EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free...

151
Table of Contents – Exam Review Packet (Teacher’s Version) Period Table, Equation Sheets – 2009 (MC only gets Periodic Table) 3 Equilibrium Concept List 7 Free Response Questions 9 Multiple Choice Questions 13 Acid / Base Concept List 16 Free Response Questions 22 Multiple Choice Questions 31 Kinetics Concept List 34 Free Response Questions 35 Multiple Choice Questions 41 Electrochemistry Concept List 44 Free Response Questions 45 Multiple Choice Questions 57 Thermodynamics Concept List 59 Free Response Questions 60 Multiple Choice Questions 68 Atomic Theory, Bonding, and Intermolecular Forces 1

Transcript of EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free...

Page 1: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Table of Contents – Exam Review Packet (Teacher’s Version)

Period Table, Equation Sheets – 2009 (MC only gets Periodic Table) 3

EquilibriumConcept List 7Free Response Questions 9Multiple Choice Questions 13

Acid / BaseConcept List 16Free Response Questions 22Multiple Choice Questions 31

KineticsConcept List 34Free Response Questions 35Multiple Choice Questions 41

ElectrochemistryConcept List 44Free Response Questions 45Multiple Choice Questions 57

ThermodynamicsConcept List 59Free Response Questions 60Multiple Choice Questions 68

Atomic Theory, Bonding, and Intermolecular ForcesConcept List 70Free Response Questions 71Multiple Choice Questions 87

Concentration and Colligative PropertiesConcept List 90Free Response Questions 91Multiple Choice Questions 94

LaboratoryConcept Vocabulary 96Free Response Questions 96Multiple Choice Questions 110

Nuclear

1

Page 2: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions 113Multiple Choice Questions 114

Multiple Concept

2

Page 3: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions 116

3

Page 4: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

4

Page 5: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

5

Page 6: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

6

Page 7: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concept List – EQUILIBRIUM

All Problems are equilibrium problems because

All problems involve stoichiometry: soluble salts, strong acids, strong basesSome problems involve equilibrium: “insoluble” salts, weak acids, weak bases

For chemical reactions – Keq, Kc, and Kp are the important quantities

For physical changes – Ka, Kb, Ksp, Kionize, and Kdissocation are the important quantities

Important points

1. Law of mass actionaA + bB + … rR +sS + xxx

Kc = [R]r [S]s … / [A]a [B]b …

2. Kc for molarity for ions and gases

3. Kp with atm, or mmHg for gasesRelationship / connection between these Kp = Kc (RT)Δn

4. Orientation of collisions

5. Shifting equilibrium – Le Chatlier’s Principlea. solidb. liquidc. catalystd. inert gas addede. temperature changes (increasing T favors endothermic processes)f. only factors in equation constant will affect Keq eg. CaCO3(s) CaO(s) +

CO2(g)g. pressure / volume changes

6. Important vocabulary

Driving forceFavors (reactants or products)Shifts (in LeChatelier arguments

7. K > 1 products favored

K < 1 reactants favored

8. Excluded: solids, pure liquids, water (in aqueous solution)

7

Page 8: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

9. Typical question: Given Kc and the starting concentration of reactants, find the concentration (or pH !) of products at equilibrium.

Example: Kc of acetic acid = 1.754 × 10-5. Find the pH of a 0.100 M solution of acetic acid.

10. Equilibrium constant for a reverse reaction = 1 / K of the value of the forward reaction.

11. When using Hess’s Law: Koverall = K1 × K2

12. If out of equilibrium: Calculate the reaction quotient (Q) in a similar fashion to the way an equilibrium constant would be found. If:

Q < K forward reaction occurs to reach equilibrium

Q > K reverse reaction occurs to reach equilibrium

13. Problem solving: Learn when to make an approximation (needed for multiple choice and free response questions!). 5% rules usually works when value of K is 10-2 or smaller than value of known concentrations.

Example: A B + C K = 3.0 × 10-6

If [A] = 5.0 M; find [C] at equilibrium

If greater than 5 % use the quadratic equation:

ax2 + bx + c = 0

x=−b±√b2−4 ac2 a

8

Page 9: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions

2003B #1

After a 1.0 mole sample of HI(g) is placed into an evacuated 1.0 L container at 700. K, the reaction represented occurs. The concentration of HI(g) as a function of time is shown below.

2 HI(g) H2(g) + I2(g)

a. Write the expression for the equilibrium constant, Kc, for the reaction.

b. What is [HI] at equilibrium?

c. Determine the equilibrium concentrations of H2(g) and I2(g).

d. On the graph above, make a sketch that shows how the concentration of H2(g) changes as a function of time.

e. Calculate the value of the following equilibrium constants at 700. K.

i. Kc

ii. Kp

f. At 1,000 K, the value of Kc for the reaction is 2.6 × 10-2. In an experiment, 0.75 mole of HI(g), 0.10 mole of H2(g), and 0.50 mole of I2(g) are placed in a 1.0 L container and allowed to reach equilibrium at 1,000 K. Determine whether the

9

Page 10: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

equilibrium concentration of HI(g) will be greater than, equal to, or less than the initial concentration of HI(g). Justify your answer.

10 points total

a.K c=

[ H 2 ][ I 2 ]

[HI ]2

1 pointb. From the graph, [HI]eq is 0.80 M 1 pointc. 2HI(g) --> H2(g) + I2(g)

init 1.0 M 0 M 0 Mchang -0.20 M +0.10 M +0.10 Mfinal 0.80 M 0.10 M 0.10 M[H2] = [I2] = 0.10 M1 point for stoichiometric relationship between HI and H2 and I2 1 point for equilibrium concentrations of H2 and I2

d. From the graph, [H2]eq is 0.10 M. The curve should have the following characteristics: start at 0 M, increase to 0.10 M, reach equilibrium at the same time [HI] reaches equilibrium1 point for any two characteristics, 2 points for all three characteristics

e. i) K c=

[ H 2 ][ I 2 ]

[HI ]2 =( 0. 10 )(0.10 )

(0 .80 )2 =0. 016

1 point for correct substitution which must agree with parts b and cii) KP = Kc = 0.016 because the number of moles of gaseous products is equal to the number of moles of gaseous reactants 1 point

f.Q=

[ H2 ] [ I 2 ]

[ HI ]2=

(0 .10 )(0 .50)(0 . 75)2 =0 . 089

Kc = 0.026, Q > Kc, therefore to establish equilibrium, the numerator must decrease and the denominator must increase. Therefore, [HI] will increase.1 point for calculating Q and comparing to Kc

1 point for predicting correct change in [HI]

2004B #1

N2(g) + 3 H2(g) 2 NH3(g)

For the reaction represented above, the value of the equilibrium constant, Kp is 3.1 × 10-4 at 700 K.

a. Write the expression for the equilibrium constant, Kp, for the reaction.

b. Assume that the initial partial pressures of the gases are as follows:

P(N2) = 0.411 atm, P(H2) = 0.903 atm, and P(NH3) = 0.224 atm.

10

Page 11: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

i) Calculate the value of the reaction quotient, Q, at these initial conditions.

ii) Predict the direction in which the reaction will proceed at 700. K if the initial partial pressures are those given above. Justify your answer.

c. Calculate the value of the equilibrium constant, Kc, given that the value of Kp for the reaction at 700. K is 3.1 × 10-4.

d. The value of Kp for the reaction represented below is 8.3 × 10-3 at 700. K.

NH3(g) + H2S(g) NH4HS(g)

Calculate the value of Kp at 700. K for each of the reactions represented below.

i) NH4HS(g) NH3(g) + H2S(g)

ii) 2 H2S(g) + N2(g) + 3 H2(g) 2 NH4HS(g)

10 points

a.K P=

PNH 3

2

PN2PH 2

3

1 point for pressure expression1 point for correct substitution

b. i)Q=

PNH 3

2

PN2PH 2

3 =( 0. 224 )2

(0 . 411)(0 . 903 )3 =0 .166

1 point for calculation of Q with correct mass action expression consistent with part aii) Since Q > Kp, the numerator must decrease and the denominator must increase, so the reaction must proceed from right to left to establish equilibrium1 point for direction or for stating that Q > Kp

1 point for explanationc. Kp = Kc (RT)Δn, with Δn = 2 – 4 = -2

3.1 × 10-4 = Kc (0.0821 L atm mol-1 K-1 × 700 K)-2

3.1 × 10-4 = Kc (57.5)-2 3.1 × 10-4 = Kc(3.1 × 10-4 )Kc = 11 point for calculating Δn1 point for correct substitution and value of Kc

d. i) Kp = (8.3 × 10-3)-1 = 1.2 × 102 1 pointii) 2 × [NH3 + H2S NH4HS] Kp = (8.3 × 10-3)2

N2 + 3 H2 2 NH3 Kp = 3.1 × 10-4

2 H2S + N2 + 3H2 2 NH4HS

11

Page 12: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Kp = (8.3 × 10-3)2(3.1 × 10-4) = 2.1 × 10-8

1 point for squaring Kp for NH4HS or for multiplying Kp’s1 point for correct Kp

1988 #6 NH4HS(s) NH3(g) + H2S(g)

For this reaction, ΔH° = + 93 kJ. The equilibrium above is established by placing solid NH4HS in an evacuated container at 25 °C. At equilibrium, some solid NH4HS remains in the container. Predict and explain each of the following.

a. The effect on the equilibrium partial pressure of NH3 gas when additional solid NH4HS is introduced into the container.

b. The effect on the equilibrium partial pressure of NH3 gas when additional H2S gas is introduced into the container.

c. The effect on the mass of solid NH4HS present when the volume of the container is decreased.

d. The effect on the mass of solid NH4HS present when the temperature is increased

Average score = 4.31a) two pointsThe equilibrium pressure of NH3 gas would be unaffected Kp = (PNH3) (PH2S). Thus the amount of solid NH4HS present does not affect the equilibrium.

b) two pointsThe equilibrium pressure of NH3 gas would decrease. In order for the pressure equilibrium constant, Kp, to remain constant, the equilibrium pressure of NH3 must decrease when the pressure of H2S is increased.Kp = (PNH3) (PH2S)(A complete explanation based on Le Chatelier's principle is also acceptable.)

c) two pointsThe mass of NH4HS increases. A decrease in volume causes the pressure of each gas to increase. To maintain the value of the pressure equilibrium constant, Kp, the pressure of each of the gases must decrease. That decrease realized by the formation of more solid NH4HS.Kp = (PNH3) (PH2S)(A complete explanation based on Le Chatelier's principle is also acceptable.)

d) two pointsThe mass of NH4HS decreases because the endothermic reaction absorbs heat and goes nearer to completion (to the right) as the temperature increases. (One point was assigned for each correct prediction and one point for each correct explanation.)

1980 #6 NH4Cl(s) NH3(g) + HCl(g) for this reaction, ΔH = +42.1 kilocalories

12

Page 13: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Suppose the substances in the reaction above are at equilibrium at 600 K in volume V and at pressure P. State whether the partial pressure of NH3(g) will have increased, decreased, or remained the same when equilibrium is reestablished after each of the following disturbances of the original system. Some solid NH4Cl remains in the flask at all times. Justify each answer with a one- or two-sentence explanation.

a. A small quantity of NH4Cl is added.

b. The temperature of the system is increased.

c. The volume of the system is increased.

d. A quantity of gaseous HCl is added.

e. A quantity of gaseous NH3 is added.

a. Partial pressure of ammonia will not change, ammonium chloride is a solid and does not effect equilibrium position. If partial pressure of ammonia would increase the partial pressure so would partial pressure of HCl and Keq value would change.

b. Increase the temp shifts equilibrium to the right to favor endothermic process, so partial pressure of NH3 would increase.

c. Increasing the volume (decrease the pressure) would not change the partial pressure because both NH3 and HCl would decrease and cause a change in the Keq value. Only temperature can cause this change.

d. The reaction would shift to the left so partial pressure of NH3 would decrease.

e. The partial pressure of NH3 would increase because the equilibrium would shift to the left, amount of HCl decreases so amount of NH3 would need to increase to keep Keq constant.

Multiple Choice Questions

1999 #67 What is the molar solubility in water of Ag2CrO4? (The Ksp for Ag2CrO4 is 8 × 10-12.)

A) 8 × 10-12 MB) 2 × 10-12 MC) (4 × 10-12 M)1/2

D) (4 × 10-12 M)1/3

E) (2 × 10-12 M)1/3 (25 %)

13

Page 14: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

2008 #59The diagram above represents a mixture of NO2(g) and N2O4(g) in a 1.0 L container at a given temperature. The two gases are in equilibrium according to the equation 2 NO2(g) N2O4(g). Which of the following must be true about the value of the equilibrium constant for the reaction at this temperature?

A) K = 0B) 0 < K < 1 (32%)C) K = 1D) K > 1E) There is not enough information to determine the relative value of K.

2002 #42 H2(g) + Br2(g) 2 HBr(g)

At a certain temperature, the value of the equilibrium constant, K, for the reaction represented above is 2.0 × 105. What is the value of K for the reverse reaction at the same temperature?

A) -2.0 × 10-5

B) 5.0 × 10-6 (24 %)C) 2.0 × 10-5

D) 5.0 × 10-5

E) 5.0 × 10-4

2008 #35 H2(g) + I2(g) 2 HI(g) ΔH > 0

Which of the following changes to the equilibrium system represented above will increase the quantity of HI(g) in the equilibrium mixture?

I. Adding H2(g)II. Increasing the temperatureIII. Decreasing the pressure

A) I onlyB) III onlyC) I and II only (56%)D) II and III onlyE) I, II, and III

1999 #54 2NO(g) + O2(g) 2 NO2(g) H < 0 Which of the following changes alone would cause a decrease in the value of Keq for the reaction represented above?

14

Page 15: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

A) Decreasing the temperatureB) Increasing the temperature (35%)C) Decreasing the volume of the reaction vesselD) Increasing the volume of the reaction vesselE) Adding a catalyst

2002 #37 HCO3-(aq) + OH-(aq) H2O(l) + CO3

2-(aq) ΔH = -41.4 kJ

When the reaction represented by the equation above is at equilibrium at 1 atm and 25 oC,

the ratio

[CO32- ]

[ HCO3− ] can be increased by doing which of the following?

A) Decreasing the temperature (45%)B) Adding acidC) Adding a catalystD) Diluting the solution with distilled waterE) Bubbling neon gas through the solution

15

Page 16: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concept List – ACID - BASE

pH = - log [H+] pOH = - log [OH-] Kw = [H+] [OH-] = 1×10-14 at 25 oC

If you know one quantity, you know the other three

Definitions

Acid Base TheoryDonates H+ Donates OH- ArrheniusDonates protons Accepts protons - {anions?} Bronsted – LowryAccepts e- pairs (AlCl3) Donates e- pairs (NH3) Lewis

Conjugate Acid – Base Pairs

1. HCl + H2O → H3O+ + Cl-

2. NH3 + H2O NH4+ + OH-

3. HSO4- + H2O H3O+ + SO4

2-

4. CO32- + H3O+ HCO3

- + H2O

A. Ka Weak Acid HCN H+ + CN-

Ka=[ H+ ] [CN− ]

[ HCN ]=6 .2×10−10

What is the pH of a 0.5 M HCN solution?

B. Kb Weak base NH3 + H2O NH4+ + OH-

Kb=[ NH4

+ ] [OH− ][NH3 ]

=1. 8×10−5

What is the pH of a 0.5 M NH2OH solution?

16

Page 17: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

C. Ksp Insoluble Salts MgF2(s) Mg2+ + 2F-

Ksp = [Mg2+] [F-]2 = 6.6 × 10-9

What is the solubility of MgF2 in molarity?

D. Buffers – a weak acid/base and its soluble salt (conjugate base or acid) mixture

pH=pKa+ log [ base ][acid ]

What is the pH of a 0.5 M HC2H3O2 in 2 M NaC2H3O2 solution? Ka = 1.8 × 10-5

E. Salts of Weak Acids and Weak Bases

What is the pH of a 1 M NaC2H3O2 solution?

Titrations and Endpoints

At endpoint: acid moles = base moles or [H+] = [OH-]

Strong acid – strong base endpoint pH = 7

Strong acid – weak base endpoint pH < 7

Weak acid – strong base endpoint pH > 7

The last two are important because of conjugate acid and base pairs

11. Acid strength – know the 6 strong acids: HCl, HBr, HI, HNO3, HClO4, and H2SO4

(removal of the first H+ only)

a) binary acids – acid strength increased with increasing size and electronegativity of the “other element”. (NOTE: Size predominates over electronegativity in determining acid strength.)

Example: H2Te > H2O and HF > NH3

b) oxoacids – Acid strength increases with increasing:

1) electronegativity2) number of bonded oxygen atoms3) oxidation state

17

Page 18: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

of the “central atom”. However, need to show as electron withdrawing groups rather than trends (trends need to be explained as a result of chemical principles rather than solely as a trend).

Example: HClO4 [O3Cl(OH)] is very acidicNaOH is very basic

Acid strength also increases with DECREASING radii of the “central atom”Example: HOCl (bond between Cl and OH is covalent – acidic)

HOI (bond between I and OH is ionic – basic)

12. Acid Ionization Constant (Ka):

HA + H2O H3O+ + A-Ka=

[ A− ][ H3 O+ ][ HA ]

Example: HF + H2O H3O+ + F-Ka=

[ F− ] [ H3O+ ][ HF ]

What is the pH of 0.5 M HCN solution for which Ka = 6.2 × 10-10?

13. Base Ionization Constant (Kb):

B + H2O BH+ + OH-Kb=

[ BH− ][OH− ][B ]

Example: F- + H2O HF + OH-Kb=

[ HF ][OH− ][F− ]

What is the pH of a 0.5 M NH2OH solution for which Kb = 6.6 × 10-9?

Do equal number of Ka and Kb problems as they are equally likely!

14. Ka × Kb = Kw = 10-14

ONLY applies for conjugate acids and bases at 25 oC!

15. Percent ionization = [H+]equilibrium / [HA]initial × 100

16. Lewis Acids and Bases:

Lewis acid – electron pair acceptorLewis bases – electron pair donor

18

Page 19: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

In complex ions formation, metal ions are Lewis acids, and ligands are Lewis bases.

Example: Cu2+ + 4 NH3 [Cu(NH3)4]2+

Cu2+ acts as an acid; NH3 acts as a base

17. Buffers:

Similar concentrations of a weak acid and its conjugate base-or-

Similar concentrations of a weak base and its conjugate acid

If these concentrations are large in comparison to SMALL amounts of added acid or base, equilibrium will be shifted slightly and the pH change resisted. Consider:

HA H+ + A-

Ka=[ A− ][ H3O+ ]

[HA ]

[H+] = Ka [HA] / [A-]

pH = pKa – log [HA] / [A-] or pH = pKa + log [A-] / [HA](Henderson-Hasselbach equation)

B + H2O HB+ + OH-

Kb=[ BH+ ] [OH− ]

[ B ]

[OH-] = Kb [B] / [HB+] or pOH = pKb + log [HB+]/[B](Henderson-Hasselbach equation)

What is the pH of a solution which is 0.5 M HC2H3O2 in 2 M NaC2H3O2 for which Ka = 1.8 × 10-5?

18. Polyprotic Acids: H3PO4, H2SO4, H2C2O4, etc.

19. Equivalence Point – the point at which stoichiometric amounts of reactants have reacted.

NOTE: This only occurs at pH = 7 for the reaction of a strong acid with a strong base. The equivalence point will occur ABOVE pH = 7 (more basic) for a weak acid / strong base titration. (the conjugate base of the weak acid will react with

19

Page 20: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

water.) The equivalence point will occur BELOW pH = 7 for a weak base / strong acid titration (the conjugate acid of the weak base with react with water).

