethford,  JH  2011,  ‘Anthropometric  variation’  in  

Human  Biological  Variation,  Oxford  University  Press,  United  States  of  America,  

pp.260-­‐290.  

Molinari,  L,  Gasser,  T  &  Largo,  R  2013,  ‘A  comparison  of  skeletal  maturity  and  

growth’,  Annals  of  Human  Biology,  vol.  40,  no.4,  pp.333-­‐340.    

Moss,  ML,  1980,  ‘The  design  of  bones’  in  Scientific  Foundations  of  Orthopaedics  and  

Traumatology,  eds  J.  Goodfellow  and  P.  Bullough,  William  Heinemann  Medical  

Books  Ltd,  London,  pp.59-­‐66.  

O’Higgins,  P  2000,  ‘The  study  of  morphological  variation  in  the  hominid  fossil  

record:  biology,  landmarks  and  geometry’,  Journal  of  Anatomy,  vol.197,  pp.103-­‐

120.  

Park,  MA  2013,  Biological  Anthropology,  7th  edn,  McGraw-­‐Hill,  United  States  of  

America.  

Patriquin,  ML,  Steyn,  M,  &  Loth,  SR  2005,  ‘Metric  analysis  of  sex  differences  in  

South  African  black  and  white  pelves’,  Forensic  Science  International,  vol.147,  

pp.119-­‐127.  

Phenice,  TW  1969,  ‘A  newly  developed  visual  method  of  sexing  the  Os  Pubis’,  

American  Journal  of  Physical  Anthropology,  vol.  30,  pp.297-­‐302.  

Pietrusewsky,  M  2008,  ‘Metric  analysis  of  skeletal  remains:  methods  and  

applications’  in  Biological  Anthropology  of  the  Human  Skeleton,  2nd  edn,  eds  MA.  

Katzenberg  &  SR  Saunders,  Wiley-­‐Liss,  New  York,  pp.487-­‐532.  

Plavcan,  JM  2001,  ‘Sexual  dimorphism  in  primate  evolution’,  Yearbook  of  Physical  

Anthropology,  vol.  44,  pp.25-­‐35.  

Page 118: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     100  

Ramones,  GJ  1986,  Cunningham’s  Manual  of  Practical  Anatomy,  Oxford  University  

Press,  Oxford.  

Ramsey,  FL  &  Schafer,  DW  2002,  The  Statistical  Sleuth:  a  Course  in  Methods  of  Data  

Analysis,  Cengage  Learning,  Australia.  

Reichs,  K  1998,  Forensic  Osteology:  Advances  in  the  Identification  of  Human  

Remains,  Charles  C.  Thomas  Publisher,  United  States  of  America.  

Richtsmeier,  JT,  Paik,  CH,  Elfert,  PC,  Cole,  TM,  &  Dahlman,  HR  1995,  ‘Precision,  

repeatability  and  validation  of  the  localization  of  cranial  landmarks  using  

computed  tomography  scans’,  Cleft  Palate-­‐Craniofacial  Journal,  vol.32,  No.3,  

pp.217-­‐227.  

Roberts,  DF  1953,  ‘Body  weight,  race  and  climate’,  American  Journal  of  Physical  

Anthropology,  vol.11,  iss.  4,  pp.533-­‐558.  

Robinson,  M  &  Bidmos,  MA  2008,  ‘The  skull  and  humerus  in  the  determination  of  

sex:  reliability  of  discriminant  function  equations’,  Forensic  Science  International,  

vol.186,  pp.86.e1-­‐86.e5.    

Robinson,  M  &  Bidmos,  MA  2011,  ‘An  assessment  of  the  accuracy  of  discriminant  

function  equations  for  sex  determination  of  the  femur  and  tibia  from  a  South  

African  population’,  Forensic  Science  International,  vol.  206,  pp.212.e1-­‐212.e5.  

Robling,  A  &  Ubelaker,  D  1997,  'Sex  estimation  from  the  metatarsals',  Journal  of  

Forensic  Sciences,  vol.  42,  no.  6,  pp.  1062-­‐1069  

Rogers,  T  &  Saunders,  S  1994,  'Accuracy  of  sex  determination  using  morphological  

traits  of  the  human  pelvis',  Journal  of  Forensic  Sciences,  vol.  39,  no.  4,  pp.  1047.  

Ross,  AH  &  Williams,  S  2008,  ‘Testing  repeatability  and  error  of  coordinate  

landmark  data  acquired  from  Crania*’,  Journal  of  Forensic  Science,  vol.53,  no.4,  pp  

782-­‐785.  

Roussas,  GG  1997,  A  Course  in  Mathematical  Statistics,  2nd  edn,  Academic  Press,  

California,  United  States  of  America.  

Page 119: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     101  

Scheuer,  JL  &  Elkington,  NM  1993,  'Sex  determination  from  metacarpals  and  the  

first  proximal  phalanx',  Journal  of  Forensic  Sciences,  vol.  38,  no.  4,  pp.  769-­‐778  

Scheuer,  L  2002,  ‘Application  of  osteology  to  forensic  medicine’,  Clinical  Anatomy,  

vol.  15,  pp.297-­‐312.  

