Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction...

83
Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction Outlook Entanglement, von Neumann Entropy and the GNS construction A.P. Balachandran 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical Sciences, Chennai IMSc. 14.03.2012 A.P. Balachandran Entanglement and GNS construction

Transcript of Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction...

Page 1: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Entanglement, von Neumann Entropy and theGNS construction

A.P. Balachandran1

(in collaboration with T.R. Govindarajan, A. Queiroz and A.F.Reyes-Lega)

1Physics Department, Syracuse University, Syracuse, N.Y.and

The Institute of Mathematical Sciences, Chennai

IMSc.14.03.2012

A.P. Balachandran Entanglement and GNS construction

Page 2: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Outline

1 Introduction

2 Entanglement

3 C*-Algebras and the GNS construction

4 Von Neumann entropy and GNS construction

5 Outlook

A.P. Balachandran Entanglement and GNS construction

Page 3: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Introduction

In studies of foundations of quantum theory, it is of interestto study mixed states and their origins.Focus has been on separable states and entropy createdby partial tracing.But this method is not so good for identical particles as wewill show.A much more universal construction is based onrestrictions of states to subalgebras and the GNSconstruction.This talk will explain this approach

A.P. Balachandran Entanglement and GNS construction

Page 4: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Introduction

In studies of foundations of quantum theory, it is of interestto study mixed states and their origins.Focus has been on separable states and entropy createdby partial tracing.But this method is not so good for identical particles as wewill show.A much more universal construction is based onrestrictions of states to subalgebras and the GNSconstruction.This talk will explain this approach

A.P. Balachandran Entanglement and GNS construction

Page 5: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Introduction

In studies of foundations of quantum theory, it is of interestto study mixed states and their origins.Focus has been on separable states and entropy createdby partial tracing.But this method is not so good for identical particles as wewill show.A much more universal construction is based onrestrictions of states to subalgebras and the GNSconstruction.This talk will explain this approach

A.P. Balachandran Entanglement and GNS construction

Page 6: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Introduction

In studies of foundations of quantum theory, it is of interestto study mixed states and their origins.Focus has been on separable states and entropy createdby partial tracing.But this method is not so good for identical particles as wewill show.A much more universal construction is based onrestrictions of states to subalgebras and the GNSconstruction.This talk will explain this approach

A.P. Balachandran Entanglement and GNS construction

Page 7: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Introduction

In studies of foundations of quantum theory, it is of interestto study mixed states and their origins.Focus has been on separable states and entropy createdby partial tracing.But this method is not so good for identical particles as wewill show.A much more universal construction is based onrestrictions of states to subalgebras and the GNSconstruction.This talk will explain this approach

A.P. Balachandran Entanglement and GNS construction

Page 8: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

WHAT THEY DO

Separable stateConsider a bipartite system with Hilbert space HA ⊗HB.A vector state

|ψ〉 =∑i,j

ψij |i〉 ⊗ |j〉

is said to be separable if it can be brought to the form

|ψ〉 = |v〉 ⊗ |w〉.

Otherwise, it is said to be entangled.

A.P. Balachandran Entanglement and GNS construction

Page 9: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Singular value decomposition (SVD)

A : m × n complex matrix. A can always be written in the form

A = UDV †

U : m ×m, unitary (columns of U are eigenvectors of AA†).D : m × n, diagonal, positive (eigenvalues of A†A.)V : n × n unitary (columns of V are eigenvectors of A†A).

A.P. Balachandran Entanglement and GNS construction

Page 10: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Singular value decomposition (SVD)

A : m × n complex matrix. A can always be written in the form

A = UDV †

U : m ×m, unitary (columns of U are eigenvectors of AA†).D : m × n, diagonal, positive (eigenvalues of A†A.)V : n × n unitary (columns of V are eigenvectors of A†A).

A.P. Balachandran Entanglement and GNS construction

Page 11: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Singular value decomposition (SVD)

A : m × n complex matrix. A can always be written in the form

A = UDV †

U : m ×m, unitary (columns of U are eigenvectors of AA†).D : m × n, diagonal, positive (eigenvalues of A†A.)V : n × n unitary (columns of V are eigenvectors of A†A).

A.P. Balachandran Entanglement and GNS construction

Page 12: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Singular value decomposition (SVD)

A : m × n complex matrix. A can always be written in the form

A = UDV †

U : m ×m, unitary (columns of U are eigenvectors of AA†).D : m × n, diagonal, positive (eigenvalues of A†A.)V : n × n unitary (columns of V are eigenvectors of A†A).

A.P. Balachandran Entanglement and GNS construction

Page 13: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Schmidt decomposition

|ψ〉 =∑i,j

Aij |i〉 ⊗ |j〉 =∑i,j

(UDV †)ij |i〉 ⊗ |j〉

=∑i,j,k ,l

Uik Dkl︸︷︷︸=λkδkl

V †lj |i〉 ⊗ |j〉 =∑

k

λk

(∑i

Uik |i〉

)⊗

∑j

Vjk |j〉

=∑

k

λk |k〉A ⊗ |k〉B

Schmidt numberThe Schmidt number is the number of nonzero λ′ks.

A.P. Balachandran Entanglement and GNS construction

Page 14: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Schmidt decomposition

|ψ〉 =∑i,j

Aij |i〉 ⊗ |j〉 =∑i,j

(UDV †)ij |i〉 ⊗ |j〉

=∑i,j,k ,l

Uik Dkl︸︷︷︸=λkδkl

V †lj |i〉 ⊗ |j〉 =∑

k

λk

(∑i

Uik |i〉

)⊗

∑j

Vjk |j〉

=∑

k

λk |k〉A ⊗ |k〉B

Schmidt numberThe Schmidt number is the number of nonzero λ′ks.

