Entropies & Information Theory

27
Entropies & Information Theory Nilanjana Datta University of Cambridge,U.K. LECTURE II See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223

Transcript of Entropies & Information Theory

Page 1: Entropies & Information Theory

Entropies & Information Theory

Nilanjana DattaUniversity of Cambridge,U.K.

LECTURE II

See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223

Page 2: Entropies & Information Theory

Hquantum system

Hilbert space (state space)

(finite-dimensional)

States (of a physical system):

density matrices 0, Tr 1

More generally: if a quantum system is in pure states:

1 2, ...., ,k H with probs. 1 2, ,..., kp p p

1

k

i i ii

p

i j ij in general ,i ip E

1

;d

i i ii

Spectral decomposition:

eigenvalues eigenvectors 1:d

i i

probability distribution

1

1d

ii

0,i

Page 3: Entropies & Information Theory

Any allowed physical process that a quantum system can undergo is described by a :

Quantum Operations or Quantum Channels

linear completely-positive, trace preserving (CPTP) map

( )

input output:CPTP map

Trace-preserving (TP):

Positive:

Completely positive (CP):

Tr Tr 1

( ) 0

: ( ) ( )A B D H D H

environment

systemA

E

AE

( )( )E AEid = an allowed state of the composite system

( )B E D H H( )( ) 0E AEid

Page 4: Entropies & Information Theory

A quantum measurement is described by a POVM

If the system is in a state before the measurement,

Then, probability of getting the outcome is:

Tr( )i ip E

;iE E 0, i ii

E E I (finite set)

thi

Generalized measurements – POVM:

Page 5: Entropies & Information Theory

Purification

Any mixed state

; AR A R H H A A HA pure state

Tr ; A R AR AR

purifying reference system

Page 6: Entropies & Information Theory

: Tr( log )S

Von Neumann entropy

Spectral decomposition:

iH

: Tr( log )S

Shannon entropy

1log

d

i ii

1

;d

i i ii

of a state :2log log

( ) 0S if and only if is a pure state:

( )S a measure of the “mixedness” of the state

Page 7: Entropies & Information Theory

Other Entropies

Conditional entropy:

Quantum mutual information:

: ( )| () )( AB BSS A SB

AB A B

: ( ) ( )( : ) ( );A B ABI S S SA B

For a bipartite system in a state :

Joint entropy:

( ) Tr( log )AB AB ABS

TrB A AB

reduced state

Page 8: Entropies & Information Theory

Quantum Relative Entropy

A fundamental quantity in Quantum Mechanics & Quantum

Information Theory is the Quantum Relative Entropy

of w.r.t.

It acts as a parent quantity for the von Neumann entropy:

: Tr lo( g Tr| o | ) l gD

, 0, Tr 1, 0:

well-defined if supp supp

: Tr lo ( ) ( || )gS D I ( )I

2log log

Page 9: Entropies & Information Theory

It also acts as a parent quantity for other entropies:

e.g. for a bipartite state :

Conditional entropy

Mutual information

: ( )( : ) ( |( ) |) ( )AB AB AB BAS S SI A B D

AB

: ( )( | ) ( || )( )AB AB A BBS SS A B D I

A B

Tr B A AB

Page 10: Entropies & Information Theory

Some Properties of

Monotonicity under a quantum operation (CPTP map)

( || ) 0 if & only i0 f D

( || )D

, states

( ( ) || ( )) ( || )D D

Many properties of other entropies can be proved using (1) & (2)

……….(1)

……….(2)

“distance”

triangle inequalitysymmetric

Page 11: Entropies & Information Theory

Properties of quantum entropies

( ) 0; ( ) log ;S S d where dim d H( ) ( ) ( )AB A BS S S

( )i i i ii i

S p p S

( ) ( , )H X H X Y ( ) ( )AB AS S but is possible!!

, :X Y

( ) ( ) ( )AB A BS S S

classical r.v.s

Subadditivity:

Concavity:

Araki-Lieb inequality:

( | )S A B can be negative!Conditional entropy

Invariance under unitaries: †( ) ( )S U U S

Page 12: Entropies & Information Theory

Properties of quantum entropies contd.

( ) ( ) ( ) ( )ABC B AB BCS S S S ABC Strong subadditivity: tripartite state

Consequences of strong subadditivity:

Conditioning reduces entropy

Discarding quantum systems never increases mutual information

Quantum operations never increase mutual information

( | ) ( | )S A BC S A B

( : ) ( : )I A B I A BC

( : ') ( : ) ;I A B I A B ' '(id )AB A B B AB

Lieb & Ruskai ‘73

CB A

Page 13: Entropies & Information Theory

= optimal rate of data compression for a memoryless (i.i.d.) quantum information source

Operational significance of the von Neumann entropy

Page 14: Entropies & Information Theory

, Hsignals (pure states)

with probabilities

Then source characterized by:

density matrix

1

r

i i ii

p

1 2, ...., r

1 2, ,..., rp p p H

i j ij

Quantum Data Compression

Quantum Info source signals

Memoryless quantum information source

nn State of copies of the source:n

no correlation

Page 15: Entropies & Information Theory

n

Quantum data compression

n Evaluated in the asymptotic limit

number of copies/uses of the source

Compression-Decompression Scheme

emits signals

with probs.