20. Indicators – select bases on the pH at the equivalence point.

21. Titration curves:

a) Weak acid / strong base HA + OH- A- + H2O

NOTE: Graph should have “pH” as the vertical axis and “added base” as the horizontal axis. The graph should be in an “S” shape. The middle of the lower part of the “S” indicates the point of maximum buffering where [HA] / [A-] = 1. The middle of the “S” is the equivalence point (above pH = 7) and [HA] = 0. The top part of the “S” levels off at the pH of the base solution.

b) Weak base / strong acid B + H3O+ BH+ + H2O

NOTE: Graph should have “pH” as the vertical axis and “added base” as the horizontal axis. The graph should be in a “backwards S” shape. The middle of the upper part of the “backwards S” indicates the point of maximum buffering where [B] / [HB+] = 1. The middle of the “backwards S” is the equivalence point (below pH = 7) and [B] = 0. The bottom part of the “backwards S” levels off at the pH of the acid solution.

c) Weak diprotic acid / strong base H2A + OH- HA- + H2O

HA- + OH- A2- + H2O

NOTE: Graph should have “pH” as the vertical axis and “added base” as the horizontal axis. The graph should be in a “double S” shape. The middle of the lower part of the “first S” indicates the point of maximum buffering of the first buffering zone where [H2A] / [HA-] = 1. The middle of the “first S” is the first equivalence point where [H2A] = 0. The top of the “first S” (i.e. the lower part of the “second S”) indicates the point of maximum buffering of the second buffering zone where [HA-] / [A2-] = 1. The middle of the “second S” is the second equivalence point where [HA-] = 0. The top part of the “second S” levels off at the pH of the base solution.

22. Solubility Product (Ksp)

Example 1: Co(OH)2(s) Co2+ + 2OH- Ksp = [Co2+][OH-]2

(don’t forget – molar concentration of OH- is twice the solubility)

Example 2: Solubility of Ag2SO4 is 0.016 mol L-1 (5.0 g L-1). Find the Ksp of Ag2SO4. (Answer: Ksp = 1.5 × 10-5)

20

Page 21: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

23. Ion product (Qi) – equivalent to the “reaction quotient”

Qi < Ksp all ions in solution; more solid will dissolveQi = Ksp equilibrium – solution is saturatedQi > Ksp precipitation will occur until Qi = Ksp

24. Solubility of any salt which contains a basic anion is influenced by pH:

Example: Consider a solution which is 1 M in each of Fe3+ and H+. Will Fe(OH)3

precipitate? Answer: NO!

Fe(OH)3 Fe3+ + 3 OH-

Qi = [Fe3+][OH-]

If [H+] = 1 M, then [OH-] = 10-14

Qi = (1) (10-14)3 = 10-42

Since Ksp for Fe(OH)3 = 3 × 10-39; precipitation does not occur.

However, what if [H+] = 10-5? Then [OH-] = 10-9

Qi = (1) (10-9)3 = 10-27

Since Qi > Ksp; Fe(OH)3 will precipitate!

21

Page 22: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions

2007 #1

1. HF(aq) + H2O(l) H3O+(aq) + F-(aq) Ka = 7.2 × 10-4

Hydrofluoric acid, HF(aq), dissociates in water as represented by the equation above.

a. Write the equilibrium constant expression for the dissociation of HF(aq) in water.

b. Calculate the molar concentration of H3O+ in a 0.40 M HF(aq) solution.

HF(aq) reacts with NaOH(aq) according to the reaction represented below.

HF(aq) + OH-(aq) H2O(l) + F-(aq)

A volume of 15 mL of 0.40 M NaOH(aq) is added to 25 mL of 0.40 M HF(aq) solution. Assume volumes are additive.

c. Calculate the number of moles of HF(aq) remaining in the solution.

d. Calculate the molar concentration of F-(aq) in the solution.

e. Calculate the pH of the solution.

9 points

a.Ka=

[ H3O+ ] [ F− ][ HF ] 1 point

b.Ka=

[ H3O+ ] [ F− ][ HF ]

=( x )( x )0. 40−x

=7 .2×10−4

Assume x << 0.40, then x2 = (0.40)(7.2 × 10-4), x = [H3O+] = 0.017 M1 point is earned for the correct setup (or that consistent with part a)1 point is earned for the correct concentration

c. mol HF = initial mol HF – mol NaOH added= (0.025 L)(0.40 mol L-1)–(0.015 L)(0.40 mol L-1)=0.010–0.0060=0.0040 mol1 point is earned for determining initial number of moles of HF and OH-

1 point is earned for setting up and doing correct subtractiond. mol F- formed = mol NaOH added = 0.0060 mol F-

0.0060 mol F- / (0.015 + 0.025) L of solution = 0.15 M F-

1 point is earned for determining the number of moles of F-

1 point is earned for dividing the number of moles of F- by the correct total volume

e. [HF] = 0.004 mol HF / 0.040 L = 0.10 M HF

22

Page 23: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Ka=[ H3 O+ ] [ F− ]

[ HF ]⇒

[ HF ]×K a

[ F− ]=[H3 O+ ]⇒ 0 .10×7 .2×10−4

0 .15=4 .8×10−4

pH = - log (4.8 × 10-4) = 3.32ORHenderson – Hasselbach equation1 point is earned for indicating that the resulting solution is a buffer (by showing a ration of [F-] to [HF] or moles of F- to HF)1 point is earned for the correct calculation of pH

2005B #1 Ka

Ka=[ H3O+ ] [OCl− ]

[HOCl ]=3. 2×10−8

Hypochlorous acid, HOCl, is a weak acid in water. The Ka expression for HOCl is shown above.

a. Write a chemical equation showing how HOCl behaves as an acid in water.

b. Calculate the pH of a 0.175 M solution of HOCl.

c. Write the net ionic equation for the reaction between the weak acid HOCl(aq) and the strong base NaOH(aq)

d. In an experiment, 20.00 mL of 0.175 M HOCl(aq) is placed in a flask and titrated with 6.55 mL of 0.435 M NaOH(aq).

i) Calculate the number of moles of NaOH(aq) added.

ii) Calculate [H3O+] in the flask after the NaOH(aq) has been added.

iii) Calculate [OH-] in the flask after the NaOH(aq) has been added.10 points

a. HOCl + H2O OCl- + H3O+ 1 pointb. 0.175 0 0 initial

-x x x change0.175 –x x x final

Ka=[ H3 O+ ] [OCl− ]

[ HOCl ]= x x

0 . 175−x=3 .2×10−8

Assume that x <<< 0.175, x = 7.5 × 10-5 M, pH = 4.131 point is earned for calculating the value of [H3O+]

23

Page 24: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

1 point is earned for calculating the pHc. HOCl + OH- OCl- + H2O 1 point for both correct reactants

1 point for both correct productsd. i) mol(NaOH)=6.55 mL(1L/1000 mL)(0.435 M)=2.85×10-31 point

ii) mol(HOCl) = 20.00 (1/1000) (0.175) = 3.50 ×10-3 mol 1 pointOH- is the limiting reactant, therefore all of it reactsHOCl + OH- OCl- + H2O0.00350 0.00285 0-0.00285 -0.00285 0.002850.00065 0 0.00285

M(HOCl) = 0.00065 / 0.02655 = 0.0245 MM(OCl-) = 0.00285 / 0.02655 = 0.107 M

HOCl + H2O --> H3O+ + OCl-

0.0245 0 0.107-x x x0.0245 x 0.107 + x 1 point

Ka=[ H3O+ ] [OCl− ]

[ HOCl ]=

x (0 . 107+x )(0 . 0245−x )

=3 .2×10−8

Assume 0.107 + x = 0.107 and 0.0245-x = 0.0245x = 7.3 × 10-9 M 1 pointiii) [H3O+][OH-]= 10-14 = Kw

[OH-] = 10-14 / [H3O+] = 10-14 / 7.3 × 10-9 = 1.4 × 10-6 M 1 point

2011 #1

1. Each of three beakers contains 25.0 mL of a 0.100 M solution of HCl, NH3, or NH4Cl, as shown above. Each solution is at 25 oC.a.) Determine the pH of the solution in beaker 1. Justify your answer.

24

Page 25: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

b.) In beaker 2, the reaction NH3(aq) + H2O(l) NH4+(aq) + OH-(aq) occurs.

The value of Kb for NH3(aq) is 1.8 × 10-5 at 25 oC.

i.) Write the Kb expression for the reaction of NH3(aq) with H2O(l).

ii.) Calculate the [OH-] in the solution in beaker 2.

c.) In beaker 3, the reaction NH4+(aq) + H2O(l) NH3(aq) + H3O+(aq) occurs.

i.) Calculate the value of Ka for NH4+ at 25 oC.

ii.) The contents of beaker 2 are poured into beaker 3 and the resulting solution is stirred. Assume that volumes are additive. Calculate the pH of the resulting solution.

d.) The contents of beaker 1 are poured into the solution made in part c) ii). The resulting solution is stirred. Assume that volumes are additive.

i.) Is the resulting solution an effective buffer? Justify your answer.

ii.) Calculate the final [NH4+] in the resulting solution at 25 oC.

a.) pH = -log[H+] = -log(0.100) = 1.000 1 point

b.) i) Kb = [NH4+][OH-] / [NH3] 1 point is earned for the correct expression.

ii) Let [OH−] = x, then Kb = (x)(x) / (0.100 - x) Assume that x << 0.100 M, then 1.8 × 10−5 = 0.100 / x ⇒ x = [OH−] = 1.3 × 10-3 M 1 point is earned for the correct setup. 1 point is earned for the correct answer.

c.) i) Ka = Kw / Kb = 1.0 x 10-14 / 1.8 10-5 = 5.6 × 10-10 1 point is earned for the correct answer.ii) In the resulting solution, [NH3] = [NH4

+]; Ka = 5.6 × 10-10 = [NH3][H3O+] / [NH4

+] Thus [H3O+] = 5.6 × 10-10; pH = -log(5.6 × 10-10) = 9.25 1 point is earned for noting that the solution is a buffer with [NH3] = [NH4

+]. 1 point is earned for the correct pH.

d.) i) The resulting solution is not an effective buffer. Virtually all of the NH3 in the solution formed in (c)(ii) will react with the H3O+ from solution 1: NH3 + H3O+ → NH4

+ + H2O leaving mostly NH4+ in the final solution. Since

only one member of the NH4+/NH3 conjugate acid-base pair is left, the

solution cannot buffer both base and acid. 1 point is earned for the correct response with an acceptable justification.

ii) moles = (volume)(molarity) moles H3O+ in sol. 1 = (0.0250)(0.100) = 0.00250 mol moles NH3 in sol. 2 = (0.0250)(0.100) = 0.00250 mol moles NH4

+ in sol. 3 = (0.0250)(0.100) = 0.00250 mol When the solutions are mixed, the H3O+ and NH3 react to form NH4

+, resulting in a total of 0.00500

25

Page 26: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

mol NH4+. The final volume is the sum (25.0 + 25.0 + 25.0) = 75.0 mL. The

final concentration of NH4+ = (0.00500 mol/0.0750 L) = 0.0667 M. 1

point is earned for the correct calculation of moles of NH4+. 1 point is earned

for the correct calculation of the final volume and concentration.

1996 A/B lab #6

A 0.500-gram sample of a weak, nonvolatile acid, HA, was dissolved in sufficient water to make 50.0 milliliters of solution. The solution was then titrated with a standard NaOH solution. Predict how the calculated molar mass of HA would be affected (too high, too low, or not affected) by the following laboratory procedures. Explain each of your answers.

a. After rinsing the buret with distilled water, the buret is filled with the standard NaOH solution; the weak acid HA is titrated to its equivalence point.

b. Extra water is added to the 0.500-gram sample of HA.

c. An indicator that changes color at pH 5 is used to signal the equivalence point.

for explanation point in 9 (a), (c), and (d), credit is earned at step indicted in boldface type.(a) two pointsCalculated Mm(HA) too lowM(NaOH) => V(NaOH) => n(NaOH) => n(HA) => Mm(HA)(M = n ÷ V) and (Mm = m÷ n)

(b) two pointsCalculated Mm(HA) not affectedAny one of the following reasons. Water: does not change n(HA), changes only M(HA) -- sense of dilution, is not a reactant (c) two pointsCalculated Mm(HA) too highequivalence point => n(NaOH) => n(HA) => Mm(HA)(expected pH higher)Note: "no effect if NaOH standardized with same indicator" earns 2 points; no credit earned if pH=7 or neutral

(d) two pointsCalculated Mm(HA) too lowV(NaOH) => n(NaOH) => n(HA) => Mm(HA)Note: point earned for V(NaOH) only if:(i) no explanation point is earned in (a)(ii) explanation in (a) also includes V(NaOH)

26

Page 27: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

2000 #8 A/B Lab

A volume of 30.0 mL of 0.10 M NH3(aq) is titrated with 0.20 M HCl(aq). The value of the base-dissociation constant, Kb, for NH3 in water is 1.8 × 10-5 at 25 oC.

a. Write the net-ionic equation for the reaction of NH3(aq) with HCl(aq).

b. Using the axes provided below, sketch the titration curve that results when a total of 40.0 mL of 0.20 M HCl(aq) is added dropwise to the 30.0 mL volume of 0.10 M NH3(aq).

c. From the table below, select the most appropriate indicator for the titration. Justify your choice

Indicator pKa

Methyl Red 5.5Bromothymol Blue 7.1Phenolphthalein 8.7

d. If equal volumes of 0.10 M NH3(aq) and 0.10 M NH4Cl(aq) are mixed, is the resulting solution acidic, neutral, or basic? Explain

8 points(a) NH3(aq) + H+(aq) → NH4

+(aq) 1 pointor NH3(aq) + H3O+(aq) → NH4

+(aq) + H2O(l)Note: phase designations not required to earn point

27

Page 28: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(b) Sketch of Titration Curve: 3 pnts• 1st pt. → initial pH must be > 7 (calculated pH ≈ 11)• 2nd pt. → equivalence point occurs at 15.0 mL ± 1 mL of HCl added (equivalence point must be detectable from the shape of the curve or a mark on the curve)• 3rd pt. → pH at equivalence point must be < 7 (calculated pH ≈ 5).Note: a maximum of 1 point earned for any of the following:- a line without an equivalence point- a random line that goes from high pH to low pH- an upward line with increasing pH (equivalence point MUST be at 15.0 mL)(c) Methyl Red would be the best choice of indicator, 1 pointBecause the pKa for Methyl Red is closest to pH atequivalence point. 1 pointNotes: • explanation must agree with equivalence point on graph• alternative explanation that titration involves strong acid and weak base (with product an acidic salt) earns the point

(d) The resulting solution is basic. 1 pointKb for NH3 (1.8 × 10-5) and Ka for NH4

+ (5.6 × 10-10) indicate that NH3 is a stronger base than NH4

+ is an acidor [OH-] = Kb = 1.8 × 10-5 because of the equimolar and equivolume amounts of ammonium and ammonia → cancellation in the buffer pH calculation. Thus pOH

≈ 5 and pH ≈ 9 (i.e., recognition of buffer, so that log( 0 .05

0 .05 )=0→ pOH = pKb ≈

5 → pH = 14 – pOH ≈ 9)

2011B #1

1. Answer the following questions about the solubility and reactions of the ionic compounds M(OH)2 and MCO3, where M represents an unidentified metal.

a.) Identify the charge of the M ion in the ionic compounds above.

b.) At 25 oC, a saturated solution of M(OH)2 has a pH of 9.15.

i.) Calculate the molar concentration of OH-(aq) in the saturated solution.

ii.) Write the solubility product expression for M(OH)2.

iii.) Calculate the value of the solubility product constant, Ksp, for M(OH)2 at 25 oC.

c.) For the metal carbonate, MCO3, the value of the solubility product constant, Ksp, is 7.4 × 10-14 at 25 oC. On the basis of this information and your results in part b), which compound, M(OH)2 or MCO3, has the

28

Page 29: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

greater molar solubility in water at 25 oC? Justify your answer with a calculation.

d.) MCO3 decomposes at high temperatures, as shown by the reaction represented below.

MCO3(s) MO(s) + CO2(g)

A sample of MCO3 is placed in a previously evacuated container, heated to 423 K, and allowed to come to equilibrium. Some solid MCO3 remains in the container. The value of KP for the reaction at 423 K is 0.0012.i.) Write the equilibrium constant expression for KP of the reaction.

ii.) Determine the pressure, in atm, of CO2(g) in the container at equilibrium at 423 K.

iii.) Indicate whether the value of ΔGo for the reaction at 423 K is positive, negative, or zero. Justify your answer.

a.) 2+ 1 point is earned for the correct charge.

b.) i) pOH = 14 – pH, pOH = 14 − 9.15 = 4.85, [OH−] = 10−4.85 = 1.4 × 10−5 M 1 point is earned for the correct concentration.

ii) Ksp = [M2+] [OH−]2 1 point is earned for the correct expression.

iii) [M2+] = (1/2)[OH−] = (1/2)(1.4 × 10−5 M) = 7.0 × 10−6 M Ksp = [M2+] [OH−]2 = (7.0 × 10−6)(1.4 × 10−5)2 = 1.4 × 10−15 1 point is earned for the correct relationship between [M2+] and [OH−]. 1 point is earned for the correct value.

c.) For M(OH)2 : [M2+] and molar solubility = 7.0 × 10−6 M For MCO3: Ksp = 7.4 × 10−14 = [M2+][CO3

2−] [M2+] and molar solubility = 2.7 × 10−7 M Because 7.0 × 10−6 M > 2.7 × 10−7 M, M(OH)2 has the greater molar solubility. 1 point is earned for the molar solubility of MCO3. 1 point is earned for an answer consistent with the calculated molar solubility.

d.) i) Kp = P(CO2) 1 point is earned for the correct expression.

ii) P(CO2) = 0.0012 atm 1 point is earned for the correct pressure.

iii) ΔG° = −RT lnK K = 0.0012 < 1, thus lnK is negative; therefore ΔG° is positive. 1 point is earned for the correct answer with justification.

29

Page 30: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

2010 #1 Several reactions are carried out using AgBr, a cream-colored silver salt for which the value of the solubility-product constant, Ksp, is 5.0 × 10-13 at 298 K

(a) Write the expression for the solubility-product constant, Ksp, of AgBr

(b) Calculate the value of [Ag+] in 50.0 mL of a saturated solution of AgBr at 298 K.Let x = equilibrium concentration of Ag+ (and of Br−). Then Ksp

= 5.0 × 10-13 = x2 ⇒ x = 7.1 × 10-7 M One point is earned for the correct value with supporting work (units not necessary).

(c) A 50.0 mL sample of distilled water is added to the solution described in part (b), which is in a beaker with some solid AgBr at the bottom. The solution is stirred and equilibrium is reestablished. Some solid AgBr remains in the beaker. Is the value of [Ag+] greater than, less than, or equal to the value you calculated in part (b) ? Justify your answer.

The value of [Ag+] after addition of distilled water is equal to the value in part (b). The concentration of ions in solution in equilibrium with a solid does not depend on the volume of the solution.

One point is earned for the correct answer with justification.

(d) Calculate the minimum volume of distilled water, in liters, necessary to completely dissolve a 5.0 g sample of AgBr(s) at 298 K. (The molar mass of AgBr is 188 g mol-1.)

5.0 g AgBr / (188 g AgBr mol-1 AgBr) = 0.0266 mol AgBr One point is earned for the moles of dissolved AgBr.

0.0266 mol / V = 7.1 × 10-7 mol L-1 V = 3.7 × 104 L One point for the correct answer for the volume of water

(e) A student mixes 10.0 mL of 1.5 × 10-4 M AgNO3 with 2.0 mL of 5.0 × 10-4 M NaBr and stirs the resulting mixture. What will the student observe? Justify your answer with calculations.

[Ag+] = (10.0 mL) (1.5 × 10-4 M) / (12.0 mL) = 1.3 × 10-4 M

[Br-] = (2.0 mL) (5. 0 × 10-4 M) / (12.0 mL) = 8.3 × 10-5 M

Q = [Ag+][Br-] = (1.3 × 10-4 M) (8.3 × 10-5 M) = 1.1 × 10-8

1.1 × 10-8 > 5.0 × 10-13 a precipitate will form

One point is earned for calculation of concentration of ions.

One point is earned for calculation of Q and conclusion based on comparison between Q and Ksp.

One point is earned for indicating the precipitation of AgBr.

30

Page 31: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(f) The color of another salt of silver, AgI(s), is yellow. A student adds a solution of NaI to a test tube containing a small amount of solid, cream-colored AgBr. After stirring the contents of the test tube, the student observes that the solid in the test tube changes color from cream to yellow.

(i) Write the chemical equation for the reaction that occurred in the test tube.

AgBr(s) + I−(aq) → AgI(s) + Br−(aq) OR AgBr(s) + NaI(aq) → AgI(s) + NaBr(aq)

One point is earned for the correct equation.

(ii) Which salt has the greater value of Ksp : AgBr or AgI ? Justify your answer.