A.P. Balachandran Entanglement and GNS construction

Page 15: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Schmidt decomposition

|ψ〉 =∑i,j

Aij |i〉 ⊗ |j〉 =∑i,j

(UDV †)ij |i〉 ⊗ |j〉

=∑i,j,k ,l

Uik Dkl︸︷︷︸=λkδkl

V †lj |i〉 ⊗ |j〉 =∑

k

λk

(∑i

Uik |i〉

)⊗

∑j

Vjk |j〉

=∑

k

λk |k〉A ⊗ |k〉B

Schmidt numberThe Schmidt number is the number of nonzero λ′ks.

A.P. Balachandran Entanglement and GNS construction

Page 16: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Schmidt decomposition

|ψ〉 =∑i,j

Aij |i〉 ⊗ |j〉 =∑i,j

(UDV †)ij |i〉 ⊗ |j〉

=∑i,j,k ,l

Uik Dkl︸︷︷︸=λkδkl

V †lj |i〉 ⊗ |j〉 =∑

k

λk

(∑i

Uik |i〉

)⊗

∑j

Vjk |j〉

=∑

k

λk |k〉A ⊗ |k〉B

Schmidt numberThe Schmidt number is the number of nonzero λ′ks.

A.P. Balachandran Entanglement and GNS construction

Page 17: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|ψ〉 separable precisely when Schmidt number = 1.Reduced density matrix: ρA = TrBρ.von Neumann entropy: S(ρ) = −Trρ log ρ. We haveS(ρA) = S(ρB).|ψ〉 separable precisely when S(ρA) = 0.

A.P. Balachandran Entanglement and GNS construction

Page 18: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|ψ〉 separable precisely when Schmidt number = 1.Reduced density matrix: ρA = TrBρ.von Neumann entropy: S(ρ) = −Trρ log ρ. We haveS(ρA) = S(ρB).|ψ〉 separable precisely when S(ρA) = 0.

A.P. Balachandran Entanglement and GNS construction

Page 19: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|ψ〉 separable precisely when Schmidt number = 1.Reduced density matrix: ρA = TrBρ.von Neumann entropy: S(ρ) = −Trρ log ρ. We haveS(ρA) = S(ρB).|ψ〉 separable precisely when S(ρA) = 0.

A.P. Balachandran Entanglement and GNS construction

Page 20: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|ψ〉 separable precisely when Schmidt number = 1.Reduced density matrix: ρA = TrBρ.von Neumann entropy: S(ρ) = −Trρ log ρ. We haveS(ρA) = S(ρB).|ψ〉 separable precisely when S(ρA) = 0.

A.P. Balachandran Entanglement and GNS construction

Page 21: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

WHAT WE DO

Our main motivationThere are certain situations where the use of partial trace maynot be the “best thing to do”. An example of this is provided bythe study of entanglement for systems of indistinguishableparticles, where the notion of separability is more subtle.

IdeaPartial trace = Restriction

Thus consider two distinguishable particles A and B in a purestate |ψ〉 = |φ〉A ⊗ |χ〉B. Partial trace means restricting itsdensity matrix to observables of subsystem A . They are of theform KA ⊗ 1B. But for identical fermions....

A.P. Balachandran Entanglement and GNS construction

Page 22: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

WHAT WE DO

Our main motivationThere are certain situations where the use of partial trace maynot be the “best thing to do”. An example of this is provided bythe study of entanglement for systems of indistinguishableparticles, where the notion of separability is more subtle.

IdeaPartial trace = Restriction

Thus consider two distinguishable particles A and B in a purestate |ψ〉 = |φ〉A ⊗ |χ〉B. Partial trace means restricting itsdensity matrix to observables of subsystem A . They are of theform KA ⊗ 1B. But for identical fermions....

A.P. Balachandran Entanglement and GNS construction

Page 23: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

WHAT WE DO

Our main motivationThere are certain situations where the use of partial trace maynot be the “best thing to do”. An example of this is provided bythe study of entanglement for systems of indistinguishableparticles, where the notion of separability is more subtle.

IdeaPartial trace = Restriction

Thus consider two distinguishable particles A and B in a purestate |ψ〉 = |φ〉A ⊗ |χ〉B. Partial trace means restricting itsdensity matrix to observables of subsystem A . They are of theform KA ⊗ 1B. But for identical fermions....

A.P. Balachandran Entanglement and GNS construction

Page 24: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Identical Fermions

For identical fermions a two particle state is a linearcombination of vector states of the form

|ψ〉 =1√2

(|φ〉 ⊗ |χ〉 − |χ〉 ⊗ |φ〉)

and observables are all symmetric combinations K ⊗ L + L⊗K .Partial tracing has no physical meaning. How do we study themixture created by observing only the single particleobservables? K ⊗ 1+ 1⊗K or perhaps L⊗ L ? We turn now tothis problem.

A.P. Balachandran Entanglement and GNS construction

Page 25: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

C*-algebras

Observables in quantum field theory come from C∗-algebras.All finite-dimensional matrix algebras are C∗.

Representations of C∗-algebras

Given a state or density matrix on such an algebra, there is away to recover the Hilbert space due to Gelfan’d, Naimark andSegal. We will explain it below. It is used widely in

Quantum field theory.Statistical physics.Noncommutative geometry.

