Equations for Matse 201 Penn State

download Equations for Matse 201 Penn State

of 34

Transcript of Equations for Matse 201 Penn State

  • 8/21/2019 Equations for Matse 201 Penn State

    1/34

    Elementary charge 1.60E-19 coulombs

    Boltz 8.62E-05 eV/K

    Avogadro 6.02E+23 atoms/mol

    Plancks 6.63E-34 J-s

    Speed of light 3.00E+08 m/s

    Gas cnst 8.31E+00 J/K-mol

    permittivity of free space 8.85E-12 F/mmass of an electron 9.11E-31 kg

    Q (watts) Area (cubic meter)

    3333 0.5

    Q total Q3 (watts) Q2

    47.69 15.90 15.90

    Enthalpy Change H Change U

    0

    Heat Capactiy Heat Cv Change Temp#DIV/0!

    Heat Cp Change Temp

    #DIV/0!

    linearCoefficent of Thermal expansion material A

    (1/degrees C)

    initial Volume formaterial A (cubic

    cm)

    Final Volume for material A

    (cubic cm)

    7.60E-06 1 0.9938

    look up

    Thermal Stress

    (mpa) coeff. Linear expansion

  • 8/21/2019 Equations for Matse 201 Penn State

    2/34

    compressive (Tf>Ti), thermal stress

  • 8/21/2019 Equations for Matse 201 Penn State

    3/34

    Dependence of creep strain rate on stress AND

    Temperature 19588 140

    percent IonicityElectronegetivity of

    more EN element

    Electronegetivity of less EN

    element

    0.99502% 2.1 1.9

    XRD for BCCsqrt of sum of

    squares hkl d (nm)

    find d given R and hkl x 0.1655find d and R, given hkl, diff angle, lamda x 0.1655

    find sqrt of sum of squares hkl given DA, R, and lambda 3 0.1655

    Find DA, given hkl, R, and lamda X 0.1655

    XRD for FCCsqrt of sum of

    squares hkl d (nm)

    find d given R and hkl 11 0.1183

    find d and R, given hkl, diff angle, lamda 11 0.1183

    find sqrt of sum of squares hkl given DA, R, and lambda 11 0.1183

    Find DA, given hkl, R, and lamda 11 0.1183

    Density BCC (g/cc) a (cm) R (cm)7.90E+00 2.86E-08 1.24E-08

    7.90E+00 2.86E-08 x

    Density FCC (g/cc) a (cm) R (cm)22.44 3.84666E-08 1.36E-08

    22.44 3.85E-08 x

  • 8/21/2019 Equations for Matse 201 Penn State

    4/34

    Vacancy equationsFraction of atom

    sites

    Vacancys per cubic

    centimeter

    2.41E-05 1.99E+18

    Schottky/FrenkelFraction of atom

    sites defects per cubic centimeter

    3.36E-09 5.30E+13

    Kic( Mpa-sqrt(m))

    crack propagation or critical

    stress at fracture (Mpa)

    find flaw size given crit stress 40 400

    find crit stressgiven max flaw size 40 400

    Flexural strength

    (mpa) Width (mm)

    find loadgiven strength and dimensions 150 8

    find flex strength given load and dimensions 150 8

    Flexural strength

    (mpa) Radius (mm)

    find loadgiven strength and dimensions 150 8find flex strength given load and dimensions 150 8

    Voltage (V) Resistance (ohms)

    find V 20 4

    Find R 20 4

    Find I 20 4

    Resistance (ohm) Diameter (cm)

    Find cond between voltmeterand resistance of the entire

    lengthwith given values 125.00 0.510

    Flexural Strength (circular)

    Flexural Strength (rectanglular)

    Ohm's Law

  • 8/21/2019 Equations for Matse 201 Penn State

    5/34

    Find minimum Diameter for wire to exp 1.5V drop over it's

    entire length 125.00 0.510

    Find Resistance, current, current density, and the magnitude

    of the electric field. All over its entire length. 125.00 0.51

    Find max wire length. 125 0.51

    Thickness (cm) Length (cm)

    Step 1, use dimensions and ohms law to determine the

    conductivity and resistivity of the semi conductor 0.1 1.5

    Step 2. Dope with [Al] for a p-type semiconductor and find

    the mobility of the majority carriers (holes). x x

    Ec = energy of the

    bottom edge of the

    conduction band

    (eV)

    Ev = energy of the top edge

    of the valence band (eV)

    example (silicon intrinsic) ni increases with temp 1 1

    Electron

    concentration (m^-

    3) Drift Velocity (m/s)

