Establishing Acceptance Limits for Uniformity of Dosage...

8
30 Pharmaceutical Technology AUGUST 2017 PharmTech.com Pramote Cholayudth The concept of sampling distribution of acceptance value (AV) was introduced in Part One of this article series. In Part Two, the author describes how to establish the corresponding acceptance limits for AV data for process validation batches, the typical characteristics of AV distributions, and finally, how to derive relevant constants for AV control charts in annual product review and continued process verification reports. AFRICA STUDIO/SHUTTERSTOCK.COM Peer-Reviewed P art One of this article (1) introduced the concept of sampling distribution of acceptance value (AV)—the only quality attribute in Uniformity of Dosage Units (UDU). For different sample sizes, such as n = 10 and 30, their AV distributions will be different in pattern, thus resulting in different critical AV values (i.e., values that have a 95% coverage in the distributions where they are equal to 12.5 and 9.1 for n = 10 and 30, respectively). Such critical values will be applied as AV acceptance limits instead of the single United States Pharmacopeial (USP) compendial limit of not more than (NMT) 15 (2). The key benefit of the two working limits is to guarantee that no lot of dosage unit products (i.e., tablets, capsules, etc.) with poor quality is released into the market. Another key application is to provide the acceptance limits dedi- cated to the average values of AV data in, for example, annual product review (APR) and continued process verification (CPV), to evaluate if the overall process capability index (CpK) across those between-lot data is greater than 1.33 (understanding that the process benchmark at lot CpK 1.33 is the baseline for construc- tion of the AV distributions). In summary, Part One is a discussion of the theory and key application of using two release limits for routine release of lots of products. Part Two describes how to establish the correspond- ing acceptance limits for AV data for process validation batches, the typical characteristics of AV distributions, and finally, how to derive relevant constants for AV control charts in, for example, APR and CPV reports. Case studies using routine batch data in APR, with discussion and illustrations, are also provided to dem- onstrate the benefits of applying AV acceptance limits. Acceptability constants (k) for various sample sizes The following formula is used to compute the accept- ability constants (k) for calculation of AV parameters and construction of AV distributions for various sample sizes: Establishing Acceptance Limits for Uniformity of Dosage Units: Part Two Submitted: Jan. 17, 2017 Accepted: Mar. 8, 2017

Transcript of Establishing Acceptance Limits for Uniformity of Dosage...

Page 1: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

30 Pharmaceutical Technology August 2017 PharmTech .com

Pramote Cholayudth

The concept of sampling distribution of acceptance value (AV) was introduced in Part One of this article series. In Part Two, the author describes how to establish the corresponding acceptance limits for AV data for process validation batches, the typical characteristics of AV distributions, and finally, how to derive relevant constants for AV control charts in annual product review and continued process verification reports.

Af

ric

A S

tu

dio

/Sh

ut

te

rS

to

ck

.co

m

Peer-Reviewed

Part One of this article (1) introduced the concept of sampling distribution of acceptance value (AV)—the only quality attribute in Uniformity of Dosage Units (UDU). For different sample

sizes, such as n = 10 and 30, their AV distributions will be different in pattern, thus resulting in different critical AV values (i.e., values that have a 95% coverage in the distributions where they are equal to 12.5 and 9.1 for n = 10 and 30, respectively). Such critical values will be applied as AV acceptance limits instead of the single United States Pharmacopeial (USP) compendial limit of not more than (NMT) 15 (2). The key benefit of the two working limits is to guarantee that no lot of dosage unit products (i.e., tablets, capsules, etc.) with poor quality is released into the market. Another key application is to provide the acceptance limits dedi-cated to the average values of AV data in, for example, annual product review (APR) and continued process verif ication (CPV), to evaluate if the overall process capability index (CpK) across those between-lot data is greater than 1.33 (understanding that the process benchmark at lot CpK 1.33 is the baseline for construc-tion of the AV distributions). In summary, Part One is a discussion of the theory and key application of using two release limits for routine release of lots of products.

Part Two describes how to establish the correspond-ing acceptance limits for AV data for process validation batches, the typical characteristics of AV distributions, and f inally, how to derive relevant constants for AV control charts in, for example, APR and CPV reports. Case studies using routine batch data in APR, with discussion and illustrations, are also provided to dem-onstrate the benefits of applying AV acceptance limits.