A.P. Balachandran Entanglement and GNS construction

Page 26: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

C*-algebras

Observables in quantum field theory come from C∗-algebras.All finite-dimensional matrix algebras are C∗.

Representations of C∗-algebras

Given a state or density matrix on such an algebra, there is away to recover the Hilbert space due to Gelfan’d, Naimark andSegal. We will explain it below. It is used widely in

Quantum field theory.Statistical physics.Noncommutative geometry.

A.P. Balachandran Entanglement and GNS construction

Page 27: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

C*-algebras

Observables in quantum field theory come from C∗-algebras.All finite-dimensional matrix algebras are C∗.

Representations of C∗-algebras

Given a state or density matrix on such an algebra, there is away to recover the Hilbert space due to Gelfan’d, Naimark andSegal. We will explain it below. It is used widely in

Quantum field theory.Statistical physics.Noncommutative geometry.

A.P. Balachandran Entanglement and GNS construction

Page 28: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

C*-algebras

Observables in quantum field theory come from C∗-algebras.All finite-dimensional matrix algebras are C∗.

Representations of C∗-algebras

Given a state or density matrix on such an algebra, there is away to recover the Hilbert space due to Gelfan’d, Naimark andSegal. We will explain it below. It is used widely in

Quantum field theory.Statistical physics.Noncommutative geometry.

A.P. Balachandran Entanglement and GNS construction

Page 29: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

C*-algebras

Observables in quantum field theory come from C∗-algebras.All finite-dimensional matrix algebras are C∗.

Representations of C∗-algebras

Given a state or density matrix on such an algebra, there is away to recover the Hilbert space due to Gelfan’d, Naimark andSegal. We will explain it below. It is used widely in

Quantum field theory.Statistical physics.Noncommutative geometry.

A.P. Balachandran Entanglement and GNS construction

Page 30: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Let A be the C∗-algebra of observables and ω : A → C astate. That is ω(α) is a complex number, ω(1A) = 1.Regard A as a vector space: α→ |α〉.Introduce a scalar product: 〈α|β〉 = ω(α∗β)

This space can have a subspace N of vectors of 0 norm:N = α ∈ A | 〈α|α〉 = 0.The Hilbert space is: Hω = A/N . An element of this spaceis the equivalence class [α] = α +N for α in A.The representation L of A on this space is given byL(α)|[β]〉 = |[αβ]〉

A.P. Balachandran Entanglement and GNS construction

Page 31: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Let A be the C∗-algebra of observables and ω : A → C astate. That is ω(α) is a complex number, ω(1A) = 1.Regard A as a vector space: α→ |α〉.Introduce a scalar product: 〈α|β〉 = ω(α∗β)

This space can have a subspace N of vectors of 0 norm:N = α ∈ A | 〈α|α〉 = 0.The Hilbert space is: Hω = A/N . An element of this spaceis the equivalence class [α] = α +N for α in A.The representation L of A on this space is given byL(α)|[β]〉 = |[αβ]〉

A.P. Balachandran Entanglement and GNS construction

Page 32: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Let A be the C∗-algebra of observables and ω : A → C astate. That is ω(α) is a complex number, ω(1A) = 1.Regard A as a vector space: α→ |α〉.Introduce a scalar product: 〈α|β〉 = ω(α∗β)

This space can have a subspace N of vectors of 0 norm:N = α ∈ A | 〈α|α〉 = 0.The Hilbert space is: Hω = A/N . An element of this spaceis the equivalence class [α] = α +N for α in A.The representation L of A on this space is given byL(α)|[β]〉 = |[αβ]〉

A.P. Balachandran Entanglement and GNS construction

Page 33: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Let A be the C∗-algebra of observables and ω : A → C astate. That is ω(α) is a complex number, ω(1A) = 1.Regard A as a vector space: α→ |α〉.Introduce a scalar product: 〈α|β〉 = ω(α∗β)

This space can have a subspace N of vectors of 0 norm:N = α ∈ A | 〈α|α〉 = 0.The Hilbert space is: Hω = A/N . An element of this spaceis the equivalence class [α] = α +N for α in A.The representation L of A on this space is given byL(α)|[β]〉 = |[αβ]〉

A.P. Balachandran Entanglement and GNS construction

Page 34: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Let A be the C∗-algebra of observables and ω : A → C astate. That is ω(α) is a complex number, ω(1A) = 1.Regard A as a vector space: α→ |α〉.Introduce a scalar product: 〈α|β〉 = ω(α∗β)

This space can have a subspace N of vectors of 0 norm:N = α ∈ A | 〈α|α〉 = 0.The Hilbert space is: Hω = A/N . An element of this spaceis the equivalence class [α] = α +N for α in A.The representation L of A on this space is given byL(α)|[β]〉 = |[αβ]〉

A.P. Balachandran Entanglement and GNS construction

Page 35: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Let A be the C∗-algebra of observables and ω : A → C astate. That is ω(α) is a complex number, ω(1A) = 1.Regard A as a vector space: α→ |α〉.Introduce a scalar product: 〈α|β〉 = ω(α∗β)

This space can have a subspace N of vectors of 0 norm:N = α ∈ A | 〈α|α〉 = 0.The Hilbert space is: Hω = A/N . An element of this spaceis the equivalence class [α] = α +N for α in A.The representation L of A on this space is given byL(α)|[β]〉 = |[αβ]〉

A.P. Balachandran Entanglement and GNS construction

Page 36: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Fact: Hω irreducible precisely when ω pure.That is, the restriction of ω to L is ρω = |[1]〉〈[1]|, so that itis of rank 1.Hω = ⊕jHj , where each Hj carries an irreduciblerepresentation.If Pj ’s are projectors from Hω to Hj , set |[1j ]〉 =

Pj |[1]〉‖Pj |[1]〉‖ .

