Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected]...

93
Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 1 Tema 14.2 Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial Y Mecánica de Fluidos Estabilidad y Control Detallado Derivadas Estabilidad Longitudinal

Transcript of Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected]...

Page 1: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 1

Tema 14.2Sergio Esteban Roncero

Departamento de Ingeniería AeroespacialY Mecánica de Fluidos

Estabilidad y Control DetalladoDerivadas Estabilidad Longitudinal

Page 2: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 2

Derivadas

Angle of Attack Derivatives

,

Page 3: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 3

Estimación Derivadas Contribución

Contribución

Ala Canard/horizontal/V-tail Fuselaje

Contribución

Ala Canard/horizontal/V-tail Fuselaje

Derivadas en 1/rad si no se indica lo contrarioSi las derivadas no están en 1/rad hay que convertirlas

Page 4: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 4

CD

Estimación

Coeficiente de Oswald(dept. aerodinámica)

Coeficiente de resistencia inducida

Asumiendo modelo polar no compensada

Page 5: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 5

of the entire Airplane

Efectividad de las Superficies de control

→ representa la pendiente de sustentación del conjunto ala-fuselaje

En 1ª hipótesis sólo las superficies aerodinámicas generan sustentaciónEn 2ª hipótesis se puede estimar la contribución del fuselaje - Mediante métodos experimentales : análisis software XFLR5- Mediante métodos empíricos: ecuaciones analíticas función de geometría

Page 6: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 6

CL,w , CL,t and CL,c

Fig A1

Fig A2

Fig A3

Cálculo de para cualquier superficie aerodinámicaSe emplean los métodos ya descritos en Aerodinámica- Métodos experimentales (XFLR5)- Métodos analíticos

Page 7: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 7

Fig A1

Page 8: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 8

Fig A2

Page 9: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 9

Fig A3

Page 10: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 10

Fig A5

Fig A6

2 /

– is the apparent mass constant which is a function of fineness ratio (length/maximum thickness)

= total body volume= cross sectional area at .. = body station where flow ceases to be potential,

this is a function of , the body station where the parameter / first reaches its minimum value. (This station where the change in area with respect tox first reaches its lowest value can be estimated from a sketch of the body.)

= body cross sectional area at any body station= body length.

Page 11: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 11

Fig A5

Reduced Mass Factor

Page 12: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 12

Fig A6

Body station where flow becomes viscous

= body station where flow ceases to be potential, = the body station where the parameter / first reaches its minimum value.

Page 13: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 13

Wing-Fuselage Contribution

Estimation of lift-curve slope. The lift-curve slope of the combined wingbody is given by

→ Ratio of nose lift ratio→Ratio of the wing lift in presence of the body→ Ratio of body lift in presence of the wing to wing-alone lift

, → lift-curve slope of the isolated nose,

, →lift-curve slope of the exposed wing → 1ª aproximación ,

→exposed wing area, →reference (wing) area.

2 ,

– is the apparent mass constant , is the maximum cross-sectional area of the fuselage

Page 14: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 14

Wing-Fuselage Contribution

Estimation of lift-curve slope. The lift-curve slope of the combined wingbody is given by

Page 15: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 15

Wing-Fuselage Contribution

Fig A4

→ maximum width of the fuselage→ wing span.

Page 16: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 16

Fig A4

Page 17: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 17

of the entire Airplane

Momento cabeceo planta propulsoraAsumir inicialmente =0

→ representa la pendiente de sustentación del conjunto ala-fuselaje

En 1ª hipótesis sólo las superficies aerodinámicas generan sustentaciónEn 2ª hipótesis se puede estimar la contribución del fuselaje - Mediante métodos experimentales : análisis software XFLR5- Mediante métodos empíricos: ecuaciones analíticas función de geometría

Page 18: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 18

for cambered fuselages such as those with leading-edge droop or aft upsweep,

– is the apparent mass constant , is the wing zero-lift angle relative to the fuselage reference line , is the incidence angle of the fuselage camberline relative to the fuselage

reference line.The parameter , is assumed to be negative for nose droop or aft upsweep

Fig A6 y A7Fig A5

Page 19: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 19

Fig A6

Page 20: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 20

Fig A7

Page 21: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 21

Método 1

Estimación para fuselajes o nacelles

= empirical factor Fig A8= maximum width of the fuselage or nacelle

= length of fuselage or nacelle

Fig A8

Page 22: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 22

Fig A8

= empirical factor for fuselage or nacelle contribution to ,

Page 23: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 23

Method 2: Multhopp modified Munk’s theory

→ local width/diameter, → fuselage length,→ reference (wing) area→ lreference length (wing mean aerodynamic chord).