Acceptability constants (k) for various sample sizesThe following formula is used to compute the accept-ability constants (k) for calculation of AV parameters and construct ion of AV distr ibut ions for various sample sizes:

Establishing Acceptance Limits for Uniformity of Dosage Units: Part Two

Submitted: Jan. 17, 2017Accepted: Mar. 8, 2017

Page 2: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

32 Pharmaceutical Technology August 2017 PharmTech .com

Peer-Reviewed

k = Z0.9 1+ 1n

n 1

0.9,n 12

[Eq. 1] (3)wherek : tolerance factor (acceptability constant)Z0.9: Z score for 90% coverage (p = 0.90) = 1.645 (2-tailed)n : sample sizen – 1 : n-1 degrees of freedomχ2

0.9,n-1 : chi-square for 90% confidence interval with n-1 degrees of freedom.

The acceptability constant (k) is in fact called “toler-ance factor” in statistical textbooks with its expression in Equation 1. For example, if n = 10, k is computed as follows:

kn=10 =1.645 1+ 110

10 14.168

= 2.53

where,kn-10 : acceptability constant for n = 10.Z0.9 : Z score for 90% coverage = 1.645 (2-tailed).χ2

0.9,10-1 : chi square for 90% confidence interval with 10-1 or 9 degrees of freedom = 4.168; where in Microsoft (MS) Excel, chi square (n = 10) =CHIINV(0.9,10-1) = 4.16816.

Table I provides a short summary on acceptability con-stants (k) for those sample sizes relevant to this article.

Construction and simulation of AV distributions for sample sizes other than n=10 or 30The samples sizes 70 and 140 are normally taken for validation UDU testing plans 30/70 (i.e., n = 30 and 70 in stage 1 and 2, respectively) and 60/140, respectively. Sampling plans should be chosen based on product qual-ity risk (e.g., 60/140 testing plan is used in highly potent low-dose products such as hormone products).

Construction and simulation of AV distributions for such sample sizes is executed in the same way as Part One using the corresponding acceptability constants (k) in Table I. Figures 1–4 illustrate the simulated and theo-retical AV distributions for n = 30,70, 60, and 140, re-spectively. According to the figures, Table II provides a summary on the working acceptance limits for AV data and AV average data for relevant sample sizes.

Typical characteristics of AV distributionsAV distributions in general have the typical characteris-tics and applications as follows:•Distribution pattern: The distributions look approxi-

mately normal especially for larger samples (n ≥ 30, Figures 1–4). However, upon analysis of AV = M x +ks expression (2), AV is partly a function of standard deviation (s) where its distribution is non-normal. Therefore, according to the expression, AV distribu-tions are also non-normal.

Table I: Acceptability constants computed on MS Excel spreadsheet. CI is confidence interval. A B C D

1 Sample size (n)Acceptability constant (k, 90%

CI, 90% coverage)k (United States Pharmacopeia) k1 (90% CI, 99.9% coverage)

2 10 2.53 2.4* N/A

3 30 2.03 2.0 4.05

4 60 1.89 – 3.77

5 70 1.87 – 3.73

6 140 1.79 – 3.58

7 B2 =(NORMSINV(1-(1-90/100)/2))*((1+1/A2)^0.5)*(((A2-1)/(CHIINV(90/100,A2-1)))^0.5) = 2.53

8 B4 =(NORMSINV(1-(1-90/100)/2))*((1+1/A4)^0.5)*(((A4-1)/(CHIINV(90/100,A4-1)))^0.5) = 1.89

9 B6 =(NORMSINV(1-(1-90/100)/2))*((1+1/A6)^0.5)*(((A6-1)/(CHIINV(90/100,A6-1)))^0.5) = 1.79

10 D3 =(NORMSINV(1-(1-99.9/100)/2))*((1+1/A3)^0.5)*(((A3-1)/(CHIINV(90/100,A3-1)))^0.5) = 4.05

11 * Approximately 88% coverage.

Figure 1: Acceptance value (AV) distributions (n = 30, k = 2.00). CpK is process capability index. NMT is not more than.

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

Freq

uen

cy

Acceptance Value (AV)

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

12.50

13.00

13.50

Simulated AV Distribution: Dist.Mean = 7.44, Lot CpK = 1.33

Theoretical AV Distribution: Dist.Mean = 7.44

Note: Coverage for AV ≤ 9.1 =95.05% i.e, about 95% of AVdata are NMT 9.1

Al

l f

igu

re

S A

re

co

ur

te

Sy

of

th

e A

ut

ho

r.