Define µj = ‖Pj |[1]〉‖. Then ,∑

j µ2j = 1. Finally,

ρω =∑

j µ2j |[1j ]〉〈[1j ]|. This state is mixed if its rank exceeds 1.

It has entropyS = −

∑j

µ2j logµ2

j .

A.P. Balachandran Entanglement and GNS construction

Page 37: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Fact: Hω irreducible precisely when ω pure.That is, the restriction of ω to L is ρω = |[1]〉〈[1]|, so that itis of rank 1.Hω = ⊕jHj , where each Hj carries an irreduciblerepresentation.If Pj ’s are projectors from Hω to Hj , set |[1j ]〉 =

Pj |[1]〉‖Pj |[1]〉‖ .

Define µj = ‖Pj |[1]〉‖. Then ,∑

j µ2j = 1. Finally,

ρω =∑

j µ2j |[1j ]〉〈[1j ]|. This state is mixed if its rank exceeds 1.

It has entropyS = −

∑j

µ2j logµ2

j .

A.P. Balachandran Entanglement and GNS construction

Page 38: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Fact: Hω irreducible precisely when ω pure.That is, the restriction of ω to L is ρω = |[1]〉〈[1]|, so that itis of rank 1.Hω = ⊕jHj , where each Hj carries an irreduciblerepresentation.If Pj ’s are projectors from Hω to Hj , set |[1j ]〉 =

Pj |[1]〉‖Pj |[1]〉‖ .

Define µj = ‖Pj |[1]〉‖. Then ,∑

j µ2j = 1. Finally,

ρω =∑

j µ2j |[1j ]〉〈[1j ]|. This state is mixed if its rank exceeds 1.

It has entropyS = −

∑j

µ2j logµ2

j .

A.P. Balachandran Entanglement and GNS construction

Page 39: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Fact: Hω irreducible precisely when ω pure.That is, the restriction of ω to L is ρω = |[1]〉〈[1]|, so that itis of rank 1.Hω = ⊕jHj , where each Hj carries an irreduciblerepresentation.If Pj ’s are projectors from Hω to Hj , set |[1j ]〉 =

Pj |[1]〉‖Pj |[1]〉‖ .

Define µj = ‖Pj |[1]〉‖. Then ,∑

j µ2j = 1. Finally,

ρω =∑

j µ2j |[1j ]〉〈[1j ]|. This state is mixed if its rank exceeds 1.

It has entropyS = −

∑j

µ2j logµ2

j .

A.P. Balachandran Entanglement and GNS construction

Page 40: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Fact: Hω irreducible precisely when ω pure.That is, the restriction of ω to L is ρω = |[1]〉〈[1]|, so that itis of rank 1.Hω = ⊕jHj , where each Hj carries an irreduciblerepresentation.If Pj ’s are projectors from Hω to Hj , set |[1j ]〉 =

Pj |[1]〉‖Pj |[1]〉‖ .

Define µj = ‖Pj |[1]〉‖. Then ,∑

j µ2j = 1. Finally,

ρω =∑

j µ2j |[1j ]〉〈[1j ]|. This state is mixed if its rank exceeds 1.

It has entropyS = −

∑j

µ2j logµ2

j .

A.P. Balachandran Entanglement and GNS construction

Page 41: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

The GNS construction

Fact: Hω irreducible precisely when ω pure.That is, the restriction of ω to L is ρω = |[1]〉〈[1]|, so that itis of rank 1.Hω = ⊕jHj , where each Hj carries an irreduciblerepresentation.If Pj ’s are projectors from Hω to Hj , set |[1j ]〉 =

Pj |[1]〉‖Pj |[1]〉‖ .

Define µj = ‖Pj |[1]〉‖. Then ,∑

j µ2j = 1. Finally,

ρω =∑

j µ2j |[1j ]〉〈[1j ]|. This state is mixed if its rank exceeds 1.

It has entropyS = −

∑j

µ2j logµ2

j .

A.P. Balachandran Entanglement and GNS construction

Page 42: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

EXAMPLE

Single-particle space: H ' Cd .Symmetry group: U(d).Algebra of observables: A, given by a ∗-representation ofCU(d) for the group algebra:

α =

∫U(d)

dµ(g)α(g)U(1)(g),

A.P. Balachandran Entanglement and GNS construction

Page 43: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

EXAMPLE

Single-particle space: H ' Cd .Symmetry group: U(d).Algebra of observables: A, given by a ∗-representation ofCU(d) for the group algebra:

α =

∫U(d)

dµ(g)α(g)U(1)(g),

A.P. Balachandran Entanglement and GNS construction

Page 44: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

EXAMPLE

Single-particle space: H ' Cd .Symmetry group: U(d).Algebra of observables: A, given by a ∗-representation ofCU(d) for the group algebra:

α =

∫U(d)

dµ(g)α(g)U(1)(g),

A.P. Balachandran Entanglement and GNS construction

Page 45: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Consider now a fermion system whose single-particle space isgiven by H = Cd :

Many particle space F is the “Fock” space:

F =d⊕

k=0

H(k), where H(k) ≡ ΛkH.

Λ0H = C , generated by the “vacuum" |Ω〉.Λ1H: 1-particle space, Λ2H: 2-particle space, and so on..dim ΛkH =

(dk

), so dim F = 2d . This reflects the fact that

F ∼= C2 ⊗ · · · ⊗C2, an isomorphism often used in statisticalphysics models.

