Estimating heavy{tail exponents through max...

24
Estimating heavy–tail exponents through max self–similarity Stilian Stoev ([email protected]) Department of Statistics University of Michigan Probability & Statistics Colloquium Michigan State University, October, 2006 Joint work with George Michailidis and Murad S. Taqqu 1

Transcript of Estimating heavy{tail exponents through max...

Page 1: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Estimating heavy–tail exponentsthrough max self–similarity

Stilian Stoev ([email protected])

Department of Statistics

University of Michigan

Probability & Statistics Colloquium

Michigan State University, October, 2006

Joint work with George Michailidis and Murad

S. Taqqu

1

Page 2: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Part I: Motivation

2

Page 3: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Heavy tailed data

• A random variable X is said to be heavy–tailed if

P{|X| ≥ x} ∼ L(x)x−α, as x→ ∞,

for some α > 0 and a slowly varying function L.

◦ Here we focus on the simpler but important context:

X ≥ 0, a.s. and P{X > x} ∼ Cx−α, as x→ ∞.

◦ X (infinite moments) For p > 0,

EXp <∞ if and only if p < α.

In particular,

0 < α ≤ 2 ⇒ Var(X) = ∞and

0 < α ≤ 1 ⇒ E|X| = ∞.

• The estimation of the heavy–tail exponent α is animportant problem with rich history.

• Why do we need heavy–tail models?

Every finite sample X1, . . . , Xn has finite sample mean,variance and all sample moments!

Why consider heavy tailed models in practice?!

3

Page 4: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Why use heavy–tailed models?

“All models are wrong, but some are useful.”

George Box

Let F and G be any two distributions with positive den-sities on (0,∞).

Let ε > 0 and x1, . . . , xn ∈ (0,∞) be arbitrary, then both:

PF{Xi ∈ (xi − ε, xi+ ε), i = 1, . . . , n} > 0

and

PG{Xi ∈ (xi − ε, xi+ ε), i = 1, . . . , n} > 0

are positive!

• For a given sample, very many models apply.

• The ones that continue to work as the sample growsare most suitable.

We next present real data sets of Financial, Insuranceand Internet data. They can be very heavy tailed.

4

Page 5: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Traded volumes on the Intel stock

2 4 6 8 10 12

x 104

2

4

6

8

10x 10

5 Traded Volumes No. Stocks, INTC, Nov 1, 2005

2000 4000 6000 8000 10000 12000

1

2

3

4

x 104

5

Page 6: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Insurance claims due to fire loss

200 400 600 800 1000 1200 1400 1600 1800 2000

50

100

150

200

250

Danish Fire Loss Data: 1980 − 1990

0 500 1000 1500 2000

1

1.5

2

Hill plot: αH(k) = 1.394

order statistics0 5 10

0

2

4

6

8

10H= 0.60422 (0.020897), α =1.655

Scales j

Max

−S

pect

rum

6

Page 7: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

TCP flow sizes (in number of packets)

2 4 6 8 10 12 14

x 104

2

4

6

8

x 104 TCP Flow Sizes (packets): UNC link 2001 (~ 36 min)

time

500 1000 1500 2000 2500 3000 3500

200

400

600

800

1000

1200

The first minute

7

Page 8: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

History

• Hill (1975) worked out the MLE in the Pareto modelP{X > x} = x−α, x ≥ 1 and introduced the Hill plot:

αH(k) := (1

k

k∑

i=1

log(Xi,n)− log(Xk+1,n))−1,

where X1,n ≥ X2,n ≥ · · · ≥ Xk,n are the top–K order

statistics of the sample.

• How to choose k?

◦ pick k where the plot of αH(k) vs. k stabilizes.

◦ serious problems in practice:

volatile & hard to interpret: “Hill horror plot”

confidence intervals

robustness

• Consistency and asymptotic normality resolved: Weiss-man (1978), Hall (1982) in semi–parametric setting.

• Many other estimators: kernel based Csorgo, De-heuvels and Mason (1985), moment Dekkers, Einmahland de Haan (1989), among many others.

• Most estimators exploit the top order statistics.

8

Page 9: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Hill horror plots: TCP flow sizes

0 2 4 6 8 10 12 14

x 104

0

0.5

1

1.5

2Hill plot

Order statistics k

α

0 500 10000.5

1

1.5

Order statistics k

α

αH

(300) = 1.4114

0.5 1 1.5 2

x 104

0.8

0.9

1

1.1

Order statistics k

α

αH

(12000) = 0.9296

9

Page 10: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Part II: Max self–similarity &max–spectrum

10

Page 11: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Frechet max–stable laws

Consider i.i.d. Xi’s with P{X1 > x} ∼ Cx−α, x → ∞. Bythe Fisher–Tippett–Gnedenko theorem:

1

n1/αmax1≤i≤n

Xi ≡1

n1/α

n∨

i=1

Xid−→ Z, as n→ ∞,

where Z is α−Frechet extreme value distribution:P{Z ≤ x} = exp{−Cx−α}, x > 0.