Schwartz,  J  2007,  Skeleton  Keys;  an  Introduction  to  Human  Skeletal  Morphology,  

Development  and  Analysis,  2ndedn,  Oxford  University  Press,  New  York,  United  

States  of  America.  

Shapiro,  SS,  Wilk,  MB,  &  Chen,  HJ  1968,  ‘A  comparative  study  of  various  tests  of  

normality’,  Journal  of  the  American  Statistical  Association,  vol.63,  no.63,  pp.  1343-­‐

1372.  

Slaus,  M  &  Tomicic,  Z  2005,  ‘Discriminant  function  sexing  of  fragmentary  and  

complete  tibiae  from  medieval  Croatian  sites’,  Forensic  Science  International,  

vol.147,  pp.147-­‐152.  

Slice,  DE,  Unteregger,  C,  Schaefer,  E  &  Bookstein,  FL  2004,  ‘Modeling  the  precision  

of  landmark  location  data’,  American  Journal  of  Physical  Anthropology,  vol.  123,  

supp.38,  pp.183.  

Smith,  EL  &  Gilligan,  C  1989,  ‘Mechanical  forces  and  bone’,  Bone  and  Mineral  

Research,  vol.6,  pp.139-­‐173.  

Smith,  S  1996,  ‘Attribution  of  hand  bones  to  sex  and  population  groups’,  Journal  of  

Forensic  Sciences,  vol.  41,  no.3,  pp.469-­‐477.  

Spradley,  MK  &  Jantz,  RL  2011,  ‘Sex  estimation  in  forensic  anthropology:  skull  

versus  post-­‐cranial  elements’,  Journal  of  Forensic  Science,  vol.56,  no.2,  pp.289-­‐295  

Steyn,  M  &  Işcan,  MY  2008,  ‘Metric  sex  determination  from  the  pelvis  in  modern  

Greeks,  Forensic  Science  International,  vol.179,  pp.86.e81-­‐86.e86  

Stojanowski,  CM  1999,  'Sexing  potential  of  fragmentary  and  pathological  

metacarpals',  American  Journal  of  Physical  Anthropology,  vol.  109,  no.  2,  pp.  245-­‐

252  

Page 120: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     102  

SWGANTH  2011,  Sex  Assessment,  The  Scientific  Working  Group  for  Forensic  

Anthropology.  Available  from:  <http://www.swganth.org/products-­‐-­‐

drafts.html>[26  November  2012].  

Tanner,  JM  1962,  Growth  at  Adolescence:  with  a  general  consideration  of  the  effects  

of  heredity  and  environmental  factors  upon  growth  and  maturation  from  birth  to  

maturity,  2nd  edn,  Blackwell  Scientific  Publications,  Oxford.  

The  Economist  2005,  The  Economist  Intelligence  Unit’s  quality-­‐of-­‐life  index,  The  

Economist,  Available  from:  <http://www.economist.com/media/pdf/  

QUALITY_OF_LIFE.pdf>  [6th  December  2013]  

The  Organisation  for  Economic  Co-­‐operation  and  Development  (OECD)  2006,  

Egypt,  OECD,  Available  from:  <http://www.oecd.org/dev/36739719.pdf>  [6th  

December  2013].  

Townend,  J  2003,  Practical  Statistics  for  Environmental  and  Biological  Scientists,  

John  Wiley  and  Sons,  United  Kingdom.  

Trinkaus,  E,  Churchill,  SE  &  Ruff,  C  1994,  ‘Postcranial  robusticity  in  Homo.  II:  

humeral  bilateral  asymmetry  and  bone  plasticity’,  American  Journal  of  Physical  

Anthropology,  vol.93,  pp.1-­‐34.  

Ubelaker,  DH  &  Volk,  CG  2002,  ‘A  test  of  the  Phenice  method  for  the  estimation  of  

sex’,  Journal  of  Forensic  Science,  vol.47,  pp.19-­‐24.  

Ulijaszek,  SJ  &  Kerr,  DA  1999,  'Anthropometric  measurement  error  and  the  

assessment  of  nutritional  status',  British  Journal  of  Nutrition,  vol.  82,  no.  03,  pp.  

165-­‐177.  

Valeri,  CJ,  Cole,  TM,  Lele,  S  &  Richtsmeier,  JT  1998,  ‘Capturing  data  from  three-­‐

dimensional  surfaces  using  fuzzy  landmarks’,  American  Journal  of  Physical  

Anthropology,  vol.107,  pp.113-­‐124.  

Van  Wieringen,  JC  1986,  ‘Secular  growth  changes’  in  Human  Growth:  A  

Comprehensive  Treatise,  vol.  3  eds.  F.Falkner  &  JM.  Tanner,  Plenum  Press,  New  

York,  pp.  307–331.  

Page 121: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     103  

Verhoff,  MA,  Ramsthaler,  F,  Krahahn,  J,  Deml,  U,  Gille,  RJ,  Grabherr,  S,  Thali,  MJ  &  

Kreutz,  K  2008,  ‘Digital  forensic  osteology  –  possibilities  in  cooperation  with  

virtopsy  project’,  Forensic  Science  International,  vol.174,  pp152-­‐156.  