( ) ( ) ( )1 2, ....,n n n

m ( ) ( ) ( )1 2, ,...,n n n

mp p p( ) ( )n ni j ij

in general

State :( ) ( ) ( )

1

mn n n

n i i ii

p

nH

( ) ( ) ( )n n ni i i ( )n

cD H

( ) ( ) ( )n n ni i D H

compressed Hilbert space

recovered signal

Encoding:

Decoding:

signalcompressed

state

:nE

:nD

Page 16: Entropies & Information Theory

Quantum Data Compression

copies of a quantum information source

n

( )ni

compressedstate in n

cH

recoveredstate

nDnE( )ni

dim dim nc

nH H

signal

( ) ( )n ni i

( )nB H( )nB H

n

with prob. ( )nip

Require: ensemble average fidelity 1nF as ...........( )n a

( ) ( ) ( ) ( ) ( )n n n n nn i i n n i i iF p D E

Optimal rate of data compression: Data compression limit

log(dim ): limnc

nR

n

H Minimum value of such that holds( )a

Page 17: Entropies & Information Theory

Memoryless quantum information source

signal emitted with prob.

;nstate of copies of the source

( )n nn D H

( ) ( ) ( )

1

mn n n

n i i ii

p

( ) :ni ( ) ;n

ip ( ) ( )n ni j ij

( ),dim d D H HSpectral decompositions:

1;

d

j j jj

q

( ) ( ) ( )

1

ndn n n

n k k kk

nn 1 2

( ) ...n

nk k k k

1 2

( ) ......n

nk k k kq q q

Identification of the label as a sequence of classical indicesk1 2( , ,....., )nk k k k

n

Page 18: Entropies & Information Theory

Memoryless quantum information source

signal emitted with prob.

;nstate of copies of the source

n nn H

( ) ( ) ( )

1

mn n n

n i i ii

p

( ) :ni ( ) ;n

ip ( ) ( )n ni j ij

( ),dim d D H HSpectral decompositions:

1;

d

j j jj

q

( ) ( ) ( )n n nn k k k

k

nn 1 2

( ) ...n

nk k k k

1 2

( ) ......n

nk k k kq q q

Identification of the label as a sequence of classical indicesk1 2( , ,....., )nk k k kk

n

Page 19: Entropies & Information Theory

( ) ( ) ( )n n n nn k k k

k

1 2

( ) ......n

nk k k kq q q

( ) ( ) ( )nnS S nS

1 2( , , ....., ) :nk k kk

1 2

( ) ......n

nk k k kq q q

1 2( , ,....., )nk k kk a sequence 0, ( ({ }) ) ( ({ }) )2 ( ) 2 ,k kn H q n H qp k

( )p k

( ) :n T typical subspace

von Neumann entropy

Probability:

is typical if:

eigenvalues sequences( )nk k

eigenvectors ( )nk

- sum over all possible sequences

1, 2, .., ;ik d dimd H

( ) :nT typical set

({ })knH q

( ( ) ) ( ( ) )2 ( ) 2 ,n S n Sp k

Page 20: Entropies & Information Theory

typical subspace

Typical Sequence Theorem

( )Tr 1nnP

( ({ }) ) ( )(1 )2 kn H q nT

Fix then and large enough:0, 0, n

( ) nn

T H Subspace spanned by those eigenvectors

for which( )nk T

1 2

( ) ...n

nk k k k

Let( ) :nP orthogonal projection on to the typical subspace

Typical Subspace Theorem

( ) 1nP T

( ( ) ) ( )(1 )2 dimn S n T

( ({ }) )2 kn H q ( ( ) )2n S

Page 21: Entropies & Information Theory

Idea behind the compression scheme

signal emitted with prob.( ) :ni ( ) ;n

ip ( ) ( )n ni j ij

( ) ( ) ( ) ( ) ( )n n n n ni i iP I P

Compressionscheme

keep this part unchanged

map this onto a fixed pure state

( )nT ( )n

T( )0

( )n n T

( ) ( ) ( )n n nn i i i E

( ) 2 ( ) ( ) 2 ( ) (0

)( )0 ( )nn n n n n

i i i i i D T

Decompressionscheme

( ) ( ) 0n nn i i D

2 2( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ); ; ( )n n n n n n ni i i i i iP P I P

Page 22: Entropies & Information Theory

( ) ( ) ( ) ( ) ( ) 22 1n ni i

i

n n nn i i i i

iF p p Ensemble average

fidelity

( ) 2 ( ) ( ) 2 ( ) (0

)( )0 ( )nn n n n n

i i i i i D T

Page 23: Entropies & Information Theory

Schumacher proved (1995): for a memoryless source

Data compression limit = ( ) :S von Neumann entropy

of the source

, H

Page 24: Entropies & Information Theory

Schumacher’s Theorem : Quantum Data Compression

Suppose is an memoryless, quantum information

Suppose : then there exists a reliable compression

scheme of rate for the source.

If then any compression scheme of rate

will not be reliable.

source

( )R S R

, H;n

n von Neumann entropy( ) :S

R( )R S

Proof follows from the Typical Subspace theorem

Page 25: Entropies & Information Theory

Schumacher’s Theorem : Quantum Data Compression

Suppose : then there exists a reliable compression scheme of rate for the source.

( )R S R

CompressedHilbert space ; dim 2n n nR

c c H H ( )R S

Choose such that ( )R S Fix

0, 0, choose large enough such that:n

( )Tr 1 ;nnP ( )dim n

T ( ( ) )2n S 2 =dim nR nc H

( )n cn T H

Proof:

Page 26: Entropies & Information Theory

( ) ( ) ( ) ( ) ( ) 22 1n ni i

i

n n nn i i i i

iF p p

Ensemble average fidelity

1 2

1nF as n

(by the Typical Subspace Theorem)

Page 27: Entropies & Information Theory

Schumacher’s Theorem : Quantum Data Compression

Suppose is an memoryless, quantum information

Suppose : then there exists a reliable compression

scheme of rate for the source.

If then any compression scheme of rate

will not be reliable.

source

( )R S R

, H;n

n von Neumann entropy( ) :S

R( )R S

(See Cambridge lecture notes)