    3.00E+18 100

    3.00E+18 100

    3.00E+18 100

    3.00E+18 100

    Hole concentration

    (m^-3) Hole Mobility (m^2/V-s)

    5.00E+22 0.03

    5.00E+22 0.02

    Extrinsic Semi Cond

  • 8/21/2019 Equations for Matse 201 Penn State

    6/34

    Material Resistivity at 20C rt(m)

    Aluminum

    (annealed) 2.83E-08

    Copper (annealed

    standard) 1.72E-08

    Gold 2.44E-08

    Iron (99.99+%) 9.71E-08

    Lead (99.73+%) 2.06E-07

    Magnesium

    *99.80%) 4.46E-08

    Mercury 9.58E-07

    Nickel (99.95% +

    Co) 6.84E-08

    Nichrone (66% Ni +

    Cr and Fe) 1.00E-06

    Platinum (99.99%) 1.06E-07

    Silver (99.78%) 1.59E-08

    1.07E-07

    1.75E-07

    Tungsten 5.51E-08

    Zinc 5.92E-08

    Steel (wire)

  • 8/21/2019 Equations for Matse 201 Penn State

    7/34

    1.38E-16 erg/K 1.38E-23 J/K

    5.189eV/K-mol

    Kglass T1 T2 Xglass (m)

    2 5 15 0.003

    Q1 Area (cubic meter) Kgas (w/m-K) Kglass T1

    15.90 0.5 0.016 2 5

    Change P Volume Final Length (m)

    Original Length

    (m)

    0.2 0.1

    0.2 0.1

    change U 0.2 0.10.2 0.1

    Change H 0.2 0.1

    Initial Density for

    material A (g/cc)

    final density for

    material A (g/cc)

    Mass for material

    A (g)

    Initial Temperature

    for Material A

    FinalTemperature for

    material A

    4.000 4.0249 4 573 302.02

    look up

    Modulus elasticity

    (mpa) Temp, final Temp, intitial Change in temp

    Double pain with argon gas steady state

    Single Pane

    Vol

    li

  • 8/21/2019 Equations for Matse 201 Penn State

    8/34

    100000 106 20 -86

    100000 20 106 86

    area (m^2) time (s/hr)

    diffusion

    coefficent (m^2/s) Ca (kg/cubic meter)

    Cb (kg/cubic

    meter)

    0.2 3600 3.95E-11 0.9441 0.5901

    0.2 3600 3.95E-11 0.9441 0.5901

    density A (g/cc) density B (g/cc) A Kg/cubic meter B kg/cubic meter

    grams to kg

    factor

    2.25 7.87 0.9441 0.5901 1000

    Surface Concentration

    (Cs) depth (x) meters time (t) sec Diffusion erf(z)

    1.3 x x x 0.7727

    x x x 1.94E-11 x

    x 0.002 70561 1.94E-11 x

    x 0.002 70561 1.94E-11 x

    Diffusion depth (x) meters time (s)

    diffusion coeff.

    (D)

    1.94E-11 x 70561.1 1.94E-11

    1.94E-11 0.002 70561.1

    1.94E-11 0.002 70561.1

    Strain Rate 1 (1/hour)

    Strain Rate 2

    (1/hour)

    1.00E-07 8.00E-06

    K1=cnst n=cnst K2=cnst Qc (J/mol-K) Temperature (K)

    1 2 x x x

    rce

    percent weight to kg/m^3

    Fick's Second Law Case 1; cnst surface concentration (infinite source)

  • 8/21/2019 Equations for Matse 201 Penn State

    9/34

    x 2 1 10 2000

    a (nm) R (nm) h k l

    0.2866 0.1241 1 1 10.2866 0.1241 1 1 1

    0.287 0.1241 x x x

    0.287 0.1241 1 1 1

    a (nm) R (nm) h k l

    0.3923 0.1387 1 1 3

    0.3923 0.1387 1 1 3

    0.3923 0.1387 x x x

    0.3923 0.1387 1 1 3

    Atomic Weight

    (g/mol) Volume atoms/cell

    55.85 2.35E-23 2

    55.85 2.35E-23 2

    Atomic Weight

    (g/mol) Volume atoms/cell

    192.2 5.69E-23 4

    192.2 5.69E-23 4

  • 8/21/2019 Equations for Matse 201 Penn State

    10/34

    atoms/cc density (g/cc)

    atomic weigth

    (g/mol) Temp (kelvin)