Waldron,  T  1987,  ‘The  relative  survival  of  the  human  skeleton:  implications  for  

palaeopathology’  in  Death,  Decay  and  Reconstruction;  Approaches  to  Archaeology  

and  Forensic  Science,  eds.  A  Boddington,  A.  Garland  and  R.  Janaway,  Manchester  

University  Press,  United  Kingdom,  pp.55-­‐64.  

Walker,  P  2008,  ‘Sexing  skulls  using  discriminant  function  analysis  of  visually  

assessed  traits’,  American  Journal  of  Physical  Anthropology,  vol.136,  pp.39-­‐50.  

Weinberg,  SM,  Scott,  NM,  Neiswanger,  K  &  Marazita,  ML  2005,  'Intraobserver  error  

associated  with  measurements  of  the  hand',  American  Journal  of  Human  Biology,  

vol.  17,  no.  3,  pp.  368-­‐371.  

Wells,  J  2007,  ‘Sexual  dimorphism  of  body  composition’,  Best  Practice  and  Research  

Clinical  Endocrinology  and  Metabolism,  vol.21,  no.3,  pp.415-­‐430.  

White,  TD  &  Folkens,  PA  2005,  The  Human  Bone  Manual,  Elsevier  Academic  Press,  

United  States  of  America.  

White,  TD,  Black,  MT  &  Folkens,  PA  2012,  Human  Osteology,  Elsevier  Academic  

press,  United  State  of  America  

Wilczak,  CA  1998,  ‘Consideration  of  sexual  dimorphism,  age,  and  asymmetry  in  

quantitative  measurements  of  muscle  insertion  sites’,  International  Journal  of  

Osteoarchaeology,  vol.8,  pp.311-­‐325.  

World  Health  Organisation  (WHO)  2014,  Water  Sanitation  Health,  WHO,  Available  

from:  <http://www.who.int/water_sanitation_health/diseases/malnutrition/en/>  

[16th  January  2014].  

World  Health  Organisation  (WHO)  2013a,  Global  Database  on  Child  Growth  and  

Malnutrition,  WHO,  Available  from:  <http://www.who.int/nutgrowthdb  

/database/countries/en/index.html>,  [29th  October  2013].  

Page 122: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

REFERENCES  

 

     104  

World  Health  Organization  (WHO)  2013b,  Australia:  Health  Profile,  WHO,  Available  

from:  <http://www.who.int/gho/countries/aus.pdf?ua=1>  [6th  December  2013].  

World  Health  Organization  (WHO)  2013c,  Egypt:  Health  Profile,  WHO,  Available  

from:  <http://www.who.int/gho/countries/egy.pdf?ua=1>  [6th  December  2013].  

World  Health  Organization  (WHO)  2013d,  Spain:  Health  Profile,  WHO,  Available  

from:    <http://www.who.int/gho/countries/esp.pdf?ua=1>  [6th  December  2013]  

World  Health  Organization  (WHO)  2013e,  United  Kingdom:  Health  Profile,  WHO,  

Available:    <  http://www.who.int/gho/countries/gbr.pdf?ua=1>  [6th  December  

2013]  

World  Health  Organization  (WHO)  2013f,  United  States  of  America:  Health  Profile,  

WHO,  Available:    <  http://www.who.int/gho/countries/usa.pdf?ua=1>  [6th  

December  2013]  

 

 

 

 

 

Page 123: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

  105  

Appendix  One    

Table  A1.1  Posterior  probabilities  calculated  for  the  adult  discriminant  functions  1  to  18.  

Posterior  Probability  intervals  

Males    

Females

        n   %       n   %  Function  1              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39     0   0     0   0  0.40-­‐0.59     21   17.5     11   9.02  0.60-­‐0.79  

 34   28.33  

 40   32.79  

0.80-­‐1.00       65   54.17    

71   58.19  Function  2              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39     0   0     0   0  0.40-­‐0.59     13   11.02     10   8.26  0.60-­‐0.79  

 32   27.11  

 29   23.97  

0.80-­‐1.00       73   61.87    

82   67.77  Function  3              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39     0   0     0   0  0.40-­‐0.59     16   13.68     11   8.66  0.60-­‐0.79  

 34   29.06  

 47   37.01  

0.80-­‐1.00       67   57.26    

69   54.33  Function  4              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39     0   0     0   0  0.40-­‐0.59     9   8.18     16   13.33  0.60-­‐0.79  

 29   26.36  

 33   27.5  

0.80-­‐1.00       72   65.46    

71   60.17  Function  5              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39     0   0     0   0  0.40-­‐0.59     16   13.91     15   11.9  0.60-­‐0.79  

 30   26.09  

 40   31.75  

0.80-­‐1.00       69   60    

71   56.35                  

Page 124: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

APPENDIX  ONE  

 

     106  

Posterior  Probability  intervals   Males     Females

        n   %       n   %  Function  6              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    14   11.97  

 14   11.86  

0.60-­‐0.79    32   27.35  

 36   30.51  

0.80-­‐1.00       71   60.68       68   57.63  Function  7              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    5   4.03  

 6   4.51  

0.60-­‐0.79    22   17.74  

 18   13.53  

0.80-­‐1.00       97   78.23       109   81.96  Function  8              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    5   4  