Se analiza la contribución del fuselaje en 3 zonas1. Zona alejada de la influencia up-wash (segmentos 1-5 ejemplo)2. Zona bajo influencia up-wash (segmento 6 ejemplo)3. Zona bajo influencia down-wash (segmentos 7-14 ejemplo)

Método más complejo

Page 24: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 24

1. Zona alejada de la influencia up-wash (segmentos 1-5 ejemplo)

2. Zona bajo influencia up-wash (segmento 6 ejemplo)

La distancia se mide desde el borde de ataque Al punto medio de cada sección

Fig A10

Page 25: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected]

25

3 - Zona bajo influencia down-wash (segmentos 7-14 ejemplo)

is the distance (measured parallel to the root chord) between the trailing edge of the root chord and the horizontal tail aerodynamic center.

Here, , and are wing aspect ratio, wing taper ratio, and horizontal tail location factors

→distance measured parallel to the wing root chord, between wing mac quarter chord point and the quarter chord point of the mac of horizontal tail

→ height of the horizontal tail mac above or below the plane of wing root chord, measured in the plane of symmetry and normal to the extended wing root chord and positive for horizontal tail mac above the plane of the wing root chord→ taper ratio, → Aspect Ratio

Page 26: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected]

Page 27: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 27

Fig A9

Page 28: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 28

Fig A10

Page 29: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 29

of the Airplane

, /

/

= empirical factor Fig A8= maximum width of the fuselage or nacelle

= length of fuselage or nacelle

1

1

1

290 2 3, , width of the fuselage at the wing

leading esge, mid chord, and trailing edge

Page 30: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 30

of the Airplane

290 2 3

Page 31: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 31

Derivadas

Speed Derivatives

,

Page 32: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 32

Estimación Derivadas Contribución

Contribución

Contribución

Derivadas en 1/rad si no se indica lo contrarioSi las derivadas no están en 1/rad hay que convertirlas

Page 33: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 33

Estimación

At low subsonic speeds (M <0.5), the drag coefficient is practically constant

0

As the flight Mach number approaches the critical Mach number the drag coefficientstarts risingIt assumes a peak value in the transonic Mach number range and starts decreasing as Mach number becomes supersonic. It tends to assume a steady value at high supersonic or hypersonic Mach numbers. Therefore, if the flight Mach number exceeds 0.5, the derivative should not be ignored

Page 34: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 34

For CL of the form

then

Estimación

0

At low subsonic speeds (M <0.5), the lift curve slope is practically constant

Page 35: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 35

Or equivalenty

with

therefore

Estimación

At low subsonic speeds (M <0.5), the drag coefficient is practically constant

→variación del centro aerodinámico con cambio de Mach

0 para 0.5, hay que tenerla en cuenta para 0.5

Page 36: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 36

Derivadas

Pitch Rate Derivatives

,

Page 37: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 37

Estimación Derivadas Contribución

Contribución Wing Horizontal/V-tail/canard

Contribución Wing Horizontal/V-tail/canard

Derivadas en 1/rad si no se indica lo contrarioSi las derivadas no están en 1/rad hay que convertirlas

Page 38: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 38

Pitch Rate Derivatives

The airplane drag-coefficient-due-to-pitch-rate derivative is negligible

Page 39: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 39

Pitch Rate Derivatives

The airplane lift-coefficient-due-to-pitch-rate derivative is

wing

horizontal

V-tail

canard

Page 40: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 40

Contribución Ala

Wing contribution→ wing aspect ratio

→compressibility sweep correction factorΛ / →is the wing quarter chord angle.

→wing contribution to airplane lift-coefficient-due-to-pitch-rate derivative at Mach equals zero

1ª Aproximación → Δ 0

Método 1

Page 41: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 41

Contribución Ala

Método 2The contribution of the wing-body combination

mean aerodynamic chords of the exposed wing mean aerodynamic chords of the total (theoretical) wing

and → contributions of the exposed wing and isolated body

Velocidades subsónicas

→ distance of exposed wing aerodynamic center from the leading edge of the root chord→ distance of the center of gravity from the leading edge of the exposed wing root chord. and are measured parallel to the exposed wing root chord.

