Enthalpy and Entropy - ocw.snu.ac.kr

20
SNU NAOE Y. Lim Enthalpy and Entropy

Transcript of Enthalpy and Entropy - ocw.snu.ac.kr

Page 1: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Enthalpy and Entropy

Page 2: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

How to know βˆ†π‘’, βˆ†β„Ž?

β€’ u and h is not measurable directly.

β€’ u and h is associated with heat capacity

β€’ The heat capacity is measurable from experiment!

2

Heat Capacity Specific heat capacity Molar heat capacity

𝐢 = 𝑄/βˆ†π‘‡ 𝑐 = π‘ž/βˆ†π‘‡ 𝑐 = π‘ž/βˆ†π‘‡

Extensive Property Intensive Property Intensive Property

J/K J/KΒ·g (cal/gΒ·K) J/KΒ·mol

Page 3: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Heat Capacity and U, H

3

π‘ž

Constant v

π‘ž

𝑇

𝑇 =?π‘†π‘™π‘œπ‘π‘’ = 𝑐𝑣

𝑑𝑒 = π›Ώπ‘ž + 𝛿𝑀 = π›Ώπ‘ž βˆ’ 𝑃𝑑𝑣0

𝑐𝑣 =πœ•π‘’

πœ•π‘‡π‘£

=𝑑𝑒

𝑑𝑇

𝑑𝑒 = 𝑐𝑣𝑑𝑇

βˆ†π‘’ = ࢱ𝑐𝑣𝑑𝑇

cv

π‘ž

𝑇 =?

π‘‘β„Ž = 𝑑 𝑒 + 𝑃𝑣 = π›Ώπ‘ž + 𝛿𝑀 + 𝑃𝑑𝑣 + 𝑣𝑑𝑃 = π›Ώπ‘ž + 𝑣𝑑𝑃0

Constant P

π‘ž

𝑇

π‘†π‘™π‘œπ‘π‘’ = 𝑐𝑃 𝑐𝑃 =πœ•β„Ž

πœ•π‘‡π‘ƒ

=π‘‘β„Ž

𝑑𝑇

π‘‘β„Ž = 𝑐𝑝𝑑𝑇

βˆ†β„Ž = ࢱ𝑐𝑝𝑑𝑇

cp

For ideal gas, u=f(T) only

=πœ•π‘’

πœ•π‘‡π‘£

=π‘ž

βˆ†π‘‡ 𝑣

= βˆ†π‘’

= βˆ†β„Ž

=π‘ž

βˆ†π‘‡ 𝑃=

πœ•β„Ž

πœ•π‘‡π‘ƒ

For ideal gas, h=u+Pv=u+RTh=f(T) only

Page 4: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Correlation for βˆ†β„Ž from experiment

4

𝑐𝑃𝑅= 𝐴 + 𝐡𝑇 + 𝐢𝑇2 + π·π‘‡βˆ’2 + 𝐸𝑇3 𝐾

(Ideal gas condition)good approximation with at low P

Cp (ice-water-steam)

Page 5: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

cP and cv

β€’ For solids and liquidsβ€’ 𝑐𝑃 β‰ˆ 𝑐𝑣

β€’ For ideal gas,

5

𝑐𝑃 β‰‘πœ•β„Ž

πœ•π‘‡π‘ƒ

=πœ• 𝑒 + 𝑃𝑣

πœ•π‘‡π‘ƒ

=πœ•π‘’

πœ•TP

+πœ•π‘…π‘‡

πœ•TP

=πœ•π‘’

πœ•TP

+ 𝑅

πœ•π‘’

πœ•TP

=𝑑𝑒

𝑑𝑇=

πœ•π‘’

πœ•T𝑣

𝑐𝑃 = 𝑐𝑣 + 𝑅

Page 6: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

cv of Gases

6

cv β‰ˆ3/2 R

Diatomic

cv β‰ˆ5/2 R

Polyatomic

cvβ‰ˆ6/2 R +f(T)

Linear

cv β‰ˆ5/2 R +f(T)

For an ideal gas, cv=3/2R

Page 7: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

βˆ†β„Ž with Phase change

βˆ†β„Ž = ࢱ𝑐𝑝𝑑𝑇 = ࢱ𝑇1

π‘‡π‘š

𝑐𝑝,π‘ π‘œπ‘™π‘–π‘‘ 𝑑𝑇 + βˆ†β„Žπ‘“π‘’π‘  +ΰΆ±π‘‡π‘š

𝑇𝑏

𝑐𝑝,π‘™π‘–π‘ž 𝑑𝑇 + βˆ†β„Žπ‘£π‘Žπ‘ +ࢱ𝑇𝑏

𝑇2

𝑐𝑝,π‘”π‘Žπ‘  𝑑𝑇

http://industries-news.blogspot.kr/2010/06/fundamentals-of-refrigeration-and-air.html

Latent heat : heat required to change the phase

Sensible heat : heat required to increase temperature

Page 8: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Enthalpy of reaction

β€’ Standard enthalpy of formation, πœŸπ’‰π’‡π’

