EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation...

19
Hassan Ghasemzadeh Mohammadi, PierreEmmanuel Gaillardon, Giovanni De Micheli Integrated Systems Laboratory (LSI) EPFL Lausanne, Switzerland

Transcript of EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation...

Page 1: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

Hassan  Ghasemzadeh  Mohammadi,  Pierre-­‐Emmanuel  Gaillardon,  Giovanni  De  Micheli  

Integrated  Systems  Laboratory  (LSI)  EPFL  

Lausanne,  Switzerland  

Page 2: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

2  

Semiconductor technology trend

Single-­‐gate  devices  

Mul@-­‐gate  de

vices  

Nano-­‐devices  Silicon  nanowires,  

Carbon  nano-­‐tubes,  …  Source:    Infineon  

▲   Dimension  shrinkage  towards  Moore’s  law  

▲  Short-­‐channel  effect  immunity  ,  Lower  leakage,  …    Complex  fabricaGon  process,  Process  varia@on  

Page 3: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

Source:  Intel  

Source:  Intel  

Process variation

▲ The  device  parameters  are  not  determinisGc      anymore  

▲ Affect  yield  and  performance  3  

Average tapeout delay due to variation issue: 2 month!

Source:  LaunchM  Survey,  2011  

Page 4: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

4  

▲ StaGsGcal  informaGon  from  fabricated  device  ▽ Costly  cross-­‐secGon  analysis  

▲ StaGsGcal  analysis  by  simulaGons  ▽ Compact  models  ● Developing  CMs  for  nano-­‐devices  is  a  costly  procedure  

▽ TCAD  simulaGon  ● ComputaGonal  complexity  

 Curse  of  dimensionality!    

PV analysis challenges for emerging technologies

Page 5: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

5  

▲ Requirements:  ▽ Fast  (make  Monte  Carlo  simulaGon  possible,…)  

▽ High  precision  

▲ SoluGon:    ▽ Parameter  reducGon  ● Reducing  computaGonal  complexity  

● Reasonable  setup  Gme  

Fast PV analysis

Page 6: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

6  

▲   Principal  Component  Analysis  (PCA):        C.  Binjie  et  al.,  IEEE  Design  &  Test  of  Computers,  27(2):26-­‐35,  2010.  

▽   Does  not  consider  the  input  and  out  set  correlaGons  

▲ Independent  Component  Analysis  (ICA):        L.  Cheng,  P.  Gupta,  and  L.  He,  ASP-­‐DAC  Tech.  Dig.,  2009.  

▽   De-­‐correlate  non-­‐Gaussian  parameters  

▲ Reduced  Rank  Regression  (RRR):      H.  Feng  and  P.  Li,  IEEE  TVLSI,  17(1):137-­‐150,  2009.  

▽   Does  not  consider  the  correlaGons    within  input  set  

State of art

Need  for  efficient  parameter  reduc@on  method  to  address  the  limita@ons  

Page 7: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

7  

▲ Parameter  reducGon  ▽ The  new  parameters  have  different  meaning  ● Modifying  the  simulator-­‐  actually  is  not  possible  ● Reconstruct  input  samples  using  reverse  transformaGon  

–  Not  possible  for  non-­‐linear  method  

▲   Parameter  selecGon  ▽ Finding  the  most  important  parameters  ● Straighaorward  generaGon  of  input  samples  

PV analysis: Parameter selection or reduction?

Page 8: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

8  

General methodology for Parameter selection

Full parameter set as input set Output set

Learning target model by nonlinear regression

Most important parameters

Reconstruct the model with “Reduced Parameter Set”

Apply sparsity to discard insignificant parameters

… …

TCAD model Compact Model

Dev

ice

Log

ic C

ell

Full

Chi

p

or

Page 9: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

9  

▲ Performing  non-­‐linear  regression  to  find  the  relaGon  between  input  parameters  and  output  ▽   Regression  model                                                                                

▽   Loss  funcGon  

▲ Applying  sparsity  to  remove  redundant  parameters    ▽ RegularizaGon  term                                                                                              

Proposed method

Page 10: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

10  

How does the regularization works?

Applying norm-p

Full parameter set

Reduced parameter set

Column-wise sparse weight matrix using norm-1

00

0

Finding the maximum element of each column

00

0

Page 11: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

11  

Parameter selection algorithm

ObjecGve  funcGon  =  MSE  +  RegularizaGon    

Compute  the  error  value  (MSE)  

Gradient-­‐based  opGmizaGon  to  update  

Find  the  important  parameters  from  The  weight  matrix  

Page 12: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

12  

Target device ▲ DG-­‐SiNWFETs?  

Tri-gate FinFET  Current  Technology  

Scaling  

Nanowire FETs Improved  ElectrostaGc  

In-­‐field  reconfigurability  

Controllable-Polarity FETs Increase  the  funcGonality  

Page 13: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

Area    =  4   Area    =  18  

Less  transistors  stacked    Less  delay  13  

▲ The  controllable  polarity  FET  at  circuit  level  

Compact realization of arithmetic function

CG  

PG  

S  

D  

CG  S  

D  

PG  =  0  

p-­‐FET  

PG  =  1  CG  

S  

D  n-­‐FET  

CP-­‐FET  logic  

CMOS  logic  

Control  Gate  

Polarity  Gate  

Page 14: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

Device level PV effects N

umbe

r of d

evic

es

Num

ber o

f dev

ices

Num

ber o

f dev

ices

▲ Non-­‐Gaussian  variaGon  

▲ Gaussian  variaGon  

Methodology  have  to  deal  with  the  both  types  of  distribuGon  

14  

Page 15: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

15  

Circuit level PV analysis

Applying  parameter  selecGon  

Circuit  simulaGon  with  and  without  parameter  selecGon  

StaGsGcal  Gming  analysis  flow  

▲  30%    Gaussian  variaGon  is  applied  on  each  geometrical  parameters  

Input  set:  geometrical  parameters  of  transistors  

Output  set:  Delay  of  the  circuit  

▲  Benchmark:  ISCAS89-­‐s27  (30  transistors)  

ISCAS89-­‐S27  

Page 16: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

16  

Performance enhancement

2.5  X  speed  up  

Page 17: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

17  

Comparison with other techniques

Methods  Average  error  on  

delay  predic@on  (%)  σ  error  (%)  

PCA   26.2   13.5  

ICA   25.1   13.1  

RRR   20.4   12.3  

Proposed  Method   16.5   11.7  

Circuit  level  parameter  reducGon  with  a  desired  performance  

▲     20%  of  parameters  were  selected  according  to  their  highest  eigenvalues  

Page 18: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

18  

Summary

▲ PV  analysis  of  emerging  nano-­‐devices:  ▽ ComputaGonal  Complexity,  cost,  and  needs  for  accuracy,  …  

▲ Propose  a  new  methodology:  ▽ Based  on  non-­‐linear  mulGvariate  regression  +  Sparsity  ▽ DistribuGon  free  (Gaussian  and  non-­‐Gaussian)  ▽ Parameter  selecGon  in  the  input  space  

● Preserves  the  meaning  of  the  parameters  in  the  reduced  space  

▽ High  precision  ● Considering  linear  and  non-­‐linear  dependencies  for  inter-­‐set  and  intra-­‐set  parameters  

Page 19: EPFL% Lausanne,Switzerland...Source:Intel Source:Intel Process variation The)device)parameters)are)notdeterminisGc))) anymore) Affectyield)and)performance) 3 Average tapeout delay

19  

▲ Thank  you  for  your  amenGon!  

Q&A