EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100...

6
eGaN® FET DATASHEET EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 1 EPC2019 EPC2019 – Enhancement Mode Power Transistor V DS , 200 V R DS(on) , 50 mW I D , 8.5 A EPC2019 eGaN® FETs are supplied only in passivated die form with solder bars Applications • High Speed DC-DC conversion • Class-D Audio • High Frequency Hard-Switching and Soft-Switching Circuits Benefits • Ultra High Efficiency • Ultra Low R DS(on) • Ultra Low Q G • Ultra Small Footprint EFFICIENT POWER CONVERSION G D S HAL Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 200 V I D Continuous (T A = 25˚C, R θJA = 18°C/W) 8.5 A Pulsed (25°C, T PULSE = 300 µs) 42 V GS Gate-to-Source Voltage 6 V Gate-to-Source Voltage -4 T J Operating Temperature -40 to 150 °C T STG Storage Temperature -40 to 150 Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 2.7 °C/W R θJB Thermal Resistance, Junction-to-Board 7.5 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 72 Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 125 μA 200 V I DSS Drain-Source Leakage V GS = 160 V, V DS = 0 V 20 100 µA I GSS Gate-to-Source Forward Leakage V GS = 5 V 0.8 2.5 mA Gate-to-Source Reverse Leakage V GS = -4 V 20 100 µA V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 1.5 mA 0.8 1.4 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 7 A 36 50 mΩ V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 1.8 V All measurements were done with substrate connected to source. Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Transcript of EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100...

Page 1: EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100 10 1 01 0 0 100 10 200 I SD – GS SeDa e A 2 Gae ae SD SeDa ae Figure R evee D

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 1

EPC2019

EPC2019 – Enhancement Mode Power Transistor

VDS, 200 VRDS(on) , 50 mWID , 8.5 A

EPC2019 eGaN® FETs are supplied only inpassivated die form with solder bars

Applications• High Speed DC-DC conversion• Class-D Audio• High Frequency Hard-Switching and Soft-Switching Circuits

Benefits• Ultra High Efficiency• Ultra Low RDS(on)

• Ultra Low QG

• Ultra Small Footprint

EFFICIENT POWER CONVERSIONG

D

SHAL

Maximum Ratings

PARAMETER VALUE UNITVDS Drain-to-Source Voltage (Continuous) 200 V

ID

Continuous (TA = 25˚C, RθJA = 18°C/W) 8.5A

Pulsed (25°C, TPULSE = 300 µs) 42

VGS

Gate-to-Source Voltage 6V

Gate-to-Source Voltage -4

TJ Operating Temperature -40 to 150°C

TSTG Storage Temperature -40 to 150

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 2.7

°C/W RθJB Thermal Resistance, Junction-to-Board 7.5

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 72Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Static Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITBVDSS Drain-to-Source Voltage VGS = 0 V, ID = 125 μA 200 V

IDSS Drain-Source Leakage VGS = 160 V, VDS = 0 V 20 100 µA

IGSSGate-to-Source Forward Leakage VGS = 5 V 0.8 2.5 mA

Gate-to-Source Reverse Leakage VGS = -4 V 20 100 µA

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 1.5 mA 0.8 1.4 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 7 A 36 50 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 1.8 VAll measurements were done with substrate connected to source.

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Page 2: EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100 10 1 01 0 0 100 10 200 I SD – GS SeDa e A 2 Gae ae SD SeDa ae Figure R evee D

eGaN® FET DATASHEET EPC2019

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 2

40

35

30

25

20

15

10

5

00 1 2 3 4 5 6

Figure 1: Typical Output Characteristics at 25°C

I D –

Drai

n Cu

rrent

(A)

VDS – Drain-to-Source Voltage (V)

VGS = 5 VVGS = 4 VVGS = 3 VVGS = 2 V

120

100

80

60

40

20

0

Figure 3: RDS(on) vs. VGS for Various Drain Currents

ID = 4 AID = 8 AID = 12 AID = 24 A

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I D –

Drai

n Cu

rrent

(A)

VGS – Gate-to-Source Voltage (V)

Figure 2: Transfer Characteristics

25˚C125˚C

VDS = 6 V

40

35

30

25

20

15

10

5

01.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

120

100

80

60

40

20

0

Figure 4: RDS(on) vs. VGS for Various Temperatures

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

25˚C125˚C

ID = 7 A

Dynamic Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

CISS Input Capacitance

VGS = 100 V, VDS = 0 V

200 270

pFCOSS Output Capacitance 110 150

CRSS Reverse Transfer Capacitance 0.7 1

RG Gate Resistance 0.4 Ω

QG Total Gate Charge VDS = 100 V, VGS = 5 V, ID = 7 A 1.8 2.5

nC

QGS Gate-to-Source Charge

VDS = 100 V, ID = 7 A

0.6

QGD Gate-to-Drain Charge 0.35 0.6

QG(TH) Gate Charge at Threshold 0.4

QOSS Output Charge VDS = 100 V, VDS = 0 V 18 23

QRR Source-Drain Recovery Charge 0

All measurements were done with substrate connected to source.

Page 3: EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100 10 1 01 0 0 100 10 200 I SD – GS SeDa e A 2 Gae ae SD SeDa ae Figure R evee D

eGaN® FET DATASHEET EPC2019

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 3

All measurements were done with substrate shortened to source.