Page 3: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

Pharmaceutical Technology August 2017 33

•AV acceptance limit: The critical AV values at ap-proximately 95% coverage in the distributions are established as the working AV acceptance limits as shown in Table II.

•AV average acceptance l imit: The means of AV distributions may be established as AV average acceptance limits as shown in Table II.

• Standard AV distribution: When individual AV data are divided by their distribution mean, the new distribution of “AV/Mean” ratio data will be similar in shape (not identica l) to the original, with its mean equal to one (1.00). Figure 5 i l lus-trates and confirms the validity of the ratio dis-tributions for sample size n = 70 by comparison between the theory and simulation.

Furthermore, when fixing the sample size but vary-ing the lot CpK, the resulting ratio distributions will be identical in shape to each other as illustrated in Fig-ure 6. In the f igure, the distributions for sample sizes n = 30, 60, 70, and 140 with very dif ferent lot CpK values (1 versus 10) are illustrated. Such an identical-ity in the so-called standard AV distributions will be useful for AV control chart construction.

■ AV chart factors (constants): One of the key ap-plications of standard AV distributions is to es-tablish AV chart factors (i.e., lower control limit [LCL] and upper control limit [UCL] factors) for AV charts. The factors can be easily computed using control chart principles (i.e., mean±3SD [4]). For example, n = 10; LCL = mean-3SD = 1-3x0.237* = 0.29, UCL = mean+3SD = 1+3x0.237* = 1.71 (* SDpooled = ((0.234^2+0.239^2)/2)^0.5 = 0.237). The identicality in smaller samples, such as n = 10, has a minor deviation (i.e., different SDs) (see Figure 7).

Justification of AV acceptance limitsAs explained in Part One, “ … Such a 95% coverage will also confirm that the minimum validation sample size n = 30 is justified. For n = 70 or the other validation sampling plans such as 60/140, all the coverages will be 100%. … ” (1). In Part Two, Figures 8–9 provide the illustrated evidence, through Bergum simulation test results (5–7), to such 95% coverages.

Application in validation batchesThe key applications of AV and AV average acceptance limits relevant to process validation acceptance criteria are as follows.

Acceptance criteria 1: AV data. For sampling plan n ≥ 70 with testing plan 30/70: • Stage 1 (n = 30): AV result is NMT 9.1. If exceeded

(see acceptance criteria 2), go to stage 2.• Stage 2 (n = 70): AV result is NMT 8.0.

For sampling plan n ≥ 140 with testing plan 60/140: • Stage 1 (n = 60): AV result is NMT 8.2. If exceeded

(see acceptance criteria 2), go to stage 2.• Stage 2 (n = 140): AV result is NMT 7.4.

Figure 2: Acceptance value (AV) distributions (n = 70, k = 1.87). CpK is process capability index. NMT is not more than.

Figure 3: Acceptance value (AV) distributions (n = 60, k = 1.89). CpK is process capability index. NMT is not more than.

Figure 4: Acceptance value (AV) distributions (n = 140, k = 1.79). CpK is process capability index. NMT is not more than.

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

Freq

uen

cy

Acceptance Value (AV)

4.85

5.15

5.45

5.75

6.05

6.35

6.65

6.95

7.25

7.55

7.85

8.15

8.45

8.75

9.05

9.35

9.65

9.95

10.25

10.55

Simulated AV Distribution: Dist.Mean = 6.99, Lot CpK = 1.33

Theoretical AV Distribution: Dist.Mean = 6.99

Note: Coverage for AV ≤ 8 =95.23% i.e, about 95% of AVdata are NMT 8

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

Freq

uen

cy

Acceptance Value (AV)

4.75

5.09

5.43

5.77

6.11

6.45

6.79

7.13

7.47

7.81

8.15

8.49

8.83

9.17

9.51

9.85

10.19

10.53

10.87

11.21

Simulated AV Distribution: Dist.Mean = 7.06, Lot CpK = 1.33

Theoretical AV Distribution: Dist.Mean = 7.06

Note: Coverage for AV ≤ 8.2 =95.74% i.e, about 95% of AVdata are NMT 8.2

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

Freq

uen

cy

Acceptance Value (AV)

