Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture...

81
Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) (Ch. 12 of Unit 1 and Ch. 1-5 of Unit 2 and Ch. 1-5 of Unit 3) Quick Review of Lagrange Relations in Lectures 7-8 Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2 How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2vMv and F=Ma to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2) GCC Cells, base vectors, and metric tensors Polar coordinate examples: Covariant E m vs. Contravariant E m Covariant g mn vs. Invariant δ m n vs. Contravariant g mn Lagrange prefers Covariant g mn with Contravariant velocity GCC Lagrangian definition GCC “canonical” momentum p m definition GCC “canonical” force F m definition Coriolis “fictitious” forces (… and weather effects)

Transcript of Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture...

Page 1: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lecture 9 Wed. 9.25.2019

Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC)

(Ch. 12 of Unit 1 and Ch. 1-5 of Unit 2 and Ch. 1-5 of Unit 3) Quick Review of Lagrange Relations in Lectures 7-8

Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant Em vs. Contravariant Em Covariant gmn vs. Invariant δmn vs. Contravariant gmn

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definition GCC “canonical” momentum pm definition GCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

Page 2: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lecture #9

This Lecture’s Reference Link ListingWeb Resources - front pageUAF Physics UTube channel

Classical Mechanics with a Bang!Principles of Symmetry, Dynamics, and Spectroscopy

Quantum Theory for the Computer Age

Modern Physics and its Classical Foundations2018 AMOP

2019 Advanced Mechanics

2017 Group Theory for QM2018 Adv CM

Select, exciting, and related Research & Articles of Interest: These are hot off the presses. Out in MISC for quick reference. Burning a hole in reality—design for a new laser may be powerful enough to pierce space-time - Sumner-Daily KOS-2019 Trampoline mirror may push laser pulse through fabric of the Universe - Lee-ArsTechnica-2019 Achieving_Extreme_Light_Intensities_using_Optically_Curved_Relativistic_Plasma_Mirrors_-_Vincenti-prl-2019 A_Soft_Matter_Computer_for_Soft_Robots_-_Garrad-sr-2019 Correlated_Insulator_Behaviour_at_Half-Filling_in_Magic-Angle_Graphene_Superlattices_-_cao-n-2018

Sorting_ultracold_atoms_in_a_three-dimensional_optical_lattice_in_a_ realization_of_Maxwell's_Demon - Kumar-n-2018Synthetic_three-dimensional_atomic_structures_assembled_atom_by_atom - Barredo-n-2018Older ones:Wave-particle_duality_of_C60_molecules - Arndt-ltn-1999Optical_Vortex_Knots_-_One_Photon__At_A_Time - Tempone-Wiltshire-Sr-2018Baryon_Deceleration_by_Strong_Chromofields_in_Ultrarelativistic_, Nuclear_Collisions - Mishustin-PhysRevC-2007, APS Link & Abstract Hadronic Molecules - Guo-x-2017 Hidden-charm_pentaquark_and_tetraquark_states - Chen-pr-2016

CMwithBang Lecture 8, page=20WWW.sciencenewsforstudents.org: Cassini - Saturnian polar vortex

Page 3: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

BoxIt Web Simulations: Generic/Default Most Basic A-Type Basic A-Type w/reference lines Basic A-Type A-Type with Potential energy A-Type with Potential energy and Stokes Plot A-Type w/3 time rates of change A-Type w/3 time rates of change with Stokes Plot B-Type (A=1.0, B=-0.05, C=0.0, D=1.0)

RelaWavity Web Elliptical Motion Simulations: Orbits with b/a=0.125 Orbits with b/a=0.5 Orbits with b/a=0.7 Exegesis with b/a=0.125 Exegesis with b/a=0.5 Exegesis with b/a=0.7 Contact Ellipsometry

Pirelli Site: Phasors animimation CMwithBang Lecture #6, page=70 (9.10.18)

Running Reference Link ListingLectures #8 through #7

In reverse order

AMOP Ch 0 Space-Time Symmetry - 2019Seminar at Rochester Institute of Optics, Aux. slides-2018

“RelaWavity” Web Simulations: 2-CW laser wave, Lagrangian vs Hamiltonian, Physical Terms Lagrangian L(u) vs Hamiltonian H(p) CoulIt Web Simulation of the Volcanoes of Io BohrIt Multi-Panel Plot: Relativistically shifted Time-Space plots of 2 CW light waves

NASA Astronomy Picture of the Day - Io: The Prometheus Plume (Just Image) NASA Galileo - Io's Alien Volcanoes New Horizons - Volcanic Eruption Plume on Jupiter's moon IO NASA Galileo - A Hawaiian-Style Volcano on Io

Page 4: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

RelaWavity Web Simulation: Contact Ellipsometry BoxIt Web Simulation: Elliptical Motion (A-Type) CMwBang Course: Site Title Page Pirelli Relativity Challenge: Describing Wave Motion With Complex Phasors UAF Physics UTube channel

BounceIt Web Animation - Scenarios: Generic Scenario: 2-Balls dropped no Gravity (7:1) - V vs V Plot (Power=4) 1-Ball dropped w/Gravity=0.5 w/Potential Plot: Power=1, Power=4 7:1 - V vs V Plot: Power=1 3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=4 3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=1 3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=1 w/Gaps 4-Ball Stack (27:9:3:1) w/Newton plot (y vs t) - Power=4 4-Newton's Balls (1:1:1:1) w/Newtonian plot (y vs t) - Power=4 w/Gaps 6-Ball Totally Inelastic (1:1:1:1:1:1) w/Gaps: Newtonian plot (t vs x), V6 vs V5 plot 5-Ball Totally Inelastic Pile-up w/ 5-Stationary-Balls - Minkowski plot (t vs x1) w/Gaps 1-Ball Totally Inelastic Pile-up w/ 5-Stationary-Balls - Vx2 vs Vx1 plot w/Gaps

Velocity Amplification in Collision Experiments Involving Superballs - Harter, 1971 MIT OpenCourseWare: High School/Physics/Impulse and Momentum Hubble Site: Supernova - SN 1987A