A.P. Balachandran Entanglement and GNS construction

Page 46: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Consider now a fermion system whose single-particle space isgiven by H = Cd :

Many particle space F is the “Fock” space:

F =d⊕

k=0

H(k), where H(k) ≡ ΛkH.

Λ0H = C , generated by the “vacuum" |Ω〉.Λ1H: 1-particle space, Λ2H: 2-particle space, and so on..dim ΛkH =

(dk

), so dim F = 2d . This reflects the fact that

F ∼= C2 ⊗ · · · ⊗C2, an isomorphism often used in statisticalphysics models.

A.P. Balachandran Entanglement and GNS construction

Page 47: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Consider now a fermion system whose single-particle space isgiven by H = Cd :

Many particle space F is the “Fock” space:

F =d⊕

k=0

H(k), where H(k) ≡ ΛkH.

Λ0H = C , generated by the “vacuum" |Ω〉.Λ1H: 1-particle space, Λ2H: 2-particle space, and so on..dim ΛkH =

(dk

), so dim F = 2d . This reflects the fact that

F ∼= C2 ⊗ · · · ⊗C2, an isomorphism often used in statisticalphysics models.

A.P. Balachandran Entanglement and GNS construction

Page 48: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Consider now a fermion system whose single-particle space isgiven by H = Cd :

Many particle space F is the “Fock” space:

F =d⊕

k=0

H(k), where H(k) ≡ ΛkH.

Λ0H = C , generated by the “vacuum" |Ω〉.Λ1H: 1-particle space, Λ2H: 2-particle space, and so on..dim ΛkH =

(dk

), so dim F = 2d . This reflects the fact that

F ∼= C2 ⊗ · · · ⊗C2, an isomorphism often used in statisticalphysics models.

A.P. Balachandran Entanglement and GNS construction

Page 49: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|e1〉, |e2〉, . . . |ed〉: Orthonormal basis for H. Given vi ∈ H(i = 1, . . . , k ), put

|v1 ∧ . . . ∧ vk 〉 =1√k !

∑σ∈Sk

sgn(σ)v1 ⊗ · · · ⊗ vk .

Then:|ei1 ∧ . . . ∧ eik 〉1≤i1<···<ik≤d : ONB for H(k).A self-adjoint operator A acting on H(1) ≡ H can be madeto act on H(k) by defining dΓk (A) follows:

dΓk (A) = A⊗1d · · ·⊗1d +1d⊗A⊗1d⊗· · ·⊗1d +· · ·+1d⊗· · ·⊗1d⊗A

This operator preserves the symmetry of the states onwhich it acts, as well as the commutation relations of theself-adjoint operators acting on H, namely:

dΓk ([A,B]) = [dΓk (A),dΓk (B)]

A.P. Balachandran Entanglement and GNS construction

Page 50: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|e1〉, |e2〉, . . . |ed〉: Orthonormal basis for H. Given vi ∈ H(i = 1, . . . , k ), put

|v1 ∧ . . . ∧ vk 〉 =1√k !

∑σ∈Sk

sgn(σ)v1 ⊗ · · · ⊗ vk .

Then:|ei1 ∧ . . . ∧ eik 〉1≤i1<···<ik≤d : ONB for H(k).A self-adjoint operator A acting on H(1) ≡ H can be madeto act on H(k) by defining dΓk (A) follows:

dΓk (A) = A⊗1d · · ·⊗1d +1d⊗A⊗1d⊗· · ·⊗1d +· · ·+1d⊗· · ·⊗1d⊗A

This operator preserves the symmetry of the states onwhich it acts, as well as the commutation relations of theself-adjoint operators acting on H, namely:

dΓk ([A,B]) = [dΓk (A),dΓk (B)]

A.P. Balachandran Entanglement and GNS construction

Page 51: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

|e1〉, |e2〉, . . . |ed〉: Orthonormal basis for H. Given vi ∈ H(i = 1, . . . , k ), put

|v1 ∧ . . . ∧ vk 〉 =1√k !

∑σ∈Sk

sgn(σ)v1 ⊗ · · · ⊗ vk .

Then:|ei1 ∧ . . . ∧ eik 〉1≤i1<···<ik≤d : ONB for H(k).A self-adjoint operator A acting on H(1) ≡ H can be madeto act on H(k) by defining dΓk (A) follows:

dΓk (A) = A⊗1d · · ·⊗1d +1d⊗A⊗1d⊗· · ·⊗1d +· · ·+1d⊗· · ·⊗1d⊗A

This operator preserves the symmetry of the states onwhich it acts, as well as the commutation relations of theself-adjoint operators acting on H, namely:

dΓk ([A,B]) = [dΓk (A),dΓk (B)]

A.P. Balachandran Entanglement and GNS construction

Page 52: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

dΓ(A) =∑

k dΓk (A) acts on the whole Fock space F ( it isthe “second quantized" form of A).At the group level, we may consider exponentials of suchoperators, of the form eidΓ(A). These are unitary operatorsacting on F . Let U = eiA be a unitary operator acting on H.The global version of dΓ is given by:

ΓkU = U ⊗ · · · ⊗ U.

We then have, with Γ(U) =∑

k Γk (U),

Γ(eiA) = eidΓ(A).

A.P. Balachandran Entanglement and GNS construction

Page 53: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

dΓ(A) =∑

k dΓk (A) acts on the whole Fock space F ( it isthe “second quantized" form of A).At the group level, we may consider exponentials of suchoperators, of the form eidΓ(A). These are unitary operatorsacting on F . Let U = eiA be a unitary operator acting on H.The global version of dΓ is given by:

ΓkU = U ⊗ · · · ⊗ U.