Capa

citan

ce (p

F)

Figure 5b: Capacitance (Log Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

1000

100

10

1

0.10 50 100 150 200

I SD –

Sour

ce-to

-Dra

in Cu

rrent

(A)

VSD – Source-to-Drain Voltage (V)

Figure 7: Reverse Drain-Source Characteristics

0

2

4

6

8

10

12

14

16

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 .0 4.5 5.0

25˚C125˚C

Figure 9: Normalized Threshold Voltage vs. Temperature

Norm

alize

d Th

resh

old

Volta

ge (V

)

1.4

1.3

1.2

1.0

1.1

0.9

0.8

0.7

0.60 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 1.5 mA

Capa

citan

ce (p

F)

Figure 5a: Capacitance (Linear Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

400

350

300

250

200

150

100

50

00 50 100 150 200

5

4

3

2

1

00 0.5 1.0 1.5 2.0

Figure 6: Gate Charge

V GS

– Ga

te-to

-Sou

rce V

olta

ge (V

)

QG – Gate Charge (nC)

ID = 7 AVDS = 100 V

Figure 8: Normalized On-State Resistance vs. Temperature

ID = 7 AVGS = 5 V

Norm

alize

d On

-Sta

te R

esist

ance

RDS

(on)

2.0

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

TJ – Junction Temperature (°C)

Page 4: EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100 10 1 01 0 0 100 10 200 I SD – GS SeDa e A 2 Gae ae SD SeDa ae Figure R evee D

eGaN® FET DATASHEET EPC2019

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 4

Figure 11: Transient Thermal Response Curves

Junction-to-Board

tp, Rectangular Pulse Duration, seconds

Duty Cycle:

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJB x RθJB + TB

PDM

t1

t2

0.5

0.1

0.05

0.02

0.01

Single PulseZ θJB

, Nor

mal

ized T

herm

al Im

peda

nce

10-410-5 10-3 10-2 10-1 1 10+1

1

0.1

0.01

0.001

Junction-to-Case

tp, Rectangular Pulse Duration, seconds

Duty Cycle:

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJC x RθJC + TC

PDM

t1

t2

0.50.20.10.050.020.01

Single Pulse

Z θJC

, Nor

mal

ized T

herm

al Im

peda

nce

10-510-6 10-4 10-3 10-2 10-1 1

1

0.1

0.01

0.001

0.0001

I G –

Gate

Curre

nt (m

A)

VGS – Gate-to-Source Voltage (V)

Figure 10: Gate Leakage Current

25˚C125˚C

0 0

1

2

3

4

5

6

1 2 3 4 5 6

Page 5: EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100 10 1 01 0 0 100 10 200 I SD – GS SeDa e A 2 Gae ae SD SeDa ae Figure R evee D

eGaN® FET DATASHEET EPC2019

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 5

2019

YYYY

ZZZZ Die orientation dot

Gate Pad bump is under this corner

Part Number

Laser Markings

Part #Marking Line 1

Lot_Date CodeMarking line 2

Lot_Date CodeMarking Line 3

EPC2019 2019 YYYY ZZZZ

DIE MARKINGS

TAPE AND REEL CONFIGURATION4 mm pitch, 8 mm wide tape on 7” reel

7” reel

a

d e f g

c

b

EPC2019 (note 1)

2019 YYYYZZZZ

Dimension (mm) target min max a 8.00 7.90 8.30 b 1.75 1.65 1.85

c (see note) 3.50 3.45 3.55 d 4.00 3.90 4.10 e 4.00 3.90 4.10

f (see note) 2.00 1.95 2.05 g 1.5 1.5 1.6

Note 1: MSL 1 (moisture sensitivity level 1) classied according to IPC/JEDEC industry standard.Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dieorientationdot

Gatesolder bar isunder thiscorner

Die is placed into pocketsolder bar side down(face side down)

Loaded Tape Feed Direction

Figure 12: Safe Operating Area

0.1

1

10

100

0.1 1 10 100 1000

I D –

Dra

in Cu

rrent

(A)

VDS - Drain-Source Voltage (V)

Limited by RDS(on)

TJ = Max Rated, TC = +25°C, Single Pulse

Pulse Width 100 ms 10 ms 1 ms 100 µs 10 µs

Page 6: EPC2019 – Enhancement Mode Power Transistor · OSS C GD C SD C ISS C GD C GS C RSS C GD 1000 100 10 1 01 0 0 100 10 200 I SD – GS SeDa e A 2 Gae ae SD SeDa ae Figure R evee D

eGaN® FET DATASHEET EPC2019

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 6

DIE OUTLINESolder Bar View

Side View

1

2 6

7

43 5

A

e g g

B c d

X2 X4

f X3

k

h

815 M

ax

100 ±

20

Seating plane

(685

)

DIM MIN Nominal MAX

A 2736 2766 2796B 920 950 980c 697 700 703d 247 250 253e 168 183 198f 245 250 255g 600 600 600h 450 450 450i 235 250 265

MICROMETERS

Pad no.1 is Gate; Pad no. 3, 5 are Drain; Pad no. 2, 4, 6 are Source; Pad no. 7 is Substrate.*

*Substrate pin should be connected to Source

Pad no. 1 is GatePad no. 3, 5 are DrainPad no. 2, 4, 6 are SourcePad no. 7 is Substrate*

*Substrate pin should be connected to Source

2

1 7

6

43 5

230

230 X3

230 X4

X4

680

2766 95

0 600 X2

600 X4

450

X2

The land pattern is solder mask defined.Copper is larger than the solder mask opening. Solder mask is 10 µm smaller per side than bump.

RECOMMENDEDLAND PATTERN (measurements in µm)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

RECOMMENDEDSTENCIL DRAWING (units in µm)

Recommended stencil should be 4 mil (100 μm)thick, must be laser cut , opening per drawing.The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder,reference 88.5% metals content

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

230

230 X3

230 X4

X4

680

2766

950

600 X2

600 X4

450

X2

2

1 7

6

43 5

Information subject to change without notice.

Revised August, 2019