Running Reference Link ListingLectures #6 through #1

More Advanced QM and classical references at the end of this Lecture

X2 paper: Velocity Amplification in Collision Experiments Involving Superballs - Harter, et. al. 1971 (pdf) Car Collision Web Simulator: https://modphys.hosted.uark.edu/markup/CMMotionWeb.html Superball Collision Web Simulator: https://modphys.hosted.uark.edu/markup/BounceItWeb.html; with Scenarios: 1007 BounceIt web simulation with g=0 and 70:10 mass ratio With non zero g, velocity dependent damping and mass ratio of 70:35 Elastic Collision Dual Panel Space vs Space: Space vs Time (Newton) , Time vs. Space(Minkowski) Inelastic Collision Dual Panel Space vs Space: Space vs Time (Newton), Time vs. Space(Minkowski) Matrix Collision Simulator:M1=49, M2=1 V2 vs V1 plot <<Under Construction>>

With g=0 and 70:10 mass ratio With non zero g, velocity dependent damping and mass ratio of 70:35 M1=49, M2=1 with Newtonian time plot M1=49, M2=1 with V2 vs V1 plot Example with friction Low force constant with drag displaying a Pass-thru, Fall-Thru, Bounce-Off m1:m2= 3:1 and (v1, v2) = (1, 0) Comparison with Estrangian

m1:m2 = 4:1 v2 vs v1, y2 vs y1 m1:m2 = 100:1, (v1, v2)=(1, 0): V2 vs V1 Estrangian plot, y2 vs y1 plot

v2 vs v1 and V2 vs V1, (v1, v2)=(1, 0.1), (v1, v2)=(1, 0) y2 vs y1 plots: (v1, v2)=(1, 0.1), (v1, v2)=(1, 0), (v1, v2)=(1, -1) Estrangian plot V2 vs V1: (v1, v2)=(0, 1), (v1, v2)=(1, -1)

m1:m2 = 3:1BounceIt Dual plots BounceItIt Web Animation - Scenarios:

49:1 y vs t, 49:1 V2 vs V1, 1:500:1 - 1D Gas Model w/ faux restorative force (Cool), 1:500:1 - 1D Gas (Warm), 1:500:1 - 1D Gas Model (Cool, Zoomed in), Farey Sequence - Wolfram Fractions - Ford-AMM-1938 Monstermash BounceItIt Animations: 1000:1 - V2 vs V1, 1000:1 with t vs x - Minkowski Plot Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-2013 Quantum_Revivals_of_Morse_Oscillators_and_Farey-Ford_Geometry - Li-Harter-cpl-2015 Quant. Revivals of Morse Oscillators and Farey-Ford Geom. - Harter-Li-CPL-2015 (Publ.) Velocity_Amplification_in_Collision_Experiments_Involving_Superballs-Harter-1971 WaveIt Web Animation - Scenarios: Quantum_Carpet, Quantum_Carpet_wMBars, Quantum_Carpet_BCar, Quantum_Carpet_BCar_wMBars Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-JMS-2001 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-jms-2001 (Publ.)

AJP article on superball dynamics AAPT Summer Reading List

Scitation.org - AIP publications HarterSoft Youtube Channel

In reverse order

Page 5: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Quick Review of Lagrange Relations in Lectures 7-8 0th and 1st equations of Lagrange and Hamilton

Page 6: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Quick Review of Lagrange Relations in Lectures 7-8 0th and 1st equations of Lagrange and Hamilton

Starts out with simple demands for explicit-dependence, “loyalty” or “fealty to the colors”

∂L∂pk

≡ 0 ≡ ∂E∂pk

∂H∂vk

≡ 0 ≡ ∂E∂vk

∂L∂Vk

≡ 0 ≡ ∂H∂Vk

Lagrangian and Estrangian have no explicit dependence on momentum p

Hamiltonian and Estrangian have no explicit dependence on velocity v

Lagrangian and Hamiltonian have no explicit dependence on speedinum V

Such non-dependencies hold in spite of “under-the-table” matrix and partial-differential connections

∇vL = ∂L∂v

= ∂∂vviMiv2

=M iv= p

∇ pH = v = ∂H∂p

= ∂∂ppiM−1ip2

=M−1ip = v

(Forget Estrangian for now)

Lagrange’s 1st equation(s) Hamilton’s 1st equation(s)

∂L∂vk

= pk or: ∂L∂v

= p

∂H∂pk

= vk or: ∂H∂p

= v

∂L∂v1

∂L∂v2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=m1 0

0 m2

⎝⎜⎜

⎠⎟⎟

v1

v2

⎝⎜⎜

⎠⎟⎟=

p1

p2

⎝⎜⎜

⎠⎟⎟

∂H∂p1

∂H∂p2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=m1−1 0

0 m2−1

⎜⎜

⎟⎟

p1

p2

⎝⎜⎜

⎠⎟⎟=

v1

v2

⎝⎜⎜

⎠⎟⎟

p. 28 of Lecture 8

Page 7: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

p2=m2v2

p1=m1v1

Hamiltonian plotH(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=p1 /m1

(a)

v v = ∇∇pH=M-1•p

p = ∇∇vL=M•v

p

Lagrangian tangent at velocity vis normal to momentum p

Hamiltonian tangent at momentum pis normal to velocity v

(c) Overlapping plotsv

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

Unit 1 Fig. 12.2 p. 31 of

Lecture 8

Page 8: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

p2=m2v2

p1=m1v1

Hamiltonian plotH(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=p1 /m1

(a)

v v = ∇∇pH=M-1•p

p = ∇∇vL=M•v

p

Lagrangian tangent at velocity vis normal to momentum p

Hamiltonian tangent at momentum pis normal to velocity v

(c) Overlapping plotsv

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

Unit 1 Fig. 12.2

1st equation of Lagrange

1st equation of Hamilton

p. 31 of Lecture 8

Page 9: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

Page 10: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformations A pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy( Not in text. Recall Lecture 8 p. 6-22)†

Page 11: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformations A pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy

Easy to invert differential chain relations (even if functions are not easily inverted)

dx = ∂x∂ f

df + ∂y∂gdg

dy = ∂y∂ f

df + ∂y∂gdg

dx = ∂x∂rdr + ∂x

∂θdθ

dy = ∂y∂rdr + ∂y

∂θdθ

x = r cosθy = r sinθ

dxdy

⎝⎜

⎠⎟ =

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

drdθ

⎛⎝⎜

⎞⎠⎟= cosθ −r sinθ

sinθ r cosθ⎛

⎝⎜⎞

⎠⎟drdθ

⎛⎝⎜

⎞⎠⎟

( Not in text. Recall Lecture 8 p. 6-22)†

Page 12: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

dx j = ∂x j

∂qmdqm ≡ ∂x j

∂qmdqm dummy-index m-sum

Defining a shorthand { }m=1

N∑

⎝⎜

⎠⎟

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformations A pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy

Easy to invert differential chain relations (even if functions are not easily inverted)

dx = ∂x∂ f

df + ∂y∂gdg

dy = ∂y∂ f

df + ∂y∂gdg

dx = ∂x∂rdr + ∂x

∂θdθ

dy = ∂y∂rdr + ∂y

∂θdθ

x = r cosθy = r sinθ

dxdy

⎝⎜

⎠⎟ =

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

drdθ

⎛⎝⎜

⎞⎠⎟= cosθ −r sinθ

sinθ r cosθ⎛

⎝⎜⎞

⎠⎟drdθ

⎛⎝⎜

⎞⎠⎟

Notation for differential GCC (Generalized Curvilinear Coordinates {q1, q2, q3,...})

These xj are plain old CC (Cartesian Coordinates {dx1=dx, dx2=dy, dx3=dx, dx4=dt} )

What does “q” stand for? One guess: “Queer” And they do get pretty queer!

( Not in text. Recall Lecture 8 p. 6-22)†

Page 13: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

dx j = ∂x j

∂qmdqm ≡ ∂x j

∂qmdqm dummy-index m-sum

Defining a shorthand { }m=1

N∑

⎝⎜

⎠⎟

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformations A pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy

Easy to invert differential chain relations (even if functions are not easily inverted)

dx = ∂x∂ f

df + ∂y∂gdg

dy = ∂y∂ f

df + ∂y∂gdg

dx = ∂x∂rdr + ∂x

∂θdθ

dy = ∂y∂rdr + ∂y

∂θdθ

x = r cosθy = r sinθ

dxdy

⎝⎜

⎠⎟ =

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

drdθ

⎛⎝⎜

⎞⎠⎟= cosθ −r sinθ

sinθ r cosθ⎛

⎝⎜⎞

⎠⎟drdθ

⎛⎝⎜

⎞⎠⎟

Notation for differential GCC (Generalized Curvilinear Coordinates {q1, q2, q3,...})

These xj are plain old CC (Cartesian Coordinates {dx1=dx, dx2=dy, dx3=dx, dx4=dt} )

What does “q” stand for? One guess: “Queer” And they do get pretty queer!

Connection lines may help to indicate summation (OK on scratch paper...Difficult in text)

Index m REPEATED on SAME side of = is SUMMED

( Not in text. Recall Lecture 8 p. 6-22)†

Page 14: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

Page 15: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

v j≡ !x j≡ dx j

dt υm≡ !qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

!x j = ∂x j

∂qm!qm

Page 16: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

v j≡ !x j≡ dx j

dt υm≡ !qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

!x j = ∂x j

∂qm!qm

This is a key “lemma-1” for setting up mechanics: or:

∂ !x j

∂ !qm= ∂x j

∂qm lemma-1

Page 17: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

v j≡ !x j≡ dx j

dt υm≡ !qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

!x j = ∂x j

∂qm!qm

dx j !x j dqm !qm

Jm

j ≡ ∂x j

∂qm= ∂!x j

∂ !qm matrix component

Defining Jacobian{ } ∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ !x j

∂ !qm= ∂x j

∂qm lemma-1

Recall polar coordinate transformation matrix:

Page 18: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

v j≡ !x j≡ dx j

dt υm≡ !qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

!x j = ∂x j

∂qm!qm

dx j !x j dqm !qm

Jm

j ≡ ∂x j

∂qm= ∂!x j

∂ !qm matrix component

Defining Jacobian{ }Inverse (so-called) Kajobian Kjm matrix is flipped partial derivatives of Jmj.

K j

m ≡ ∂qm

∂x j= ∂ !qm

∂!x j (inverse to Jacobian)

Defining "Kajobian"{ }

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ !x j

∂ !qm= ∂x j

∂qm lemma-1

Recall polar coordinate transformation matrix:

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

−1

=

∂r∂x

∂r∂y

∂θ∂x

∂θ∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

=

r cosθ r sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

(det J = r)=

cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

Polar coordinate inverse transformation matrix:

A BC D

⎛⎝⎜

⎞⎠⎟

−1

=

D −B−C A

⎛⎝⎜

⎞⎠⎟

AD − BC

Defining 2x2 matrix inverse: (always test inverse matrices!)

Page 19: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

v j≡ !x j≡ dx j

dt υm≡ !qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

!x j = ∂x j

∂qm!qm

dx j !x j dqm !qm

Jm

j ≡ ∂x j

∂qm= ∂!x j

∂ !qm matrix component

Defining Jacobian{ }Inverse (so-called) Kajobian Kjm matrix is flipped partial derivatives of Jmj.

K j

m ≡ ∂qm

∂x j= ∂ !qm

∂!x j (inverse to Jacobian)

Defining "Kajobian"{ }

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ !x j

∂ !qm= ∂x j

∂qm lemma-1

Recall polar coordinate transformation matrix:

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

−1

=

∂r∂x

∂r∂y

∂θ∂x

∂θ∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

=

r cosθ r sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

(det J = r)=

cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

Polar coordinate inverse transformation matrix:

A BC D

⎛⎝⎜

⎞⎠⎟

−1

=

D −B−C A

⎛⎝⎜

⎞⎠⎟

AD − BC=

DAD − BC

−BAD − BC

−CAD − BC

AAD − BC

⎜⎜⎜⎜

⎟⎟⎟⎟

Defining 2x2 matrix inverse:

A BC D

⎛⎝⎜

⎞⎠⎟

D −B−C A

⎛⎝⎜

⎞⎠⎟= AD − BC 0

0 AD − BC⎛⎝⎜

⎞⎠⎟

(always test inverse matrices!)