5.20

5.40

5.60

5.80

6.00

6.20

6.40

6.60

6.80

7.00

7.20

7.40

7.60

7.80

8.00

8.20

8.40

8.60

8.80

9.00

Simulated AV Distribution: Dist.Mean = 6.7, Lot CpK = 1.33

Theoretical AV Distribution: Dist.Mean = 6.7

Note: Coverage for AV ≤ 7.4 =95.72% i.e, about 95% of AVdata are NMT 7.4

Page 4: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

34 Pharmaceutical Technology August 2017 PharmTech .com

The expression AV = M x +ks will be employed using k con-stants in Table I as applicable. Based on the same coverage at approximately 95% in Figures 1 and 8, a correlation may be tied up and described that meeting the criteria for n = 30 will guarantee that at least 90% of the routine samples (Figure 8) will meet the compendial (i.e., USP) acceptance criteria (i.e., if AV result is 9.1, the probability would be 90% on average). For sample size n = 70 as shown in Figures 2 and 9 (also practically the same coverage at approximately 95%), it may be described that at least 99.87% of the routine samples (Figure 9) will meet the compendial limit (i.e., if AV result is 8.0, the probability is 99.87%, which can be considered100%).

Alternative to acceptance criteria 1: Tolerance interval. Because AV is a special format of tolerance interval, the alternative is to demonstrate that 99.9%, for example, of the dosage units in the process validation (PV) lot(s) will fall within the range called tolerance interval (TI) calculated using the expression TI = x ±k1s (3) where x is the sample mean, k1 is the tolerance factor (e.g., 4.05 for n = 30; Table I) and s is the standard deviation. For example, AV result 4.5 (n = 30) is

calculated from x = 100.50 and s = 2.25. Tolerance interval (TI) = 100.5±4.05x2.25 = (91.39, 109.61). In this example, 99.9% of the dosage units in the lot will fall within the range 91.39–109.61% of the label claim.

An additional approach to the tolerance interval is to compute the percentage proportion (P) of the lot stay-ing exactly within the range 85–115% of label claim i.e., the lot coverage (8). Using the Z scores computed from lot mean and SD estimates as appropriate, the probabil-ity using MS Excel is that P = MIN(NORMSDIST(ZUU)-NORMSDIST(ZLU),NORMSDIST(ZUL)-NORMSDIST(ZLL)) = MIN(NORMSDIST((115-101.52)/2.87)-NORMSDIST((85-101.52)/2.87),NORMSDIST((115-99.48)/2.87)-NORMS-DIST((85-99.48)/2.87)) = 99.999867%.

where,In Excel, the upper bound for lot SD = 2.25*((30-1)/(CHI-INV(0.9^0.5,30-1)))^0.5 = 2.87 (square root of 0.9 or 90% confidence interval is used so that joint confidence in-terval is 90%).

I n E x c e l , t h e u p p e r b o u n d f o r l o t m e a n = 100.5+2.87*NORMSINV(1-(1-0.9^0.5)/2)/30^0.5 = 101.52 (square root of 0.9 is also used with the same reason).

In Excel, the upper bound for lot mean = 100.5-2.87*NORM-SINV(1-(1-0.9^0.5)/2)/30^0.5 = 99.48 (square root of 0.9 is also used).

ZUU and ZLU: Z scores computed from the upper and lower limits (115 and 85) using the upper bound (UB) for lot mean (and UB for SD).

ZUL and ZLL: Z scores computed from the upper and lower limits (115 and 85) using the lower bound (LB) for lot mean (and UB for SD).

Table II: Summary of proposed acceptance value (AV) acceptance limits.

Sample sizes (n) AV average limitsAV limits (95%

coverage)95% UCL factors

AV chart factors (99.73% coverage)

LCL factors UCL factors

Routine batches

10 9.0 12.5 1.39 0.29 1.71

30 7.5 9.1 1.22 0.60 1.40

Process validation (PV) batches

30 7.5 9.1 1.22 0.60 1.40

60 7.1 8.2 1.15 0.72 1.28

70 7.0 8.0 1.14 0.74 1.26

140 6.7 7.4 1.10 0.82 1.18

LCL: Lower control limit, UCL: Upper control limit. For information only.

Calculation example: n = 10, AV limit = 9.0x1.39 = 12.5

For AV charting purpose, AV average limits may be adjusted to 7.3 (12.5/1.71; n = 10) and 6.5 (9.1/1.40; n = 30) so that the UCL values will not exceed 12.5 and 9.1 respectively.

Figure 5: Standard acceptance value (AV) distributions (n = 70, lot CpK = 1.33, same condition as Figure 2).