– Change of enthalpy when one mole of substance is formed from its pure element in nature at standard condition, 25℃, 1 atm

β€’ Standard enthalpy of reaction, πœŸπ’‰π’“π’™π’π’

– Change of enthalpy by a chemical reaction

β€’ πœŸπ’‰π’“π’™π’π’ < 0: exothermic reaction

β€’ πœŸπ’‰π’“π’™π’π’ > 0: endothermic reaction

8

Page 9: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Example 2.11

β€’ In: 10 mol/s of hexane @25℃

β€’ Out: 100℃ vapor

β€’ Q=? (435 kJ/s in the textbook)

9

18PR

429

Page 10: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Example 2.15

β€’ Propane in an adiabatic chamber at 25℃.β€’ (a) React with stoichiometric amount of oxygen

(T=4910K in textbook)

β€’ (b) React with stoichiometric amount of air(T=2370K in textbook)

β€’ (c) React with stoichiometric amount of air and the product contains 90% CO2 and 10% CO (T=2350K in textbook)

10

18PR 18PR 18SRK

3283C 3469K 3557K 3557

18PR

2364K

18PR

2211K

Page 11: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

HHV vs LHV?

11

Page 12: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Understanding of Entropy, S

β€’ Difficult to understand the concept.

– Think about Enthalpy

β€’ H is hard to understand, because it is close to the mathematical notion, not natural discovery such as T or P.

– Same for Entropy!

β€’ It was born as a notion, and cannot be explained clearly until 19th century.

β€’ It can be defined by two kinds of view:– The classical thermodynamics definition

– The statistical mechanics definition.

12

Page 13: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Statistical understanding of S

β€’ S is a measure of the number of possible configurations(𝜴) of the individual molecules.

– If you have a system with 4 molecule in a room,

13

12

34

The number of possible configurations

4C0=1

4C1=4Entropy is high

Entropy is low

When you observe the system,the probability you can see the state=1/16=6.25%

the probability you can see this state=6/16=37.5%

𝑺 = π’Œπ‘© π₯𝐧𝜴

4C2=6

4C3=4

4C4=1

Where π’Œπ‘© is theBoltzmann constant

Page 14: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Statistical understanding of S

β€’ When there are 100 molecules,

14

The probability you can observe this state:7.9*10-29%

All the system moves to maximize its entropy

Low entropy(Possible but very rare)

High entropy

Ξ”S>0

Actually there are 6.022 x 1023

gas molecules in 0.224m3

Page 15: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Second Law

β€’ Entropy can be defined by two different points of view, but it is proved as same.

– 𝑑𝑆 =π‘‘π‘„π‘Ÿπ‘’π‘£

𝑇

– 𝑆 = π‘˜π΅ ln𝛺

β€’ 2nd law says:

– 𝑑𝑠 β‰‘π›Ώπ‘žπ‘Ÿπ‘’π‘£

𝑇→ βˆ†π‘  ≑

π›Ώπ‘žπ‘Ÿπ‘’π‘£

𝑇=

π‘žπ‘Ÿπ‘’π‘£

𝑇

β€’ βˆ†π‘ π‘’π‘›π‘–π‘£ = βˆ†π‘ π‘ π‘¦π‘  + βˆ†π‘ π‘ π‘’π‘Ÿπ‘Ÿ β‰₯ 0

– For a reversible process, βˆ†π‘ π‘’π‘›π‘–π‘£ = 0

– For an irreversible process, βˆ†π‘ π‘’π‘›π‘–π‘£ > 0

15

(𝑖𝑓 𝑇 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘)

If you want to know how it can be same, you need read more references:

Textbook (Chapter 3.3, 3.11) andArieh Ben-Naim, A Farewell to Entropy : StatisticalThermodynamics Based on Information, Chapter 5, World Scientific Publishing Company, 2008.(you can find an e-book from SNU library)

Page 16: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Why entropy is important?

β€’ Actually, all the real processes are irreversible, but we cannot know the exact path of the real process.

β€’ We can β€œassume” an ideal reversible (dS=0) process for each equipment and this is the best case for the equipment.

β€’ Then we can compare the real result with the ideal best case, then can say its β€œefficiency”

16

Page 17: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Entropy for a reversible process

β€’ Reversible, isothermal

β€’ Δ𝑠𝑠𝑦𝑠 =π‘žπ‘Ÿπ‘’π‘£

𝑇

β€’ Ξ”π‘ π‘ π‘’π‘Ÿπ‘Ÿ = βˆ’π‘žπ‘Ÿπ‘’π‘£

𝑇

β€’ Δ𝑠𝑒𝑛𝑖𝑣 = Δ𝑠𝑠𝑦𝑠 + Ξ”π‘ π‘ π‘’π‘Ÿπ‘Ÿ = 0

β€’ Δ𝑠𝑠𝑦𝑠 β‰  0, π‘ π‘ π‘’π‘Ÿπ‘Ÿ β‰  0

β€’ Reversible and Adiabatic

β€’ Δ𝑠𝑠𝑦𝑠 =π‘žπ‘Ÿπ‘’π‘£

𝑇= 0

β€’ Ξ”π‘ π‘ π‘’π‘Ÿπ‘Ÿ = βˆ’π‘žπ‘Ÿπ‘’π‘£

𝑇= 0

β€’ Δ𝑠𝑒𝑛𝑖𝑣 = Δ𝑠𝑠𝑦𝑠 + Ξ”π‘ π‘ π‘’π‘Ÿπ‘Ÿ = 0

β€’ Δ𝑠𝑠𝑦𝑠 = 0, π‘ π‘ π‘’π‘Ÿπ‘Ÿ = 0

17

Ξ΄qrev

Isentropic

=Isentropic

Page 18: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

How to get Ξ”s from T, P, v without qrev?