The parameter will be positive if the aerodynamic center of the exposed wing is aft of the center of gravity

Page 42: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 42

Wing-Fuselage Contribution

Fig A4

→ maximum width of the fuselage→ wing span.

Método 2

Page 43: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 43

Fig A4Método 2

Page 44: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 44

Contribución Ala

Método 2The contribution of the wing-body combination

mean aerodynamic chords of the exposed wing mean aerodynamic chords of the total (theoretical) wing

and → contributions of the exposed wing and isolated body

Velocidades subsónicas

→ distance of exposed wing aerodynamic center from the leading edge of the root chord→ distance of the center of gravity from the leading edge of the exposed wing root chord. and are measured parallel to the exposed wing root chord.

The parameter will be positive if the aerodynamic center of the exposed wing is aft of the center of gravity

Page 45: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 45

Contribución Ala

Método 2The body contribution

4 1

– is the apparent mass constant, is the maximum cross-sectional area of the fuselage,total length of the fuselagevolume of the fuselage.

Fig A5

Page 46: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 46

Contribución Horizontal

Tail contribution

→ horizontal tail lift curve slope.→horizontal tail dynamic pressure ratio.

→horizontal tail volume coefficient.

→ X-location of horizontal tail aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.→horizontal tail area.→wing area.

Page 47: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 47

Contribución V-Tail

V-Tail contribution

→ V-tail lift curve slope.→V-tail dynamic pressure ratio.

→V-tail volume coefficient.

→ X-location of V-tail aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.

→V-tail tail area.→wing area.

Page 48: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 48

Contribución Canard

Canard contribution

→ canard lift curve slope→canard dynamic pressure ratio.

→canard volume coefficient.

→ X-location of canard aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.→canard area.→wing area.

Page 49: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 49

Pitch Moment Derivatives

The airplane pitching-moment-coefficient-due-to-pitch-rate derivative is

wing

horizontal

V-tail

canard

Page 50: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 50

Contribución Ala

Wing contribution

→wing contribution to airplane pitch-moment- coefficient-due-to-pitch-rate derivative at Mach=0o

Método 1

→ wing aspect ratio→compressibility sweep correction factor

Λ / →is the wing quarter chord angle.

Page 51: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 51

Contribución Ala

Wing contribution Método 1

1ª Aproximación → Δ 0

Aproximación 1For surfaces with small gap effects 1.00For surfaces with large gap effects 0.85

@ → @2

Page 52: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 52

Contribución Ala

The intermediate calculation parameter, , is given by Método 1

The correction constant for the wing contribution to pitch damping is obtained fromFigure 10.40 in Airplane Design Part VI and is a function of the wing aspect ratio:

Page 53: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 53

Contribución Ala

Page 54: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 54

Contribución Ala

Método 2The contribution of the wing-body combination

mean aerodynamic chords of the exposed wing mean aerodynamic chords of the total (theoretical) wingfuselage length

and → contributions of the exposed wing and isolated body

Velocidades subsónicas

→ distance of exposed wing aerodynamic center from the leading edge of the root chord→ distance of the center of gravity from the leading edge of the exposed wing root chord. and are measured parallel to the exposed wing root chord.

The parameter will be positive if the aerodynamic center of the exposed wing is aft of the center of gravity

Page 55: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 55

Contribución Ala

Método 2The contribution of the wing-body combination

the aspect ratio of the exposed wing and is the sectional or two-dimensional lift-curve slope of the wing

Page 56: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 56

Wing-Fuselage Contribution

Fig A4

→ maximum width of the fuselage→ wing span.

Método 2

Page 57: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 57

Fig A4Método 2

Page 58: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 58

Contribución AlaMétodo 2

The body contribution

Fig A5

→ the distance of the moment reference point from the leading edge of the fuselage,is the axial location where the fluid flow over the fuselage ceases to be potential.– is the apparent mass constant, is the maximum cross-sectional area of the fuselage,total length of the fuselagevolume of the fuselage.

Page 59: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 59

Contribución Horizontal

Tail contribution

→ horizontal tail lift curve slope.→horizontal tail dynamic pressure ratio.

→horizontal tail volume coefficient

→ X-location of horizontal tail aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.→horizontal tail area.→wing area.

Page 60: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 60

Contribución V-Tail

V-Tail contribution

→ V-tail lift curve slope.→V-tail dynamic pressure ratio.