AgBr has the greater value of Ksp. The precipitate will consist of the less soluble salt when both I−(aq) and Br−(aq) are present. Because the color of the precipitate in the test tube turns yellow, it must be AgI(s) that precipitates; therefore Ksp for AgBr must be greater than Ksp for AgI.

OR

Keq for the displacement reaction is Ksp of AgBr / Ksp of AgI. Because yellow AgI forms, Keq > 1; therefore Ksp of AgBr > Ksp of AgI.

One point is earned for the correct choice with justification.

Multiple Choice Questions

2002 #64 Ascorbic acid, H2C6H6O6(s), is a diprotic acid with K1 = 7.9 × 10-5 and K2 = 1.6 × 10-12. In a 0.005 M aqueous solution of ascorbic acid, which of the following species is present in the lowest concentration?

A) H2O(l)B) H3O+(aq)C) H2C6H6O6(aq)D) HC6H6O6

-(aq)E) C6H6O6

2-(aq) (38%)

2002 #33 Questions 33-34

The graph below shows the titration curve that results when 100. mL of 0.0250 M acetic acid is titrated with 0.100 M NaOH.

31

Page 32: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

2002 #33. Which of the following indicators is the best choice for this titration?

pH Range ofIndicator Color Change

A) Methyl Orange 3.2-4.4B) Methyl Red 4.8-6.0C) Bromothymol blue 6.1-7.6D) Phenolphthalein 8.2-10.0 (70%)E) Alizarin 11.0-12.4

2002 #34. Which part of the curve corresponds to the optimum buffer action for the acetic acid / acetate ion pair?

A) Point V (34%)B) Point XC) Point ZD) Along all of section WYE) Along all of section YZ

2008 #4-6 A solution of a weak monoprotic acid is titrated with a solution of a strong base, KOH. Consider the points labeled (A) through (E) on the titration curve that results, as shown below.

32

Page 33: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

4. The point at which the moles of the added strong base are equal to the moles of the weak acid initially present (Answer C: 65%)

5. The point at which the pH is closest to that of a the strong base being added (Answer E: 69%)

6. The point at which the concentrations of the weak acid and its conjugate base are approximately equal (Answer B: 38%)

33

Page 34: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concepts List - KINETICS

1. Rate definition

2. Rate Law – differential versus integrated

3. Factors affecting rate

a. [C]b. ΔTc. catalysisd. surface areae. nature of reactants – distinguish between homo- and heterogenous

i. solids ii. Liquids iii. gases iv. Ions (solutions)

4. Collision theory – orientation and energy

5. Mechanism – relationship between ΔT, ΔS, ΔH – catalysis

6. Energy of activation (Ea) – Arrhenius equation – differentiate from ΔH

ln ( k2

k1)=Ea

R ( 1T1

− 1T 2 )=−

Ea

R ( 1T 2

− 1T1 )

7. Ordera. determined by

i. experimental comparisonii. graphing

b. zero, first, second – determining % remaining and/or % reactedex. Ln (x2/x1) = kt

8. Rate constants with units (units change with reaction order)a. unsuccessful versus effective collisionsb. orientation and energy

9. Vocabulary

Reactants vs. products vs. catalyst vs. reaction intermediate

10. Mechanisms are consistent if:

- steps add up to balanced equation- slow step of mechanism will define the mechanistic rate law and rate law expression- no reaction intermediates in final rate law expression for comparison with the experimental rate law expression

34

Page 35: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions1997 #4

2 A + B → C + D The following results were obtained when the reaction represented above was studied at 25 °C

Experiment Initial[A]

Initial[B]

Initial Rateof Formationof C (mol L-1 min-1)

1 0.25 0.75 4.3 × 10-4 2 0.75 0.75 1.3 × 10-3 3 1.50 1.50 5.3 × 10-3 4 1.75 ?? 8.0 × 10-3

a. Determine the order of the reaction with respect to A and B. Justify your answer.

b. Write the rate law for the reaction. Calculate the value of the rate constant, specifying units.

c. Determine the initial rate of change of [A] in Experiment 3.

d. Determine the initial value of [B] in Experiment 4.

e. Identify which of the reaction mechanisms represented below is consistent with the rate law developed in part (b). Justify your choice.

1 A + B → C + M Fast

M + A → D Slow

2 B <===> M Fast equilibrium M + A → C + X Slow A + X → D Fast

3 A + B <===> M Fast equilibrium M + A → C + X Slow X → D Fast

(a) three points 1.3 × 10-3 / 4.3 × 10-4 = k (0.75)x (0.75)y / k (0.25)x (0.75)y leads to 3 = (3)x leads to x = 1, first order in A 5.3 × 10-3 / 1.3 × 10-4 = k(1.50)(1.50)y/ k(0.75)(0.75)y => 4= 2(2)y => y=1 => First order in B

35

Page 36: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Notes; Verbal descriptions accepted, but no point earned for just "if A doubles, the rate doubles". If A given as second order, 2 points can be earned for showing that B must be zero order. (b) two points rate = k[A][B] (equation must be consistent with part (a)) k= 4.3 × 10-4M min-1 / (0.25M) (0.75M) = 2.3 × 10-3 M- 1 min-1 Note; Units must be correct to earn second point. If no part (a) shown, 1 point can be earned for a reasonable (first or second order) rate law. (c) one point [A] / t = -2 (5.3 × 10-3 M-1 min-1) = - 1.06 × 10-2 M-1 min-1 Note; Units ignored; no penalty for ( ¯ ) sign. (d) one point 8.0 × 10 -3 M-1 min-1 = (2.3 × 10-2 M-1 min-1) (1.75 M) [B] [B] = 2.0 M Note; No penalty if answer is consistent with wrong part (b). (e) two points Mechanism 2 is consistent rate proportional to [M][A] and [M] proportional to [B] => rate proportional to [A][B] Notes; Verbal discussion accepted for second point. Mechanism must be consistent with rate law in part (b). Showing that mechanisms 1 and 3 are inconsistent is not required.

1999 # 3

2 NO(g) + Br2(g) → 2 NOBr(g)

A rate study of the reaction represented above was conducted at 25°C. The data that were obtained are shown in the table below.

Experiment Initial [NO](mol L-1)

Initial [Br2](mol L-1)

Initial Rate of Appearanceof NOBr (mol L-1 s-1)

1 0.0160 0.0120 3.24 × 10-4

2 0.0160 0.0240 6.38 × 10-4

3 0.0320 0.0060 6.42 × 10-4

a. Calculate the initial rate of disappearance of Br2(g) in experiment 1.

b. Determine the order of the reaction with respect to each reactant, Br2(g) and NO(g). In each case, explain your reasoning.

c. For the reaction,

i. write the rate law that is consistent with the data, and

36

Page 37: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii. calculate the value of the specific rate constant, k, and specify units.

d. The following mechanism was proposed for the reaction:

Br2(g) + NO(g) → NOBr2(g) slow

NOBr2(g) + NO(g) → 2 NOBr(g) fast

Is this mechanism consistent with the given experimental observations? Justify your answer.

9 points:(a) Rate of Br2(g) loss occurs at ½ the rate of NOBr(g) formation.

Rate of Br2(g) loss =

3. 24×10−4 M2 sec = 1.62 × 10-4 M sec-1 (or mol L-1 sec-1)

1 pointNote: No penalty for missing units; ignore + or − signs(b) Comparing experiments 1 and 2, [NO] remains constant, [Br2] doubles,

and rate doubles; therefore, rate α [Br2]1 → reaction is first-order with respect to [Br2]. 1 point

6 .38×10−4

6 . 42×10−4=1=k [ NO ]x [ Br2 ]

k [ NO ]x [ Br2 ]=

k (0 . 0160)x(0 . 0240)k (0 . 0320)x(0 . 0240)

=( 12 )

x4=1⇒

14=( 1

2 )x⇒

x = 2 → reaction is second-order with respect to [NO]2

pointsNote: One point earned for a proper set-up, comparing experiments 2 and 3 (as is shown here) or experiments 1 and 3. Second point earned for solving the ratios correctly and determining that the exponent = 2. Also, credit can be earned for a non-mathematical approach (e.g., one point for describing the change in [Br2] and subsequent effect on rate, another point ford escribing the change in [NO] and subsequent effect on rate).(c) (i) Rate = k[NO]2[Br2]

1 pointNote: Point earned for an expression that is consistent with answer in part (b)

(ii) k =

Rate[ NO ]2 [ Br2 ]

= 3.24×10−4 M sec−1

(0. 0160 )2(0 . 0120) M 2= 105 M -2 sec-1 (or 105 L2 mol-2 sec-

1) 2 points(Using rate of Br2(g) loss = 1.62 × 10-4 M sec-1 → k = 52.7 M-2 sec-1 is correct.)Note: One point for solving for the value of the rate constant consistent with therate-law expression found in (b) or stated in part (c); one point for the correct units consistent with the rate-law expression found in part (b) or stated in (c).(d) No, it is not consistent with the given experimental observations. 1 point

37

Page 38: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

This mechanism gives a reaction that is first-order in [NO], and first-order in [Br2], as those are the two reactants in the rate-determining step. Kinetic data show the reaction is second-order in [NO] (and first-order in [Br2]), so this cannot be the mechanism. 1 pointNote: One point earned for “No” [or for “Yes” if rate = k[NO][Br2] in part (b)].One point earned for justifying why this mechanism is inconsistent with the observed rate-law [or consistent with rate law stated earlier in response].

One point deduction for mathematical error (maximum once per question)One point deduction for error in significant figures* (maximum once per question)*number of significant figures must be correct within +/− one digit

1996 # 8

The reaction between NO and H2 is believed to occur in the following three-step process.NO + NO <===> N2O2 (fast)N2O2 + H2 → N2O + H2O (slow)N2O + H2 → N2 + H2O (fast)

a. Write a balanced equation for the overall reaction.

b. Identify the intermediates in the reaction. Explain your reasoning.

c. From the mechanism represented above, a student correctly deduces that the rate law for the reaction is rate = k[NO]2[H2]. The student then concludes that (1) the reaction is third-order and (2) the mechanism involves the simultaneous collision of two NO molecules and an H2 molecule. Are conclusions (1) and (2) correct? Explain.

d. Explain why an increase in temperature increases the rate constant, k, given the rate law in part c.

(a) one point2 NO + 2 H2 N2 + 2 H2O

(b) two pointsN2O2 and N2O are intermediatesbecause they appear in the mechanism but not in the overall products (or reactants)

(c) three points; one for each half of conclusion (1) answer, third for conclusion (2) answerStudent indicates conclusion (1) is correct,because the sum of the exponents in rate law is 2 + 1 = 3Student indicates conclusion (2) is incorrect,because no step involves two NO molecules and a H2 molecule

38

Page 39: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(d) two points; T goes up therefore k goes up:because increasing number of collisions between reactantsare occuring with sufficient energy to form an activated complex

ORT goes up therefore rate goes upbecause no change in concentration of reactants, therefore k must increase

ORfrom Arrhenius equation (not required in AP Chemistry curriculum, but noted in some student responses):as T goes up, k goes up

1998 #6

Answer the following questions regarding the kinetics of chemical reactions.

a. The diagram below at right shows the energy pathway for the reaction O3 + NO → NO2 + O2.Clearly label the following directly on the diagram.

i. The activation energy (Ea) for the forward reactionii. The enthalpy change (ΔH) for the reaction

b. The reaction 2 N2O5 → 4 NO2 + O2 is first order with respect to N2O5.i. Using the axes at right, complete the graph that represents the change

in [N2O5] over time as the reaction proceeds.ii. Describe how the graph in part i could be used to find the reaction rate

at a given time, t.iii Considering the rate law and the graph in part i, describe how the

value of the rate constant, k, could be determined.iv. If more N2O5 were added to the reaction mixture at constant

temperature, what would be the effect on the rate constant, k? Explain.

39

Page 40: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c. Data for the chemical reaction 2A → B + C were collected by measuring the concentration of A at 10-minute intervals for 80 minutes. The following graphs were generated from analysis of data.

Use the information in the graphs above to answer the following.

i. Write the rate-law expression for the reaction. Justify your answer.

ii. Describe how to determine the value of the rate constant for the reaction.

8 point

a) Response must clearly indicate (and distinguish between) Eact and ΔHrxn on graph. Each earns one point (2 total)

40

Page 41: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

bi). Response shows a softly curving line that approaches the time axis and whose slope changes continually

No penalty if curve crosses time axis or levels out above time axis.

Curve must drop initially and continually. No credit earned if [N2O5] increases.

ii. Reaction Rate is the slope of the line tangent to any point on the curve.Rate must be tied somehow to slope of graph. Answer may be indicated directly on the graph.Instantaneous rate must be indicated rather than the average rate

iii) Since rate = slope = k[N205], the value of k can be determined algebraically from the slope at a known value of [N205]. No penalty for Rate =2k[N2O5], as reaction stoichiometry could suggest this answer. Point can be earned for rate constant = slope of graph of ln[N2O5] vs. time since reaction is first order. Use of half-life or integrated rate law to solve for k can be accepted.

iv. The value of the rate constant is independent of the reactant concentrations, so adding more reactant will not affect the value of k. No point earned for simply stating that value of k will not change. Response must distinguish between rate . and rate constant.

bi. Rate = k[A] or ln ([A]/[A]0) = -kt. Since graph of ln [A] vs. time is linear, it must be a first-order reaction.Either form of the rate law is acceptable, and both the equation and the brief justification are required to earn the pointNo point earned if response indicates first order because the first graph is not linear.ii. Determine the slope of the second graph and set “k= - slope”Response must indicate both the negative sign and the slope.

Multiple Choice Questions

1999 #36

Experiment Initial [NO](mol L-1 )

Initial [O2](mol L-1)

Initial Rate ofFormation of NO2

(mol L-1 s-1) 1 0.10 0.10 2.5 × 10-4 2 0.20 0.10 5.0 × 10-4 3 0.20 0.40 8.0 × 10-3

41

Page 42: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

The initial-rate data in the table above were obtained for the reaction represented below. What is the experimental rate law for the reaction?

A) rate = k[NO] [O2]B) rate = k[NO] [O2]2 (52%)C) rate = k[NO]2 [O2]D) rate = k[NO]2 [O2]2

E) rate = k[NO] / [O2]

2008 #32 Gaseous cyclobutene undergoes a first-order reaction to form gaseous butadiene. At a particular temperature, the partial pressure of cyclobutene in the reaction vessel drops to one-eighth its original value in 124 seconds. What is the half-life for this reaction at this temperature?

A) 15.5 secB) 31.0 secC) 41.3 sec (38%)D) 62.0 secE) 124 sec

1999 #63

The graph above shows the results of a study of the reaction of X with a large excess of Y to yield Z. The concentrations of X and Y were measured over a period of time. According to the results, which of the following can be concluded about the rate of law for the reaction under the conditions studied?

A) It is zero order in [X].B) It is first order in [X]. (34%)C) It is second order in [X].

42

Page 43: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

D) It is the first order in [Y].E) The overall order of the reaction is 2.

2002 #27 2 NO(g) + O2(g) 2 NO2(g)

A possible mechanism for the overall reaction represented above is the following

(1) NO(g) + NO(g) N2O2(g) slow(2) N2O2(g) + O2(g) 2 NO2(g) fast

Which of the following rate expressions agrees best with this possible mechanism?

A) Rate = k [NO]2 (45%)B) Rate = k [NO] / [O2]C) Rate = k [NO]2 / [O2]D) Rate = k [NO]2 [O2]E) Rate = k [N2O2] [O2]

2002 #54 Which of the following must be true for a reaction for which the activation energy is the same for both the forward and reverse reactions?

A) A catalyst is present.B) The reaction order can be obtained directly from the balanced equation.C) The reaction order is zero.D) ΔH for the reaction is zero. (43%)E) ΔS for the reaction is zero.

43

Page 44: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concepts - ELECTROCHEMISTRY

1. oxidation / reduction – balancing equations (review)

2. galvanic cells – {positive, Red Cat}, both under standard conditions and concentration cells

3. electrolytic cells – stoichiometry question involving the number of electrons

4. cathode

5. anode

6. current, charge, Faradays = 96500 C / mole e-, (voltage / EMF) (amps, coulombs and volts – unit problem)

7. cell notation

8. salt bridge – “balance of charge” not electron balanceGood salt bridge materials are soluble salts, not easily oxidized or reduced, doesn’t interfere with given redox reaction, ie complex ion formation or precipitation

9. Eo and spontaneity

10. ΔGo = - n F Eo

11. E = Eo – (0.059 / n) log Kc

44

Page 45: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions2007 #3.

An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing 1.0 M CuSO4(aq) at 25oC, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and O2(g) is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

half-reaction Eo(V)O2(g) + 4 H+(aq) + 4 e- 2H2O(l) +1.23Cu2+(aq) + 2e- Cu(s) +0.34

a. On the diagram, indicate the direction of electron flow in the wire.

b. Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.

c. Predict the algebraic sign of ΔGo for the reaction. Justify your prediction.

d. Calculate the value of ΔGo for the reaction.

An electric current of 1.50 amps passes through the cell for 40.0 minutes.

e. Calculate the mass, in grams, of the Cu(s) that is deposited on the electrode.

f. Calculate the dry volume, in liters measured at 25oC and 1.16 atm, of the O2(g) that is produced.

10 pointsa. Electron flow in the wire is from the right to the left (counterclockwise)

1 pointb. 2 H2O + 2 Cu2+ → 4 H+ + 2 Cu + O2

1 point is earned for all three products1 point is earned for balancing the equation

45

Page 46: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c. The sign of ΔGo would be positive because the reaction is NOT spontaneous.1 point is earned for indicating that ΔGo is greater than 0 and supplying a correct explanation

d. Eo = -1.23 V + 0.34 V = -0.89 V = -0.89 J C-1

ΔGo = -nFEo = -4 (96500) (-0.89) = 340,000 J = 340 kJ1 point is earned for calculating Eo

1 point is earned for calculating ΔGo (consistent with Eo)e. q = (1.50 C s-1) (40.0 min) (60 s / 1 min) = 3600 C 1 point

mass Cu = (3600 C) (1 mole / 96500 C) (1 mol Cu / mol e-) (63.55 g Cu / moll) = 1.19 g Cu 1 pointOR can be calculated in one step (2 points)

f. n(O2) = (1.19 g Cu) (1 mol Cu / 63.55 g Cu) (1 mol O2 / 2 mol Cu) =0.00936 mol O2 1 pointV = nRT / P = (0.00936) (0.0821) (298) / (1.16) = 0.197 L 1 point

1997 #3

In an electrolytic cell, a current of 0.250 ampere is passed through a solution of a chloride of iron, producing Fe(s) and Cl2(g).

a. Write the equation for the reaction that occurs at the anode.

b. When the cell operates for 2.00 hours, 0.521 gram of iron is deposited at one electrode. Determine the formula of the chloride of iron in the original solution.

c. Write the balanced equation for the overall reaction that occurs in the cell.

d. How many liters of Cl2(g), measured at 25 °C and 750 mmHg, are produced when the cell operates as described in part (b)?

e. Calculate the current that would produce chlorine gas at a rate of 3.00 grams per hour.

(a) 1 point 2Cl- Cl2 + 2e- (equation need not be balanced) (b) three points (0.250 coul / sec × 7,200 sec) / (96,500 coul / mol e-) = 1,800 coul / (96,500 coul / mol e-) = 0.01865 mol e- mol Fe = 0.521 g Fe / (55.85 g / mol Fe) = 0.00933 mol Fe mol e-/ mol Fe = 1.865 × 10-2 mol e- / 9.33 × 10-3 approx. equals 2 e- per Fe atom FeCl2 (c) 1 point Fe2+ + 2 Cl- Fe + Cl2 Notes: "FeCl2(aq)" accepted for reactants. Any balanced equation corresponding to answer in part (b) earns 1 point.