β€’ Entropy is a state function

β€’ For a real(irreversible) process from state 1 to 2, we can construct a hypothetic reversible process from 1 to 2 to get βˆ†π‘ 

18

βˆ†π‘ π‘Ÿπ‘’π‘Žπ‘™(𝑏𝑙𝑒𝑒) = 𝑠2 βˆ’ 𝑠1= βˆ†π‘ π‘Ÿπ‘’π‘£(π‘Ÿπ‘’π‘‘)

𝑃 (bar)

𝑣 π‘š3\mol

1

2Irreversible

Reversible

Page 19: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

Entropy of irreversible Process

19

SuddenIsothermalExpansion A

π‘žπ΄,π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = βˆ’π‘€π΄,π‘Žπ‘π‘‘π‘’π‘Žπ‘™= 1 π‘π‘Žπ‘Ÿ β‹… 0.08 βˆ’ 0.04 Ξ€π‘š3 π‘šπ‘œπ‘™= 4000 ΀𝐽 π‘š π‘œπ‘™ β‰  𝒒𝒓𝒆𝒗

π‘žπ΄,π‘Ÿπ‘’π‘£ = βˆ’π‘€π‘Ÿπ‘’π‘£ = +ࢱ𝑣1

𝑣2

𝑃𝑑𝑣 = ࢱ𝑣1

𝑣2 𝑃1𝑣1𝑣

𝑑𝑣

= 𝑃1𝑣1 ln𝑣2𝑣1

= 5545 ΀𝐽 π‘š π‘œπ‘™

𝑃 (bar)

𝑣 π‘š3\mol

1

21

2

0.04 0.08

𝑃 (bar)

𝑣 π‘š3\mol

1

2

A1

2

0.04 0.08

Page 20: Enthalpy and Entropy - ocw.snu.ac.kr

SNU NAOE

Y. Lim

How to get Ξ”s for an irreversible process?

20

P1

T1T2

P2

βˆ†π’”π’“π’†π’‚π’= βˆ†π’”π’Šπ’“π’“

βˆ†π’”π’‰π’šπ’‘π’π’•π’‰π’†π’•π’Šπ’„π’‚π’

A

B

State 1

State 2

Step A: reversible isothermal expansion

𝑑𝑒 = 0 = π›Ώπ‘žπ‘Ÿπ‘’π‘£ + π›Ώπ‘€π‘Ÿπ‘’π‘£

π›Ώπ‘žπ‘Ÿπ‘’π‘£ = βˆ’π›Ώπ‘€π‘Ÿπ‘’π‘£ = 𝑃𝑑𝑣

βˆ†π‘ π΄ = ΰΆ±π›Ώπ‘žπ‘Ÿπ‘’π‘£π‘‡

= ࢱ𝑃𝑑𝑣

𝑇

For Ideal gas, Pv=RT

βˆ†π‘ π΄ = ࢱ𝑣1

𝑣2 𝑅

𝑣𝑑𝑣 = 𝑅 ln

𝑣2𝑣1

= βˆ’π‘… ln𝑃2𝑃1

Step B: reversible isobaric expansion

𝑑𝑒 = π›Ώπ‘žπ‘Ÿπ‘’π‘£ + π›Ώπ‘€π‘Ÿπ‘’π‘£ = π›Ώπ‘žπ‘Ÿπ‘’π‘£ βˆ’ 𝑃𝑑𝑣

π‘‘β„Ž = 𝑑 𝑒 + 𝑃𝑣 = 𝑑𝑒 + 𝑃𝑑𝑣 + 𝑉𝑑𝑝

π›Ώπ‘žπ‘Ÿπ‘’π‘£ = π‘‘β„Ž = 𝑐𝑝𝑑𝑇

βˆ†π‘ π΅ = ΰΆ±π›Ώπ‘žπ‘Ÿπ‘’π‘£π‘‡

= ࢱ𝑇1

𝑇2 𝑐𝑝

𝑇𝑑𝑇

βˆ†π’” = βˆ†π’”π‘¨ + βˆ†π’”π‘© = ΰΆ±π‘»πŸ

π‘»πŸ 𝒄𝒑

𝑻𝒅𝑻 βˆ’ 𝑹 π₯𝐧

π‘·πŸ

π‘·πŸ

If cp is constant,

βˆ†π‘  = 𝑐𝑝 ln𝑇2𝑇1βˆ’ 𝑅 ln

𝑃2𝑃1