→V-tail volume coefficient.

→ X-location of V-tail aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.

→V-tail tail area.→wing area.

Page 61: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 61

Contribución Canard

Canard contribution

→ canard lift curve slope→canard dynamic pressure ratio.

→canard volume coefficient.

→ X-location of canard aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.→canard area.→wing area.

Page 62: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 62

Derivadas

Angle of Attack Rate Derivatives

Page 63: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 63

Estimación Derivadas Contribución

Contribución

Contribución

Derivadas en 1/rad si no se indica lo contrarioSi las derivadas no están en 1/rad hay que convertirlas

Angle of Attack Rate Derivatives se suelen despreciar en 1ª aproximación

Page 64: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 64

Angle of Attack Rate Derivatives

The airplane drag-coefficient-due-to-angle-of-attack-rate derivative is normally neglected:

Page 65: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 65

Angle of Attack Rate Derivatives

The airplane lift-coefficient-due-angle-of-attack-rate derivative is determined from

Método 1

. . . .

horizontal

V-tail

canard

horizontal

canard

V-tail

2.

2.

2.

The equation above is based on the assumption that the contribution of the horizontal tail, V-Tail, and canard are the only important contributions to this derivative

Page 66: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 66

Angle of Attack Rate Derivatives

→canard volume coefficient →canard volume coefficient →canard volume coefficient

→ X-location of horizontal tail aerodynamic center in terms of wing mean geometric chord → X-location of V-tail aerodynamic center in terms of wing mean geometric chord → X−location of canard aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.→canard area.→ V−tail area.

→ canard area.→wing area.

Método 1

Page 67: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 67

Angle of Attack Rate Derivatives Método 2The contribution of the wing-body combination

mean aerodynamic chords of the exposed wing mean aerodynamic chords of the total (theoretical) wingfuselage length and → contributions of the exposed wing and isolated body

Velocidades subsónicas

.

.

...

Page 68: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 68

Angle of Attack Rate Derivatives Método 2The body contribution

4,

– is the apparent mass constant, is the maximum cross-sectional area of the fuselage,total length of the fuselagevolume of the fuselage.

Fig A5

...

.

.

Page 69: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 69

Angle of Attack Rate Derivatives

The airplane pitching-moment-coefficient-due-angle-of-attack-rate derivative is determined from

Método 1

. . . .

horizontal

V-tail

canard

2

2

2

horizontal

canard

V-tail

.

.

. .

.

.

.

.

.

The equation above is based on the assumption that the contribution of the horizontal tail, V-Tail, and canard are the only important contributions to this derivative

Page 70: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 70

Angle of Attack Rate Derivatives

The equation above is based on the assumption that the contribution of the horizontal tail, V-Tail, and canard are the only important contributions to this derivative

→canard volume coefficient →canard volume coefficient →canard volume coefficient

→ X-location of horizontal tail aerodynamic center in terms of wing mean geometric chord → X-location of V-tail aerodynamic center in terms of wing mean geometric chord → X−location of canard aerodynamic center in terms of wing mean geometric chord →X-location of the airplane center of gravity in terms of the wing mean geometric chord.→canard area.→ V−tail area.

→ canard area.→wing area.

Método 1

Page 71: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 71

Angle of Attack Rate Derivatives Método 2The contribution of the wing-body combination

mean aerodynamic chords of the exposed wing mean aerodynamic chords of the total (theoretical) wingfuselage length and → contributions of the exposed wing and isolated body

Velocidades subsónicas

. .. .

. .

.

.

Page 72: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 72

Angle of Attack Rate Derivatives Método 2The contribution of the wing-body combination

Velocidades subsónicas . .

.

..

→ the distance of the moment reference point from the leading edge of the fuselage,is the axial location where the fluid flow over the fuselage ceases to be potential.– is the apparent mass constant, is the maximum cross-sectional area of the fuselage,total length of the fuselagevolume of the fuselage.

Page 73: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 73

Derivadas

Propulsive Derivatives

Page 74: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 74

Propulsive Derivatives

The airplane steady state thrust coefficient is defined as:

Steady State Flight

Page 75: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 75

Propulsive DerivativesAirplanes with pure jets

Airplanes with variable pitch propeller driven engines

Airplanes with fixed pitch propeller driven engines

→ airplane steady state flight speed.→A coefficient in power versus speed quadratic equation.→B coefficient in power versus speed quadratic equation.→C coefficient in power versus speed quadratic equation.