46

Page 47: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(d) 1 point moles Fe2+ = moles Cl2 = 9.33 × 10-3 mol Cl2 V = nRT / P = (0.00933 mol Cl2 × 0.0821 L atm mol-1K-1 × 298 K) / (750 / 760) atm = 0.231 L (or 231 mL) (e) two points (3.00 g Cl2 / 71 g mol-1) / 3,600 sec = 0.0423 mol Cl2 / 3,600 sec = 1.17 × 10-5 mol Cl2 / sec current (in amperes) = (2 mol e- / mol Cl2) × (1.17 × 10-5 mol Cl2 / sec) × (96,500 coul / 1 mol e-) = 2.27 amp (or coul /sec) alternate solution: 0.00933 mole Cl2 / 2 hrs = 0.662 g Cl2 / 2 hrs = 0.331 g Cl2 / hr 0.20 amp / 0.331 g Cl2 = x / 3.00 g Cl2 x = (3.00 g × 0.250 amp) / 0.331 g = 2.27 amp

2000 # 2

2. Answer the following questions that relate to electrochemical reactions.

a. Under standard conditions at 25 oC, Zn(s) reacts with Co2+(aq) to produce Co(s)

i) Write the balanced equation for the oxidation half reaction.

ii) Write the balanced net-ionic equation for the overall reaction.

iii) Calculate the standard potential, Eo, for the overall reaction at 25 oC.

b. At 25 oC, H2O2 decomposes according to the following equation.

2 H2O2(aq) 2 H2O(l) + O2(g) Eo = 0.55 V

i) Determine the value of the standard free energy change, ΔGo, for the reaction at 25 oC.

ii) Determine the value of the equilibrium constant, Keq, for the reaction at 25 oC.

iii) The standard reduction potential, Eo, for the half reaction O2(g) + 4 H+(aq) + 4e- 2 H2O(l) has a value of 1.23 V. Using this information in addition to the information given above, determine the value of the standard reduction potential, Eo, for the half reaction below.

O2(g) + 2 H+(aq) + 2e- H2O2(aq)

c. In an electrolytic cell, Cu(s) is produced by the electrolysis of CuSO4(aq). Calculate the maximum mass of Cu(s) that can be deposited by a direct current of

47

Page 48: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

100. amperes passed through 5.00 L of 2.00 M CuSO4(aq) for a period of 1.00 hour.

10 points(a) (i) Zn(s) → Zn2+(aq) + 2 e- 1 point(ii) Co2+(aq) + Zn(s) → Co(s) + Zn2+(aq) 1 point(iii) 0.76 V + (−0.28 V) = 0.48 V 1 pointNote: phase designations not required in part (i) or part (ii)(b) (i) ΔG° = − nFE° = − 2(96,500)(0.55V) 2 pnts

= − 1.1 × 105 J or − 1.1 ×102 kJ• First point earned for n = 2 (consistent use of n = 4 also accepted)• Second point earned for negative sign, correct number (2 ± 1 sig. figs.),and appropriate units (kJ or J or kJ/mole or J/mole)(ii) ΔG° = – RT ln(K) 1 point

-1.1 × 105 J = – [8.31 J mol-1 K-1][298 K][ln (K)]K = 2.0 × 1019

(full credit also for correct use of log K = nE/ 0.0592)(iii) O2 + 2 H2O → 2 H2O2 -0.55 V

O2 + 4 H+ + 4 e- → 2 H2O 1.23 V______________________________________________________2 O2 + 4 H+ + 4 e- → 2 H2O2 0.68 V 2

points→ O2 + 2 H+ + 2 e- → H2O2 0.68 V (not required)

• Two points earned for correct voltage with supporting numbers (chemicalequations not necessary)• One point earned for correct chemical equations with incorrect voltagec.) • Two points earned for correct answer (3 ± 1 sig. figs.)• One point earned for any two of these steps: (amp)(sec) → coulombs, coulombs → mol e-, mol e- → mol Cu, mol Cu → g Cu

1996 #7 Sr(s) + Mg2+ Sr2+ + Mg(s)

Consider the reaction represented above that occurs at 25°C. All reactants and products are in their standard states. The value of the equilibrium constant, Keq, for the reaction is 4.2 × 1017 at 25°C.

a. Predict the sign of the standard cell potential, E°, for a cell based on the reaction. Explain your prediction.

b. Identify the oxidizing agent for the spontaneous reaction.

c. If the reaction were carried out at 60°C instead of 25°C, how would the cell potential change? Justify your answer.

48

Page 49: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

d. How would the cell potential change if the reaction were carried out at 25°C with a 1.0 M solution of Mg(NO3)2 and a 0.10 M solution of Sr(NO3)2? Explain.

e. When the cell reaction in part d reaches equilibrium, what is the cell potential?

(a) two points

The sign of the cell potential will be positivebecause (any one is sufficient):K is greater than 1the reaction is spontaneous (occurs)E° for Sr2+ is more positiveStandard reduction potential for Sr more negativeE° = + 0.52 V Note: only 1 point earned for just E° positive because Keq positive.

(b) one pointThe oxidizing agent is Mg2+

(c) two pointThe cell potential would increaseSince all ions are at 1 M, Q for the system is 1 and E° = (RT/nF) ln Kso as T increases, so should E°Note: no credit lost if student recognizes Keq dependence on T. For temperature change in this problem, decrease in ln K term is small relative to the term RT/nF

ORNo change, because in the Nernst equation Ecell = E° - (RT/nF) ln Qln Q = 0, and Ecell = E°Note: this second approach earns 1 point only

(d) two pointsEcell will increaseIn the equation Ecell = E° - (0.0592 / n) log QQ = 0.1 therefore log Q is negative therefore term after E° is positive therefore Ecell increases

ORwith the concentration of Mg2+ larger than that of Sr2+, Le Chatelier's principle predicts the reaction will have a larger driving force to the right and a more positive Ecell

(e) one pointAt equilibrium, Ecell = 0Note: "balanced", "neutral", or "no net reaction" not accepted

49

Page 50: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

1998 #8

Answer the following questions regarding the electrochemical cell shown above. a. Write the balanced net-ionic equation for the spontaneous reaction that occurs as

the cell operates, and determine the cell voltage.

b. In which direction do anions flow in the salt bridge as the cell operates? Justify your answer.

c. If 10.0 mL of 3.0-molar AgNO3 solution is added to the half-cell on the right, what will happen to the cell voltage? Explain.

d. If 1.0 grams of solid NaCl is added to each half-cell, what will happen to the cell voltage? Explain.

e. If 20.0 mL of distilled water is added to both half-cells, the cell voltage decreases. Explain.

8 pointsa) 2 Ag+(aq) + Cd(s) 2 Ag(s) + Cd2+(aq)1 point equation must be balanced and net ionic, phases not necessaryreaction direction and ion charges must be correct

50

Page 51: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

0.80 - (-0.40) = 1.20 V evidence of where numbers came from should be present; if equation is exactly reversed, -1.20 V earns the point 1 point

b) Anions (or N03- ions) will flow to the Cd2+ solution or from the Ag+ solution to

balance the charges OR Anions will flow to the left to balance the positive charge of the new Cd2+ ions both the correct direction and justification needed to earn this point direction may be indicated by arrow marked on diagram 1 point

c) The cell voltage will increase. 1 pointAg+ is a reactant, so increasing [Ag+] will increase the driving force (stress) for the forward (spontaneous) reaction and the potential will increase OR 1 point Since Q = [Cd2+]/[Ag+]2, increasing [Ag+] will decrease Q. According to the Nernst equation, E = E0 - (0.0592 log Q / n , if Q decreases, then voltage increases.

d.) The cell voltage will decrease. 1 point

Adding NaCl will have no effect on the Cd cell, but will cause AgCl to precipitate in the Ag cell (Ag+ + Cl- AgCl). Thus [Ag+] decreases, and since Ag+ is a reactant, decreasing [Ag+] causes a decrease in voltage. 1 pointCredit earned for decreasing [Ag+] results in decreased voltage or opposite of part c

e) Since Q = [Cd2+]/ [Ag+]2 , diluting both solutions by the same amount will increase the value of Q. According to the Nernst equation, E = E0 - (0.0592 log Q )/n , if Q increases, then voltage decreases. , No credit earned for "since the solutions are diluted, the voltage will decrease"

2002 # 2

Answer parts (a) through (e) below, which relate to reactions involving silver ion, Ag+.

The reaction between silver ion and solid zinc is represented by the following equation

2 Ag+(aq) + Zn(s) Zn2+(aq) + 2 Ag(s)

a. A 1.50 g sample of Zn is combined with 250. mL of 0.110 M AgNO3 at 25 oC.

i. Identify the limiting reactant. Show calculations to support your answer.

51

Page 52: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii. On the basis of the limiting reactant that you identified in part (i), determine the value of [Zn2+] after the reaction is complete. Assume that volume change is negligible.

b. Determine the value of the standard potential, Eo, for a galvanic cell based on the reaction between AgNO3(aq) and solid Zn at 25 oC.

Another galvanic cell is based on the reaction between Ag+(aq) and Cu(s), represented by the equation below. At 25 oC, the standard potential, Eo, for the cell is 0.46 V.

2 Ag+(aq) + Cu(s) Cu2+(aq) + 2 Ag(s)

c. Determine the value of the standard free-energy change, Go, for the reaction between Ag+(aq) and Cu(s) at 25 oC.

d. The cell is constructed so that [Cu2+] is 0.045 M and [Ag+] is 0.010 M. Calculate the value of the potential, E, for the cell.

e. Under the conditions specified in part (d), is the reaction in the cell spontaneous? Justify your answer.

Total Score 10 points

a.) i. n(Zn) = 1.50 g Zn ( 1 mol Zn65 .4 g Zn )

= 2.29 × 10-2 mol Zn

n(Ag+) = 0.250 L ( 0 .110 mol Ag+

1 L ) = 2.75 × 10-2 mol Ag+

n(Ag+) = 1.50 g Zn ( 1 mol Zn65 . 4 g Zn )( 2 mol Ag+

1 mol Zn2+ ) = 4.59 × 10-2 mol Ag+ required

Since only 2.75 × 10-2 mol Ag+ available, Ag+ is the limiting reactant.OR

n(Ag+) = 0.250 L ( 0 .110 mol Ag+

1 L ) = 2.75 × 10-2 mol Ag+

n(Zn) = 2.75 × 10-2 mol Ag+( 1 mol Zn2 mol Ag+ )

= 1.38 × 10-2 mol Zn requiredSince 2.29 × 10-2 mol Zn are available, more is available than required, so Znis in excess and Ag+ is limiting.(Correct solutions other than shown above earn both points.)•1 point earned for the moles of one reactant and the proper stoichiometry•1 point earned for the limiting reactant and the supporting calculation or explanation

52

Page 53: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii. n(Zn2+) = 2.75 × 10-2 mol Ag+( 1 mol Zn2+

2 mol Ag+ )= 1.38 × 10-2 mol Zn2+

1. 38×10-2 mol Zn2+

0.250 L = 0.0550 M Zn2+

OR[Ag+]initial = 0.110 M , therefore [Zn2+] = (1/2) (0.110 M) = 0.0550 M1 point earned for mol Zn2+

1 point earned for [Zn2+]OR2 points earned for [Zn2+]**********************************************************If the student concludes Zn is the limiting reactant, then

1.50 g Zn ( 1 mol Zn65 .4 g Zn )( 1 mol Zn2+

1 mol Zn )= 2.29 × 10-2 mol Zn2+ formed

2. 29 ×10 -2 mol Zn2+

0. 250 L = 0.0916 M Zn2+

1 point earned for mol Zn2+

1 point earned for [Zn2+]

b.) E°cell = E°(reduction) − E°(reduction)= (0.80 V) − (−0.76 V) = 1.56 V2 Ag+(aq) + Zn(s) → Zn2+(aq) + 2 Ag(s) +1.56 VORAg+(aq) + e- → Ag(s) +0.80 VZn(s) → Zn2+(aq) + 2 e- +0.76 V2 Ag+(aq) + Zn(s) → Zn2+(aq) + 2 Ag(s) +1.56 V1 point earned for correct E°

c) ΔG° = –nFE°ΔG° = (–2 mol e-)(96,500 J V-1 mol-1)(+0.46 V)ΔG° = – 89,000 J or – 89 kJ (units required)1 point earned for n and E° in the correct equation1 point earned for correct value and sign of ΔG°

d) Ecell=E°–(RT/nF) lnQ =E°–(RT/nF) ln([Cu2+]/[Ag+]2) = Eo−(0.0592/n) log([Cu2+]/[Ag+]2)Note: Q must include only ion concentrations

Ecell = +0.46 V –

8 .314 J mol -1 · K -1 · 298 K2 mol e− · 96500 J V-1 · mol-1 ln( 0 .045

[0 . 010 ]2 )Ecell = +0.46 V – 0.0128 V ln 450 = +0.46 V – 0.0128 V · 6.11 = +0.46 V – 0.0782 VEcell = +0.38 V

53

Page 54: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

1 point earned for correct substitution1 point earned for correct answer

e) Ecell = +0.38 V. The cell potential under the non-standard conditions in part (d) is positive. Therefore the reaction is spontaneous under the conditions stated in part (d). A correct reference (from answer in part (d)) to a negative ΔG (not ΔG°) is acceptable. If no answer to (d) is given, students must make an assumption or a general statement about Ecell, not E°.1 point earned for correct answer and correct explanation

2001 # 7

Answer the following questions that refer to the galvanic cell shown in the diagram below. (A table of standard reduction potentials is printed on the green insert and on page 4 of the booklet with the pink cover.)

a. Identify the anode of the cell and write the half-reaction that occurs there.

b. Write the net ionic equation for the overall reaction that occurs as the cell operates and calculate the value of the standard cell potential, Eo

cell.

c. Indicate how the value of Ecell would be affected if the concentration of Ni(NO3)2(aq) was changed from 1.0 M to 0.10 M and the concentration of Zn(NO3)2(aq) remained at 1.0 M. Justify your answer.

d. Specify whether the value of Keq for the cell reaction is less than 1, greater than 1, or equal to 1. Justify your answer.

(8 points)(a) The anode is the electrode on the right (Zn is the anode) 1 point· Point is also earned if the student points to the Zn cell in the diagram.The half-reaction is Zn → Zn2+ + 2 e- 1 point

54

Page 55: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(b) Zn + Ni2+ → Zn2+ + Ni 1 pointEo

cell = (-0.25 V) - (-0.76 V) = 0.51 V 1 point· Some work must be shown to support the answer.(c) Ecell would decrease 1 pointSince Ni2+ is a reactant, a decrease in its concentration decreases the driving force for the forward reaction 1 pointor

Ecell = E° - (RT/n) ln Q , where Q =

[ Zn2+ ][ Ni2+ ]

Decreasing [Ni2+] would increase the value of Q, so a larger number would be subtracted from E°, thus decreasing the value of Ecell.(d) K > 1 1 pointE° is positive, so K > 1 1 pointNote: The student’s score in part (d) is based on the sign of Eo

cell calculated in part (b).Note on Overall Question: If in part (a) a student incorrectly identifies Ni as being oxidized, partial credit is earned if subsequent parts are followed through consistency.

2003B # 6

Answer the following questions about electrochemistry.

a. Several different electrochemical cells can be constructed using the materials shown below. Write the balanced net-ionic equation for the reaction that occurs in the cell that would have the greatest positive value of Ecell

o.

b. Calculate the standard cell potential, Ecell

o, for the reaction written in part a.

c. A cell is constructed based on the reaction in part a above. Label the metal used for the anode on the cell shown in the figure below.

55

Page 56: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

d. Of the compounds, NaOH, CuS, and NaNO3, which one is appropriate to use in a salt bridge? Briefly explain your answer, and for each of the other compounds, include a reason why it is not appropriate.

e. Another standard cell is based on the following reaction.

Zn + Pb2+ Zn2+ + Pb

If the concentration of Zn2+ is decreased from 1.0 M to 0.25 M, what effect does this have on the cell potential? Justify your answer.

9 pointsa. Al(s) → Al3+ + 3 e-

Cu2+ + 2 e- → Cu(s)2 Al + 3 Cu2+ → 2 Al3+ + 3 Cu1 point for selection of correct two redox couples1 point for correctly balanced net ionic equation

b. Al3+ + 3 e- → Al Eo = -1.66 VCu2+ + 2 e- → Cu Eo = +0.34 VEcell = Ecathode – Eanode = +0.34 V – (-1.66 V) = +2.00 V 1 point

c. The metal is aluminum solid 1 point d. NaOH is not appropriate. The anion, OH-, would migrate towards the

anode. The OH- would react with the Al3+ ion in solutionCuS is not appropriate. It is insoluble in water, so no ions would be available to migrate to the anode and cathode compartment to balance the charge.NaNO3 is appropriate. It is soluble in water, and neither the cation or the anion will react with the ions in the anode or cathode compartment.1 point for correctly indicating whether each compound is appropriate, along with an explanation (3 points total)

56

Page 57: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

e. Ecell = Ecello – 0.059 ln ([Zn2+] / [Pb2+])If [Zn2+] is reduced, then the ratio is < 1, therefore ln (ratio) <0, and Ecell

increases (becomes more positive)1 point for correctly indicating how Ecell is affected1 point for explanation in term of Nernst equation and Q

Multiple Choice Questions

1999 #20 What mass of Au is produced when 0.0500 mol of Au2S3 is reduced completely with excess H2?

A) 9.85 gB) 19.7 g (55%)C) 24.5 gD) 39.4 gE) 48.9 g

1999 #57M(s) + 3 Ag+(aq) 3 Ag(s) + M3+(aq) E = +2.46 V Ag+(aq) + e- Ag(s) E = +0.80 V

According to the information above, what is the standard reduction potential for the half-reaction M3+(aq) + 3 e- M(s)?

A) -1.66 V (44%)B) -0.06 VC) 0.06 VD) 1.66 VE) 3.26 V

2002 #38 A 0.10 M aqueous solution of sodium sulfate, Na2SO4, is a better conductor of electricity than a 0.10 M aqueous solution of sodium chloride, NaCl. Which of the following best explains this observation?

A) Na2SO4 is more soluble in water than NaCl is.B) Na2SO4 has a higher molar mass than NaCl has.C) To prepare a given volume of 0.10 M solution, the mass of Na2SO4 needed is more than twice the mass of NaCl needed.D) More moles of ions are present in a given volume of 0.10 M Na2SO4 than in the same volume of 0.10 M NaCl. (61%)E) The degree of dissociation of Na2SO4 in solution is significantly greater than that of NaCl.

2008 #44 Cl2(g) + 2 I-(aq) 2 Cl-(aq) + I2(aq)Which of the following best accounts for the fact that a galvanic cell based on the reaction represented above will generate electricity?

57

Page 58: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

A) Cl2 can easily lose two electrons.B) Cl2 is a stronger oxidizing agent than I2 (48%)C) I atoms have more electrons than do atoms of ClD) I- is a more stable species than I2

E) I2(s) is more soluble than Cl2(g)

2008 #74 An electric current of 1.00 ampere is passed through an aqueous solution of Ni(NO3)2. How long will it take to plate out exactly 1.00 mol of nickel metal, assuming 100 percent current efficiency? (1 faraday = 96,500 coulombs = 6.02 × 1023 electrons)

A) 386,000 secB) 193,000 sec (24%)C) 96,500 secD) 48,200 secE) 24,100 sec

58

Page 59: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concepts - THERMODYNAMICS

1. ∆H0 rxn = ∑ ∆ Hf 0Products - ∑∆ Hf0 Reactants

= ∑ Bond Energy Reactants - ∑ Bond energy Products

∆Hrxn - exothermic ∆Hrxn + endothermic

2. ∆S0 rxn = ∑ Sf0 Products - ∑ Sf

0 Reactants

∆S0rxn - ordered ∆S0

rxn + disordered

3. ∆G0 rxn = ∆H0rxn - T ∆S 0

rxn

∆G0rxn - spontaneous ∆G0

rxn + nonspontaneous

4. ∆G0rxn = - RT ln Q Q = Keq free energy and equilibrium

5. ∆G0 rxn = - nF E0 free energy and electrochemistry

F = 96,500 coulombs / mole electrons Faraday’s constant

6. Phase diagrams

7. ∆H rxn = q = m ( c ) ( ∆T )

59

Page 60: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions1998 # 3

C6H5OH(s) + 7 O2(g) → 6 CO2(g) + 3H2O(l)

When a 2.000-gram sample of pure phenol, C6H5OH(s), is completely burned according to the equation above, 64.98 kilojoules of heat is released. Use the information in the table below to answer the questions that follow.