We then have, with Γ(U) =∑

k Γk (U),

Γ(eiA) = eidΓ(A).

A.P. Balachandran Entanglement and GNS construction

Page 54: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

dΓ(A) =∑

k dΓk (A) acts on the whole Fock space F ( it isthe “second quantized" form of A).At the group level, we may consider exponentials of suchoperators, of the form eidΓ(A). These are unitary operatorsacting on F . Let U = eiA be a unitary operator acting on H.The global version of dΓ is given by:

ΓkU = U ⊗ · · · ⊗ U.

We then have, with Γ(U) =∑

k Γk (U),

Γ(eiA) = eidΓ(A).

A.P. Balachandran Entanglement and GNS construction

Page 55: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Following the previous remarks, we see that operators of theform

αk =

∫U(d)

dµ(g)α(g)U(1)(g)⊗ · · · ⊗U(1)(g) (k -fold product),

act properly on H(k). All of this can be conveniently expressedin terms of a coproduct. In fact, an approach based on Hopfalgebras can automatically include braid-group statistics. Here,the construction of the observable algebra corresponds to thefollowing simple choice for the coproduct ∆:

∆(g) = g ⊗ g, g ∈ U(d), (1)

linearly extended to all of CU(d). This choice fixes the form ofαk .

A.P. Balachandran Entanglement and GNS construction

Page 56: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

∆ is a homomorphism from the single-particle algebra to thetwo-particle Hilbert space.

So it makes sense to identify its image with observations ofsingle-particle observables.

A.P. Balachandran Entanglement and GNS construction

Page 57: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

∆ is a homomorphism from the single-particle algebra to thetwo-particle Hilbert space.

So it makes sense to identify its image with observations ofsingle-particle observables.

A.P. Balachandran Entanglement and GNS construction

Page 58: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

AN EXAMPLE

Consider the 2-fermion space H(2) for the case d = 3.Let the action of U(3) on H = C3 be given by the definingrepresentation (hence U(1)(g) = g).We have U(1)(g)|ei〉 =

∑3j=1 D(g)ij |ej〉, for a fixed ONB

|e1〉, |e2〉, |e3〉.The action of CU(3) is then given by the 3-dimensionalconjugate representation (3⊗ 3 = 6⊕ 3).3 is the antisymmetric 3⊗A 3.The basis vectors of 3 are |ek 〉 := εijk |ei ∧ ej〉 (k = 1,2,3).

A.P. Balachandran Entanglement and GNS construction

Page 59: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

AN EXAMPLE

Consider the 2-fermion space H(2) for the case d = 3.Let the action of U(3) on H = C3 be given by the definingrepresentation (hence U(1)(g) = g).We have U(1)(g)|ei〉 =

∑3j=1 D(g)ij |ej〉, for a fixed ONB

|e1〉, |e2〉, |e3〉.The action of CU(3) is then given by the 3-dimensionalconjugate representation (3⊗ 3 = 6⊕ 3).3 is the antisymmetric 3⊗A 3.The basis vectors of 3 are |ek 〉 := εijk |ei ∧ ej〉 (k = 1,2,3).

A.P. Balachandran Entanglement and GNS construction

Page 60: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

AN EXAMPLE

Consider the 2-fermion space H(2) for the case d = 3.Let the action of U(3) on H = C3 be given by the definingrepresentation (hence U(1)(g) = g).We have U(1)(g)|ei〉 =

∑3j=1 D(g)ij |ej〉, for a fixed ONB

|e1〉, |e2〉, |e3〉.The action of CU(3) is then given by the 3-dimensionalconjugate representation (3⊗ 3 = 6⊕ 3).3 is the antisymmetric 3⊗A 3.The basis vectors of 3 are |ek 〉 := εijk |ei ∧ ej〉 (k = 1,2,3).

A.P. Balachandran Entanglement and GNS construction

Page 61: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

AN EXAMPLE

Consider the 2-fermion space H(2) for the case d = 3.Let the action of U(3) on H = C3 be given by the definingrepresentation (hence U(1)(g) = g).We have U(1)(g)|ei〉 =

∑3j=1 D(g)ij |ej〉, for a fixed ONB

|e1〉, |e2〉, |e3〉.The action of CU(3) is then given by the 3-dimensionalconjugate representation (3⊗ 3 = 6⊕ 3).3 is the antisymmetric 3⊗A 3.The basis vectors of 3 are |ek 〉 := εijk |ei ∧ ej〉 (k = 1,2,3).

A.P. Balachandran Entanglement and GNS construction

Page 62: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

AN EXAMPLE

Consider the 2-fermion space H(2) for the case d = 3.Let the action of U(3) on H = C3 be given by the definingrepresentation (hence U(1)(g) = g).We have U(1)(g)|ei〉 =

∑3j=1 D(g)ij |ej〉, for a fixed ONB

|e1〉, |e2〉, |e3〉.The action of CU(3) is then given by the 3-dimensionalconjugate representation (3⊗ 3 = 6⊕ 3).3 is the antisymmetric 3⊗A 3.The basis vectors of 3 are |ek 〉 := εijk |ei ∧ ej〉 (k = 1,2,3).