Page 20: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Product of matrix Jmj and Kjm is a unit matrix by definition of partial derivatives.

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

v j≡ !x j≡ dx j

dt υm≡ !qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

!x j = ∂x j

∂qm!qm

dx j !x j dqm !qm

Jm

j ≡ ∂x j

∂qm= ∂!x j

∂ !qm matrix component

Defining Jacobian{ }Inverse (so-called) Kajobian Kjm matrix is flipped partial derivatives of Jmj.

K j

m ≡ ∂qm

∂x j= ∂ !qm

∂!x j (inverse to Jacobian)

Defining "Kajobian"{ }

K j

m⋅Jnj ≡ ∂qm

∂x j⋅ ∂x j

∂qn= ∂qm

∂qn= δn

m =1 if m = n0 if m ≠ n⎧⎨⎩

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ !x j

∂ !qm= ∂x j

∂qm lemma-1

Recall polar coordinate transformation matrix:

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

−1

=

∂r∂x

∂r∂y

∂θ∂x

∂θ∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

=

r cosθ r sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

(det J = r)=

cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

= 1 00 1

⎛⎝⎜

⎞⎠⎟

(always test inverse matrices!)

Page 21: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

Page 22: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Getting the GCC ready for mechanics (2nd part) Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

!!x j ≡ d

dt!x j = d

dt∂x j

∂qm!qm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟!qm+ ∂x

j

∂qm!!qm

First apply to velocity and use product rule:dtd x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

Page 23: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Apply derivative chain sum to Jacobian.

Getting the GCC ready for mechanics (2nd part) Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

!!x j ≡ d

dt!x j = d

dt∂x j

∂qm!qm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟!qm+ ∂x

j

∂qm!!qm

First apply to velocity and use product rule:dtd x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt

Page 24: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part) Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

!!x j ≡ d

dt!x j = d

dt∂x j

∂qm!qm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟!qm+ ∂x

j

∂qm!!qm

First apply to velocity and use product rule:dtd x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

( Not in text. Recall Lecture 9 p. 15-19)†

Important thing about mechanics to recall: coordinates qn independent of velocities dqm

dt= !qm

Page 25: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part) Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

!!x j ≡ d

dt!x j = d

dt∂x j

∂qm!qm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟!qm+ ∂x

j

∂qm!!qm

First apply to velocity and use product rule:dtd x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

= ∂∂qm

!x j( )By chain-rule def. of CC velocity:

( Not in text. Recall Lecture 9 p. 15-19)†

Important thing about mechanics to recall: coordinates qn independent of velocities dqm

dt= !qm

Page 26: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part) Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

!!x j ≡ d

dt!x j = d

dt∂x j

∂qm!qm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟!qm+ ∂x

j

∂qm!!qm

First apply to velocity and use product rule:dtd x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

= ∂∂qm

!x j( )

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟=∂!x j

∂qmlemma

2

This is the key “lemma-2” for setting up Lagrangian mechanics .

By chain-rule def. of CC velocity:

( Not in text. Recall Lecture 9 p. 15-19)†

Important thing about mechanics to recall: coordinates qn independent of velocities dqm

dt= !qm

Page 27: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part) Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

!!x j ≡ d

dt!x j = d

dt∂x j

∂qm!qm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟!qm+ ∂x

j

∂qm!!qm

First apply to velocity and use product rule:dtd x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

= ∂∂qm

!x j( )

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟=∂!x j

∂qm

The “lemma-1” was in the GCC velocity analysis just before this one for acceleration.

lemma 2

lemma 1

∂ !x j

∂ !qm= ∂x j

∂qm

This is the key “lemma-2” for setting up Lagrangian mechanics .

By chain-rule def. of CC velocity:

( Not in text. Recall Lecture 9 p. 15-19)†

Page 28: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

Page 29: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k !!x

k

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II Start with stuff we know...(sort of)

T = 1

2M jk v jvk = 1

2M jk !x

j !xk where: Mjk are CC inertia constants

constants

Page 30: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k !!x

k

dW = f jdx j = f j∂x j

∂qmdqm

⎝⎜

⎠⎟ = M j k !!x

k ∂x j

∂qmdqm

⎝⎜

⎠⎟

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

(It’s time to bring in the queer qm !)

T = 1

2M jk v jvk = 1

2M jk !x

j !xk where: Mjk are inertia constants that are symmetric:Mjk=Mkj

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II Start with stuff we know...(sort of)

constants

Page 31: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k !!x

k

T = 1

2M jk v jvk = 1

2M jk !x

j !xk

dW = f jdx j = f j∂x j

∂qmdqm

⎝⎜

⎠⎟ = M j k !!x

k ∂x j

∂qmdqm

⎝⎜

⎠⎟

dW = f jdx j = Fmdqm = f j

∂x j

∂qmdqm = M j k !!x

k ∂x j

∂qmdqm

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

dqm are independent so dqm-sum is true term-by-term.

(It’s time to bring in the queer qm !)

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II Start with stuff we know...(sort of)

where: Mjk are inertia constants that are symmetric:Mjk=Mkj

constants

Page 32: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k !!x

k

T = 1

2M jk v jvk = 1

2M jk !x

j !xk

dW = f jdx j = f j∂x j

∂qmdqm

⎝⎜

⎠⎟ = M j k !!x

k ∂x j

∂qmdqm

⎝⎜

⎠⎟

dW = f jdx j = Fmdqm = f j

∂x j

∂qmdqm = M j k !!x

k ∂x j

∂qmdqm

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

dqm are independent so dqm-sum is true term-by-term. (Still holds if all dqm are zero but one.)

(It’s time to bring in the queer qm !)

where: Mjk are inertia constants

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II Start with stuff we know...(sort of)

constants

⇒ Fm= f j

∂x j

∂qm=M j k !!x

k ∂x j

∂qm

Page 33: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k !!x

k

T = 1

2M jk v jvk = 1

2M jk !x

j !xk

dW = f jdx j = f j∂x j

∂qmdqm

⎝⎜

⎠⎟ = M j k !!x

k ∂x j

∂qmdqm

⎝⎜

⎠⎟

dW = f jdx j = Fmdqm = f j

∂x j

∂qmdqm = M j k !!x

k ∂x j

∂qmdqm

where : Fm = f j

∂x j

∂qm= M j k !!x

k ∂x j

∂qm

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

dqm are independent so dqm-sum is true term-by-term. (Still holds if all dqm are zero but one.)