Substance Standard Heat of Formation, ΔH°f, at 25°C (kJ/mol) Absolute Entropy, S°, at 25°C (J/mol-K)

C(graphite) 0.00 5.69 CO2(g) -395.5 213.6 H2(g) 0.00 130.6 H2O(l) -285.85 69.91 O2(g) 0.00 205.0 C6H5OH(s) ? 144.0

a. Calculate the molar heat of combustion of phenol in kilojoules per mole at 25°C.

b. Calculate the standard heat of formation, ΔH°f, of phenol in kilojoules per mole at 25°C.

c. Calculate the value of the standard free-energy change, ΔG° for the combustion of phenol at 25°C.

d. If the volume of the combustion container is 10.0 liters, calculate the final pressure in the container when the temperature is changed to 110°C. (Assume no oxygen remains unreacted and that all products are gaseous.)

9 points

a)2 .000 g× 1 mol

94 . 113 g=0 . 02125 mol phenol

1 point

Heat released per mole =64 .98 kJ

0 .02125 mol=3 ,058 kJ mol−1

Or, ΔHcomb = -3058 kJ mol-1 1 pointUnits not necessaryb) ΔHcomb = -3058 kJ mol-1 1 point-3058 kJ = [6(-395.5) + 3(-285.85)] – [ΔHf

o (phenol)] 1 pointΔHf

o (phenol) = -161 kJ 1 pointOne point earned for correct sign of heat of combustion, one point for correct use of moles / coefficients, and one point for correct substitution

60

Page 61: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c) ΔSo = [3(69.91) + 6(213.6)] [7(205.0) + 144.0] = -87.67 J/K 1 pointΔGo = ΔHo - TΔSo = 3058 kJ – (298 K)(-0.08767 kJ K-1) = -3032 kJ 1 pointUnits not necessary; no penalty if correct except for wrong ΔHcomb for part ad) moles gas = 9 × [moles from part a] = 9 (0.02125 mol) = 0.1913 moles gas

P=nRTV

=(0. 1913 mol )(0 . 0821 L atm mol−1 K−1 )(383 K )10. 0 L

=0. 601 atm1 point

Units necessary; no penalty for using Celcius temperature if also lost point in part c for same error

1996 #3

C2H2(g) + 2 H2(g) → C2H6(g) Information about the substancesSubstance S° (J/mol K) ΔH°f (kJ/mol) Bond Bond Energy (kJ/mol)

C2H2(g) 200.9 226.7 C-C 347H2(g) 130.7 0 C=C 611C2H6(g) -------- -84.7 C-H 414

H-H 436

a. If the value of the standard entropy change, ΔS°, for the reaction is -232.7 joules per mole Kelvin, calculate the standard molar entropy, S°, of C2H6 gas.

b. Calculate the value of the standard free-energy change, ΔG°, for the reaction. What does the sign of ΔG° indicate about the reaction above?

c. Calculate the value of the equilibrium constant, K, for the reaction at 298 K.

d. Calculate the value of the C ≡C bond energy in C2H2 in kilojoules per mole.

(a) two points; one for line of answer- 232.7 J/K = S° (C2H6) - (261.4 + 200.9) J./KS° (C2H6) = 229.6 J/Kunits ignored; 1 point earned for 98.9 J/K; 1 point lost if stoichiometry is not implied in process

(b) three points total; one point each portion; any value for T (e.g., 273 K or 298 K) is allowable:ΔH° = (- 84.7 kJ) - (226.7 kJ) = -311.4kJΔG°= - 311.4kJ - (298 K) (- 0.2327kJ/K)ΔG°= - 311.4 kJ + 69.3 kJΔG°= - 242.1 kJ

61

Page 62: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Negative ΔG° therefore reaction is spontaneous, or Keq > 1 therefore reaction is spontaneous, or products are favored at equilibrium.

(c) two points ln K = 242.1 ÷ [(8.31 × 10-3) (298)] = 97.7K = 3 × 1042 (1,2,or 3 significant figures acceptable)

(d) two points; first point earned for correct substitution and correct number of bonds, second point earned for setting equal to ΔHrxn and correct calculation of answer; no points earned for "extrapolation" techniques to find carbon-carbon triple bond energy; E* is the energy of the carbon-carbon triple bond.- 311.4 kJ = [(2) (436) + E* + (2) (414)] - [(347) + (6) (414)]E* = 820 kJ

1997 #7

For the gaseous equilibrium represented below, it is observed that greater amounts of PCl3 and Cl2 are produced as the temperature is increased.

PCl5(g) PCl3(g) + Cl2(g)

a. What is the sign of ΔS° for the reaction? Explain.

b. What change, if any, will occur in ΔG° for the reaction as the temperature is increased. Explain your reasoning in terms of thermodynamic principles.

c. If He gas is added to the original reaction mixture at constant volume and temperature, what will happen to the partial pressure of Cl2? Explain.

d. If the volume of the original reaction is decreased at constant temperature to half the original volume, what will happen to the number of moles of Cl2 in the reaction vessel? Explain.

(a) S° is positive (or "+", or ">0") 1 point Moles products > moles reactants 1 point Note; all species are gaseous, so (g) need not be indicated. To earn credit, number of particles (moles) must be discussed. No explanation point earned for just noting that disorder increases, or that PCl5 is decomposing or dissociating. (b) G° will decrease (or become more negative, or become smaller). 1 point G° = H° - TS°and since S° is positive, TS° is positive ( > 0). Thus increasing T will result in a larger term being subtracted from H°, or, G° = -RT ln K and K is going up in value since T is increasing.) Note: full credit earned for part (b) if:

62

Page 63: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

S° < 0 in part (a) which leads to G° is increasing because TS° is added to H°, or, S° = 0 in part (a) which leads to no change in G° (c) no change (one point) PHe is not part of the a) reaction (He is not involved) or, b) law of mass action or, c) reaction quotient or, d) equilibrium constant expression; one point hence altering PHe has no effect on the position at equilibrium (d) moles of Cl2 will decrease (one point) The decrease in volume leads to an increase in pressure (concentration), therefore the reaction shifts to the left because: (one point for any of the following)Q > Ksp (Q > Kc, or,the rate of the reverse reaction increase more than the rate of the forward reaction, or,the reaction shifts toward the lesser moles of gas. Note: "LeChatelier's principle" alone is not sufficient to earn the explanation point. If response suggests that the number of moles of Cl2 is halved because the system is "cut" in half, only one point is earned.

1999 # 6

Answer the following questions in terms of thermodynamic principles and concepts of kinetic molecular theory.

a. Consider the reaction represented below, which is spontaneous at 298 K.

CO2(g) + 2 NH3(g) → CO(NH2)2(s) + H2O(l); ΔH°298 = -134 kJ

i. For the reaction, indicate whether the standard entropy change, ΔS°298, is positive, or negative, or zero. Justify your answer.

ii. Which factor, the change in enthalpy, ΔH°298, or the change in entropy, ΔS°298, provides the principal driving force for the reaction at 298 K? Explain.

iii. For the reaction, how is the value of the standard free energy change, ΔG°, affected by an increase in temperature? Explain.

b. Some reactions that are predicted by their sign of ΔG° to be spontaneous at room temperature do not proceed at a measurable rate at room temperature.

i. Account for this apparent contradiction.

ii. A suitable catalyst increases the rate of such a reaction. What effect does the catalyst have on ΔG° for the reaction? Explain.

63

Page 64: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(a)(i) ΔS° is negative (−) OR ΔS° < 0 OR entropy is decreasing. 1 point3 moles of gaseous particles converted to 2 moles of solid/liquid. 1 point• One point earned for correct identification of (−) sign of ΔS°• One point earned for correct explanation (mention of phases is crucial for point)• No point earned if incorrect ΔS° sign is obtained from the presumed value of ΔG°

(ii) ΔH° drives the reaction. 1 pointThe decrease in entropy (ΔS° < 0) cannot drive the reaction, so the decrease in enthalpy (ΔH° < 0) MUST drive the reaction.ORΔG° = ΔH° − TΔS°; for a spontaneous reaction ΔG° < 0, and a negative value of ΔS° causes a positive ΔG°. 1 point• One point earned for identifying ΔH° as the principal driving force for the reaction• One point earned for correct justification• Justification point earned by mentioning the effects of changes in entropy and enthalpy on the spontaneity of the reaction OR by a mathematical argument using the Gibbs-Helmholtz equation and some implication about the comparison between the effects of ΔS° and ΔH°

(iii) Given that ΔG° = ΔH° − TΔS° and ΔS° < 0, an increase in temperature causes an increase in the value of ΔG° (ΔG° becomes less negative).

1 point• One point earned for the description of the effect of an increase in temperature on ΔS° and consequently on ΔG°• No point earned for an argument based on Le Châtelier.s principle

(b)(i) The reaction rate depends on the reaction kinetics, which is determined by the value of the activation energy, Eact. If the activation energy is large, a reaction that is thermodynamically spontaneous may proceed very slowly (if at all). 1 point• One point earned for linking the rate of the reaction to the activation energy, which may be explained verbally or using a reaction profile diagram

(ii) The catalyst has no effect on the value of ΔG°. 1 pointThe catalyst reduces the value of Eact, increasing the rate of reaction, but has no effect on the values of ΔH° and ΔS°, so it cannot affect the thermodynamics of the reaction. 1 point• One point earned for indicating no change in the value of ΔG°• One point earned for indicating (verbally, or with a reaction-profile diagram) that the catalyst affects the activation energy

2002 # 8

64

Page 65: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Carbon (graphite), carbon dioxide, and carbon monoxide form an equilibrium mixture, as represented by the equation

C(s) + CO2(g) 2CO(g)

a. Predict the sign for the change in entropy, S, for the reaction. Justify your prediction.

b. In the table below are data that show the percent of CO in the equilibrium mixture at two different temperatures. Predict the sign for the change in enthalpy, H, for the reaction. Justify your prediction.

Temperature % CO700 oC 60850 oC 94

c. Appropriately complete the potential energy diagram for the reaction by finishing the curve on the graph below. Also, clearly indicate H for the reaction on the graph.

d. If the initial amount of C(s) were doubled, what would be the effect on the percent of CO in the equilibrium mixture? Justify your answer.

a) ΔS = +; There is more disorder in a gas than in a solid, so the product is more disordered than the reactants. The change in entropy is therefore positive.ORThere is 1 mole of gas in the reactants and 2 moles of gas in the product.1 point earned for indicating that ΔS is positive1 point earned for explanation

65

Page 66: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

b) ΔH = +; More CO at the higher temperature indicates that the reaction shifts to the right with increasing temperature. For this to occur, the reaction must be endothermic.1 point earned for indicating that ΔH is positive1 point earned for explanation

c) 1 point earned for completing the graph according to the information in part (b)1 point earned for appropriately labeling ΔHrxn for the reaction as drawn

d) An increase in the amount of C(s) has no effect. Solids do not appear in the equilibrium expression, so adding more C(s) will not affect the percent of CO in the equilibriummixture.1 point earned for indicating no effect1 point earned for explanationNote: Since the question asks about “percent of CO” a student might think of % by mass or % by mole.Adding carbon will not shift the equilibrium, so P(CO) and P(CO2) stay the same. The % CO then decreases, because now there are more total moles in the system: % CO = nCO/(nCO + nCO2 + nC). As nC is raised, the denominator increases, and % CO decreases.

2010#2

(a) Determine the change in temperature of the solution that results from the dissolution of the urea.

(b) According to the data, is the dissolution of urea in water an endothermic process or an exothermic process? Justify your answer.

The process is endothermic. The decrease in temperature indicates that the process for the dissolution of urea in water requires energy.

One point is earned for the correct choice with justification.

(c) Assume that the specific heat capacity of the calorimeter is negligible and that the specific heat capacity of the solution of urea and water is 4.2 J g−1 °C−1 throughout the experiment.

(i) Calculate the heat of dissolution of the urea in joules.Assuming that no heat energy is lost from the calorimeter and given that the calorimeter has a negligible heat

One point is earned for the correct setup.

66

ΔT = 21.8 − 25.0 = −3.2 Celsius degrees One point is earned for the correct temperature change.

Page 67: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

capacity, the sum of the heat of dissolution, qsoln and the change in heat energy of the urea-water mixture must equal zero.

qsoln + mcΔT = 0 ⇒ qsoln = − mcΔT msoln = 5.13 g + 91.95 g = 97.08 g qsoln = −(97.08 g)(4.2 J g −1°C−1)(−3.2°C) = 1.3 × 103 J

One point is earned for the correct numerical result for the heat of dissolution.

(ii) Calculate the molar enthalpy of solution, ΔHsolno, of urea in kJ mol−1.

ΔHsolno = qsoln / mol solute

molar mass of urea = 4(1.0) + 2(14.0) + 12.0 + 16.0 = 60.0 g mol−1

moles of urea=5.13 g urea ×1 mol urea / 60.0 g urea=0.0855mol

ΔHsolno = 1.3 × 103 J / 0.0855 mol = 1.5 × 104 J mol-1 = 15 kJ mol-

1

One point is earned for the calculation of moles of urea.

One point is earned for the correct numerical result with correct algebraic sign.

(d) Using the information in the table below, calculate the value of the molar entropy of solution, ΔSsoln

o, of urea at 298 K. Include units with your answer.

ΔG° = ΔH°−TΔS°

− 6.9 kJ mol-1 = 14.0 kJ mol-1− (298 K)(ΔS°)

ΔSsolno = 0.0701 kJ mol-1 K-1 = 70.1 J mol-1 K-1

One point is earned for the correct setup.

One point is earned for the correct numerical result with correct units.

(e) The student repeats the experiment and this time obtains a result for ΔHsolno of urea

that is 11 percent below the accepted value. Calculate the value of ΔHsolno that the student

obtained in this second trial.

Error = (0.11)(14.0 kJ mol−1) = 1.54 kJ mol−1

14.0 kJ mol−1 − 1.54 kJ mol−1 = 12.5 kJ mol−1

One point is earned for the correct numerical result.

(f) The student performs a third trial of the experiment but this time adds urea that has been taken directly from a refrigerator at 5°C. What effect, if any, would using the cold urea instead of urea at 25°C have on the experimentally obtained value of ΔHsoln

o? Justify your answer.

There would be an increase in the obtained value for ΔHsolno

because the colder urea would have caused a larger negative temperature change.

One point is earned for the correct prediction with justification.

67

Page 68: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Multiple Choice Questions

1999 #61 C2H4(g) + 3 O2(g) 2 CO2(g) + 2 H2O(g) For the reaction of ethylene represented above, H is - 1,323 kJ. What is the value of H if the combustion produced liquid water H2O(l), rather than water vapor H2O(g)? (H for the phase change H2O(g) H2O(l) is -44 kJ mol-1.)

A) -1,235 kJB) -1,279 kJC) -1,323 kJD) -1,367 kJE) -1,411 kJ (31%)

2002 #25 3 C2H2(g) C6H6(g)

What is the standard enthalpy change, ΔHo, for the reaction represented above? (ΔHof of

C2H2(g) is 230 kJ mol-1; ΔHof of C6H6(g) is 83 kJ mol-1.)

A) -607 kJ (66%)B) -147 kJC) -19 kJD) +19 kJE) +773 kJ

1999 #22 Of the following reactions, which involves the largest decrease in entropy?

A) CaCO3(s) CaO(s) + CO2(g)B) 2 CO(g) + O2(g) 2 CO2(g)C) Pb(NO3)3 + 2 KI PbI2 + 2 KNO3

D) C3H8 + 5O2 3 CO2 + 4 H2O(l)E) 4 La + 3 O2 2 La2O3 (68%)

2002 #41 When solid NH4SCN is mixed with solid Ba(OH)2 in a closed container, the temperature drops and a gas is produced. Which of the following indicates the correct signs for ΔG, ΔH, and ΔS for the process?

Δ G Δ H Δ S

A) - - -B) - + -C) - + + (43%)D) + - +E) + - -

68

Page 69: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

2002 #73 X(s) X(l)

Which of the following is true for any substance undergoing the process represented above at its normal melting point?

A) ΔS < 0B) ΔH = 0C) ΔH = TΔGD) TΔS = 0E) ΔH = TΔS(34%)

69

Page 70: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concepts - ATOMIC THEORY, BONDING AND INTERMOLECULAR FORCES

1. Quantum Numbers, electron configurations, Hund’s rule, orbital diagrams

2. ionic bonds

3. Covalent bonds, Lewis structures, geometric shapes, bond polarity, molecular polarity, resonance, hybridization, London dispersion forces (LDF), inter vs. intramolecular forces

4. Trends of the periodic table - a) size for atoms b) size of ions, c) IE, EA, EN

5. Effective nuclear charge (Zeff ) increases as more protons added to same energy level Zeff is a comparison tool.

6. Effective nuclear charge (Zeff ) decreases as more shielding electrons are present.

7. Intermolecular Forces (IMF) are between molecules and help explain differences in FP, BP, solids, liquids, gases, and solubilities.

a. ion – ionb. dipole – dipole with H bondingc. dipole – dipoled. London dispersion forces ( LDF )

8. When students talk about EN differences they are talking about bonds (within a molecule) , we need them to talk about IMF (between molecules )

9. Students often talk about atoms “wanting to gain/lose electrons”, being happy, Full, rather than having a stable octet, complete energy level.

70

Page 71: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions1996 # 9

Explain each of the following in terms of the electronic structure and/or bonding of the compounds involved.

a. At ordinary conditions, HF (normal boiling point = 20°C) is a liquid, whereas HCl (normal boiling point = -114°C) is a gas.

b. Molecules of AsF3 are polar, whereas molecules of AsF5 are nonpolar.

c. The N-O bonds in the NO2¯ ion are equal in length, whereas they are unequal in HNO2.

d. For sulfur, the fluorides SF2, SF4, and SF6 are known to exist, whereas for oxygen only OF2 is known to exist.

(a) two pointsHydrogen bonding (or dipole-dipole attraction) in HF is greater than it is in HCl Note: only one point earned if simply stated that HF has greater intermolecular forces than HCl

(b) two pointsAsF3 has a trigonal pyramid shape and bond dipoles do NOT cancel (or asymmetric molecule)AsF5 has a trigonal bipyramid shape and bond dipoles cancel (or symmetric shape)Notes: explanation must refer to shape in order to earn point; one point earned if only correct Lewis structures are given.

(c) two pointsNO2

-has resonance structures

HNO2 has no resonance structures

ORone N-O single bond, one N=O double bondNote: one point earned if only correct Lewis structures, including resonance for NO2

-given.

(d) two pointsSulfur uses d orbitals (or expanded octet), oxygen has no d orbitals in its valence shell

ORSulfur is a larger atom, can accomodate more bonds.

71

Page 72: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

1999 # 8

Answer the following questions using principles of chemical bonding and molecular structure. a. Consider the carbon dioxide molecule, CO2 , and the carbonate ion, CO3

2-.i. Draw the complete Lewis electron-dot structure for each species.

ii. Account for the fact that the carbon-oxygen bond length in CO32- is greater

than the carbon-oxygen bond length in CO2.

b. Consider the molecules CF4 and SF4.i. Draw the complete Lewis electron-dot structure for each molecule.

ii. In terms of molecular geometry, account for the fact that the CF4 molecule is nonpolar, whereas the SF4 molecule is polar.

1997 # 6

Explain each of the following observations using principles of atomic structure and/or bonding.

a. Potassium has a lower first-ionization energy than lithium.

b. The ionic radius of N3- is larger than that of O2-.

c. A calcium atom is larger than a zinc atom.

d. Boron has a lower first-ionization energy than beryllium.

a) Response must contain a cogent discussion of the forces between the nucleus and the outermost (or "ionized") electron. For example, a discussion of "the outermost electron on K..." should include one of the following: i. it is farther from nucleus than the outermost electron on Liii. it is more shielded from the nucleus (or "experiences a lower effective nuclear charge") than the outermost electron on Liiii. it is in a higher energy orbital (4s) than tne outermost electron on Li (2s)."2 points for any one Notes:"K is larger than Li" earns 1 point. No points earned for "K electron is easier to remove" (or some other restatement). b) Nitrogen has one less proton than oxygen 1 point Nitride and oxide ions are isoelectronic 1 point or, In nitride ion the electron/proton ratio is greater, causing more repulsion; thus, nitride is the larger ion. 2 points c) A Zn atom has more protons (10 more) than an atom of Ca 1 point

72

Page 73: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Electrons in d orbitals of Zn have a lower principal quantum number; thus, they are not in orbitals that are farther from the nucleus. 1 point d) Correct identification of the orbitals involved (2s versus 2p) 1 point Clear statement that the two orbitals have different energies 1 point Note: Arguments that "the 2p orbital is farther out than the 2s orbital", or that "the Be atom has a filled subshell, which is a more stable configuration" earn no explanation point. General note:For all parts (a) through (d), discussions of position in the periodic table earn no points.