A.P. Balachandran Entanglement and GNS construction

Page 63: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

AN EXAMPLE

Consider the 2-fermion space H(2) for the case d = 3.Let the action of U(3) on H = C3 be given by the definingrepresentation (hence U(1)(g) = g).We have U(1)(g)|ei〉 =

∑3j=1 D(g)ij |ej〉, for a fixed ONB

|e1〉, |e2〉, |e3〉.The action of CU(3) is then given by the 3-dimensionalconjugate representation (3⊗ 3 = 6⊕ 3).3 is the antisymmetric 3⊗A 3.The basis vectors of 3 are |ek 〉 := εijk |ei ∧ ej〉 (k = 1,2,3).

A.P. Balachandran Entanglement and GNS construction

Page 64: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Action of CU(3) on H(1): α =∫

U(3) dµ(g)α(g)D(3)(g).Basis: the 8 Gell-Mann matrices Tii plus 13:

T1 =

0 12 0

12 0 00 0 0

,T2 =

0 − i2 0

i2 0 00 0 0

,T3 =

12 0 00 −1

2 00 0 0

,

T4 =

0 0 12

0 0 012 0 0

,T5 =

0 0 − i2

0 0 0i2 0 0

,T6 =

0 0 00 0 1

20 1

2 0

,

T7 =

0 0 00 0 − i

20 i

2 0

,T8 =

36 0 00

√3

6 00 0 −

√3

3

,13 =

1 0 00 1 00 0 1

.

A.P. Balachandran Entanglement and GNS construction

Page 65: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

On 3, they become Tj = −T j (use ∆ and restrict to 3).This amounts to consider only the action of the operators

α2 =

∫U(3)

dµ(g)α(g)D(3)(g)⊗ D(3)(g)

on the (invariant) subspace generated by theantisymmetric vectors |ek 〉 = εijk |ei ∧ ej〉 (k = 1,2,3).

Explicitly, we have, for instance:

T1 · |e1〉 = (T1⊗13 +13⊗T1)|e1〉 = (T1⊗13 +13⊗T1)|e2 ∧e3〉

= −12|e2〉.

A.P. Balachandran Entanglement and GNS construction

Page 66: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

On 3, they become Tj = −T j (use ∆ and restrict to 3).This amounts to consider only the action of the operators

α2 =

∫U(3)

dµ(g)α(g)D(3)(g)⊗ D(3)(g)

on the (invariant) subspace generated by theantisymmetric vectors |ek 〉 = εijk |ei ∧ ej〉 (k = 1,2,3).

Explicitly, we have, for instance:

T1 · |e1〉 = (T1⊗13 +13⊗T1)|e1〉 = (T1⊗13 +13⊗T1)|e2 ∧e3〉

= −12|e2〉.

A.P. Balachandran Entanglement and GNS construction

Page 67: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

On 3, they become Tj = −T j (use ∆ and restrict to 3).This amounts to consider only the action of the operators

α2 =

∫U(3)

dµ(g)α(g)D(3)(g)⊗ D(3)(g)

on the (invariant) subspace generated by theantisymmetric vectors |ek 〉 = εijk |ei ∧ ej〉 (k = 1,2,3).

Explicitly, we have, for instance:

T1 · |e1〉 = (T1⊗13 +13⊗T1)|e1〉 = (T1⊗13 +13⊗T1)|e2 ∧e3〉

= −12|e2〉.

A.P. Balachandran Entanglement and GNS construction

Page 68: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

On 3, they become Tj = −T j (use ∆ and restrict to 3).This amounts to consider only the action of the operators

α2 =

∫U(3)

dµ(g)α(g)D(3)(g)⊗ D(3)(g)

on the (invariant) subspace generated by theantisymmetric vectors |ek 〉 = εijk |ei ∧ ej〉 (k = 1,2,3).

Explicitly, we have, for instance:

T1 · |e1〉 = (T1⊗13 +13⊗T1)|e1〉 = (T1⊗13 +13⊗T1)|e2 ∧e3〉

= −12|e2〉.

A.P. Balachandran Entanglement and GNS construction

Page 69: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Summarizing:

The algebra of operators A acting on the 2-particle sectorH(2) = Λ2C3 is the matrix algebra generated byT1, . . . , T8,13.

A.P. Balachandran Entanglement and GNS construction

Page 70: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

If we now assume that we only have access to the observablespertaining to the states |e1〉 and |e2〉, then the relevant algebraof operators will be a subalgebra A0 ⊂ A, namely the onegenerated by T1, T2, T3,12,13.

In general we expect that a (2-particle) pure state defined in theoriginal system that is given by a state vector

|ψ〉 =3∑

k=1

ψk |ek 〉 = ψ1|e2 ∧ e3〉+ ψ2|e3 ∧ e1〉+ ψ3|e1 ∧ e2〉

may become mixed when restricted to A0.

A.P. Balachandran Entanglement and GNS construction

Page 71: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

If we now assume that we only have access to the observablespertaining to the states |e1〉 and |e2〉, then the relevant algebraof operators will be a subalgebra A0 ⊂ A, namely the onegenerated by T1, T2, T3,12,13.

In general we expect that a (2-particle) pure state defined in theoriginal system that is given by a state vector

|ψ〉 =3∑

k=1

ψk |ek 〉 = ψ1|e2 ∧ e3〉+ ψ2|e3 ∧ e1〉+ ψ3|e1 ∧ e2〉

may become mixed when restricted to A0.

A.P. Balachandran Entanglement and GNS construction

Page 72: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

In order to detect this “entanglement” we perform the GNSconstruction when the state |ψ〉〈ψ| is restricted to A0.Algebraically, this state is a linear functional on A, defined asfollows: ωψ : A → C

α 7→ ωψ(α) := 〈ψ|α|ψ〉.