    Activation

    energy

    (eV/atom)

    8.24584E+22 7.65 55.85 600 0.55

    atoms/ccdensity elment

    1+element 2 (g/cc)atomic weigth

    (g/mol) Temp (kelvin)

    Activation

    energy(eV/atom)

    1.57E+22 1.95 74.55 773 2.6

    Max flaw size (mm) strain z at fracture Yield Strength Mpa Modulus Mpa lo

    3.183 0.478 400 200000 48.8

    3.183

    height (mm) Length (mm) Failure Load (N)

    2.5 25 200

    2.5 25 200

    Length (mm) Failure Load (N)

    25 965125 9651

    Current (amps)

    5

    5

    5

    Area (cm^2)

    Length of specimen

    (cm)

    Distance between

    +/- on voltmeter

    (cm) Voltage (V)

    Current (amps or

    coulombs/sec)

    0.2043 5.1 12.5 0.1

    Fracture Toughness

    Electrical Conductivity using ohms law

  • 8/21/2019 Equations for Matse 201 Penn State

    11/34

    0.2043 5.1 12.5 0.1

    0.2043 5.1 12.5 0.1

    0.2043 5.1

    Area (cm^2) Width (cm) Voltage (V) Current (amps)

    Resistance

    (ohms)

    0.05 0.5 1 0.019 52.63

    x x x x x

    Ef =

    Eg= band gap

    energy (eV)

    Nv= effective

    density of states in

    valence bonds 1/cc

    Nc= effective

    density of states in

    conduction band

    1/cc

    Temperature

    (kelvin)

    1.18 1.12 1.20E+19 2.80E+19 200

    Electric Field (V/m)

    Electron Mobility

    (m^2/V-s)

    Conductivity (ohm-

    m)^-1 Current Density

    500 0.2 0.0961200 48.06

    500 0.2 0.09612 48.06

    500 0.2 0.09612 48.06

    500 0.2 0.09612 48.06

    Temperature Conductivity

    300 240.3

    400 160.2

    Intrinsic Semiconductor

    Electrical Resistivity of Metals

    ctor (p-type)

    Extrinsic Semi Conductor (n-type)

  • 8/21/2019 Equations for Matse 201 Penn State

    12/34

    Temperature

    coefficient of

    resistivity at 20C

    (C-1

    ) Temperature Final Temperature Initial

    Change in

    Temperature Resistivity

    0.0039 1000 200 800 1.17E-07

    0.00393 1000 200 800 7.14E-08

    0.0034 1000 200 800 9.08E-08

    0.00651 1000 200 800 6.03E-07

    0.00336 1000 200 800 7.61E-07

    0.01784 1000 200 800 6.81E-07

    0.00089 1000 200 800 1.64E-06

    0.0069 1000 200 800 4.46E-07

    0.0004 1000 200 800 1.32E-06

    0.003923 1000 200 800 4.39E-07

    0.0041 1000 200 800 6.81E-08

    0.006 1000 200 800 6.21E-07

    0.0036 1000 200 800 6.79E-07

    0.0045 1000 200 800 2.53E-07

    0.00419 1000 200 800 2.57E-07

  • 8/21/2019 Equations for Matse 201 Penn State

    13/34

    T2 T3 T4 Xglass (m) Xgas (m)

    5.0318 14.9682 15 0.002 0.005

    Final

    Temperature

    Initial

    Temperature

    Linear Coefficent of

    Thermal expansion

    (1/degrees C)

    100 20 0.0125

    100 20 0.0125

    100 20 0.0125100 20 0.0125

    100 20 0.0125

    Heat capcity Cpfor material A (J/g-

    k) Q (J)

    % change in density

    material A

    initial Volume for

    material B (cubic cm)

    Final Volume for

    material B (cubic cm)

    0.775 840.04 0.6% 50 50.04

    look up

    umetric thermal expansion

    ear thermal expansion

  • 8/21/2019 Equations for Matse 201 Penn State

    14/34

    change in

    concentration

    (kg/cubic meter)

    change in depth

    (m) concentration gradient

    0.354 0.001 354

    0.354 0.001 354

    z D0 (m2/s) Temperature (K) Activation Qd (J/mol)z

    0.854 x x x 0

    x 2.30E-05 1273 148000 0.025

    0.854 x x x 0.05

    0.854 x x x 0.1

    0.15

    0.2

    Temp indpendent

    const (D0)