Here generalized GCC force component Fm is defined:

(It’s time to bring in the queer qm !)

where: Mjk are inertia constants

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II Start with stuff we know...(sort of)

constants

⇒ Fm= f j

∂x j

∂qm=M j k !!x

k ∂x j

∂qm

Page 34: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

Page 35: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery begins Obvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k !!x

k

B = ∂x j

∂qm !!AB = d

dt!AB( )− !A !B⎡

⎣⎢

⎦⎥

Fm = f j∂x j

∂qm= M j k !!x

k ∂x j

∂qm= d

dtM j k !x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k !x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

AB( )AB A B

Page 36: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery begins Obvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k !!x

k

B = ∂x j

∂qm !!AB = d

dt!AB( )− !A !B⎡

⎣⎢

⎦⎥

Fm = f j∂x j

∂qm= M j k !!x

k ∂x j

∂qm= d

dtM j k !x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k !x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

AB( )AB A B

Cartesian Mjk must be constant for this to work (Bye, Bye relativistic mechanics or QM!)

Page 37: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery begins Obvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k !!x

k

B = ∂x j

∂qm !!AB = d

dt!AB( )− !A !B⎡

⎣⎢

⎦⎥

Fm = f j∂x j

∂qm= M j k !!x

k ∂x j

∂qm= d

dtM j k !x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k !x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

AB( )AB A B

Then convert to by Lemma 1 and Lemma 2 on 2nd term. ∂x j ∂!x

j

Fm = ddt

M j k !xk ∂ !x j

∂ !qm

⎝⎜

⎠⎟ − M j k !x

k ∂ !x j

∂qm

⎝⎜

⎠⎟

Cartesian Mjk must be constant for this to work (Bye, Bye relativistic mechanics or QM!)

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟=∂!x j

∂qmlemma

2lemma

1

∂ !x j

∂ !qm= ∂x j

∂qm

Page 38: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery begins Obvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k !!x

k

B = ∂x j

∂qm !!AB = d

dt!AB( )− !A !B⎡

⎣⎢

⎦⎥

Fm = f j∂x j

∂qm= M j k !!x

k ∂x j

∂qm= d

dtM j k !x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k !x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

AB( )AB A B

Then convert to by Lemma 1 and Lemma 2 on 2nd term. ∂x j ∂!x

j

Mijv

i ∂v j

∂q= Mij

∂∂q

viv j

2⎡

⎣⎢⎢

⎦⎥⎥

where q may be !qm or qmSimplify using:

Fm = ddt

M j k !xk ∂ !x j

∂ !qm

⎝⎜

⎠⎟ − M j k !x

k ∂ !x j

∂qm

⎝⎜

⎠⎟

Fm = ddt

∂ !qm

M j k !xk !x j

2

⎝⎜⎜

⎠⎟⎟− ∂

∂qm

M j k !xk !x j

2

⎝⎜⎜

⎠⎟⎟

Cartesian Mjk must be constant for this to work (Bye, Bye relativistic mechanics or QM!)

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟=∂!x j

∂qmlemma

2lemma

1

∂ !x j

∂ !qm= ∂x j

∂qm

Page 39: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

The result is Lagrange’s GCC force equation in terms of kinetic energy

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery begins Obvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k !!x

k

B = ∂x j

∂qm !!AB = d

dt!AB( )− !A !B⎡

⎣⎢

⎦⎥

Fm = f j∂x j

∂qm= M j k !!x

k ∂x j

∂qm= d

dtM j k !x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k !x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

AB( )AB A B

Then convert to by Lemma 1 and Lemma 2 on 2nd term. ∂x j ∂!x

j

Simplify using:

Fm = ddt

M j k !xk ∂ !x j

∂ !qm

⎝⎜

⎠⎟ − M j k !x

k ∂ !x j

∂qm

⎝⎜

⎠⎟

Fm = ddt

∂ !qm

M j k !xk !x j

2

⎝⎜⎜

⎠⎟⎟− ∂

∂qm

M j k !xk !x j

2

⎝⎜⎜

⎠⎟⎟

Fm = d

dt∂T∂ !qm

− ∂T∂qm

T = 1

2M jk !x

j !xk

or: F = d

dt∂T∂v

− ∂T∂r

Mijv

i ∂v j

∂q= Mij

∂∂q

viv j

2⎡

⎣⎢⎢

⎦⎥⎥

where q may be !qm or qm

Page 40: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

Page 41: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done... (Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Fm = − ∂U

∂qm= d

dt∂T

∂ !qm− ∂T

∂qm

Page 42: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done... (Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Becomes Lagrange’s GCC potential equation with a new definition for the Lagrangian: L=T-U.

Fm = − ∂U

∂qm= d

dt∂T

∂ !qm− ∂T

∂qm

0 = d

dt∂L∂ !qm

− ∂L∂qm L( !qm ,qm ) = T ( !qm ,qm ) −U (qm )

This trick requires:

∂U∂ !qm

≡ 0U(r) has

NO explicit velocity

dependence!

Page 43: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done... (Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Becomes Lagrange’s GCC potential equation with a new definition for the Lagrangian: L=T-U.

Fm = − ∂U

∂qm= d

dt∂T

∂ !qm− ∂T

∂qm

0 = d

dt∂L∂ !qm

− ∂L∂qm L( !qm ,qm ) = T ( !qm ,qm ) −U (qm )

ddt

∂L

∂ !qm= ∂L

∂qm

dpmdt

≡ !pm = ∂L∂qm

pm = ∂L

∂ !qm

Lagrange’s 1st GCC equation (Defining GCC momentum)

Lagrange’s 2nd GCC equation (Change of GCC momentum)

This trick requires:

∂U∂ !qm

≡ 0U(r) has

NO explicit velocity

dependence!

Recall : p =∂v

∂L

Page 44: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done... (Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Becomes Lagrange’s GCC potential equation with a new definition for the Lagrangian: L=T-U.