2000 # 7

Answer the following questions about the element selenium, Se (atomic number 34).

a. Samples of natural selenium contain six stable isotopes. In terms of atomic structure, explain what these isotopes have in common, and how they differ.

b. Write the complete electron configuration (e.g., 1s2 2s2 … etc.) for a selenium atom in the ground state. Indicate the number of unpaired electrons in the ground-state atom, and explain your reasoning.

c. In terms of atomic structure, explain why the first ionization energy of selenium is

i. less than that of bromine (atomic number 35), and

ii. greater than that of tellurium (atomic number 52).

d. Selenium reacts with fluorine to form SeF4. Draw the complete Lewis electron-dot structure for SeF4 and sketch the molecular structure. Indicate whether the molecule is polar or nonpolar, and justify your answer.

(8 points)(a) The isotopes have the same number (34) of protons, 1 pointbut a different number of neutrons. 1 point• No comment about the number of electrons is necessary(b) 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p4

or 1 point1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4

• No point is earned for [Ar] 4s2 3d10 4p4, because the question specifically asks for a complete electron configuration.Since there are three different 4p orbitals, must be two unpaired electrons.1 pointNotes: The second part should have some explanation of Hund’s rule, and may include a diagram. The second point can still be earned even if the first point is not IF the electron configuration is incorrect, but the answer for the second part is consistent with the electron configuration given in the first part.

73

Page 74: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(c) (i) The ionized electrons in both Se and Br are in the same energy level, but Br has more protons than Se, so the attraction to the nucleus is greater. 1 pointNote: There should be two arguments in an acceptable answer -- the electrons removed are from the same (4p) orbital and Br has more protons (a greater nuclear charge) than Se.(ii) The electron removed from a Te atom is in a 5p orbital, while the electron removed from an Se atom is in a 4p orbital. The 5p orbital is at a higher energy than the 4p orbital, thus the removal of an electron in a 5p orbital requires less energy. 1 point

(d) Figure showing the see-saw structure of SF4. 1 pointNotes: One point earned for a correct Lewis diagram and a sketch. The Lewis diagram and the molecular structure may be combined into one sketch if both aspects (electron pairs and structure) are correct. Dots, lines, or a mixture of both can be used in the Lewis diagram. The lone pair of electrons need not be shown in the sketch -- just the atomic positions. No credit earned for just a verbal description of molecular geometry (“see-saw”, “saw-horse”, or something “distorted”), because the question clearly asks the student to “sketch the molecular structure”.The SeF4 molecule is polar, because the polarities induced by the bonds and the lone pair of electrons do not cancel. 1 point

2003 # 8

Using the information in the table, answer the following questions about organic compounds.

Compound Name Compound Formula ΔHvapo (kJ mol-1)

Propane CH3CH2CH3 19.0Propanone CH3COCH3 32.01-propanol CH3CH2CH2OH 47.3

a. For propanone,

i. draw the complete structural formula (showing all atoms and bonds)

ii. predict the approximate carbon-to-carbon-to-carbon bond angle.

b. For each pair of compounds below, explain why they do not have the same value for their standard heat of vaporization, ΔHvap

o. (You must include specific information about both compounds in each pair.)

i. propane and propanone

ii. propanone and 1-propanol

74

Page 75: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c. Draw the complete structural formula for an isomer of the molecule you drew in part a. i.

d. Given the structural formula for propyne below,

i. indicate the hybridization of the carbon atom indicated by the arrow in the structure above;

ii. indicate the total number of sigma (σ) bonds and the total number of pi (π) bonds in the molecule.

8 pointsa. i)1 point for complete and correct structural formula (3 carbon chain,

with ketone group on middle carbon)ii)The C-C-C bond angle is 120o 1 point

b. i) The intermolecular attractive forces in propane are dispersion forces only. The IMF’s in propanone are dispersion and dipole-dipole. Since the IMF’s differ in the two substances, the enthalpy of vaporization will differ1 points for correctly identifying the IMF’s for each substanceii) The IMF’s in 1-propanol are dispersion forces and hydrogen bonding. The IMF’s in propanone are dispersion and dipole-dipole. Since the IMF’s differ in the two substances, the enthalpy of vaporization will differ1 point for correctly identifying the IMF’s for each substance

c. 1 point for a correct, complete structural formula with a 3 carbon chain and a COOH group at one end.

d. i) sp hybridization 1 pointii) 6 sigma bonds, 2 pi bonds1 point for correct number of sigma bonds, 1 point for correct number of pi bonds

2008 #5

Using principles of atomic and molecular structure and the information in the table below, answer the following questions about atomic fluorine, oxygen, and xenon, as well as some of their compounds.

Atom First Ionization Energy (kJ mole-1)

75

Page 76: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

F 1681.0O 1313.9Xe ?

a) Write the equation for the ionization of atomic fluorine that requires 1681.0 kJ mol-1.

b) Account for the fact that the first ionization energy of atomic fluorine is greater than that of atomic oxygen. (You must discuss both atoms in your response.)

c) Predict whether the first ionization energy of atomic xenon is greater than, less than, or equal to the first ionization energy of atomic fluorine. Justify your prediction.

d) Xenon can react with oxygen and fluorine to form compounds such as XeO3 and XeF4. In the boxes provided, draw the complete Lewis electron dot diagram for each of the molecules represented below.

XeO3 XeF4

e) On the basis of the Lewis electron dot diagrams you drew for part d, predict the following

i) the geometric shape of the XeO3 molecule

ii) the hybridization of the valence orbitals of xenon in XeF4

f) Predict whether the XeO3 molecule is polar or nonpolar. Justify your prediction.

(a) F + 1681.0 kJ F+ + 1 e-

(b) F is a smaller atom than O and also has 1 more proton in its nucleus; this causes a stronger attraction for the electrons in F than in O since the shorter the distance between the positive protons and the negative electrons produces a larger Coulombic attraction and requires more energy to remove an electron from F

(c) less; even though Xe has a complete valence shell, its highest energy electrons are 5p vs. 2p in F. The 5p electrons of Xe are at a greater distance from the nucleus than the 2p of F and there is a shielding effect from the 3 and 4 s, p, and d electrons, the Coulombic attraction on the 5p will be less than on the 2p and, therefore, more easily removed.

76

Page 77: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(d) (i) (ii) (e) (i) pyramidal

(ii) sp3d2

(f) polar; it has a lone non-bonded pair of electrons and the oxygen are arranged asymmetrical, it is very similar to ammonia

2006B #6

GeCl4 SeCl4 ICl4- ICl4

+

The species represented above all have the same number of chlorine atoms attached to the central atom.

(a) Draw the Lewis structure (electron-dot diagram) of each of the four species. Show all valence electrons in your structures.

(b) On the basis of the Lewis structures drawn in part (a), answer the following questions about the particular species indicated.

(i) What is the Cl-Ge-Cl bond angle in GeCl4?

(ii) Is SeCl4 polar? Explain.

(iii) What is the hybridization of the I atom in ICl4-?

(iv) What is the geometric shape formed by the atoms in ICl4+?

Answer:

a)

b) i) 109.5o

77

Page 78: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii) Yes, the hybridization is dsp3, with the resulting see saw molecular shape. The bond dipole moments in the molecule do not cancel because of the asymmetric shape of the molecule.iii) d2sp3

iv) square pyramidal

2006 #7

Answer the following questions about the structures of ions that contain only sulfur and fluorine.

(a) The compounds SF4 and BF3 react to form an ionic compound according to the following equation.

SF4 + BF3 SF3BF4

(i) Draw a complete Lewis structure for the SF3+ cation in SF3BF4.

(ii) Identify the type of hybridization exhibited by sulfur in the SF3+ cation.

(iii) Identify the geometry of the SF3+ cation that is consistent with the Lewis structure

drawn in part (a)(i).

(iv) Predict whether the F-S-F bond angle in the SF3+ cation is larger than, equal to, or

smallerthan 109.5. Justify your answer.

(b) The compounds SF4 and CsF react to form an ionic compound according to the following equation.

SF4 + CsF CsSF5

(i) Draw a complete Lewis structure for the SF5- anion in CsSF5.

(ii) Identify the type of hybridization exhibited by sulfur in the SF5- anion.

(iii) Identify the geometry of the SF5- anion that is consistent with the Lewis structure

drawnin part (b)(i).

(iv) Identify the oxidation number of sulfur in the compound CsSF5.

Answer:

78

Page 79: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(a) (i)(ii) sp3.(iii) pyramidal(iv) smaller than 109.50˚. The lone pair of unbonded electrons occupies more space

than the bonded pairs and, therefore, pushed the bonded pairs away and hence, a smaller bond angle than a perfect tetrahedron.

(b) (i)(ii) sp3d2

(iii) square pyrimidal

(iv) S = +4

2008 #6

Answer the following questions by using principles of molecular structure and intermolecular forces.

a) Structures of the pyridine molecule and the benzene molecule are shown below. Pyridine is soluble in water, whereas benzene is not soluble in water. Account of the difference in solubility. You must discuss both of the substances in your answer.

Pyridine Benzene

b) Structures of the dimethyl ether molecule and the ethanol molecule are shown below. The normal boiling point of dimethyl ether is 250 K, whereas the normal

79

Page 80: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

boiling point of ethanol is 351 K. Account for the difference in boiling points. You must discuss both of the substances in your answer.

Dimethyl ether Ethanol

c) SO2 melts at 201 K, whereas SiO2 melts at 1883 K. Account for the difference in melting points. You must discuss both of the substances in your answer.

d) The normal boiling point of Cl2(l) (238 K) is higher than the normal boiling point of HCl(l) (188 K). Account for the difference in normal boiling points based on the types of intermolecular forces in the substances. You must discuss both of the substances in your answer.

Answer:

(a)

water is polar and can form hydrogen bonds since it has a hydrogen attached to

an oxygen; the lone pair of electrons on the nitrogen creates a slightly polar nitrogen and it can hydrogen bond to the hydrogen in the water. A C-H bond, as those in benzene, is non-polar and can not hydrogen bond with water. Since there is little attraction between water and benzene (a non-polar molecule) and “like dissolves like”, benzene will not dissolve in water but the polar pyridine will.

(b) Identical in formula, C2H6O, and molar mass, the dimethyl ether can not form hydrogen bonds with other molecules and only has weak London dispersion forces that keep it together as a liquid. The ethanol has similar London forces but it is also has a polar end (-OH) and can hydrogen bond to other molecules. The stronger intermolecular forces hold it together better as a liquid and it takes more energy to break these IMF, thus a higher boiling temperature.

(c) sulfur is a non-metal and makes non-metal oxide molecules that are held together by weak forces, Si is metalloid and its oxide forms a strong network solid and requires a large amount of energy to get it to melt.

(d) chlorine has a greater number of electrons than HCl and has a much higher London dispersion force than the smaller, but slightly polar HCl.

2009 #6

Answer the following questions related to sulfur and one of its compounds.

a. Consider the two chemical species S and S2-.i. Write the electron configuration (e.g., 1s22s2 …) of each species.

80

Page 81: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii. Explain why the radius of the S2- ion is larger than the radius of the S atom.

iii. Which of the two species would be attracted into a magnetic field? Explain.

b. The S2- ion is isoelectronic with the Ar atom. From which species, S2- or Ar, is it easier to remove an electron? Explain.

c. In the H2S molecule, the H – S – H bond angle is close to 90o. On the basis of this information, which atomic orbitals of the S atom are involved in bonding with the H atoms?

d. Two types of intermolecular forces present in liquid H2S are London (dispersion) forces and dipole – dipole forces.i. Compare the strength of the London (dispersion) forces in liquid H2S to

the strength of the London (dispersion) forces in liquid H2O. Explain.ii. Compare the strength of the dipole – dipole forces in liquid H2S to the

strength of the dipole – dipole forces in liquid H2O. Explain.

a. S – 1s22s22p63s23p4 while S2- - 1s22s22p63s23p6, S2- is larger because it has 2 more electrons in the same principal energy level with the same nuclear charge. S atoms would be attracted in a magnetic field because it has unpaired electrons.

b. It is easier to remove an electron from S2- because it has a nuclear charge which is 2 less than that of argon, thus the nuclear – outermost attraction is reduced.

c. The atomic orbitals of the S atom involved in the bonding in H2S are the p orbitals, rather than the sp3 hybridized orbitals, which would produce a 109 degree angle.

d. The LDF in liquid H2S would be stronger than in liquid H2O because there are more electrons in H2S than in H2O. The dipole – dipole forces in H2S would be less than those in H2O because the molecular dipole is less for H2S than for H2O.

Multiple Choice Questions

1999 #37

Ionization Energies for element X (kJ mol-1) First Second Third Fourth Five 580 1815 2740 11600 14800 The ionization energies for element X are listed in the table above. On the basis of the data, element X is most likely to be

A) NaB) MgC) Al (35%)

81

Page 82: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

D) SiE) P

2002 #17 In which of the following groups are the three species isoelectronic; i.e., have the same number of electrons?

A) S2-, K+, Ca2+ (70%)B) Sc, Ti, V2+

C) O2-, S2-, Cl-

D) Mg2+, Ca2+, Sr2+

E) Cs, Ba2+, La3+

2002 #46 The effective nuclear charge experienced by the outermost electron of Na is different than the effective nuclear charge experienced by the outermost electron of Ne. This difference best accounts for which of the following?

A) Na has a greater density at standard conditions than Ne.B) Na has a lower first ionization energy than Ne. (62%)C) Na has a higher melting point than Ne.D) Na has a higher neutron-to-proton ratio than Ne.E) Na has fewer naturally occurring isotopes than Ne.

2008 #21 Of the following electron configurations of neutral atoms, which represents an atom in an excited state?

A) 1s22s22p5

B) 1s22s22p53s2 (71%)C) 1s22s22p63s1

D) 1s22s22p63s23p2

E) 1s22s22p63s23p5

1999 #32 Types of hybridization exhibited by the C atoms in propene, CH3CHCH2, include which of the following?

I. spII. sp2

III. sp3 A) I onlyB) III onlyC) I and II onlyD) II and III only (38%)E) I, II, and III

2008 # 22. Which of the following is a nonpolar molecule that contains polar bonds?

82

Page 83: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

A) F2

B) CHF3

C) CO2 (39%)D) HClE) NH3

1999 #75 Which of the following pairs of liquids forms the solution that is most ideal (most closely follows Raoult's law)?

A) C8H18(l) and H2O(l)B) CH3CH2CH2OH(l) and H2O(l)C) CH3CH2CH2OH(l) and C8H18(l)D) C6H14(l) and C8H18(l) (33%)E) H2SO4(l) and H2O(l)

83

Page 84: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry Concept List – CONCENTRATION UNITS OF SOLUTIONS / COLLIGATIVE PROPERTIES

1. Molarity M = mole of solute/ L of solution

2. molality m = mole of solute / Kg of solvent

3. % by volume = volume of solute / total volume of solution

4. % by weight = weight of solute / total weight of solution

5. mole fraction = xa = mole of a /total moles in solution

Colligative Properties

1. ∆ FP ↓ = (kf ) ( m ) ( i ) freezing point depression

2. ∆ BP ↑ = ( kb ) (m ) ( i ) boiling point elevation

3. ∏ = ( M ) ( R ) ( T ) ( i ) osmotic pressure

4. Vapor Pressure Lowering = VPL = (x solvent) VP pure solvent

The main use of colligative properties is to find the molecular weight of an unknown compound, thus it is related to problems in earlier chapters about empirical or molecular formulas.

i = Van’t Hoff factor

for organic solutes nonelectrolytes i = 1

for electrolytes i = 2,3,4… NaCl i = 2 AlCl3 i = 4

H2SO4 i = 3

84

Page 85: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Free Response Questions1998# 2

An unknown compound contains only the three elements C,H, and O. A pure sample of the compound is analyzed and found to be 65.60 percent C and 9.44 percent H by mass.

a. Determine the empirical formula of the compound.

b. A solution of 1.570 grams of the compound in 16.08 grams of camphor is observed to freeze at a temperature 15.2 Celsius below the normal freezing point of pure camphor. Determine the molar mass and apparent molecular formula of the compound. (The molal freezing-point depression constant, k f, for camphor is 40.0 kg-K-mol-1.)

c. When 1.570 grams of the compound is vaporized at 300 °C and 1.00 atmosphere, the gas occupies a volume of 577 milliliters. What is the molar mass of the compound based on this result?

d. Briefly describe what occurs in solution that accounts for the difference between the results obtained in parts (b) and (c).

a) Assume a 100 – gram sample (not necessary for credit):

65 g C× 1 mol C12. 01 g C

=5 . 462 mol C1 point

9 .44 g H × 1 mol H1 .0079 g H

=9.366 mol H

Mass O = [100 – (65.60 + 9.44)] = 24.96 g O 1 point

24 .96 g O× 1 mol O15 . 9994 g O

=1. 560 mol O

C5.462H9.366O1.560 --> C3.5H6.0O1.0 --> C7H12O2 1 pointOne point earned for determining moles of C and moles of HOne point earned for determining moles of OOne point earned for correct empirical formula

b)m= ΔT

K f=15 . 2 oC

40. 0 K kg mol−1 =0 .380 mol kg−1

1 point

0 . 01608 kg× 0 .380 mol1 kg

=0 . 00611 mol

molar mass= 1. 570 g0 .00611 mol

=257 g mol−1

1 pointOne point earned for determination of molalityOne point earned for conversion of molality to molar massOR

85

Page 86: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

moles solute= ΔT ×kg solventK f

=0. 00611 mol1 point

molar mass= 1. 570 g0 .00611 mol

=257 g mol−1

1 pointOR

molar mass=mass×K f

ΔT×kg solvent=257 g mol−1

2 pts

Empirical mass of C7H12O2 = 7(12) + 12(1) + 2(1) = 128 g mol-1

128 g mol-1 = ½ molar mass --> molecular formula = 2 × (empirical formula)--> molecular formula = C14H24O4 1 point

One point earned if molecular formula is wrong but is consistent with empirical formula and molar mass

No penalty for simply ignoring the van’t Hoff factorOnly one point earned for part b if response indicates that ΔT = (15.2 + 273) = 288 K and molar mass = 13.6 g mol-1

c)n=PV

RT=

(1 atm ) (0 .577 L )(0 .0821 L atm mol−1 K−1 ) (573 K )

=0.0123 mol1 point

molar mass= mass of samplemoles of sample

= 1 .570 g0 . 0123 mol

=128 g mol−1

1 pointOnly one point can be earned for part c if wrong value of R is used and / or T is not converted from C to Kd) The compound must form a dimer in solution, because the molar mass in solution is twice that it is in the gas phase,OR,The compound must dissociate in the gas phase (A(g) --> 2 B(g)) because the molar mass in the gas phase is half that it is in solutionOne point earned for a reference to either or both the ideas of dimerization and dissociationNo point earned for a “non-ideal behavior” argument

1999 # 7

Answer the following questions, which refer to the 100 mL samples of aqueous solutions at 25°C in the stoppered flasks shown below.

86

Page 87: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

a. Which solution has the lowest electrical conductivity? Explain.

b. Which solution has the lowest freezing point? Explain.

c. Above which solution is the pressure of water vapor greatest? Explain.

d. Which solution has the highest pH? Explain. 8 points:a. 1 point C2H5OH (Flask #3)

1 point, Ethanol, a nonelectrolyte, does not break up or dissociate insolution.

One point earned for identifying C2H5OH One point earned for the correct explanation. Explanation point earned for a description of a nonelectrolyte (e.g., something that does not break up or does not dissociate.) No point earned for describing C2H5OH as organic, or asthe compound that contains the most hydrogens.

b. 1 point MgCl2 (Flask #2)1 point The freezing-point depression is proportional to the concentration

of solute particles. All solutes are at the same concentration, but the van’t Hoff factor (i) is largest for MgCl2.

One point earned for identifying MgCl2 . One point earned for the correct explanation.

c. 1 point C2H5OH (Flask #3)1 point The lowering of vapor pressure of water is directly proportional tothe concentration of solute particles in solution. C2H5OH is the only nonelectrolyte, so it will have the fewest solute particles in solution.

One point earned for identifying C2H5OH . One point earned for the correct explanation.

d. 1 point NaF (Flask #1)1 point The F- ion, generated upon dissolution of NaF, is a weak base. It is the only solution with pH > 7.

One point earned for identifying NaF. One point earned for the correct explanation.