• The extreme value distributions are max–stable. Inparticular, for i.i.d. α−Frechet Z,& Zi’s:

Z1 ∨ · · · ∨ Znd= n1/αZ.

• A time series of i.i.d. α−Frechet {Zk} is 1/α−max-self-similar:

∀m ∈ N : {∨1≤i≤mZm(k−1)+i}k∈N

d= m1/α{Zk}k∈N.

◦ Block–maxima of size m have the same distributionas the original data, rescaled by the factor m1/α.

• Any heavy–tailed {Xk} (i.i.d.) data set is asymptoti-cally max self–similar.

11

Page 12: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Max–spectrum

Given a positive sample X1, . . . , Xn, consider the dyadic

block–maxima:

D(j, k) := max1≤i≤2j

X2j(k−1)+i ≡2j∨

i=1

X2j(k−1)+i,

with k = 1, . . . , nj = [n/2j].

• In view of the asymptotic scaling:

1

2j/αD(j, k)

d−→ Z, (j → ∞),

observe that

Yj :=1

nj

nj∑

j=1

log2D(j, k) ' j/α+ c, (j, nj → ∞)

where c := E log2Z.

◦ The last asymptotics “follow” from the LLN sinceD(j, k)’s are independent in k.

• The max–spectrum of the data is defined as the statis-tics:

Yj, j = 1, . . . , [log2(n)].

◦ Can identify α from the slope of the Yj’s vs. j, forlarge j’s.

12

Page 13: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Max–spectrum estimators of α

Given the max–spectrum Yj, j = 1, . . . , [log2(n)], define

α(j1, j2) := (

j2∑

j=j1

wjYj)−1,

where∑

j jwj = 1 and∑

j wj = 0.

• That is, use linear regression to estimate the slope1/α.

• Issues:

◦weighted or generalized least squares must be used,since

Var(Yj) ∝ 1/nj ∝ 2j,

◦ The choice of the scales j1 and j2 is critical.

• These issues and confidence intervals, are addressedin Stoev, Michailidis and Taqqu (2006).

13

Page 14: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Examples of max–spectra

5 10 15

5

10

15Frechet(α = 1.5), Estimated α =1.506

Scales j

Max

−S

pect

rum

5 10 1510

15

20

Intel Volume: α =1.3745

Scales j

Max

−S

pect

rum

5 10 15

5

10

15

1.3−stable(β=1), α =1.2692

Scales j

Max

−S

pect

rum

5 10 150

2

4

6

8

T−dist (df = 3), α =2.7538

Scales j

Max

−S

pect

rum

14

Page 15: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Robustness of the max–spectrum

0 2 4 6 8 10 12 14 162

4

6

8

10

12

14

16

18

20Max self−similarity: α(5,10) = 0.9486, α(10,12) =1.4124

Scales j

Max

−S

pect

rum

Compare with the Hill horror plot of the Internet flow–size data (next slide).

15

Page 16: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Hill horror plots: TCP flow sizes

0 2 4 6 8 10 12 14

x 104

0

0.5

1

1.5

2Hill plot

Order statistics k

α

0 500 10000.5

1

1.5

Order statistics k

α

αH

(300) = 1.4114

0.5 1 1.5 2

x 104

0.8

0.9

1

1.1

Order statistics k

α

αH

(12000) = 0.9296

Compare with the max–spectrum plot of the Internetflow–size data (previous slide).

16

Page 17: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Part III: Asymptotic results

17

Page 18: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Asymptotic normality of the max–spectrum

Let P{Xk ≤ x} =: F (x), where

1− F (x) = Cx−α(1 +O(x−β)), (x→ ∞), (1)

with some β > 0.

• Consider the max–spectrum {Yj} for the range ofscales:

r(n) + j1 ≤ j ≤ r(n) + j2,

with fixed j1 < j2 and r(n) → ∞, n→ ∞.

Theorem Under (1) and another technical condition,

supx∈R

∣∣∣P{√nj2+r((~θ, ~Yr)− (~θ, ~µr)) ≤ x} −Φ(x/σ~θ)∣∣∣

≤ C~θ(1/2rβ/α+ r2r/2/

√n), (2)

where Φ is the standard Normal c.d.f.

Here ~Yr = (Yr+j)j2j=j1

and

(~θ, ~Yr) =

j2∑

j=j1

θjYr+j, µr(j) = (r+ j)/α+ c

and

σ2~θ= (~θ,Σα

~θ) :=

j2∑

i,j=j1

θiΣα(i, j)θj > 0.

19

Page 19: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

The covariance structure of the max–spectrum

• The asymptotic covariance matrix Σ is the same as ifthe data were i.i.d. α−Frechet!

◦ The intuition is that the block–maxima

{D(r+ j, k), k = 1, . . . , nr+j}behave like i.i.d. α−Frechet variables, as r = r(n) → ∞.

• The covariance entries are given by:

Σα(i, j) = α−22i∨j−j2ψ(|i− j|),with

ψ(a) := Cov(log2(Z1), log2(Z1 ∨ (2a − 1)Z2), a ≥ 0,

for i.i.d. 1−Frechet Z1 & Z2.