Fm = − ∂U

∂qm= d

dt∂T

∂ !qm− ∂T

∂qm

0 = d

dt∂L∂ !qm

− ∂L∂qm L( !qm ,qm ) = T ( !qm ,qm ) −U (qm )

ddt

∂L

∂ !qm= ∂L

∂qm

dpmdt

≡ !pm = ∂L∂qm

pm = ∂L

∂ !qm

Lagrange’s 1st GCC equation (Defining GCC momentum)

Lagrange’s 2nd GCC equation (Change of GCC momentum)

This trick requires:

∂U∂ !qm

≡ 0U(r) has

NO explicit velocity

dependence!

Recall : p =∂v

∂L

If L has no explicit qmdependence then: !pm=0 or :pm=const.

Page 45: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant Em vs. Contravariant Em Covariant gmn vs. Invariant δmn vs. Contravariant gmn

Page 46: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors{ } K-Rows are contravariant vectors { } E1=Er E2=Eφ E1= Er E2= Eφ

E1=Er

E2=Eφ

E1=Er

E2=Eφ

Er

q1=100

q1=101

q2=200

q2=201

dr=E1dq1+E2dq2

E1

E2 dr

(a) Polar coordinate bases (b) Covariant bases {E1E2}

(c) Contravariant bases {E1E2}F=F1E1+F2E2FE2

q1=100

q2=200

E1

dq1=1.0dq2=1.0

(Normal)

(Tangent)

Unit 1 Fig. 12.10

Derived from polar definition: x=r cos φ and y=r sin φInverse polar definition: r2=x2+y2 and φ =atan2(y,x)

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

Page 47: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors{ } K-Rows are contravariant vectors { } E1=Er E2=Eφ E1= Er E2= Eφ

E1=Er

E2=Eφ

E1=Er

E2=Eφ

Er

q1=100

q1=101

q2=200

q2=201

dr=E1dq1+E2dq2

E1

E2 dr

(a) Polar coordinate bases (b) Covariant bases {E1E2}

(c) Contravariant bases {E1E2}F=F1E1+F2E2FE2

q1=100

q2=200

E1

dq1=1.0dq2=1.0

(Normal)

(Tangent)

Unit 1 Fig. 12.10

Derived from polar definition: x=r cos φ and y=r sin φInverse polar definition: r2=x2+y2 and φ =atan2(y,x)

NOTE:These are 2D drawings! No 3D perspective

Page 48: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

∂r∂q1

∂r∂q2

∧geometric unit

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

NOTE:These are 2D drawings! No 3D perspective

Page 49: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ... since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

NOTE:These are 2D drawings! No 3D perspective

Page 50: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ... since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

NOTE:These are 2D drawings! No 3D perspective

Page 51: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

Contravariant {E1E2}match reciprocal cells

F=F1E1+F2E2FE2

q2=200

E1

(Normal)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ... since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

E1 is normal to q1=const. since gradient of q1is vector sum of all its partial derivatives

= ∂q1

∂r= ∇q1

∂q2

∂r= ∇q2 =

∇q1 =

∂q1

∂x∂q1

∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

NOTE:These are 2D drawings! No 3D perspective

Page 52: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

Contravariant {E1E2}match reciprocal cells

F=F1E1+F2E2FE2

q2=200

E1

(Normal)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ... since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

E1 is normal to q1=const. since gradient of q1is vector sum of all its partial derivatives

= ∂q1

∂r= ∇q1

∂q2

∂r= ∇q2 =

∇q1 =

∂q1

∂x∂q1

∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

F = F1E1 + F2E

2 = F1∂q1

∂r+ F2

∂q2

∂r= F1∇q

1 + F2∇q2

Em are convenient bases for intensive quantities like force and momentum.

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

NOTE:These are 2D drawings! No 3D perspective

Page 53: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

Contravariant {E1E2}match reciprocal cells

F=F1E1+F2E2FE2

q2=200

E1

(Normal)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ... since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

E1 is normal to q1=const. since gradient of q1is vector sum of all its partial derivatives

= ∂q1

∂r= ∇q1

∂q2

∂r= ∇q2 =

∇q1 =

∂q1

∂x∂q1

∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

F = F1E1 + F2E

2 = F1∂q1

∂r+ F2

∂q2

∂r= F1∇q

1 + F2∇q2

Em are convenient bases for intensive quantities like force and momentum.

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

En=∂qn

∂r= ∇qn

Co-Contra dot products Em• En are orthonormal:

EmiEn= ∂r

∂qmi∂qn

∂r=δm

n

By chain rule: ∂qn

∂qm=δm

n

Page 54: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant Em vs. Contravariant Em Covariant gmn vs. Invariant δmn vs. Contravariant gmn

Page 55: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Covariant gmn vs. Invariant δmn vs. Contravariant gmn

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

EmiEn=

∂r∂qm

i∂r∂qn

≡gmn EmiEn=∂q

m

∂ri∂qn

∂r≡gmn

Covariant metric tensor

gmn

Invariant Kroneker unit tensor

δmn ≡

1 if m = n0 if m ≠ n

⎧⎨⎪

⎩⎪

Contravariant metric tensor

gmn

Page 56: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Covariant gmn vs. Invariant δmn vs. Contravariant gmn

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

EmiEn=

∂r∂qm

i∂r∂qn

≡gmn EmiEn=∂q

m

∂ri∂qn

∂r≡gmn

Covariant metric tensor

gmn

Invariant Kroneker unit tensor

δmn ≡

1 if m = n0 if m ≠ n

⎧⎨⎪

⎩⎪

Contravariant metric tensor

gmn

Polar coordinate examples (again):

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

Page 57: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Covariant gmn vs. Invariant δmn vs. Contravariant gmn

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

EmiEn=

∂r∂qm

i∂r∂qn

≡gmn EmiEn=∂q

m

∂ri∂qn

∂r≡gmn

Covariant metric tensor

gmn

Invariant Kroneker unit tensor

δmn ≡

1 if m = n0 if m ≠ n

⎧⎨⎪

⎩⎪

Contravariant metric tensor

gmn

Polar coordinate examples (again):