2001 # 5

Answer the questions below that related to the five aqueous solutions at 25 oC shown below.

87

Page 88: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

a. Which solution has the highest boiling point? Explain.

b. Which solution has the highest pH? Explain.

c. Identify a pair of the solutions that would produce a precipitate when mixed together. Write the formula of the precipitate.

d. Which solution could be used to oxidize the Cl-(aq) ion? Identify the product of the oxidation.

e. Which solution would be the least effective conductor of electricity? Explain. (10 points)

In each part, one point is earned for the correct solution or solutions, and one point is earned for the correct explanation (in parts a, b, and e), precipitate (in part c), or product (in part d).(a) Pb(NO3)2 (Solution 1) 1 pointPb(NO3)2 has the largest value of i , the van’t Hoff factor, so the solution has the highest number of solute particles (it dissociates into the most particles). 1 point· Student must address the relative number of particles.(b) KC2H3O2 (Solution 5) 1 pointThe acetate ion is the conjugate base of a weak acid, so it is a weak base (or KC2H3O2 is the salt of a strong base and a weak acid, so the solution is basic).

1 point(c) Pb(NO3)2 and NaCl (Solutions 1 and 2) 1 pointPbCl2 would precipitate 1 point· Points can also be earned for KMnO4 plus one of the other solutions(with the precipitation of MnO2).· Points can also be earned for KMnO4 plus Pb(NO3)2

(with the precipitation of PbO2, or MnO2).(d) KMnO4 (Solution 3) 1 pointThe product of the oxidation is Cl2 1 point(e) C2H5OH (Solution 4) 1 pointEthanol is the only nonelectrolyte given. It does not readily dissociate into ions, so it would not produce charged species that would conduct a current. 1 point· One point can also be earned for explanations using i, the van’t Hoff factor.

88

Page 89: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Multiple Choice Questions

2002 #35 A solution is made by dissolving a nonvolatile solute in pure solvent. Compared to the pure solvent, the solution

A) has a higher normal boiling point. (53%)B) has a higher vapor pressure.C) has the same vapor pressure.D) has a higher freezing point.E) is more nearly ideal.

2008 #53 A sample of 10.0 mol of butyric acid, HC4H7O2, a weak acid, is dissolved in 1000. g of water to make a 10.0 molal solution. Which of the following would be the best methods to determine the molarity of the solution? (In each case, assume that no additional information is available)

A) Titration of the solution with standard acidB) Measurement of the pH with a pH meterC) Determination of the freezing point of the solutionD) Measurement of the total volume of the solution (64%)E) Measurement of the electrical conductivity of the solution

2008 #54. The nonvolatile compound ethylene glycol, C2H6O2, forms nearly ideal solutions with water. What is the vapor pressure of a solution made from 1.00 mol of C2H6O2 and 9.00 moles of H2O if the vapor pressure of pure water at the same temperature is 25.0 mm Hg?

A) 2.50 mm HgB) 7.50 mm HgC) 12.5 mm HgD) 22.5 mm Hg (21%)E) 27.5 mm Hg

2008 #68 The pH of a solution prepared by the addition of 10. mL of 0.002 M KOH(aq) to 10. mL of distilled water is closest to

A) 12B) 11 (24%)C) 10D) 4E) 3

89

Page 90: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry – LABORATORY QUESTIONS

Free Response Questions2008 B #5

The identity of an unknown solid is to be determined. The compound is one of the seven salts in the following table.

Al(NO3)3·9H2O BaCl2·2H2O CaCO3 CuSO4·5H2O NaCl

BaSO4 Ni(NO3)2·6H2O

Use the results of the following observations or laboratory tests to explain how each compound in the table may be eliminated or confirmed. The tests are done in sequence from a) through e).

a) The unknown compound is white. In the table below, cross out the two compounds that can be eliminated using this observation. Be sure to cross out the same two compounds in the tables in parts b, c, and d.

Al(NO3)3·9H2O BaCl2·2H2O CaCO3 CuSO4·5H2O NaCl

BaSO4 Ni(NO3)2·6H2O

b) When the unknown compound is added to water, it dissolves readily. In the table below, cross out the two compounds that can be eliminated using this test. Be sure to cross out the same two compounds in the tables in parts c and d.

Al(NO3)3·9H2O BaCl2·2H2O CaCO3 CuSO4·5H2O NaCl

BaSO4 Ni(NO3)2·6H2O

c) When AgNO3(aq) is added to an aqueous solution of the unknown compound, a white precipitate forms. In the table below, cross out each compound that can be eliminated using this test. Be sure to cross out the same compound(s) in the table in part d.

Al(NO3)3·9H2O BaCl2·2H2O CaCO3 CuSO4·5H2O NaCl

BaSO4 Ni(NO3)2·6H2O

d) When the unknown compound is carefully heated, it loses mass. In the table below, cross out each compound that can be eliminated using this test.

90

Page 91: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Al(NO3)3·9H2O BaCl2·2H2O CaCO3 CuSO4·5H2O NaCl

BaSO4 Ni(NO3)2·6H2O

e) Describe a test that can be used to confirm the identity of the unknown compound identified in part d. Limit your confirmation test to a reaction between an aqueous solution of the unknown compound and an aqueous solution of one of the other soluble salts listed in the tables. Describe the expected results of the test; include the formula(s) of any product(s).

Answer:(a)

Al(NO3)3•9H2O BaCl2•2H2O CaCO3 CuSO4•5H2O

NaCl BaSO4 Ni(NO3)2•6H2O

(b)Al(NO3)3•9H2O BaCl2•2H2O CaCO3 CuSO4•5H2O

NaCl BaSO4 Ni(NO3)2•6H2O

(c)Al(NO3)3•9H2O BaCl2•2H2O CaCO3 CuSO4•5H2O

NaCl BaSO4 Ni(NO3)2•6H2O

(d)Al(NO3)3•9H2O BaCl2•2H2O CaCO3 CuSO4•5H2O

NaCl BaSO4 Ni(NO3)2•6H2O

(e) the unknown will form a white ppt when it reacts with CuSO4•5H2O to form BaSO4

2008 B#3

3. A 0.150 g sample of solid lead (II) nitrate is added to 125 mL of 0.100 M sodium iodide solution. Assume no change in volume of the solution. The chemical reaction that takes place is represented by the following equation.

Pb(NO3)2(s) + 2 NaI(aq) PbI2(s) + 2 NaNO3(aq)

a) List an appropriate observation that provides evidence of a chemical reaction between the two compounds.

b) Calculate the number of moles of each reactant.

91

Page 92: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c) Identify the limiting reactant. Show calculations to support your identification.

d) Calculate the molar concentration of NO3-(aq) in the mixture after the

reaction is complete.

e) Circle the diagram below that best represents the results after the mixture reacts as completely as possible. Explain the reasoning used in making your choice.

Answer:

(a) A precipitate forms with an appearance that is different from that of the dissolving solid.

One point is earned for stating that a precipitate is formed.(b) mol Pb(NO3)2 = 0.150 g Pb(NO3)2 (1 mol Pb(NO3)2/331 g Pb(NO3)2)= 4.53 ×10- molmol NaI = 0.100 M 0.125 L = 1.25 10 molOne point is earned for the correct number of moles of Pb(NO3)2.One point is earned for the correct number of moles of NaI.(c) mol NaI reacting = 4.53 ×10-4 mol Pb(NO3)2 2 mol NaI/1 mol Pb(NO3)2)= 9.06 ×10-4 molThere is 1.25 ×10-2 mol of NaI initially, thus Pb(NO3)2 is the limiting reactant.One point is earned for the identification of Pb(NO3)2.

92

Page 93: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

One point is earned for a justification in terms of the relative numbers of moles.(d) [NO3] f = 2 (4.53 ×10-4 mol) =0.125 L−= 7.25 10−3 MOne point is earned for the correct NO3−/Pb2+ stoichiometry.One point is earned for the correct molarity(e) The rightmost diagram in the top row should be circled. PbI2 precipitates and Pb(NO3)2 is the limiting reactant, so there is essentially no Pb2+ in solution. Because there was so much NaI in excess, some of the I−remains in solution, along with the Na+ and NO3. One point is earned for the selection of the correct diagram. One point is earned for the correct rationale.

2007 #5

5 Fe2+(aq) + MnO4-(aq) + 8H+(aq) 5Fe3+(aq) + Mn2+(aq) + 4H2O(l)

The mass percent of iron in a soluble iron(II) compound is measured using a titration based on the balanced equation above.

a. What is the oxidation number of manganese in the permanganate ion, MnO4-(aq)?

b. Identify the reducing agent in the reaction represented above.

The mass of a sample of the iron(II) compound is carefully measured before the sample is dissolved in distilled water. The resulting solution is acidified with H2SO4(aq). The solution is then titrated with MnO4

-(aq) until the end point is reached.

c. Describe the color change that occurs in the flask when the end point of the titration has been reached. Explain why the color of the solution changes at the end point.

d. Let the variables g, M, and V be defined as follows:

g = the mass, in grams, of the sample of the iron(II) compound

M= the molarity of the MnO4-(aq) used as the titrant

V= the volume, in liters, of MnO4-(aq) added to reach the end point

In terms of these variables, the number of moles of MnO4-(aq) added to reach the

end point of the titration is expressed as M x V. Using the variables defined above, the molar mass of iron (55.85 g mol-1), and the coefficients in the balanced chemical equation, write the expression for each of the following quantities.

i. The number of moles of iron in the sample

ii. The mass of iron in the sample, in grams

93

Page 94: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

iii. The mass percent of iron in the compound

e. What effect will adding too much titrant have on the experimentally determined value of the mass percent of iron in the compound? Justify your answer.

9 points

a. +7 1 pointb. Fe2+(aq) 1 pointc. The solution in the flask changes from colorless to faint purple pink at the

endpoint of the titration. At the endpoint there is no Fe2+(aq) left in the flask to reduce the colored permanganate ion, so when a small amount of permanganate ion is added after the endpoint, the unreacted permanganate ion present in the solution colors the solution faint purple / pink.1 point is earned for stating that a faint pink color appears (unless indication of acid-base reaction)1 point is earned for a correct explanation involving excess MnO4

- after all Fe2+ has reacted

d. i) mol Fe2+ = 5 × M × V 1 pointOR mol Fe2+ = (5 mol Fe2+/1 mol MnO4

-) M Vii) mass Fe = 5 × M × V × 55.85 1 pointOR mass Fe = mol Fe2+ × 55.85iii) mass % Fe = (5 × M × V × 55.85) / g × 100 2 pointOR mass % Fe = mass Fe / g × 100

e. The experimentally determined mass percent of iron in the compound will be too large. V is too large --> expression in d)iii) above is too large

1 point

2007 B #5

Answer the following questions about laboratory situations involving acids, bases, and buffer solutions.

a. Lactic acid, HC3H5O3, reacts with water to produce an acidic solution. Shown below are the complete Lewis structures of the reactants.

In the space provided above, complete the equation by drawing the complete Lewis structures of the reaction products.

94

Page 95: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

b. Choosing from the chemicals and equipment listed below, describe how to prepare 100.00 mL of a 1.00 M aqueous solution of NH4Cl (molar mass 53.5 g mol-1). Include specific amounts and equipment where appropriate.

NH4Cl(s) 50 mL buret 100 mL graduated cylinder 100 mL pipetDistilled water100 mL beaker 100 mL volumetric flask Balance

c. Two buffer solutions, each containing acetic acid and sodium acetate, are prepared. A student adds 0.10 mol of HCl to 1.00 L of each of these buffer solutions and to 1.0 L of distilled water. The table below shows the pH measurements made before and after the 0.10 mol of HCl is added.

pH before pH afterHCl added HCl added

Distilled water 7.0 1.0Buffer 1 4.7 2.7Buffer 2 4.7 4.3

i. Write the balanced net ionic equation for the reaction that takes place when the HCl is added to buffer 1 or buffer 2.

ii. Explain why the pH of buffer 1 is different from the pH of buffer 2 after 0.10 mol of HCl is added.

iii. Explain why the pH of buffer 1 is the same as the pH of buffer 2 before 0.10 mol of HCl is added.

8 pointsa. 1 point is earned for each correct structure. (2 total)b. mass of NH4Cl = (0.100 L) (1.00 mol L-1) (53.5 g mol-1) = 5.35 g NH4Cl

- measure out 5.35 g NH4Cl using the balance- use the 100 mL graduated cylinder to transfer approximately 25 mL of distilled water to the 100 mL volumetric flask- transfer the 5.35 g NH4Cl to the 100 mL volumetric flask- continue to add distilled water to the volumetric flask while swirling the flask to dissolve the NH4Cl and remove all NH4Cl particles adhered to the walls- carefully add distilled water to the 100 mL volumetric flask until the bottom of the meniscus of the solution reaches the etched mark on the flask1 point is earned for the mass1 point is earned for using a volumetric flask1 point is earned for diluting to the mark

c. i) C2H3O2- + H3O+ HC2H3O2 + H2O 1 point

95

Page 96: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii) Before the HCl was added, each buffer had the same pH and thus had the same [H+]. Because Ka for acetic acid is a constant, the ratio of [H+] to Ka must also be constant; this means that the ratio of [HC2H3O2] to [C2H3O2

-] is the same for both buffers, as shown by the following equation, derived from the equilibrium constant expression for the dissociation of acetic acid.

[ HC2 H3 O2 ]

[ C2 H3 O2− ]

=[ H3O+ ]

Ka

After the addition of the H+, the ratio in buffer 1 must have been greater than the corresponding ratio in buffer 2, as evidenced by their respective pH values. Thus a greater proportion of the C2H3O2

- in buffer 1 must have reacted with the added H+ compared to the proportion that reacted in buffer 2. The difference between these proportions means that the original concentrations of HC2H3O2 and C2H3O2

- had to be smaller in buffer 1 than in buffer 2.1 point is earned for a correct answer involving better buffering capacity or relative amount of base (acetate ion)iii) Both buffer solutions have the same acid to conjugate base mole ratio in the formula below. Therefore, the buffers have the same [H+] and pH.

[ H+ ]=K a

[HC 2 H3 O2 ]

[ C2 H3 O2− ]

1 point is earned for the correct answer involving the ratio of acid to base in the buffer.

2000 # 5

The molar mass of an unknown solid, which is nonvolatile and a nonelectrolyte, is to be determined by the freezing-point depression method. The pure solvent used in the experiment freezes at 10 oC and has a known molal freezing-point depression constant, kf. Assume that the following materials are also available.

Test tubes stirrer pipet thermometer balanceBeaker stopwatch graph paper hot-water bath ice

a. Using the two sets of axes provided below, sketch cooling curves for (i) the pure solvent and for (ii) the solution as each is cooled for 20 oC to 0.0 oC.

96

Page 97: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

b. Information from these graphs may be used to determine the molar mass of the unknown solid.

i) Describe the measurements that must be made to determine the molar mass of the unknown solid by this method.

ii) Show the setup(s) for the calculation(s) that must be performed to determine the molar mass of the unknown solid from the experimental data.

iii) Explain how the difference(s) between the two graphs in part a) can be used to obtain information needed to calculate the molar mass of the unknown solid.

c. Suppose that during the experiment a significant but unknown amount of solvent evaporates from the test tube. What effect would this have on the calculated value of the molar mass of the solid (i.e., too large, too small, or no effect)? Justify your answer.

d. Show the setup for the calculation of the percentage error in a student’s result if the student obtains a value of 126 g mol-1 for the molar mass of the solid when the actual value is 120. g mol-1.

(10 points)(a) 2 points - Cooling curve graphs for pure material and solutionNotes: One point is earned for each correct graph. The first graph should show a line that drops to 10°C, holds steady at 10°C, and then falls steadily to 0°C. There must be a discernable plateau at 10°C to earn this point. The second graph should show a

97

Page 98: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

line that drops to below 10°C, levels off (or slants down a bit), and then falls more sharply to 0°C.(b) (i) Measure mass of solute, mass of solvent, mass of solution 1 point(two of three must be shown)Measure the ΔTfp (or the freezing point of the solution) 1 point• Volume of solution (without density), molality, or number of moles do not earn points(ii) Given: ΔT = iKf m (or ΔT = Kf m) 2 pnts

m = (mol solute)/(kg solvent)moles = g/(molar mass)

Combine to get: molar mass = (i)(Kf)(g solute)/(ΔT)(kg solvent)Notes: One point is earned for any two equations, and two points are earnedfor all three equations. “Solute” and “solvent” must be clearly identified inthe equations.(iii) the difference in the vertical position of the horizontal portions of the graphs is equal to ΔTfp , the change in freezing point due to the addition of the solute.

1 point(c) The molar mass is too small. 1 point

If some of the solvent evaporates, then the (kg solvent) term used in the equation in (b) (ii) is larger than the actual value. If the (kg solvent) term used is too large, then the value calculated for the molar mass will be too small. 1 pointorIf some of the solvent evaporates, then the concentration (molality) of the solute will be greater than we think it is. More moles of solute results in a smaller molar mass (or since ΔT = iKf m, then the ΔTobs would be greater than it should be). Since the molar mass of the unknown solute is inversely proportional to ΔT, an erroneously high value for ΔT implies an erroneously low value for the molar mass (calculated molar mass would be too small). 1 point

(d) % error =

126 g mol−1−120 g mol−1

120 g mol−1 ×100 %1 point

or

% error =

6 g mol−1

120 g mol−1 ×100 %

2005 # 5

Answer the following questions that relate to laboratory observations and procedures.

a. An unknown gas is one of three possible gases: nitrogen, hydrogen, or oxygen. For each of the three possibilities, describe the result expected when the gas is tested using a glowing splint (a wooden stick with one end that has been ignited and extinguished, but still contains hot, glowing, partially burned wood).

98

Page 99: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

b. The following three mixtures have been prepared: CaO plus water, SiO2 plus water, and CO2 plus water. For each mixture, predict whether the pH is less than 7, equal to 7, or greater than 7. Justify your answers.

c. Each of three beakers contains a 0.1 M solution of one of the following solutes: potassium chloride, silver nitrate, or sodium sulfide. The three beakers are labeled randomly as solution 1, solution 2, and solution 3. Shown below is a partially completed table of observations made of the results of combining small amounts of different pairs of the solutions.

Solution 1 Solution 2 Solution 3

Solution 1 black precipitate

Solution 2 no reaction

Solution 3

i) Write the chemical formula of the black precipitate.

ii) Describe the expected results of mixing solution 1 with solution 3.

iii) Identify each of the solutions 1, 2, and 3.

9 points

a. Nitrogen: When the glowing splint is inserted into the gas sample, the glowing splint will be extinguished.

Hydrogen: When the glowing splint is inserted into the gas sample, a popping sound (explosion) can be heard.

Oxygen: When the glowing splint is inserted into the gas sample, the splint will glow brighter or reignite.

1 point is earned for each description

b. CaO plus water: The pH of the solution will be greater than 7. CaO is water forms the base Ca(OH)2 (or metal oxides are basic, or basic anhydrides)

SiO2 plus water: The pH of the solution will be equal to 7. SiO2 is insoluble in water, so there would not be a change in the pH of the mixture.

CO2 plus water: The pH of the solution will be less than 7. CO2 in water forms the acid H2CO3 (or nonmetal oxides are acidic, or acidic anhydride)

99

Page 100: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

1 point is earned for each description

c. i) The black precipitate is Ag2S. 1 point

ii) A precipitate will be produced when the two solutions are mixed.1 point

iii) Solution 1 is silver nitrate. Solution 2 is sodium sulfide. Solution 3 is potassium chloride.

1 point is earned for the correct identification of all three solutions.2005B #5

2 Al(s) + 2 KOH(aq) + 4 H2SO4(aq) + 22 H2O(l) 2 KAl(SO4)2·12 H2O + 3 H2(g)

In an experiment, a student synthesizes alum, KAl(SO4)2·12H2O(s), by reacting aluminum metal with potassium hydroxide and sulfuric acid, as represented in the balanced equation above.

a. In order to synthesize alum, the student must prepare a 5.0 M solution of sulfuric acid. Describe the procedure for preparing 50.0 mL of 5.0 M H2SO4 using any of the chemicals and equipment listed below. Indicate specific amounts and equipment where appropriate.