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

0.712 0.784 0.856 0.928 1.000 1.072 1.144 1.216 1.288 1.360 1.432

Freq

uen

cy

‘AV/AV Mean’ Ratio

Simulated AV Ratio Distribution:Dist. Mean = 1, Dist. SD = 0.086

Theoretical AV Ratio Dist.: Dist.Mean = 1, Dist. SD = 0.086

Note 1: UCL factor = 1.26, LCLfactor = 0.74 (99.73% Coverage)

Note 2: 90% UCL factor = 1.11

Note 3: 95% UCL factor = 1.14

Peer-Reviewed

Page 5: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

36 Pharmaceutical Technology August 2017 PharmTech .com

Acceptance criteria 2: AV average data. The average of all AV data from three or more PV batches is required to meet the AV average limits such as NMT 7.5 (n = 30), 7.1 (n = 60), etc. (see Table II). Meeting the acceptance criteria will indicate that lot CpK on average will be not less than (NLT) 1.33.

If AV acceptance limits are met in combination, for ex-ample, passing stage 2 in some batch(es), the average of all AV data in stage 1 (both pass and fail) is required to meet the average limit for stage 1. The failure result is, therefore, also taken into account, but it needs to be evaluated as follows:• For example, AV data (n = 30) for five PV batches are

4.5, 6.2, 7.1, 6.8, and 9.4* (* failing stage 1, [i.e., NMT 9.1], but passing stage 2). The average is 6.8, (i.e., passing the average limit of NMT 7.5). Subsequently, the average value will be used for calculation of lot CpK on average (see true CpK estimation below) to pre-estimate the actual process benchmark. The cal-culated acceptance range for this particular set of AV data is between 4.1 (6.8x0.60) and 9.5 (6.8x1.40); the factors 0.60 and 1.40 are from Table II. Overall, the data are acceptable because 9.4 (the maximum) is also within the range. If the maximum data is out of the range, an investigation with further review and/or verification is required prior to releasing all the PV batches.

Special cases. In some groups of products, their process optimization is limited—i.e., the design is without auto-mation (e.g., no automatic check-weighing unit in subdi-viding process of sterile dry powders). A real case of this is demonstrated by Cefoperazone-Sulbactam injection, where the AV results (Cefoperazone, n = 30) for three PV batches are 8.94, 12.66, and 14.01 fail to meet the AV limit NMT 9.1. Using the MS Excel functions above, the P values are 97.46, 79.82, and 78.14% respectively. Note that the percentages are those falling within 85–115% of label claim (LC), if within 75–125% (LC), P values would be 99.99xx, 99.99xx, and 99.80xx% respectively. The P value within 75–125% (LC) for Sulbactam in each batch is 100%. So the criterion using the range 75–125% (LC) seems to be more justified;the AV acceptance criteria are not appropriate for this particular case.

A c c e p t a n c e c r i t e r i a 3 : L o t C p K o n a v e r a g e d a t a (limit: NLT 1.33). The lot CpK on average can be estimated using the calculation method demonstrated in the fol-lowing (True CpK estimation).

Application in routine batchesIn routine batches where n = 10 or 30, the AV results are directly documented in the reports. Based on a simula-tion (lot CpK = 1.33), meeting the AV acceptance limit (n = 10 i.e. routine batches) will indicate that only 29.xx% of the future samples n = 10 will have the AV results meeting the relevant limits (i.e., not applied for valida-tion purpose). Application in routine batches may be demonstrated typically in an APR. Three real cases about AV data (n = 10) are illustrated in Figures 10–12. When the new limits are adopted, the key elements may be summarized as follows: •AV acceptance requirement: All the AV data are

required to meet the limit of NMT 12.5 (Table II).

Figure 6: Standard acceptance value (AV) distributions (n = 30, 60, 70, and 140). CpK is process capability index.

Figure 7: Standard acceptance value (AV) distributions (n = 10). CpK is process capability index.

Figure 8: Distribution of simulated “probability of meeting Uniformity of Dosage Units (UDU)” results (n = 30).

6.0%

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

0.568 0.640 0.712 0.784 0.856 0.928 1.000 1.072 1.144 1.216 1.288 1.360 1.432 1.504 1.576 1.648

Freq

uen

cy

‘AV/AV Mean’ Ratio

N = 30, Lot CpK = 1, Dist. Mean = 1, Dist. SD = 0.132

N = 30, Lot CpK = 10, Dist. Mean = 1, Dist. SD = 0.132

N = 60, Lot CpK = 1, Dist. Mean = 1, Dist. SD = 0.093

N = 60, Lot CpK = 10, Dist. Mean = 1, Dist. SD = 0.093

N = 70, Lot CpK = 1, Dist. Mean = 1, Dist. SD = 0.086

N = 70, Lot CpK = 10, Dist. Mean = 1, Dist. SD = 0.086

N = 140, Lot CpK = 1, Dist. Mean = 1, Dist. SD = 0.061

N = 140, Lot CpK = 10, Dist. Mean = 1, Dist. SD = 0.061

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

Freq

uen

cy

‘AV/AV Mean’ Ratio

Standard Acceptance Value (AV) Distributions

N = 10, Lot CpK = 1, Dist. Mean = 1, Dist.