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

Covariant gmn Invariant Contravariant gmn

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟

= 1 00 r2

⎝⎜⎞

⎠⎟

grr grφ

gφr gφφ⎛

⎝⎜⎜

⎠⎟⎟= Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜

⎠⎟

= 1 00 1/ r2

⎝⎜⎞

⎠⎟

δ rr δ φ

r

δφr δφ

φ

⎝⎜⎜

⎠⎟⎟=

EriEr EriE

φ

EφiEr EφiE

φ

⎝⎜⎜

⎠⎟⎟

= 1 00 1

⎛⎝⎜

⎞⎠⎟

δmn

Page 58: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definition GCC “canonical” momentum pm definition GCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

!qm

Page 59: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian L=KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Page 60: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 61: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 62: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definition GCC “canonical” momentum pm definition GCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

!qm

Page 63: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

(From preceding page)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 64: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !rNothing too surprising; radial momentum pr has the usual linear M·v form

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 65: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

ddt

∂L

∂ !qm= ∂L

∂qm

dpmdt

≡ !pm = ∂L∂qm

pm = ∂L

∂ !qm

Lagrange’s 1st GCC equation (Defining GCC momentum)

Lagrange’s 2nd GCC equation (Change of GCC momentum)

Recall : p =∂v

∂L

Page 66: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definition GCC “canonical” momentum pm definition GCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

!qm

Page 67: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

(From preceding page)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 68: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

!pr =

∂L∂r

= M2

∂gφφ∂r!φ 2 − ∂U

∂r= M r !φ 2− ∂U

∂r !pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugal force Mrω2

2nd L-equation involves total time derivative pm for each momentum pm: i

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

ddt

∂L

∂ !qm= ∂L

∂qm

dpmdt

≡ !pm = ∂L∂qm

pm = ∂L

∂ !qm

Lagrange’s 1st GCC equation (Defining GCC momentum)

Lagrange’s 2nd GCC equation (Change of GCC momentum)

Recall : p =∂v

∂L

Page 69: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

!pr =

∂L∂r

= M2

∂gφφ∂r!φ 2 − ∂U

∂r= M r !φ 2− ∂U

∂r !pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugal force Mrω2

2nd L-equation involves total time derivative pm for each momentum pm: i

!pm ≡ dpm

dt= ddtM (gmn !q

n ) = M ( !gmn !qn+ gmn!!q

n )Find directly from 1st L-equation: pm i

!pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 70: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definition GCC “canonical” momentum pm definition GCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

!qm

Page 71: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

!pr =

∂L∂r

= M2

∂gφφ∂r!φ 2 − ∂U

∂r= M r !φ 2− ∂U

∂r !pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugal force Mrω2

2nd L-equation involves total time derivative pm for each momentum pm: i

!pm ≡ dpm

dt= ddtM (gmn !q

n ) = M ( !gmn !qn+ gmn!!q

n )Find directly from 1st L-equation: pm i

!pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

(From preceding page)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 72: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

!pr =

∂L∂r

= M2

∂gφφ∂r!φ 2 − ∂U

∂r= M r !φ 2− ∂U

∂r !pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugal force Mrω2

!pr ≡dprdt

= M !!r

= M r !φ 2− ∂U∂r

Centrifugal (center-fleeing) force equals total

Centripetal (center-pulling) force

2nd L-equation involves total time derivative pm for each momentum pm: i

!pm ≡ dpm

dt= ddtM (gmn !q

n ) = M ( !gmn !qn+ gmn!!q

n )Find directly from 1st L-equation: pm i

!pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

Page 73: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lagrange prefers Covariant gmn with Contravariant velocity

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( !r,!φ) =2

1M (grr !r2 + gφφ !φ

2)−U(r,φ) =21M (1·!r2 + r2 ·!φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ !r

= M grr !r = M !r pφ =

∂L∂ !φ

= Mgφφ !φ = Mr2 !φNothing too surprising; radial momentum pr has the usual linear M·v form

Wow! gφφ gives moment-of-inertia factor Mr2 automatically for the angular momentum pφ=Mr2ω.

!pr =

∂L∂r

= M2

∂gφφ∂r!φ 2 − ∂U

∂r= M r !φ 2− ∂U

∂r !pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugal force Mrω2

!pr ≡dprdt

= M !!r

= M r !φ 2− ∂U∂r

!pφ ≡dpφdt

= 2Mr!r !φ +Mr2!!φ

= 0 − ∂U∂φ

Centrifugal (center-fleeing) force equals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if potential U has no explicit φ-dependence

2nd L-equation involves total time derivative pm for each momentum pm: i

!pm ≡ dpm

dt= ddtM (gmn !q

n ) = M ( !gmn !qn+ gmn!!q

n )Find directly from 1st L-equation: pm i

!pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Torque relates to two distinct parts: Coriolis and angular acceleration

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1M!ri !r−U = 21M (Em !q

m)i(En !qn)−U = 2

1M (gmn !qm !qn)−U = L( !q)

Use polar coordinate Covariant gmn metric (page 53)

Page 74: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

(makes φ positive)..

!pr ≡dprdt

= M !!r

= M r !φ 2− ∂U∂r

!pφ ≡dpφdt

= 2Mr!r !φ +Mr2!!φ

= 0 − ∂U∂φ

Centrifugal (center-fleeing) force equals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Torque relates to two distinct parts: Coriolis and angular acceleration

Rewriting GCC Lagrange equations :

Conventional forms radial force: angular force or torque:

M !!r = M r !φ 2− ∂U

∂r Mr2!!φ = −2Mr!r !φ − ∂U

∂φ

L

Northern hemisphere rotationφ >0

Inward flow to pressure Lowr<0

Coriolis acceleration with φ >0 and r<0φ = -2 r φ /r

L

Field-free (U=0) radial acceleration: angular acceleration: !!r = r !φ

2

!!φ = −2 !r

!φr

Effect on Northern

Hemisphere local weather

Cyclonic flow around lows

...makes wind turn to the right

(with φ = 0).

Page 75: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

(makes φ positive)..