 8   5.88  

0.60-­‐0.79    22   17.6  

 22   16.18  

0.80-­‐1.00       98   78.4       106   77.94  Function  9              0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    12   10.08  

 8   6.4  

0.60-­‐0.79    21   17.65  

 25   20  

0.80-­‐1.00       86   72.27       92   73.6  Function  10            0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    4   3.2  

 9   6.87  

0.60-­‐0.79    25   20  

 21   16.03  

0.80-­‐1.00       96   76.8       101   77.1  Function  11            0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    11   8.87  

 4   3.08  

0.60-­‐0.79    19   15.32  

 24   18.46  

0.80-­‐1.00       94   75.81       102   78.46              

Page 125: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

APPENDIX  ONE  

 

     107  

Posterior  Probability  intervals   Males     Females

        n   %       n   %  Function  12            0.00-­‐0.19     0   0     0   0  0.20-­‐0.39  

 0   0  

 0   0  

0.40-­‐0.59    9   7.5  

 10   7.52  

0.60-­‐0.79    25   20.83  

 27   20.3  

0.80-­‐1.00       86   71.67       96   72.18  Function  13  

         0.00-­‐0.19     0   0     0   0  0.20-­‐0.39     0   0     0   0  0.40-­‐0.59  

 6   4.55  

 3   2.13  

0.60-­‐0.79    5   3.79  

 12   8.51  

0.80-­‐1.00       122   91.73       127   89.44  Function  14  

         0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59     9   7.96     10   7.94  0.60-­‐0.79     22   19.47     20   15.87  0.80-­‐1.00       82   72.57       96   76.19  Function  15  

         0.00-­‐0.19  

 0   0  

 0   0  

0.20-­‐0.39    0   0  

 0   0  

0.40-­‐0.59    4   3.22  

 10   7.35  

0.60-­‐0.79     15   12.1     21   15.44  0.80-­‐1.00       105   84.68       105   77.21  Function  16            0.00-­‐0.19     0   0     0   0  0.20-­‐0.39  

 0   0  

 0   0  

0.40-­‐0.59    5   4  

 6   4.51  

0.60-­‐0.79    20   16  

 16   12.03  

0.80-­‐1.00       100   80       111   83.46  Function  17  

         0.00-­‐0.19     0   0     0   0  0.20-­‐0.39     0   0     0   0  0.40-­‐0.59  

 9   7.26  

 7   5.26  

0.60-­‐0.79    10   8.06  

 12   9.02  

0.80-­‐1.00       105   84.68       114   85.72              

Page 126: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

APPENDIX  ONE  

 

     108  

Posterior  Probability  intervals   Males     Females

        n   %       n   %  Function  18            0.00-­‐0.19     0   0     0   0  0.20-­‐0.39  

 0   0  

 0   0  

0.40-­‐0.59    7   5.38  

 5   3.76  

0.60-­‐0.79    15   11.54  

 17   12.78  

0.80-­‐1.00       108   83.08       111   83.46    

 

 

 

Page 127: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

APPENDIX  TWO  

  109  

Appendix  Two    

Table  A2.1  Unpaired  t-­‐test  results  for  the  comparison  of  metacarpal  one,  two  and  four  lengths  from  the  current  study  to  four  previously  published  studies.    

Publication  compared  to  current  study  

Measurementa   Sex   t  Significance  

(p)            Scheuer  &  Elkington  1993  

MLMC1   M   7.46   ***  

 F   4.68   ***  

 MLMC2   M   10.56   ***  

   F   7.16   ***  

 MLMC4   M   5.62   ***  

   F   2.44   **  

         Barrio  et  al.  2006   MLMC1   M   4.06   ***  

   F   5.34   ***  

 MLMC2   M   8.62   ***  

   F   10.14   ***  

 MLMC4   M   5.97   ***  

   F   7.01   ***  

         Case  and  Ross  2007   MLMC1   M   5.05   ***  

   F   5.28   ***  

 MLMC2   M   9.64   ***  

   F   8.73   ***  

 MLMC4   M   6.70   ***  

   F   5.59   ***  

         El  Morsi  &  Hawary  2012   MLMC1   M   1.06   NS  

   F   0.09   NS  

 MLMC2   M   5.70   ***  

   F   7.50   ***  

 MLMC4   M   1.74   *  

   F   5.48   ***  

   Key:  #Definition  of  measurements  in  Table  5.1;  NS  =  not  significant;  *  P<0.05,  **  P<0.01,  ***P<0.001  

Page 128: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 110  

 

 

 

Page 129: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

APPENDIX  THREE  

 

  111  

Appendix  Three      

Table  A3.1  Unpaired  t-­‐test  results  for  the  comparison  of  males  and  females  for  each  of  the  five  comparative  populations  considered  

Publication     Measurementa   t   Significance  (p)  Current  Study   MLMC1   4.14   ***     MLMC2   3.80   ***     MLMC4   3.76   ***  Scheuer  and  Elkington  1993  

