Esterification oil of wintergreen.doc

download Esterification oil of wintergreen.doc

of 8

Transcript of Esterification oil of wintergreen.doc

  • 7/30/2019 Esterification oil of wintergreen.doc

    1/8

    Fischer Esterification: Synthesis of Oil of Wintergreen

    Introduction

    Natural flavors and fragrances tend to be complex mixtures banana has at least two dozen components, for

    example but often one or a very few of the components offer a pretty good duplication. Interestingly, only avery few functional groups are commonly found in pleasant flavors and fragrances, and of those, esters are

    predominant. Examples shown in Figure 1 include banana, pineapple, apple, cherry, plum, apricot, strawberry,

    pear, honey, wintergreen, and even rum and wine. Some esters ethyl acetate, butyl acetate, pentyl acetate,and isopentyl acetate are examples are components of many natural fragrances. *

    O

    O

    O

    O

    O

    O

    O

    O

    O

    O

    O

    OO

    O

    O

    O

    H O

    O

    O

    O

    OH

    O

    O

    O

    O

    O

    O

    O

    O

    butyl formate

    plumbutyl isobutyrate

    pineapple

    butyl propanoate

    apricot

    butyl pentanoate

    applebutyl isopentanoate

    apple

    butyl acetate

    pineapple

    allyl phenylacetate

    honey

    allyl benzoate

    cherry

    ethyl formate

    rum

    ethyl acetate

    "wine"

    isopentyl salicylate

    strawberry

    methyl salicylate

    wintergreen

    OH

    O

    O

    methyl butyrate

    appleethyl isopentanoate

    apple

    phenethyl acetate

    honey

    O

    O

    benzyl butyrate

    pear

    O

    O

    O

    O

    pentyl acetate

    banana

    isopentyl acetate

    banana

    Figure 1. Representative esters and the flavor type of each. *

    Written by John McCormick, Department of Chemistry, University of Missouri-Columbia.

    *Source: Fenaroli, Gioanni,Fenarolis Handbook of Flavor Ingredients, Furia, Thomas E., and Nicolo Bellanca, Eds. The

    Chemical Rubber Co., Cleveland, 1971, pp 643 672.

  • 7/30/2019 Esterification oil of wintergreen.doc

    2/8

    When you see food flavorings labeled imitation, you know that flavor came from a chemical company that

    used some specific chemical processes to make the flavoring. And if the key chemical is an ester, its a good bet

    that it was made from an acid by esterification the reaction used to transform an acid into an ester. By the

  • 7/30/2019 Esterification oil of wintergreen.doc

    3/8

    way, it is interesting that while esters generally smell great, the carboxylic acids they are made from often have

    sharp (think vinegar) or bad (think sour milk) odors. In this laboratory, you will do an esterification reaction

    (Equation 1) that transforms salicylic acid into methyl salicylate (oil of wintergreen).

    (1)

    OH

    COH

    O OH

    COCH3

    O

    salicylic acid methyl salicylate

    Synthesis of Esters

    There are several procedures to make esters from the carboxylic acids. Among them, one Fischer

    esterification has been used by chemists for well over a century because it gives highs yields and lends itself to

    large-scale commercial use as well as very small scale research use. As indicated in Equation 2, Fischer

    esterification is based on an equilibrium reaction (actually, a series of reactions), which means that something

    has to be done to cause the equilibrium to strongly favor product formation. If the goal is a high-yield

    conversion of the carboxylic acidinto the ester, there are two options to shift the equilibrium toward esterformation: use a large excess of the alcohol, or remove one of the products as the reaction proceeds. When the

    esterifying alcohol is cheap and abundant, chemists use it in large excess, as you will in this lab. Alternatively,

    because water is one of the two products and there are good ways to remove water, this also is a commonly used

    strategy.

    RCOH

    O

    + ROH RCOR

    O

    H2O+(2)H+

    Mechanism of Fischer Esterification

    The mechanism (Equation 3) of the Fischer esterification reveals that it is a typical nucleophilic substitution at

    acyl C=O: a substitution reaction that takes place by an initial addition of alcohol to the carbonyl group to form

    a tetrahedral intermediate (II) and a subsequent elimination of water, which re-forms the carbonyl group. Thenet result of this addition-elimination process substitutes OR for OH. The mechanistic details shown in

    Equation 3 emphasize the catalytic role of acid, first in increasing the rate of addition of alcohol to the acid (I)

    and then in increasing the rate of loss of water from intermediate II to form the ester (III).