!pr ≡dprdt

= M !!r

= M r !φ 2− ∂U∂r

!pφ ≡dpφdt

= 2Mr!r !φ +Mr2!!φ

= 0 − ∂U∂φ

Centrifugal (center-fleeing) force equals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Torque relates to two distinct parts: Coriolis and angular acceleration

Rewriting GCC Lagrange equations :

Conventional forms radial force: angular force or torque:

M !!r = M r !φ 2− ∂U

∂r Mr2!!φ = −2Mr!r !φ − ∂U

∂φ

L

Northern hemisphere rotationφ >0

Inward flow to pressure Lowr<0

Coriolis acceleration with φ >0 and r<0φ = -2 r φ /r

L

Field-free (U=0) radial acceleration: angular acceleration: !!r = r !φ

2

!!φ = −2 !r

!φr

Effect on Northern

Hemisphere local weather

Cyclonic flow around lows

...makes wind turn to the right

(with φ = 0).

Warm South winds precede

storms

Cool North winds follow

storms

Page 76: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

(makes φ positive)..

!pr ≡dprdt

= M !!r

= M r !φ 2− ∂U∂r

!pφ ≡dpφdt

= 2Mr!r !φ +Mr2!!φ

= 0 − ∂U∂φ

Centrifugal (center-fleeing) force equals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Torque relates to two distinct parts: Coriolis and angular acceleration

Rewriting GCC Lagrange equations :

Conventional forms radial force: angular force or torque:

M !!r = M r !φ 2− ∂U

∂r Mr2!!φ = −2Mr!r !φ − ∂U

∂φ

L

Northern hemisphere rotationφ >0

Inward flow to pressure Lowr<0

Coriolis acceleration with φ >0 and r<0φ = -2 r φ /r

L

Field-free (U=0) radial acceleration: angular acceleration: !!r = r !φ

2

!!φ = −2 !r

!φr

Effect on Northern

Hemisphere local weather

Cyclonic flow around lows

Deep quantum rule: Flow tries to mimic the external rotation

(least relative v)

...makes wind turn to the right

(with φ = 0).

Warm South winds precede

storms

Cool North winds follow

storms

Northern hemisphere systems drift West to East

Page 77: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

GOES-16 captured this geocolor image of Hurricane Irma approaching Anguilla at about 7:15 am (eastern), September 6, 2017. Irma's maximum sustained winds remain near 185 mph with higher gusts, making it a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. According to the latest information from NOAA's National Hurricane Center (issued at 8:00 am eastern), Irma was located about 15 miles west-southwest of Anguilla and moving toward the west-northwest near 16 miles per hour.

Page 78: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Lecture 9 ends here Wed. 9.25.2019

Science News <link>

https://www.sciencenewsforstudents.org/article/cassini-spacecraft-takes-its-final-bow

Page 79: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973Alternative Basis for the Theory of Complex Spectra

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I_-_harter-pra-1973Alternative_Basis_for_the_Theory_of_Complex_Spectra_II_-_harter-patterson-pra-1976Alternative_Basis_for_the_Theory_of_Complex_Spectra_III_-_patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984Galloping waves and their relativistic properties - ajp-1985-HarterRovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)

Rotation–vibration spectra of icosahedral molecules. I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989 (Alt scan)II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989 (Alt scan)III) Half-integral angular momentum - harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez)Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006Resonance and Revivals

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge BankII) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013QTCA Unit 10 Ch 30 - 2013AMOP Ch 0 Space-Time Symmetry - 2019

Web Resources - front page 2014 AMOP

2018 AMOPUAF Physics UTube channel 2017 Group Theory for QM

Classical Mechanics with a Bang!Principles of Symmetry, Dynamics, and Spectroscopy

Quantum Theory for the Computer Age

Modern Physics and its Classical Foundations

*Index/Search is disabled - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, https://modphys.hosted.uark.edu/markup/AMOP_References.html

and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

Page 80: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

H atom hyperfine-B-level crossing Unit 8 Ch. 24 p15

Intro spin ½ coupling Unit 8 Ch. 24 p3

Hyperf. theory Ch. 24 p48.

Intro 2p3p coupling Unit 8 Ch. 24 p17. Intro LS-jj coupling Unit 8 Ch. 24 p22.

CG coupling derived (start) Unit 8 Ch. 24 p39.

CG coupling derived (formula) Unit 8 Ch. 24 p44.

Hyperf. theory Ch. 24 p48. Deeper theory ends p53

Lande’ g-factor Unit 8 Ch. 24 p26.

Irrep Tensor building Unit 8 Ch. 25 p5.

Irrep Tensor Tables Unit 8 Ch. 25 p12.

Tensors Applied to d,f-levels. Unit 8 Ch. 25 p21.

Wigner-Eckart tensor Theorem. Unit 8 Ch. 25 p17.

Tensors Applied to high J levels. Unit 8 Ch. 25 p63.

Intro 3-particle coupling. Unit 8 Ch. 25 p28.

Intro 3,4-particle Young Tableaus GrpThLect29 p42.

Young Tableau Magic Formulae GrpThLect29 p46-48.

Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 23-26 ), (PSDS - Ch. 5, 7 )

*Index/Search is disabled - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, https://modphys.hosted.uark.edu/markup/AMOP_References.html

and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

Page 81: Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear Coordinates (GCC) · Lecture 9 Wed. 9.25.2019 Equations of Lagrange and Hamilton mechanics in GeneralizedCurvilinear

Predrag Cvitanovic’s: Birdtrack Notation, Calculations, and SimplificationChaos_Classical_and_Quantum_-_2018-Cvitanovic-ChaosBook

Group Theory - PUP_Lucy_Day_-_Diagrammatic_notation_-_Ch4Simplification_Rules_for_Birdtrack_Operators_-_Alcock-Zeilinger-Weigert-zeilinger-jmp-2017

Group Theory - Birdtracks_Lies_and_Exceptional_Groups_-_Cvitanovic-2011Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017

Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux’s: UMA method of vibrational inductionQuantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U

Symmetry_Analysis_for_H20-_H20GrpTheory-_RiouxQuantum_Mechanics-Group_Theory_and_C60_-_JChemEd-Rioux-1994

Group_Theory_Problems-_Rioux-_SymmetryProblemsXComment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & ExperimentMany Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017Symmetry and Chirality - Continuous_Measures_-_Avnir

*Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

*Index/Search is disabled - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display, https://modphys.hosted.uark.edu/markup/AMOP_References.html

and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.