    Activation

    energy Qd

    (J/mol) Temperature (Kelvin)0.25

    2.30E-05 148000 1273 0.3

    0.35

    0.4

    0.45

    0.5

    Diffusion given Qd, D0, and temp

  • 8/21/2019 Equations for Matse 201 Penn State

    15/34

    2*theta

    (diffraction angle,

    DA) degrees 2*theta, radians lamda (nm) Energy (J) Frequency (Hz)

    24.81 0.433 0.0711 2.80E-15 4.22E+1724.81 0.433 0.0711 2.80E-15 4.22E+17

    24.81 0.433 0.0711 2.80E-15 4.22E+17

    24.81 0.433 0.0711 2.80E-15 4.22E+17

    2*theta

    (diffraction angle,

    DA) radians

    2*theta,

    DEGREES lamda Energy Frequency

    1.42 81.36 0.1542 1.29E-15 1.945E+17

    1.42 81.36 0.1542 1.29E-15 1.95E+17

    1.42 81.36 0.1542 1.29E-15 1.95E+17

    1.42 81.36 0.1542 1.29E-15 1.95E+17

  • 8/21/2019 Equations for Matse 201 Penn State

    16/34

    Lf or fracture

    length (mm) strain y Ao (area prior) Do (mm) Af

    72.14 -0.141 128.7 12.8 95.03

    Conductivity

    (ohm-cm)^-1

    Resistivity (ohm-

    cm)

    Current Density

    (amps/cm^2)

    Electric field intensity

    (volts/cm)

    Force on a single charge

    (N)

    0.1997 5.0069 0.49 2.45 3.93E-17

  • 8/21/2019 Equations for Matse 201 Penn State

    17/34

    0.1997 5.007 0.49 2.45 3.93E-17

    0.1997 5.0069 0.49 2.45 3.93E-17

    5.0069

    Resistivity (ohm-

    cm)

    Conductivity

    (ohm-cm)^-1

    Carrier concentration

    of dopant (cm^-3)

    Hole Mobility (cm^2/V-

    s)

    1.75 0.57 x

    x 0.57 1.00E+17 35.6

    ni = carrier

    concentration

    (intrinsic) 1/cc

    n = carrier

    concentration

    (n-type

    extrinsic) 1/cc

    p = carrier

    concentration (p-type

    extrinsic) 1/cc n*p ni^2

    1.43E+05 8.18E+14 4.11E+23 3.36E+38 2.05E+10

    Doping parameters (p-type)

  • 8/21/2019 Equations for Matse 201 Penn State

    18/34

  • 8/21/2019 Equations for Matse 201 Penn State

    19/34

    Initial Densityfor material B

    (g/cc)

    final densityfor material B

    (g/cc)

    Initial Mass for

    material B (g)

    InitialTemperature for

    Material B

    Final

    Temperature for

    material B

    Heat

    capcity Cp

    formaterial B

    (J/g-K)

    1 0.9991 50 298 302.02 4.18

    look up

  • 8/21/2019 Equations for Matse 201 Penn State

    20/34

    er f(z) z er f(z) z erf (z)

    0 0.55 0.5633 1.3 0.934

    0.0282 0.6 0.6039 1.4 0.9523

    0.0564 0.65 0.642 1.5 0.9661

    0.1125 0.7 0.6778 1.6 0.9763

    0.168 0.75 0.7112 1.7 0.9838

    0.2227 0.8 0.7421 1.8 0.9891

    0.2763 0.85 0.7707 1.9 0.9928

    0.3286 0.9 0.797 2 0.9953

    0.3794 0.95 0.8209 2.2 0.9981

    0.4284 1 0.8427 2.4 0.9993

    0.4755 1.1 0.8802 2.6 0.9998

    0.5205 1.2 0.9103 2.8 0.9999

  • 8/21/2019 Equations for Matse 201 Penn State

    21/34

  • 8/21/2019 Equations for Matse 201 Penn State

    22/34

    Df or fracture

    dia. (mm) v

    11 0.294

    acceleration of

    a single charge

    (m/s^2)

    charge Flux

    (Volt-meters) charge

    number of

    electrons

    4.31E+13 0.005011831 4.44E-14 2.77E+05

  • 8/21/2019 Equations for Matse 201 Penn State

    23/34

    4.31E+13

    4.31E+13

  • 8/21/2019 Equations for Matse 201 Penn State

    24/34

  • 8/21/2019 Equations for Matse 201 Penn State

    25/34

    Linear Coefficent of

    Thermal expansionmaterial B

    (1/degrees C)