→ airplane steady state flight speed.→A coefficient in thrust vs. speed quadratic equation.→B coefficient in thrust vs. speed quadratic equation.→C coefficient in thrust vs. speed quadratic equation.

Modelo propulsivo - RFP

Modelo propulsivo - RFP

Page 76: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 76

Propulsive Derivatives

Fig A16

The airplane steady state thrust pitching moment coefficient for a jet airplane is given by:

Trim condiitions

Σ 0

Page 77: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 77

Fig A16

Page 78: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 78

Propulsive Derivatives

The airplane steady state thrust pitching moment coefficient for a propeller airplane is given by:

Aproximación → Δ 0

wing mean geometric chord

The perpendicular distance from the thrust line to the airplane center of gravity is found from

Aproximación → 0

Trim condiitions

For propeller

Σ 0

Page 79: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 79

Propulsive Derivatives

The airplane thrust-pitching-moment-coefficient-due-to-speed derivative is defined as the variation of airplane pitching moment coefficient due to thrust with dimensionless speed:

Fig A16

Page 80: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 80

Propulsive Derivatives

0

The airplane steady state thrust coefficient is defined as:

Page 81: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 81

Propulsive Derivatives

The airplane thrust-pitching-moment-coefficient-due-to-angle-of-attack derivative is defined as

The airplane thust-pitching-moment-coefficient-due-to-angle-of-attack derivative is defined as

The airplane thust-pitching-moment-coefficient-due-to-angle-of-attack derivative is defined as

Aproximación 0Para aviones jet

Aproximación 0Para aviones con hélice Muy compleja estimación

Page 82: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 82

Propulsive Derivatives

For propeller driven airplanes:

Page 83: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 83

Propulsive Derivatives

The perpendicular distance from the thrust line to the airplane center of gravity is found from

For propeller driven airplanes:

Page 84: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 84

Propulsive Derivatives

The effect of propeller or inlet normal force on longitudinal stability is given by:

For propeller driven airplanes:

Page 85: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 85

Propulsive Derivatives

For propeller driven airplanes:

Page 86: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 86

Propulsive Derivatives

Aproximación → 1

The moment arm of the propeller normal force to the airplane center of gravity is given by:

For propeller driven airplanes:

Page 87: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 87

Propulsive Derivatives

The first intermediate calculation parameter is given by

diameter of prop

The propeller blade radius

Geometría de la hélice

For propeller driven airplanes:

Page 88: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 88

Propulsive Derivatives

Fig A17

For propeller driven airplanes:

The second intermediate calculation parameter is obtained from Figure 8.130 in Airplane Design Part VI and is a function of the number of propeller blades and the nominal propeller blade angle at 75% radius.

Page 89: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 89

Page 90: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 90

Propulsive Derivatives

For propeller in front of the wing, the propeller upwash gradient is obtained from Figure 8.67 in Airplane Design Part VI. It is a function of the X-location of the propeller relative to the wing root quarter chord point and the wing aspect ratio

Fig A18

Page 91: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 91

Fig A18

Page 92: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 92

Propulsive Derivatives

For propeller behind the wing, the propeller downwash gradient is computed with the same method used to calculate horizontal tail downwash gradient with appropriate substitution

For propeller driven airplanes:

Page 93: Estabilidad y Control Detallado · Cálculo de Aeronaves © Sergio Esteban Roncero, sesteban@us.es 2 Derivadas Angle of Attack Derivatives ½ Å, Æ

Cálculo de Aeronaves © Sergio Esteban Roncero, [email protected] 93

Bibliografia Performance, Stability, Dynamics, and Control of Airplanes, Bandu N.

Pamadi, AIAA Education Series. Riding and Handling Qualities of Light Aircraft – A Review and Analysis,

Frederick O. Smetana, Delbert C. Summey, and W. Donnald Johnson, Report No. NASA CR-1975, March 1972.

Airplane Aerodynamics and Performance, Dr. Jan Roskam and Dr. Chuan-Tau Edward Lan, DARcorporation, 1997.

Flight Vehicle Performance and Aerodynamic Control, Frederick O. Smetana, AIAA Educaction Series, 2001.

Dynamics of Flight: Stability and Control, Bernard Etkin and LloyidDuff Reid, John Wiley and Sons, Inc. 1996.