10.0 M H2SO4 50.0 mL volumetric flaskDistilled water 50.0 mL buret100 mL graduated cylinder 25.0 mL pipet100 mL beaker 50 mL beaker

b. Calculate the minimum volume of 5.0 M H2SO4 that the student must use to react completely with 2.7 g of aluminum metal.

c. As the reaction solution cools, alum crystals precipitate. The student filters the mixture and dries the crystals, then measures their mass.

i) If the student weighs the crystals before they are completely dry, would the calculated percent yield be greater than, less than, or equal to the actual percent yield? Explain.

ii) Cooling the reaction solution in an ice bath improves the percent yield obtained. Explain.

d. The student heats crystals of pure alum, KAl(SO4)2·12 H2O(s), in an open crucible to a constant mass. The mass of the sample after heating is less than the mass before heating. Explain.

10 points

100

Page 101: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

a. (50 mL) (1 L / 1000 mL) (5.0 mol H2SO4 / 1 L) = 0.25 mol H2SO4

(0.25 mol H2SO4) (1 L/ 10.0 mol H2SO4) (1000 mL / 1 L) = 25.0 mL

Put on goggles. Measure approximately 20 mL of distilled water using the 100 mL graduated cylinder, and add the distilled water to the 50.0 mL volumetric flask. Measure 25.0 mL of the 10.0 M H2SO4 using the 25.0 mL pipet, and transfer the concentrated acid slowly, with occasional swirling, to the 50.0 mL volumetric flask containing the distilled water. After adding all the concentrated acid, carefully add distilled water until the meniscus of the solution is at the 50.0 mL mark on the neck of the flask at 20 oC.1 point is earned for the volume of the 10.0 M H2SO4

1 point is earned for using a volumetric flask and the pipet1 point is earned for adding the acid to the water1 point is earned for filling to the mark with water

b. V(H2SO4) = (2.7 g Al)

1 mol Al27 .0 g Al

4 mol H 2SO4

2 mol Al1 L

5 .0 mol H2 SO4=0 .040 L

1 point is earned for the number of moles of Al1 point is earned for the correct stoichiometry1 point is earned for the answer

c. i) If the KAl(SO4)2•12H2O(s) crystals have not been properly dried, there will be excess water present, making the mass of the product greater than it should be and the calculated percent too high. Therefore, the calculated percent yield will be greater than the actual percent yield.1 point is earned for the prediction and a correct explanationii) If the solubility of KAl(SO4)2•12H2O(s) decreases with decreasing temperature, cooling the reaction solution would result in the precipitation of more KAl(SO4)2•12H2O(s) 1 point is earned for the correct explanation

d. KAl(SO4)2•12H2O(s) is a hydrate. For the mass of the sample to be less after heating, the water of hydration must be lost. Heating the sample of KAl(SO4)2•12H2O(s) crystals will drive off the water first, decreasing the mass of the sample

1 point for the correct explanation

Multiple Choice Questions

1999 #27 Appropriate uses of a visible-light spectrophotometer include which of the following?

I. Determining the concentration of a solution of Cu(NO3)2

II. Measuring the conductivity of a solution of KMnO4

III. Determining which ions are present in a solution that may contain Na+, Mg2+, Al3+

101

Page 102: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

A) I only (16%)B) II onlyC) III onlyD) I and II onlyE) I and III only

2002 #50 Which of the following represents acceptable laboratory practice?

A) Placing a hot object on a balance pan.B) Using distilled water for the final rinse of a buret before filling it with standardized solution.C) Adding a weighed quantity of solid acid to a titration flask wet with distilled water. (16%)D) Using 10 mL of standard strength phenolphthalein indicator solution for titration of 25 mL of acid solution.E) Diluting a solution in a volumetric flask to its final concentration with hot water.

2008 #47 When diluting concentrated H2SO4, one should slowly add acid to a beaker of water rather than add water to a beaker of acid. The reason for this precaution is to ensure that

A) there is complete ionization of the H2SO4

B) there is sufficient volume of water to absorb the heat released (29%)C) the water does not sink beneath the acid and remain unmixedD) the acid does not react with impurities in the dry beakerE) any SO2 released quickly redissolves in the water

2008 #65

102

Page 103: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

In a laboratory experiment, H2(g) is collected over water in a gas-collection tube as shown in the diagram above. The temperature of the water is 21 oC and the atmospheric pressure in the laboratory is determined to be 772 torr. Before measuring the volume of the gas collected in the tube, what step, if any, must be taken to make it possible to determine the total gas pressure inside the tube?

A) tilt the tube to the side enough to let some air in to break the partial vacuum in the tube

B) lift the tube upward until it is just barely immersed in the waterC) move the tube downward until the water level is the same inside and

outside the tube (43%)D) Adjust the temperature of the water to 25 oCE) No further steps need to be taken as long as the temperature of the water is

known

2008 #62 Which of the following pieces of laboratory glassware should be used to most accurately measure out a 25.00 mL sample of a solution?

A) 5 mL pipetB) 25 mL pipet (32%)C) 25 mL beakerD) 25 mL Erlenmeyer flaskE) 50 mL graduated cylinder

103

Page 104: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP Chemistry – NUCLEAR QUESTIONS

1. See also the separate nuclear study packet on this CD.

Free Response Questions2003B # 8

The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta (-1

0e) emission.

a. Write a balanced nuclear equation for the decay of I-131.

b. What is the source of the beta particle emitted from the nucleus?

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

c. Determine the half-life, t1/2, of I-131 using the graph above.

d. The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

104

Page 105: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

i. Label the vertical axis of the graph above.

ii. What are the units of the rate constant, k, for the decay reaction?

iii. Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

e. Compare the value of the half-life of I-131 at 25 oC to its value at 50 oC

8 points

a. 53131 I → 54

131 Xe+−10 e 1 point

b. A neutron spontaneously decays to an electron and a proton.1 point for identifying a neutron as the source of the beta emission

c. The half life is 8 days. That is the time required for the disintegration rate to fall from 16,000 to one half its initial value, 8000 1 point

d. i) The label on the y axis should be ln or log of one of the following: disintegrations or moles or atoms of [I-131] or disintegration rate 1 pointii) From the graph, the units on the rate constant are days-1 (Units of time-

1 are acceptable) 1 pointiii) The slope of the line is –k. The slope is negative, so k is a positive number. The half life can then be calculated using the relationship, t1/2 = 0.693 / k.1 point for indicating slope is k1 point for half life equation

e. The half life will be the same at the different temperatures. The half life of a nuclear decay process is independent of temperature 1 point

Multiple Choice Questions

2002 #23 U92235 + n0

1 ❑→

Cs+3 n01 +X55

141

105

Page 106: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

Neutron bombardment of uranium can induce the reaction represented above. Nuclide X is which of the following?

A) Br3592

B) Br3594

C) Rb3791

D) Rb3792 (37%)

E) Rb3794

2008 #24 Which of the following shows the correct number of protons, neutrons, and electrons in a neutral cesium-134 atom?

Protons Neutrons ElectronsA) 55 55 55B) 55 79 55 (82%)C) 55 79 79D) 79 55 79E) ` 134 55 134

2008 #27 Which of the following is a correctly balanced nuclear reaction?A) U92

238 ❑→

Th90232 + He2

4

B) Cf+ N715

98249 ❑

→Db105

260 +3 n01

C) H+ H13

12 ❑

→He2

4 +2 n01

D) U+ n01

92238 ❑

→U92

239 (69%)

E) K1940 ❑

→Ca20

40 + β+10

106

Page 107: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

AP CHEMISTRY – MULTIPLE CONCEPT QUESTIONS

2008 #3 – electrochemistry thermodynamics kinetics

Answer the following questions related to chemical reactions involving nitrogen monoxide, NO(g).

The reaction between solid copper and nitric acid to form copper (II) ion, nitrogen monoxide gas, and water is represented by the following equation.

3 Cu(s) + 2 NO3-(aq) + 8 H+(aq) 3 Cu2+(aq) + 2 NO(g) + 4 H2O(l) Eo = +0.62 V

a) Using the information above and in the table below, calculate the standard reduction potential, Eo, for the reduction of NO3

- in acidic solution.

Half-reaction Standard Reduction Potential, Eo

Cu2+(aq) + 2e- Cu(s) +0.34 VNO3

-(aq) + 4H+(aq) + 3e- NO(g) + 2H2O(l) ?

b) Calculate the value of the standard free energy change, ΔGo, for the overall reaction between solid copper and nitric acid.

c) Predict whether the value of the standard entropy change, ΔSo, for the overall reaction is greater than 0, less than 0, or equal to 0. Justify your prediction.

Nitrogen monoxide gas, a product of the reaction above, can react with oxygen to produce nitrogen dioxide gas, as represented below.

2 NO(g) + O2(g) 2 NO2(g)

A rate study of the reaction yielded the data recorded in the table below.

Expt. Initial Concentration Initial Concentration Initial Rate ofof NO (mol L-1) of O2 (mol L-1) Formation of NO2

(mol L-1 s-1)

1 0.0200 0.0300 8.52 × 10-2

2 0.0200 0.0900 2.56 × 10-1

3 0.0600 0.0300 7.67 × 10-1

d) Determine the order of the reaction with respect to each of the following reactants. Give details of your reasoning, clearly explaining or showing how you arrived at your answers.

i) NO

107

Page 108: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

ii) O2

e) Write the expression for the rate law for the reaction as determined from the experimental data.

f) Determine the value of the rate constant for the reaction, clearly indicating the units.

(a) X + (-0.34V) = +0.62 V; X = +0.96 V(b) ∆G˚ = –nE˚ = -(6)(96500)(0.62) = -358980 J = -360 kJ(c) greater than 0; solid copper is changing to an aqueous ion, an increase in entropy

and aqueous nitrate is changing into a gas, also and increase in entropy.

(d) (i) second order with respect to NO; using experiments 1 & 3, k O2 n

rate[NO]m

0.0852[0.200]m

0.767[0.600]m

; m = 2

(ii) first order with respect to O2; using experiments 1 & 2, k[NO]m

rate[O2 ]n

0.0852[0.0300]n

0.256[0.0900]n

; n = 1(e) rate = k [NO]2[O2](f) 0.0852 mol L-1s-1 = k (0.200 mol L-1)2(0.0300 mol L-1)

k = 7100 L2 mol-2s-1

2007B #1 - equilibrium thermodynamics gas laws

A sample of solid U3O8 is placed in a rigid 1.500 L flask. Chlorine gas, Cl2(g), is added, and the flask is heated to 862oC. The equation for the reaction that takes place and the equilibrium-constant expression for the reaction are given below.

U3O8(s) + 3Cl2(g) 3UO2Cl2(g) + O2(g)K P=

( PUO2Cl2)3 (PO2)

(PCl2 )3

When the system is at equilibrium, the partial pressure of Cl2(g) is 1.007 atm and the partial pressure of UO2Cl2(g) is 9.734 × 10-4 atm.

a. Calculate the partial pressure of O2(g) at equilibrium at 862oC.

b. Calculate the value of the equilibrium constant, Kp, for the system at 862oC.

108

Page 109: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c. Calculate the Gibbs free-energy change, ΔGo, for the reaction at 862oC.

d. State whether the entropy change, ΔSo, for the reaction at 862oC is positive, negative, or zero. Justify your answer.

e. State whether the enthalpy change, ΔHo, for the reaction at 862oC is positive, negative, or zero. Justify your answer.

f. After a certain period of time, 1.000 mol of O2(g) is added to the mixture in the flask. Does the mass of U3O8(s) in the flask increase, decrease, or remain the same? Justify your answer.

(a) using the equation, the ratio is 3:1, UO2Cl2:O2; = 3.245×10-4 atm

(b) = 2.931×10-13

(c) ∆G˚ = –RTlnK = -(8.31)(862 + 273) ln (2.931×10-13) = 272 kJ(d) positive; a solid (low entropy) and 3 gases are converting into a mixture of gases

(high entropy)(e) positive; ∆G˚ = ∆H˚ – T∆S˚; ∆H˚ = ∆G˚ + T∆S˚; from (c) and (d), ∆G˚ and ∆S˚

are both positive, making ∆H˚ positive (f) increase; adding oxygen gas will cause a LeChâtelier Principle shift to the left,

producing more reactants

2007B #3 – stoichiometry electrochemistry gas laws

2 H2(g) + O2(g) 2 H2O(l)

In a hydrogen-oxygen fuel cell, energy is produced by the overall reaction represented above.

a. When the fuel cell operates at 25oC and 1.00 atm for 78.0 minutes, 0.0746 mol of O2(g) is consumed. Calculate the volume of H2(g) consumed during the same time period. Express your answer in liters measured at 25oC and 1.00 atm.

b. Given that the fuel cell reaction takes place in an acidic medium,

i. write the two half reactions that occur as the cell operates,

ii. identify the half reaction that takes place at the cathode, and

iii. determine the value of the standard potential, Eo, of the cell.

109

Page 110: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c. Calculate the charge, in coulombs, that passes through the cell during the 78.0 minutes of operation as described in part a.

(a) volume of H2 = (2)(mol. O2)(molar volume @ 25˚C) = (2)(0.0746 mol)(24.45 L mol-

1) = 3.65 L(b) (i) O2(g) + 4 H+(aq) + 4 e 2 H2O(l) E˚= +1.23 V (ii) cathode reaction

2 H2(g) 4 H+(aq) + 4e– E˚ = 0.00 V(iii) cell potential = 1.23 V

(c) 0.0746 mol O2 = 28,800 coul.

2007 #3 – electrochemistry thermodynamics

An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing 1.0 M CuSO4(aq) at 25oC, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and O2(g) is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

half-reaction Eo(V)O2(g) + 4 H+(aq) + 4 e- 2H2O(l) +1.23Cu2+(aq) + 2e- Cu(s) +0.34

a. On the diagram, indicate the direction of electron flow in the wire.

b. Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.

c. Predict the algebraic sign of ΔGo for the reaction. Justify your prediction.

d. Calculate the value of ΔGo for the reaction.

110

Page 111: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

An electric current of 1.50 amps passes through the cell for 40.0 minutes.

e. Calculate the mass, in grams, of the Cu(s) that is deposited on the electrode.

f. Calculate the dry volume, in liters measured at 25oC and 1.16 atm, of the O2(g) that is produced.

(a) from the right to the left(b) 2 Cu2+(aq) + 2 H2O(l) 2 Cu(s) + O2(g) + 4 H+(aq)

(c) +, a non-spontaneous reaction that requires the input of energy to take place(d) E˚ = +0.34v + (–1.23v) = –0.89v; ∆G˚ = –nE˚ = –(4)(96500)(–0.89) = 343540 J

= 340 kJ(e) (1.50 amps)(2400 sec) = 3600 coul.; 3600 coul.

= 1.19 g Cu(f) 1.19 g Cu = 0.187 mol Cu; using a 2:1 ratio from equation in part (b), this gives

0.00933 mol O2

V = = 0.197 L O2

2006 #6 – IMF’s thermodynamics kinetics

Answer each of the following in terms of principles of molecular behavior and chemical concepts.

(a) The structures for glucose, C6H12O6, and cyclohexane, C6H14, are shown below.

Identify the type(s) of intermolecular attractive forces in

(i) pure glucose

(ii) pure cyclohexane

(b) Glucose is soluble in water but cyclohexane is not soluble in water. Explain.

111

Page 112: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(c) Consider the two processes represented below.

Process 1: H2O(l) H2O(g) H = +44.0 kJ mol1

Process 2: H2O(l) H2(g) + H = +286kJ mol1

(i) For each of the two processes, identify the type(s) of intermolecular or intramolecular attractive forces that must be overcome for the process to occur.

(ii) Indicate whether you agree or disagree with the statement in the box below. Support your answer with a short explanation.

When water boils, H2O molecules break apart toform hydrogen molecules and oxygen molecules.

(d) Consider the four reaction-energy profile diagrams shown below.

(i) Identify the two diagrams that could represent a catalyzed and an uncatalyzed reaction pathway for the same reaction. Indicate which of the two diagrams represents the catalyzed reaction pathway for the reaction.

(ii) Indicate whether you agree or disagree with the statement in the box below. Support your answer with a short explanation.

Adding a catalyst to a reaction mixture adds energy that causes the reaction to proceed more quickly.

(a)

London dispersion forces

polar attractions hydrogen bonding

(i) pure glucose + + +

112

Page 113: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

(ii) pure cyclohexane

+ – –

(b) The hydroxyl groups (–OH) in glucose create polar regions on the molecule, these polar regions can be attracted to the polar water molecules, allowing it to dissolve. Cyclohexane has not such structures and is non-polar and non-water soluble. Like dissolves like.

(c) (i)Intermolecular forces Intramolecular

forcesLondon

dispersion forces

polar attractions

hydrogen bonding

H–O covalent bond

process 1

+ + + –

process 2

+ + + +

(ii) disagree; there is not enough energy in boiling water (373 K) to break a H–O covalent bond.

(d) (i) diagrams 1 & 2; diagram 1 represents the catalyzed reaction pathway(ii) disagree; a catalyst does not increase the temperature and, therefore, does not

increase the amount of energy present in the mixture. It only provides a lower energy pathway (i.e., smaller activation energy requirement) for the reaction to occur.

2011B #6

6. Use principles of molecular structure, intermolecular forces, and kinetic molecular theory to answer the following questions.

a.) A complete Lewis electron dot diagram of a molecule of ethyl methanoate is given below.

i.) Identify the hybridization of the valence electrons of the carbon atoms labeled Cw.

ii.) Estimate the numerical value of the Hy – Cx – O bond angle in an ethyl methanoate molecule. Explain the basis of your estimate.

113

Page 114: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

b.) Ethyl methanoate, CH3CH2OCHO, is synthesized in the laboratory from ethanol, C2H5OH, and methanoic acid, HCOOH, as represented by the following equation.

C2H5OH(l) + HCOOH(l) CH3CH2OCHO(l) + H2O(l)

i.) In the box below, draw the complete Lewis electron dot diagram of a methanoic acid molecule.

ii.) In the box below, draw the complete Lewis electron dot diagrams of a methanoic acid molecule and a water molecule in an orientation that allows a hydrogen bond to form between them.

Hydrogen Bonding between Methanoic Acid and Water

114

Page 115: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c.) A small amount of liquid ethyl methanoate (boiling point 54 oC) was placed in a rigid closed 2.0 L container containing argon gas at an initial pressure of 1.00 atm and a temperature of 20 oC. The pressure in the container was monitored for 70. seconds after the ethyl methanoate was added, and the data in the graph below were obtained. It was observed that some liquid ethyl methanoate remained in the flask after 70.0 seconds. (Assume that the volume of the remaining liquid is negligible compared to the total volume of the container.)

i.) Explain why the pressure in the flask increased during the first 60. seconds.

ii.) Explain, in terms of processes occurring at the molecular level, why the pressure in the flask remained constant after 60. seconds.

iii.) What is the value of the partial pressure of ethyl methanoate vapor in the container at 60. seconds?

iv.) After 80. seconds, additional liquid ethyl methanoate is added to the container at 20 oC. Does the partial pressure of the ethyl methanoate vapor in the container increase, decrease, or stay the same? Explain. (Assume that the volume of the additional liquid ethyl methanoate in the container is negligible compared to the total volume of the container.)

a.) i) sp2 1 point is earned for the correct answer.

ii) The Cx is the central atom in a tetrahedral arrangment of bonding electron pairs; thus the angle would be approximately109.5°. 1 point is earned for the correct angle with an appropriate explanation.

b.) i) See 2011 Form B #6 answers (pdf) 1 point is earned for a correct diagram.

ii) See 2011 Form B #6 answers (pdf) 1 point is earned for a diagram showing a reasonable orientation between a methanoic acid molecule and a water molecule.

115

Page 116: EQUILIBRIUM - Bremerton School District / Homepage · Web viewThermodynamics Concept List59 Free Response Questions60 Multiple Choice Questions68 Atomic Theory, Bonding, and Intermolecular

c.) i) Some of the liquid ethyl methanoate is going into the gas (vapor) phase. 1 point is earned for the correct explanation.

ii) At the equilibrium vapor pressure, the rate of molecules passing from the liquid to the gas phase (vaporizing) equals the rate of gas phase molecules passing into the liquid phase (condensing).

1 point is earned for the correct explanation.

iii) 1.25 atm − 1.00 atm = 0.25 atm 1 point is earned for the correct answer.

iv) The partial pressure of the vapor stays the same because the equilibrium vapor pressure for 20°C has already been reached. Because the temperature remains constant, the vapor pressure would remain unchanged. 1 point is earned for the correct answer with an explanation.

116