    % changein density

    material A

    7.13E-05 0.09%

    look up

  • 8/21/2019 Equations for Matse 201 Penn State

    26/34

    Elementary charge 1.60E-19 coulombs

    Boltz 8.62E-05 eV/K

    Avogadro 6.02E+23 atoms/mol

    Plancks 6.63E-34 J-s

    Speed of light 3.00E+08 m/s

    Gas cnst 8.31E+00 J/K-mol

    permittivity of free space 8.85E-12 F/mmass of an electron 9.11E-31 kg

    Q (watts) Area (cubic meter)

    3333 0.5

    Q total Q3 (watts) Q2

    47.69 15.90 15.90

    Enthalpy Change H Change U

    0

    Heat Capactiy Heat Cv Change Temp#DIV/0!

    Heat Cp Change Temp

    #DIV/0!

    linearCoefficent of Thermal expansion material A

    (1/degrees C)

    initial Volume for

    material A (cubic

    cm)

    Final Volume for material A

    (cubic cm)

    7.60E-06 1 0.993821641

    look up

    Thermal Stress

    (mpa) coeff. Linear expansioncompressive (Tf>Ti), thermal stress

  • 8/21/2019 Equations for Matse 201 Penn State

    27/34

    tension 172 0.00002

    Activation energy for CREEP (Qc) J/mol-K

    Temperature 1

    (Kelvin) Temperature 2 (kelvin0

    186329.2125 700 811

    MORE CREEP: Strain Rate (1/hr) stress (Mpa)

    Dependence of creep strain rate on stress 19600 140

    Dependence of creep strain rate on stress AND

    Temperature 19588 140

  • 8/21/2019 Equations for Matse 201 Penn State

    28/34

    1.38E-16 erg/K 1.38E-23 J/K

    5.189eV/K-mol

    Kglass T1 T2 Xglass (m)

    2 5 15 0.003

    Q1 Area (cubic meter) Kgas (w/m-K) Kglass T1

    15.90 0.5 0.016 2 5

    Change P Volume Final Length (m)

    Original Length

    (m)

    0.2 0.1

    0.2 0.1

    change U 0.2 0.10.2 0.1

    Change H 0.2 0.1

    Initial Density for

    material A (g/cc)

    final density for

    material A (g/cc)

    Mass for material

    A (g)

    Initial Temperature

    for Material A

    Final

    Temperature for

    material A

    4 4.024867075 4 573 302.0193305

    look up

    Modulus elasticity

    (mpa) Temp, final Temp, intitial Change in temp

    100000 106 20 -86

    Single Pane

    Double pain with argon gas steady state

    li

    Vol

  • 8/21/2019 Equations for Matse 201 Penn State

    29/34

    100000 20 106 86

    Strain Rate 1 (1/hour)

    Strain Rate 2

    (1/hour)

    1.00E-07 8.00E-06

    K1=cnst n=cnst K2=cnst Qc (J/mol-K) Temperature (K)

    1 2 x x x

    x 2 1 10 2000

  • 8/21/2019 Equations for Matse 201 Penn State

    30/34

    T2 T3 T4 Xglass (m) Xgas (m)

    5.031796502 14.96820 15 0.002 0.005

    Final

    Temperature

    Initial

    Temperature

    Linear Coefficent of

    Thermal expansion

    (1/degrees C)

    100 20 0.0125

    100 20 0.0125

    100 20 0.0125100 20 0.0125

    100 20 0.0125

    Heat capcity Cp

    for material A (J/g-

    k) Q (J)

    % change in density

    material A

    initial Volume for

    material B (cubic cm)

    Final Volume for

    material B (cubic cm)

    0.775 840.0400754 0.6% 50 50.04

    look up

    ear thermal expansion

    umetric thermal expansion

  • 8/21/2019 Equations for Matse 201 Penn State

    31/34

  • 8/21/2019 Equations for Matse 201 Penn State

    32/34

    Initial Density

    for material B

    (g/cc)

    final density

    for material B

    (g/cc)

    Initial Mass for

    material B (g)

    Initial

    Temperature for

    Material B

    Final

    Temperat

    ure for

    material B

    Heat

    capcity Cp

    for

    material B

    (J/g-K)

    1 0.999140606 50 298 302.0193 4.18

    look up

  • 8/21/2019 Equations for Matse 201 Penn State

    33/34

  • 8/21/2019 Equations for Matse 201 Penn State

    34/34

    Linear Coefficent of

    Thermal expansion

    material B

    (1/degrees C)

    % change

    in density

    material A

    7.13E-05 0.09%

    look up