So we put ωψ,o = ωψ |A0 . The GNS construction furnishes arepresentation L : A0 → B(HGNS) of A0, for a certain Hilbertspace HGNS constructed from A0.

In general, HGNS will split as a sum of irreducibles of A0. Thisreducibility reflects the fact that, when restricted to A0, theoriginal state ωψ might become mixed. The entropy of this statecan then be computed from the decomposition of HGNS intoirreducibles.

A.P. Balachandran Entanglement and GNS construction

Page 73: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

In order to detect this “entanglement” we perform the GNSconstruction when the state |ψ〉〈ψ| is restricted to A0.Algebraically, this state is a linear functional on A, defined asfollows: ωψ : A → C

α 7→ ωψ(α) := 〈ψ|α|ψ〉.

So we put ωψ,o = ωψ |A0 . The GNS construction furnishes arepresentation L : A0 → B(HGNS) of A0, for a certain Hilbertspace HGNS constructed from A0.

In general, HGNS will split as a sum of irreducibles of A0. Thisreducibility reflects the fact that, when restricted to A0, theoriginal state ωψ might become mixed. The entropy of this statecan then be computed from the decomposition of HGNS intoirreducibles.

A.P. Balachandran Entanglement and GNS construction

Page 74: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

In order to detect this “entanglement” we perform the GNSconstruction when the state |ψ〉〈ψ| is restricted to A0.Algebraically, this state is a linear functional on A, defined asfollows: ωψ : A → C

α 7→ ωψ(α) := 〈ψ|α|ψ〉.

So we put ωψ,o = ωψ |A0 . The GNS construction furnishes arepresentation L : A0 → B(HGNS) of A0, for a certain Hilbertspace HGNS constructed from A0.

In general, HGNS will split as a sum of irreducibles of A0. Thisreducibility reflects the fact that, when restricted to A0, theoriginal state ωψ might become mixed. The entropy of this statecan then be computed from the decomposition of HGNS intoirreducibles.

A.P. Balachandran Entanglement and GNS construction

Page 75: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Vector state

|ψ〉 = cos θ|e1〉+ sin θ|e3〉

von Neumann entropy of ωψ,0:

S(θ) = cos2 θ log1

cos2 θ+ sin2 θ log

1sin2 θ

Partial trace vs. GNSIn this example, partial trace always gives zero for entropy.If C4 describes single-particles, there are pure states ofSchmidt rank 1 with zero for GNS entropy, 1 for partial traceentropy.The former is more reasonable, the state being least entangled.

A.P. Balachandran Entanglement and GNS construction

Page 76: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Vector state

|ψ〉 = cos θ|e1〉+ sin θ|e3〉

von Neumann entropy of ωψ,0:

S(θ) = cos2 θ log1

cos2 θ+ sin2 θ log

1sin2 θ

Partial trace vs. GNSIn this example, partial trace always gives zero for entropy.If C4 describes single-particles, there are pure states ofSchmidt rank 1 with zero for GNS entropy, 1 for partial traceentropy.The former is more reasonable, the state being least entangled.

A.P. Balachandran Entanglement and GNS construction

Page 77: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Vector state

|ψ〉 = cos θ|e1〉+ sin θ|e3〉

von Neumann entropy of ωψ,0:

S(θ) = cos2 θ log1

cos2 θ+ sin2 θ log

1sin2 θ

Partial trace vs. GNSIn this example, partial trace always gives zero for entropy.If C4 describes single-particles, there are pure states ofSchmidt rank 1 with zero for GNS entropy, 1 for partial traceentropy.The former is more reasonable, the state being least entangled.

A.P. Balachandran Entanglement and GNS construction

Page 78: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Vector state

|ψ〉 = cos θ|e1〉+ sin θ|e3〉

von Neumann entropy of ωψ,0:

S(θ) = cos2 θ log1

cos2 θ+ sin2 θ log

1sin2 θ

Partial trace vs. GNSIn this example, partial trace always gives zero for entropy.If C4 describes single-particles, there are pure states ofSchmidt rank 1 with zero for GNS entropy, 1 for partial traceentropy.The former is more reasonable, the state being least entangled.

A.P. Balachandran Entanglement and GNS construction

Page 79: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

Dimensions

HθGNS∼=

C2, θ = 0

C3 ∼= C2 ⊕ C, θ ∈ (0, π/2)C, θ = π/2.

A.P. Balachandran Entanglement and GNS construction

Page 80: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

GNS-based approach: generalizes partial trace.Applications to entanglement of indistinguishable particles(work in progress).Applications to quantum phase transitions?Applications to black hole physics?

A.P. Balachandran Entanglement and GNS construction

Page 81: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

GNS-based approach: generalizes partial trace.Applications to entanglement of indistinguishable particles(work in progress).Applications to quantum phase transitions?Applications to black hole physics?

A.P. Balachandran Entanglement and GNS construction

Page 82: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

GNS-based approach: generalizes partial trace.Applications to entanglement of indistinguishable particles(work in progress).Applications to quantum phase transitions?Applications to black hole physics?

A.P. Balachandran Entanglement and GNS construction

Page 83: Entanglement, von Neumann Entropy and the GNS …trg/imsc50phy/Andres-Bal...Introduction Entanglement C*-Algebras and the GNS construction Von Neumann entropy and GNS construction

IntroductionEntanglement

C*-Algebras and the GNS constructionVon Neumann entropy and GNS construction

Outlook

GNS-based approach: generalizes partial trace.Applications to entanglement of indistinguishable particles(work in progress).Applications to quantum phase transitions?Applications to black hole physics?

A.P. Balachandran Entanglement and GNS construction