SD = 0.234

N = 10, Lot CpK = 10, Dist. Mean = 1, Dist.

SD = 0.239

8.0%

7.0%

6.0%

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%

Freq

uen

cy

Probability of Meeting CU Test (%)

90.0%

90.7%

91.3%

92.0%

92.7%

93.3%

94.0%

94.7%

95.3%

96.0%

96.7%

97.3%

98.0%

98.7%

99.3%

100.0

%

100.7

%

101.3

%

102.0

%

102.7

%

103.3

%

53.42%

Simulated Probability Distribution (n= 30): Dist. Mean = 98%, Lot CpK =1.33, Coverage for Probability ≥90% = 95.17%

Peer-Reviewed

Page 6: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

Pharmaceutical Technology August 2017 37

■ Actual data: All the data in Figures 10–11 (but not Figure 12) pass the limit.

•AV average acceptance requirement: The AV average data are required to meet the limit of NMT 9.0 (Table II). ■ Actual data: The average data in Figures 10–12 pass the

limit. •AV chart requirement: All the AV data are required to

stay consistently within AV chart limits. The limits may be computed using AV constants for construction of the charts so that in-trending and/or out-of-trending of AV data is demonstrated. ■ Figure 10 (for example): UCL = 4.01x1.71 = 6.86 ≅ 6.9

and LCL = 4.01x0.29 = 1.16 ≅ 1.2 (factors 1.71 and 0.29 from Table II).

■ From the three figures, one can see that the plotted AV data in Figures 10–11 stay within the limits that use the introduced AV constant method while Figure 12 fails in that one datapoint (14.2) exceeds the upper specification limit (USL) of 12.5 and three datapoints exceed UCL 11.6.

•True CpK estimation and trending capability: Described separately in the following.

True CpK estimationThe term “true CpK” may be applied to lot CpK (calculated using within-lot AV data such as in-process control data) or lot CpK on average (calculated using between-lot AV data such as PV data) as applicable. The previous sections described how to qualitatively evaluate whether or not the true CpK is equal to or greater than 1.33. To quantitatively obtain the best point estimate for lot CpK, the calculation example in the following may be used. The expressions AV = M x + 2.4s and CpK =Min((USL x) / 3s,(x LSL) / 3s) (4) are used for the calculation assuming that M x is zero. This is based on the zero results obtained at about 80% of the time in a simulation test. From Figure 10, s = 4.01/2.4 = 1.67, so sample CpK average (content uniformity data) = 15/3s = 5/1.67 = 3.0 and lot CpK on average = (1.33/1.36)x3.0 = 2.9338. For Figures 11–12, the calculated values are 3.33 and 1.73, respectively. Such CpK values will be the point esti-mate for the actual process benchmarks for the products. Note that the estimator (1.33/1.36) or 0.98 is taken from Figure 13. For samples NLT n = 30 (i.e., n = 30, 60, 70, or 140), the calculated sample CpK results may be the direct estimates for the true CpK values since those estimators are approximately equal to 1.00 (9). Figure 14 illustrates the relationship between AV averages, true CpK on average, and lot coverage on average. For example, if AV average is 8.9 (n = 10), the true CpK and lot coverage (85-115% LC) on aver-age are 1.33 and 99.997%, respectively.

where,AV : acceptance value = 4.01M : reference valuex : sample mean = 100 (% of label claim)s : sample standard deviation

CpK : process capability indexUSL : upper specification limit = 115 (% of label claim)LSL : lower specification limit = 85 (% of label claim)

Figure 9: Distribution of simulated “probability of meeting Uniformity of Dosage Units (UDU)” results (n = 70).

Figure 10: Acceptance value (AV) chart for an annual product review of a tablet product (AV data: n = 10). USL is upper specification limit. UCL is upper control limit. CL is control limit, LCL is lower control limit.