MLMC1   2.61   *  MLMC2   3.19   **  

  MLMC4   1.96   **  Barrio  et  al.  2006   MLMC1   8.39   ***  

  MLMC2   7.97   ***  

 MLMC4   7.06   ***  

Case  and  Ross  2007   MLMC1   10.36   ***  

 MLMC2   10.36   ***  

 MLMC4   9.71   ***  

El  Morsi  and  Hawary  2012  

MLMC1   9.40   ***  MLMC2   11.96   ***  

 MLMC4   13.61   ***  

   Key:  #Definition  of  measurements  in  Table  5.1;  NS  =  not  significant;  *  P<0.05,  **  P<0.01,  ***P<0.001  

 

 

 

 

 

Page 130: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

 112  

   

 

Page 131: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

APPENDIX  FOUR  

 

  113  

Appendix  Four    Table  A4.1  Descriptive  statistics  of  mean  sub-­‐adult  hand  bone  measurements  (in  mm)  for  Group  A.  

a  Measurement   Male  (n  =  10)   Female  (n=11)   F   R  square   p-­‐value  

Group  A   Mean   SD   Range   Mean   SD   Range        

MLMC1   45.2   1.94   42.38  -­‐  48.15   44.01   3.29   38.76  -­‐  49.21   0.98   0.05   NS  WHMC1   14.16   1.64   11.66-­‐16.58   13.48   0.56   12.48-­‐14.70   4.62   0.08   *  WBMC1   14.61   1.8   12.18-­‐16.99   13.38   0.61   12.28-­‐14.28   1.68   0.20   NS  WMMC1   9.55   1.19   6.81-­‐11.24   8.54   0.44   7.67-­‐9.20   6.96   0.27   *  MLMC2   68.06   3.76   63.17  -­‐  75.61   68.57   4.14   62.80  -­‐  76.00   0.09   0.00   NS  WHMC2   13.99   2.12   11.68-­‐17.39   14.08   1.48   11.14-­‐16.40   0.08   0.00   NS  WBMC2   18.59   1.81   16.43-­‐21.13   18.28   2.99   15.18-­‐26.59   0.01   0.00   NS  WMMC2   8.34   1.32   6.83-­‐10.44   7.3   0.49   6.20-­‐7.98   5.98   0.24   *  MLMC3   65.08   3.69   63.17  -­‐  75.61   63.57   3.6   58.61  -­‐  70.75   0.91   0.05   NS  WHMC3   14.95   1.72   12.64-­‐17.45   13.87   1.46   11.21-­‐15.98   2.84   0.11   NS  WBMC3   14.21   1.76   11.49-­‐16.75   13.21   0.83   11.93-­‐14.67   2.44   0.13   NS  WMMC3   8.19   1.03   6.92-­‐9.97   7.21   0.6   5.79-­‐8.08   7.25   0.28   *  

Page 132: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     114  

a  Measurement   Male  (n  =  10)   Female  (n=11)   F   R  square   p-­‐value  

Group  A   Mean   SD   Range   Mean   SD   Range        

MLMC4   57.15   3.21   52.36  -­‐  62.51   56.66   3.59   51.87  -­‐  65.21   0.11   0.01   NS  WHMC4   12.64   1.68   9.93-­‐15.16   11.36   0.9   9.40-­‐12.60   1.02   0.20   NS  WBMC4   12.54   1.52   10.92-­‐14.93   11.99   0.93   10.22-­‐13.68   4.83   0.05   *  WMMC4   6.63   0.96   5.22-­‐8.15   6.04   0.59   4.92-­‐7.05   2.88   0.13   NS  MLMC5   51.53   4.05   41.38-­‐55.40   51.77   3.31   45.13-­‐57.93   0.02   0.00   NS  WHMC5   12.16   1.17   10.53-­‐13.74   11.36   0.87   9.69-­‐12.52   1.49   0.15   NS  WBMC5   13.78   1.9   10.96-­‐16.84   13.05   0.62   11.91-­‐13.94   3.28   0.07   NS  WMMC5   8.1   1.08   5.57-­‐8.98   7.01   0.57   6.21-­‐8.11   8.56   0.31   **  MLPP1   31.36   2.69   28.33-­‐35.23   30.09   2.24   27.15-­‐34.77   1.41   0.07   NS  WHPP1   10.82   1.54   8.36-­‐12.70   10.03   0.84   8.56-­‐11.21   1.75   0.10   NS  WBPP1   13.27   1.55   10.73-­‐15.27   12.59   0.69   11.45-­‐13.52   2.17   0.08   NS  WMPP1   7.66   1.07   5.14-­‐8.76   6.83   0.49   6.28-­‐7.73   5.35   0.22   *  MLPP2   40.05   1.98   36.89-­‐42.49   39.83   2.31   36.35-­‐43.02   0.05   0.00   NS  WHPP2   10.68   1.05   8.96-­‐11.82   10.46   0.41   10.04-­‐11.53   2.26   0.02   NS  WBPP2   15.28   1.31   13.71-­‐17.94   13.98   0.57   13.09-­‐15.14   0.42   0.11   NS  WMPP2   9.1   1.02   7.54-­‐10.73   8.17   0.6   7.34-­‐9.25   6.6   0.26   *  MLPP3   44.46   2.7   40.66-­‐48.20   44.66   2.84   41.39-­‐49.74   0.03   0.00   NS  