    RCOH

    O

    +

    ROH

    RCOR

    O

    H2O

    +

    (3)

    H3O+

    RCOH

    OH+

    + +RCOH

    OH

    RCOH

    OH

    ROH+

    +

    RCOH

    OH

    RO

    H3O+

    H2OI

    II

    II

    III

    H2ORCOH

    OH

    RO

    RCOR

    OH

    +

    +

    +

    RCOR

    OHH3O+

    H2O

    RC

    OH

    RO

    OH2

    +

    H3O+

    H2O

    +

  • 7/30/2019 Esterification oil of wintergreen.doc

    4/8

    Analysis of Products by Gas Chromatography

    Once you obtain your product, how do you know that it has the expected structure and that it is pure? Well, IR

    spectroscopy comes to mind as useful: The OH group, easily observed in the IR spectrum, of the starting

    carboxylic acid should be absent in the IR spectrum of the product. In addition, thefingerprint region of the IR

    should be an exact match with that of an IR taken of an authentic sample of your product. However, if your

    product is contaminated by something else (including a small amount of starting carboxylic acid), the fingerprintregion will have additional peaks and therefore will be deceptive.

    Gas-liquid chromatography, often simply called gas chromatography (GC), offers an alternative analytical

    technique that lets you assess not only whether your product has the expected structure but also just how pure

    your product is. Compared to the other two types of chromatography that you have seen thin layer

    chromatography (TLC) and column chromatography GC is much more sensitive (It will detect a far smalleramount of material.) and is much more effective for separating molecules, even those having nearly identical

    structures. Appendix A is devoted to a brief overview of gas chromatography, which you will use to analyze

    your final product.

    Distillation

    Figure 2 shows the apparatus you should use for distillation. Be sure to use a thermometer adaptor. (Ask your

    TA if you are uncertain what this is.) Also be sure your distillation apparatus is NOTa closed system! When

    heated, the expanding gas in a closed system will blow it up!

    condenser

    clamp

    ring stand

    lab jack(to raise & lower heat)

    round-bottomflask

    wate

    rin

    wate

    rout

    heatingmantel

    distillation head

    thermometer

    thermometeradapter

    bent adapter

    Erlenmeyerflask

    clamp

    ring stand

    ring stand

    clamp

  • 7/30/2019 Esterification oil of wintergreen.doc

    5/8

    Experimental Procedure

    Safety Notes!

    Solutions of H2SO4 are extremely corrosive. Avoid contact with skin and clothing. In case of

    accidental contact, rinse the affected area with copious amounts of cold water.

    Salicylic acid and methyl salicylate are toxic and may be absorbed through the skin. Avoid breathingdust, ingestion, and contact with the skin. In case of accidental skin contact, flush with copious

    amounts of water.

    Dichloromethane is toxic and has been categorized as a carcinogen. Avoid inhalation, ingestion, and

    contact with skin. In case of accidental contact, wash with copious amounts of water.

    Synthesis of Methyl Salicylate

    Weigh 3.45 g of salicylic acid and 15 mL of methanol in a 50-mL round bottom flask. Swirl to dissolve the

    salicylic acid, using a hot water bath to heat the mixture as needed to completely dissolve the acid. Then add to

    the coolmethanol solution 5 mL of conc. H2SO4in small portions, taking care to see that the mixture does not

    get too hot to touch the flask. You may observe formation of a white precipitate. Add an acid-resistant boilingchip and reflux the reaction mixture for 1 hour.

    Use a cold-water bath to cool the reaction mixture to room temperature. Add 25 mL of H2O to a separatory

    funnel and then, using a funnel, pour your reaction mixture into the separatory funnel. Add 10 mL of

    dichloromethane to the emptied reaction flask, swirl to rinse it, and pour it into the separatory funnel. Carefully(frequent venting!!) shake the separatory funnel to extract your product, allow the layers to separate, and collect

    the dichloromethane layer (Which layer is it?) in a 50-ml Erlenmeyer flask. Repeat the extraction two more

    times, each time using 10 mL of dichloromethane and collecting all three extracts in the same Erlenmeyer flask.