Figure 11: Acceptance value (AV) chart for annual product review of a capsule product (AV data: n = 10). USL is upper specification limit. UCL is upper control limit. CL is control limit, LCL is lower control limit.

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

Freq

uen

cy

Probability of Meeting CU Test (%)

99.50

%

99.53

%

99.57

%

99.60

%

99.63

%

99.67

%

99.70

%

99.73

%

99.77

%

99.80

%

99.83

%

99.87

%

99.90

%

99.93

%

99.97

%

100.0

0%

100.0

3%

100.0

7%

100.1

0%

100.1

3%

100.1

7%

74.01%

7.11%

Simulated Probability Distribution (n= 70): Dist. Mean = 99.97%, Lot CpK =1.33, Coverage for Probability ≥99.87% = 95.28%

Coverage for Probability ≥

90% = 100% (Minimum

Value ≅ 96%

Acc

epta

nce

Val

ue

(AV

)

Lot No.: Tablet Product (27 Lots)

USL = 12.5

USL = 6.9

AV Data

CL = 4.01

LCL = 1.2

1 3

14

12

10

8

6

4

2

05 7 9

6.7

11 13 15 17 19 21 23 25 27

Trending Capability Index = 2.94

Lot CpK on Average = 2.93

14

12

10

8

6

4

2

01 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

LotNo.: Capsule Product (38Lots)

LCL = 1.0

CL = 3.52

AV DataUCL = 6.0

USL = 12.5

Acc

epta

nce

Val

ue

(AV

)

5.9

Trending Capability Index= 3.62Lot CpK on Average = 3.33

Page 7: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

38 Pharmaceutical Technology August 2017 PharmTech .com

Trending capabilityFor those non-normal data such as AV data where a control chart is st i l l required, the term “trend-ing capabi l it y index” is int roduced and appl ied

to express the relative degree of AV data trending (i.e., trending capability). It may be def ined as the rat io of specif icat ion tolerance to data spread tol-erance (e.g., USL-CL and UCL-CL respectively in Figure 10). To compute the capability index in Figure 10, for example, is to proceed as shown in the following.

Because USL = 12.5, UCL = 6.9 and CL (mean) = 4.01, the trending capability index = (12.5-4.01)/(6.9-4.01) = 2.9. In Figure 11, the calculated index is 3.6. With the rule of thumb criteria, the acceptance limit for the index is NLT 1.33. Figure 12 demonstrates how the trending ca-pability index less than 1.33 (1.2) has a correlation with failure conditions, such as 3 out of 20 data points exceed-ing the UCL. A trending capability index (denoted CTK) is expressed as follows:

CTK =USL CLUCL CL

1.33………(one-tailed)

CTK =MINUSL CLUCL CL

,CL LSLCL LCL

1.33……… (two-tailed)

where,CTK : Trending capability indexUSL : Upper specification limitLSL : Lower specification limitUCL : Upper control limit = CLxUCLfactorLCL : Lower control limit = CLxUCLfactorCL : Center line

DiscussionThe constant method for AV chart construction is similar to that of s charts (using B3 and B4) or R charts (using D3 and D4) (4). In fact, B3 and B4 for n = 10 (B3 = 0.284, B4 = 1.716) and 30 (B3 = 0.604, B4 = 1.396) may be used in place of those constants in Table II. When using the tradit ional control chart method (i.e., mean±3SD ignoring the knowledge of AV distribution), UCL and LCL would be 8.4 and 0, 7.1 and 0, and 16.1 and 0 in Figures 10–12, respectively, which are not effective. The introduced method is much more powerful than the traditional one by NLT 40% (e.g., in Figure 11; ((7.1-0)-(6.0-1.0))/(6.0-1.0) = 42%).

From the figures, it may be summarized that the higher the lot CpK on average, the higher the trending capabil-ity index. However, within the same product data, the trending degree may be higher or lower than the lot CpK level. In Figure 12, for example, although lot CpK is more than 1.33 (1.73), the trending degree is less than 1.33 (1.19). This implies that, to be successful, both lot CpK and trending index values need to be greater than 1.33.

To va l idate processes automated using process analytical technology (PAT), Bergum and Vukovinsky’s approach relevant to “A Proposed Content-Uniformity Test for Large Sample Sizes” is recommended (10).

Figure 12: Acceptance value (AV) chart for annual product review of Tablet Product 2 (AV data: n = 10). USL is upper specification limit. UCL is upper control limit. CL is control limit, LCL is lower control limit.