Page 133: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     115  

a  Measurement   Male  (n  =  10)   Female  (n=11)   F   R  square   p-­‐value  

Group  A   Mean   SD   Range   Mean   SD   Range        

WHPP3   11.3   1.44   8.99-­‐13.18   11.29   0.58   10.67-­‐12.46   9.63   0.00   **  WBPP3   15.32   1.3   13.45-­‐17.92   13.98   0.57   13.09-­‐15.14   0   0.34   NS  WMPP3   9.33   0.94   7.91-­‐10.78   8.34   0.64   7.26-­‐9.29   8   0.30   *  MLPP4   42.04   2.07   39.23-­‐45.28   41.03   2.52   37.25-­‐45.15   1.01   0.05   NS  WHPP4   10.26   1.36   7.39-­‐11.85   10.36   0.66   9.27-­‐11.43   4.47   0.00   *  WBPP4   13.74   1.09   12.00-­‐15.95   12.93   0.62   11.51-­‐13.48   0.04   0.19   NS  WMPP4   8.61   0.87   6.92-­‐9.98   7.57   0.62   6.74-­‐8.38   9.99   0.34   **  MLPP5   32.84   1.95   29.74-­‐35.50   32.19   1.82   30.31-­‐35.35   0.63   0.03   NS  WHPP5   8.92   1.18   6.74-­‐10.29   8.35   0.26   7.88-­‐8.65   1.67   0.11   NS  WBPP5   13.03   1.2   10.84-­‐14.43   12.52   0.51   11.34-­‐13.13   2.46   0.08   NS  WMPP5   7.1   0.92   5.40-­‐8.67   6.41   0.78   5.42-­‐7.65   3.42   0.15   NS  

   Key:  #Definition  of  measurements  in  Table  5.1;  NS  =  not  significant;  *  P<0.05,  **  P<0.01,  ***P<0.001  

 

 

 

 

Page 134: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     116  

 

 

   

Page 135: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     117  

Table  A4.2  Descriptive  statistics  of  mean  sub-­‐adult  hand  bone  measurements  (in  mm)  for  Group  B.  

a  Measurement   Male  (n  =  20)   Female  (n=20)   F   R  square   p-­‐value  

Group  B   Mean   SD   Range   Mean   SD   Range        

MLMC1   47.53   3.11   42.72  -­‐  55.61   44.24   2.68   38.88  -­‐  50.16   12.83   0.25   ***  WHMC1   15.11   1.59   12.41  -­‐  17.59   13.33   1.42   11.89  -­‐  17.12   40.89   0.12   ***  WBMC1   14.74   1.01   13.72  -­‐  17.34   13.67   0.73   11.76  -­‐  14.64   5.04   0.52   *  WMMC1   9.63   1.28   7.65  -­‐  12.34   8.69   0.87   7.20  -­‐  10.76   7.24   0.16   *  MLMC2   70.52   4.69   61.41  -­‐  79.52   68.48   3.84   59.40  -­‐  74.89   2.27   0.06   NS  WHMC2   19.29   1.74   12.38  -­‐  18.87   17.19   1.33   10.98  -­‐  15.73   24.66   0.16   ***  WBMC2   15.42   1.61   16.09  -­‐  22.33   14.10   1.00   14.42  -­‐  18.78   7.19   0.39   *  WMMC2   8.82   0.95   6.94  -­‐  10.48   7.71   0.71   6.70  -­‐  9.50   17.61   0.32   ***  MLMC3   66.19   4.46   59.82  -­‐  74.08   63.64   3.76   55.68  -­‐  70.10   3.83   0.09   NS  WHMC3   14.61   1.26   13.97  -­‐  18.67   13.34   1.30   11.83  -­‐  16.44   13.78   0.30   ***  WBMC3   16.19   1.06   12.98  -­‐  16.57   14.55   1.09   11.61  -­‐  15.04   16.32   0.27   ***  WMMC3   8.47   0.62   7.57  -­‐  9.63   7.59   0.62   6.72  -­‐  8.64   20.35   0.35   ***  MLMC4   58.92   3.81   53.43  -­‐  65.69   56.22   3.31   49.74  -­‐  62.98   5.72   0.13   *  WHMC4   13.00   0.98   11.74  -­‐  15.42   11.89   0.93   9.90  -­‐  13.46   14.28   0.39   ***  WBMC4   13.56   1.07   11.82  -­‐  15.66   12.07   0.77   10.50  -­‐  13.46   24.19   0.27   ***  