    Drain the aqueous layer into a beaker (larger than 100 mL capacity) labeled Waste aqueous solutions. Pour

    the dichloromethane solution of unpurified methyl salicylate into the separatory funnel, and wash twice with 15

    mL of H2O, then twice with 15 mL of 5% NaHCO3 solution (Careful!! Vent frequently! You may see

    substantial evolution of CO2 as you neutralize any remaining acid.), and once with 15 mL of saturated NaCl

    solution. Note: For each wash, you will keep the lower layer and drain the upper, aqueous layer into theWaste Aqueous Solutions beaker. Drain the washed dichloromethane solution into an Erlenmeyer flask. (Be

    careful to avoid lettingany H2O drain into the flask.) Add a small amount of Na2SO4 (drying agent) and swirl

    the flask. Add additional Na2SO4if necessary until some of the drying agent does not form in a clump. Allow

    the mixture to stand 10 minutes, and then filter it through a funnel with cotton (or glass wool) loosely stuffed in

    the stem into a tared (You must know its weight!) 50-mL round bottom flask. Remove the dichloromethane

    using a rotovap and weigh your crude (unpurified) methyl salicylate. Weigh your sample of crude methylsalicylate and characterize it using both IR spectroscopy and gas chromatography. Please remember that you

    need to compare the retention time and purity of your sample to the known standards. Explain any addition

    peaks that show up in the chromatogram and in the IR as compared to the standards!!!!

    Clean up

    Discard all wastes in the appropriately labeled containers. No materials from this experiment go down thedrain! After you have poured all you can into the waste containers, wash glassware containing only residual

    amounts (clinging to the sides of the glassware) in the sink.

  • 7/30/2019 Esterification oil of wintergreen.doc

    6/8

    Appendix A: Gas Chromatography

    You will use gas chromatography (GC) to check the purity of your methyl salicylate (product) prepared by the

    Fischer esterification reaction. GC works on the same principles as TLC and column chromatography (see

    description in the chromatography lab), but for GC the mobile phase is a gas and the stationary phase is a liquid.

    The components of the sample are continually partitioned between the vapor phase and the liquid phase.

    Because the molecules that spend a greater proportion of time in the gas phase elute more rapidly, compoundswith higher vapor pressure (lower boiling point) elutes faster than those with lower vapor pressure (higher

    boiling point). The chromatography column is housed in an oven so that the temperature may be controlled

    anywhere up to about 300 C. Because vapor pressure increases with heating, compounds elute faster when the

    temperature of the oven is increased. The length of time that a compound is retained in the column is known as

    its retention time (TR), which can be used to help identify the compound, in the same manner as the TLC Rfvalue.

    Two of the most common stationary phases used for GC are non-volatile polymers: dimethylsilicone (non-

    polar) and polyethylene glycol (moderate polarity).

    These liquid phases are coated on the surface of an inert support material and packed in a column made from

    glass or metal tubing. A schematic diagram of a gas chromatography system is given in Figure 1. The column

    is coiled and kept in an oven where the temperature can be controlled. The mobile phase, called the carrier gas,

    (generally helium) flows through the column. The sample is injected (using a syringe) onto the column through

    the injection port at the upstream end of the column. Only small amounts of sample are used, usually between

    0.5 5 l. A detector at the end of the column generates a signal when a compound elutes this is recorded

    Si OO

    CH3

    CH3

    Si

    CH3

    CH3

    n

    Dimethylsilicone

    Trade names: SE-30, OV-1

    CH2O CH2n

    Polyethylene glycol

    Trade name: Carbowax

  • 7/30/2019 Esterification oil of wintergreen.doc

    7/8

    Figure 1. The components of a typical gas chromatograph. The recorder prints the

    chromatogram, which has a peak for each component, proportional in area to the amountof that compound present in the mixture. Right: A method for determining peak areas.

    He in

    Inject sample

    Column

    Oven

    Detector

    Recorder

    w1/2h

    Area = w1/2 x h

  • 7/30/2019 Esterification oil of wintergreen.doc

    8/8

    using a strip-chart recorder. Several types of detectors are available. You will be use a gas chromatograph

    equipped with a thermal conductivity ("hot-wire") detector. This detector consists of a wire placed across the

    end of the column. The electrical resistance of the wire depends on its temperature. When only the helium

    carrier gas is passing over the wire, the voltage level is constant, which results in a straight line on the recorder.When a component from the mixture elutes from the column and passes over the wire, it causes a change in the

    wire temperature, which causes a change in the voltage, which causes a change in the signal sent to the recorder.Therefore, each component eluting from the gas chromatograph appears as a peak on the recorder trace, called

    the chromatogram. The area of each peak is proportional to the amount of that compound if twice as much

    sample is injected, the areas of the peaks double. Therefore, thepeak areas can be used as a quantitative

    measure of the amount of each component in the mixture.

    Your GC chromatogram will show a peak for your ester (product) and for the unreacted alcohol, if any

    contaminates your product. In addition, a small amount of air is always injected along with the sample, and thisalso gives a small peak. Since air spends all of its time in the mobile phase, the TR for the air corresponds to the

    time required for the helium to pass through the column.