◦ Note that α appears only as a factor in Σα:

Σα = α−2Σ1.

It does not affect the correlation structure of the max–spectrum.

• GLS estimators for α use the matrix Σα.

• Asymptotic normality for α(r+ j1, r+ j2) follows fromthe last theorem.

• Stoev, Michailidis and Taqqu (2006) has details onconfidence intervals for α and automatic selection ofj1&j2.

20

Page 20: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Rates for moment functionals of maxima

Let X1, . . . , Xn be i.i.d. from F and recall that

Mn :=1

n1/α

1≤i≤nXi

d−→ Z, (n→ ∞).

• Are there results on the rate of convergence

Ef(Mn) −→ Ef(Z), (n→ ∞)

for “reasonable” f ’s?

◦ Pickands (1975) shows only the convergence of mo-ments (no rates).

• Our approach: consider

F (x) = exp{−σα(x)x−α}, x ∈ R, (3)

with

σα(x) −→ C, (x→ ∞).

◦ Note: 1− F (x) ∼ Cx−α, x→ ∞ is equivalent to (3).

• Extra assumption:

|σα(x)− C| ≤ Dx−β, for large x.

21

Page 21: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Rates (cont’d)

But (3) is very convenient to handle rates!

• Note that

P{Mn ≤ x} = P{X1 ≤ n1/αx}n = F (n1/αx)n

= exp{−σα(n1/αx)x−α}. (4)

◦ Thus,

Ef(Mn) =

∫ ∞

0

f(x)dFn(x) =

∫ ∞

0

f(x)d exp{−σα(n1/αx)x−α},

and also

Ef(Z) =

∫ ∞

0

f(x)dG(x) =

∫ ∞

0

f(x)d exp{−Cx−α}.

• Now, integration by parts yields:

E(f(Mn)− f(Z)) =

∫ ∞

0

(G(x)− Fn(x))f′(x)dx.

◦ However G(x) and Fn(x) are of the same “exponential”form!

22

Page 22: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Rates (cont’d)

By the mean value theorem:

|Fn(x)−G(x)| = | exp{−σα(n1/αx)x−α} − exp{−Cx−α}|≤ |σα(n1/αx)− C|x−α exp{−cx−α}≤ Dn−β/αx−(α+β) exp{−cx−α}, as x→ ∞,

• Thus, for any ε > 0, as n→ ∞,∫ ∞

ε

|Fn(x)−G(x)||f ′(x)|dx

≤ Dn−β/α∫ ∞

0

|f ′(x)|x−(α+β)e−cx−αdx = O(n−β/α).

• By taking ε = εn → 0, and using a mild technicalcondition we can also bound the integral near zero

∫ εn

0

|Fn(x)−G(x)||f ′(x)|dx.

Proposition If σα(x) ∼ Dx−β, as x→ ∞, then as n→ ∞,

nβ/α(Ef(Mn)− Ef(Z)) −→ D

∫ ∞

0

x−(α+β)f ′(x)e−Cx−αdx,

provided mild technical conditions on σ(x) at 0 and onf at 0 and ∞ hold.

23

Page 23: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

Rates (cont’d)

• We have thus obtained exact rates for moment func-tionals

Ef(1

n1/αmax1≤i≤n

Xi)

◦ They are valid for a large class of absolutely continuousf , including:

f(x) = log2(x), and f(x) = xp, p ∈ (0, α),

for example.

◦ More details can be found in Stoev, Michailidis andTaqqu (2006).

• As a corollary, we also get rates of convergence for

Cov(log2D(r+j1, k), log2D(r+j2, k)), as r = r(n) → ∞.

• These tools and the Berry–Esseen Theorem, yield theuniform asymptotic normality of the max–spectrum.

Thank you!

24

Page 24: Estimating heavy{tail exponents through max self{similaritydept.stat.lsa.umich.edu/~sstoev/talks/max-wavelet-talk.pdf · 2007. 9. 7. · Estimating heavy{tail exponents through max

References

Csorgo, S., Deheuvels, P. & Mason, D. (1985), ‘Kernel es-timates of the tail index of a distribution’, Annals of

Statistics 13(3), 1050–1077.

Dekkers, A., Einmahl, J. & de Haan, L. (1989), ‘A momentestimator for the index of an extreme–value distribu-tion’, Ann. Statist. 17(4), 1833–1855.

Hall, P. (1982), ‘On some simple estimates of an exponentof regular variation’, J. Roy. Stat. Assoc. 44, 37–42.Series B.

Hill, B. M. (1975), ‘A simple general approach to inferenceabout the tail of a distribution’, The Annals of Statistics3, 1163–1174.

Pickands, J. (1975), ‘Statistical inference using extreme orderstatistics’, Ann. Statist. 3, 119–131.

Stoev, S., Michailidis, G. & Taqqu, M. (2006), Estimat-ing heavy–tail exponents through max self–similarity,Preprint.

Weissman, I. (1978), ‘Estimation of parameters and largequantiles based on the k largest observations’, Journalof the American Statistical Association 73, 812–815.

25