Page 136: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     118  

a  Measurement   Male  (n  =  20)   Female  (n=20)   F   R  square   p-­‐value  

Group  B   Mean   SD   Range   Mean   SD   Range        

WMMC4   7.25   0.82   5.98  -­‐  8.87   6.10   0.43   5.35  -­‐  6.89   30.64   0.45   ***  MLMC5   53.67   4.21   47.9  -­‐  62.93   51.47   2.88   45.6  -­‐  56.65   3.73   0.09   NS  WHMC5   13.92   1.11   11.16  -­‐  14.89   12.84   1.01   8.54  -­‐  12.84   11.10   0.29   **  WBMC5   12.85   1.21   11.28  -­‐  16.06   11.54   0.81   11.17  -­‐  14.21   15.29   0.23   ***  WMMC5   8.37   0.84   6.49  -­‐  9.92   7.08   0.75   5.91  -­‐  8.60   25.97   0.41   ***  MLPP1   33.12   2.49   28.63  -­‐  37.55   30.48   1.70   27.18  -­‐  34.35   15.29   0.29   ***  WHPP1   14.08   1.15   8.22  -­‐  12.98   12.80   1.02   8.26  -­‐  11.84   9.46   0.31   **  WBPP1   11.38   1.52   11.06  -­‐  16.2   9.96   1.09   10.99  -­‐  14.53   16.83   0.20   ***  WMPP1   7.80   0.84   5.82  -­‐  9.2   6.92   0.69   5.43  -­‐  7.71   12.99   0.25   ***  MLPP2   41.23   2.99   36.08  -­‐  46.55   39.89   2.52   34.86  -­‐  45.81   2.36   0.06   NS  WHPP2   15.95   0.96   9.83  -­‐  13.19   14.74   0.81   8.38  -­‐  12.39   21.02   0.16   ***  WBPP2   11.35   0.83   14.23  -­‐  17.3   10.58   0.84   12.31-­‐  16.03   7.46   0.36   **  WMPP2   9.58   0.93   7.3  -­‐  11.14   8.40   0.82   7.01  -­‐  11.05   17.98   0.32   ***  MLPP3   46.50   3.06   41.61  -­‐  51.58   44.43   2.94   39.14  -­‐  50.93   4.77   0.11   *  WHPP3   15.72   1.19   9.7  -­‐  14.79   14.39   0.72   9.53  -­‐  12.37   25.54   0.17   ***  WBPP3   12.03   0.83   14.48  -­‐  17.43   11.17   0.83   11.86  -­‐  15.29   7.84   0.40   **  WMPP3   9.90   0.98   7.81  -­‐  11.8   8.40   0.64   7.24  -­‐  10.49   33.09   0.47   ***  

Page 137: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     119  

a  Measurement   Male  (n  =  20)   Female  (n=20)   F   R  square   p-­‐value  

Group  B   Mean   SD   Range   Mean   SD   Range        

MLPP4   43.12   3.05   38.05  -­‐  48.83   41.46   2.51   36.68  -­‐  48.39   3.52   0.08   NS  WHPP4   14.33   1.17   9.32  -­‐  14.04   13.11   0.77   8.13  -­‐  11.94   20.69   0.13   ***  

WBPP4   11.19   0.97   12.28  -­‐  16.31   10.45   0.72   11.29  -­‐  14.15   5.54   0.35   *  WMPP4   9.05   1.07   6.9  -­‐  11.64   7.71   0.66   6.73  -­‐  9.85   22.52   0.37   ***  MLPP5   33.80   2.96   27.96  -­‐  39.1   32.30   2.11   29.21  -­‐  37.63   3.41   0.08   NS  WHPP5   13.46   0.87   7.2  -­‐  10.64   12.73   0.76   6.63  -­‐  10.02   8.20   0.15   **  WBPP5   9.12   0.94   11.07  -­‐  14.91   8.46   0.64   10.94  -­‐  13.73   6.60   0.18   *  WMPP5   7.49   1.08   5.56  -­‐  9.46   6.29   0.60   5.15  -­‐  7.76   18.97   0.33   ***  

   Key:  #Definition  of  measurements  in  Table  5.1;  NS  =  not  significant;  *  P<0.05,  **  P<0.01,  ***P<0.001  

 

 

 

 

 

 

 

Page 138: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     120  

 

   

Page 139: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     121  

Table  A4.3  Descriptive  statistics  of  mean  sub-­‐adult  hand  bone  measurements  (in  mm)  for  Group  C.  

a  Measurement   Male  (n  =  20)   Female  (n=19)   F   R  square   p-­‐value  Group  C   Mean   SD   Range   Mean   SD   Range  

     MLMC1   48.58   2.78   45.61  -­‐  54.18   45.14   2.47   40.34  -­‐  48.77   9.84   0.43   **  WHMC1   16.17   1.28   14.53  -­‐  19.1   13.64   0.96   11.68  -­‐  15.42   32.95   0.50   ***  WBMC1   15.86   1.23   14.29  -­‐  18.46   13.92   0.79   12.6  -­‐  15.3   11.42   0.59   **  WMMC1   9.98   0.88   7.94  -­‐  11.3   8.49   0.65   7.65  -­‐  9.62   21.56   0.45   ***  MLMC2   75.54   4.33   66.97  -­‐  81.48   68.44   3.61   61.47  -­‐  77.41   16.15   0.48   ***  WHMC2   20.72   1.18   14.93  -­‐  18.93   17.40   0.84   12.85  -­‐  15.52   45.80   0.57   ***  WBMC2   16.91   1.35   18.41  -­‐  23   14.24   1.04   15.04  -­‐  18.8   37.14   0.60   ***  WMMC2   9.15   0.86   7.82  -­‐  11.14   7.93   0.57   6.93  -­‐  9.16   19.94   0.52   ***  MLMC3   70.17   4.21   61.9  -­‐  79.21   63.73   3.69   56.25  -­‐  72.01   15.39   0.45   ***  WHMC3   15.39   1.30   14.98  -­‐  20.14   13.74   1.09   13.04  -­‐  16.71   9.61   0.53   **  WBMC3   17.60   1.14   13.73  -­‐  18.79   15.00   0.73   12.67  -­‐  15.33   35.33   0.38   ***  WMMC3   8.93   0.81   8.02  -­‐  11.08   7.88   0.63   7.06  -­‐  9.28   11.46   0.38   **  MLMC4   61.52   3.48   55.47  -­‐  68.32   55.91   3.34   48.18  -­‐  61.58   17.70   0.48   ***  WHMC4   14.64   1.16   13  -­‐  17.24   12.26   1.06   10.58  -­‐  15.21   24.54   0.47   ***  WBMC4   14.85   1.22   12.55  -­‐  17.52   12.80   0.64   11.28  -­‐  13.55   14.03   0.45   ***  WMMC4   7.31   0.63   6.54  -­‐  8.35   6.68   0.73   5.38  -­‐  7.99   3.35   0.29   NS  