Figure 13: Process capability index (CpK) distributions (n = 10, Lot CpK = 1.33).

Figure 14: True process capability index (CpK) vs. sample CpK average vs. lot coverage (%) relationship.

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.01 2 3 4 5 6 7 8 9 10 11 12 13 1514 16 17 18 19 20

LCL = 2.0

AV Data

CL = 6.77

UCL = 11.6

Trending Capability Index = 1.19

Lot CpK on Average = 1.73

Lot No.: Tablet Product 2 (20 Lots)

Acc

epta

nce

Val

ue

(AV

)

USL = 12.5

0.0%

0.49

0.63

1.05

0.91

0.77

1.47

1.33

1.19

1.89

1.75

1.61

2.17

2.03

2.45

2.59

2.73

2.87

3.01

3.15

3.29

2.31

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

Freq

uen

cy

Simulated CpK Distribution(n = 10): Mean = 1.36, LotCpK = 1.33

Theoretical CpK Distribution(n = 10): Mean = 1.36, LotCpK = 1.33

Sample CpK

True CpK on Average

Acc

epta

nce

Val

ue

(AV

) A

vera

ge

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

1.271.3

31.4

01.4

71.5

31.6

01.6

71.7

31.8

01.8

71.9

32.0

02.0

72.1

32.2

02.2

72.3

32.4

02.4

72.5

32.6

02.6

72.7

32.8

02.8

72.9

33.0

0

100.005%

100.000%

99.995%

99.990%

99.985%

99.980%

99.975%

99.970%

Lot C

overag

e (85-115% LC

) on

Averag

e (%)

Peer-Reviewed

Page 8: Establishing Acceptance Limits for Uniformity of Dosage ...files.pharmtech.com/alfresco_images/pharma/2017/08/10/7fe99998-51e... · 30 Pharmaceutical Technology August 2017 PharmTech.com

Pharmaceutical Technology August 2017 39

Although CpK for non-normal data may be computed using the transformed data or special method depending on their applicability, quality metrics other than CpK would be more practical. Trending capability, introduced in this article, is a more practical term for measuring capability.

ConclusionIn routine batches, meeting the established AV acceptance limits will indicate that NLT 90% of the dosage units in the lot will fall within 85–115% of the label claim. The 95% coverage implies that the AV limits, such as 12.5 for n = 10, are the critical values at 95% of AV distributions. The requirement for AV average limits is intended to evaluate whether or not the lot or process (as applicable) is equal to or better than the process benchmark at CpK 1.33. When handling mult iple AV data in an APR for example, AV chart construction and calculation of true CpK and trending capability index can be accomplished.

In validation batches, tolerance limits and/or percent proportions may be additionally calculated as appropriate so that lot conformance requirements are fulf illed.

Overall, all the established limits are intended to prevent: •False release of routine batches with poor quality into the market, •False acceptance of out-of-trend data in annual product review

(routine batches), and •False release of validation batches with poor performance.

References 1. P. Cholayudth, Pharmaceutical Technology, 40 (12) 34–43 (2016). 2. USP General Chapter <905> “Uniformity of Dosage Units” (US Pharmacopeial

Convention, Rockville, MD, 2014). 3. Tolerance Intervals for a Normal Distribution, section 7.2.6.3, www.itl.nist.gov. 4. D.C. Montgomery, Introduction to Statistical Quality Control (John Wiley and

Sons, New Jersey, 6th ed., 2009). 5. J.S. Bergum and H. Li, Pharmaceutical Technology, 31 (10) 90–100 (2007). 6. ASTM Standard Number E2810—11: Standard Practice for Demonstrating Capa-

bility to Comply with the Test for Uniformity of Dosage Units, October 2011. 7. ASTM Standard Number E2709—09: Standard Practice for Demonstrating Capa-

bility to Comply with a Lot Acceptance Procedure, September 2009. 8. J. Bergum, ISPE Pharmaceutical Engineering, 35 (6) 68–79 (2015). 9. P. Cholayudth, Journal of Validation Technology, 19 (4) 2013, www.ivtnetwork.

com/article/cpk-distribution-fact-underlying-process-capability-indices—part-i-theory.

10. J Bergum and K.E. Vukovinsky, Pharmaceutical Technology, 34 (11) 2010, http://www.pharmtech.com/proposed-content-uniformity-test-large-sample-sizes. PT

Pramote Cholayudth is validation consultant to Biolab co., ltd. in thailand. he is the founder and manager of Pm consult, [email protected].