Page 140: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     122  

a  Measurement   Male  (n  =  20)   Female  (n=19)   F   R  square   p-­‐value  Group  C   Mean   SD   Range   Mean   SD   Range  

     MLMC5   55.38   3.32   49.78  -­‐  61.31   52.01   2.43   47.39  -­‐  55.81   8.71   0.33   **  WHMC5   14.80   0.87   12.87  -­‐  16.14   13.19   0.74   11.52  -­‐  14.44   28.44   0.57   ***  WBMC5   14.22   0.99   12.45  -­‐  16.3   12.52   0.74   11.77  -­‐  14.37   20.75   0.37   ***  WMMC5   8.81   0.92   7.19  -­‐  10.58   7.42   0.57   6.19  -­‐  8.1   17.76   0.43   ***  MLPP1   34.31   2.46   32  -­‐  39.69   31.55   1.75   27.29  -­‐  33.34   10.40   0.46   **  WHPP1   14.62   1.10   9.84  -­‐  13.87   12.50   0.79   8.32  -­‐  11.69   19.67   0.41   ***  WBPP1   11.63   1.01   12.53  -­‐  16.7   10.06   1.03   10.06  -­‐  14.15   10.06   0.49   **  WMPP1   7.81   0.77   6.37  -­‐  9.4   6.62   0.77   5.34  -­‐  8.25   9.35   0.33   **  MLPP2   43.08   2.95   37.47  -­‐  48.03   40.03   1.63   35.95  -­‐  42.41   9.07   0.31   **  WHPP2   17.31   0.68   10.85  -­‐  13.33   15.10   0.62   9.29  -­‐  12.08   18.70   0.63   ***  WBPP2   12.45   1.12   14.97  -­‐  20.3   10.52   0.92   13.49  -­‐  18.08   48.54   0.52   ***  WMPP2   10.16   1.01   8.52  -­‐  11.91   8.60   0.64   7.35  -­‐  9.8   16.64   0.40   ***  MLPP3   48.07   3.39   42.81  -­‐  54.16   44.77   2.09   40.86  -­‐  48.51   6.05   0.31   *  WHPP3   16.98   0.81   10.93  -­‐  14.52   14.57   0.61   10.37  -­‐  12.9   21.06   0.61   ***  WBPP3   13.19   1.28   13.97  -­‐  19.37   11.34   0.90   13.54  -­‐  17.55   28.99   0.48   ***  WMPP3   10.26   0.99   8.39  -­‐  12.28   9.03   0.63   7.39  -­‐  9.83   12.31   0.34   **  MLPP4   45.55   3.64   39.54  -­‐  51.61   41.74   1.73   38.25  -­‐  44.22   8.56   0.36   **  

Page 141: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 

APPENDIX  FOUR  

     123  

a  Measurement   Male  (n  =  20)   Female  (n=19)   F   R  square   p-­‐value  Group  C   Mean   SD   Range   Mean   SD   Range  

     WHPP4   15.70   0.76   10.01  -­‐  13.28   13.58   0.65   9.87  -­‐  12.97   20.99   0.52   ***  WBPP4   12.17   1.22   12.68  -­‐  18.58   10.64   0.63   12.8  -­‐  15.04   19.64   0.43   ***  WMPP4   9.53   0.92   7.26  -­‐  10.49   8.10   0.59   7.11  -­‐  8.94   23.65   0.40   ***  MLPP5   35.02   2.71   30.82  -­‐  41.46   32.78   1.50   29.37  -­‐  34.9   7.10   0.35   *  WHPP5   14.61   0.74   8.66  -­‐  11.61   12.85   0.61   7.58  -­‐  10.23   43.66   0.50   ***  WBPP5   10.20   0.76   12.3  -­‐  15.7   8.75   0.51   11.95  -­‐  14.15   25.67   0.60   ***  WMPP5   7.71   0.96   5.73  -­‐  8.95   6.71   0.62   5.4  -­‐  7.85   8.21   0.30   *  

   Key:  #Definition  of  measurements  in  Table  5.1;  NS  =  not  significant;  *  P<0.05,  **  P<0.01,  ***P<0.001  

Page 142: Estimationof!sexfromthe! morphometric!assessment!of!hand … · Estimationof!sexfromthe! morphometric!assessment!of!hand bones!inaWesternAustralian! population!! Rebecca!DeSilva!(BSc,!GDipForSci)!!!!!

 

 124