Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy,...

30
Entanglement Measures in 1+1 Dimensional Quantum Field Theory Olalla A. Castro-Alvaredo School of Mathematics, Computer Science and Engineering Department of Mathematics City, University of London Cardiff, 10 May 2018

Transcript of Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy,...

Page 1: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

Entanglement Measures in 1+1 DimensionalQuantum Field Theory

Olalla A. Castro-Alvaredo

School of Mathematics, Computer Science and EngineeringDepartment of MathematicsCity, University of London

Cardiff, 10 May 2018

Page 2: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

Background:

This talk will refer to some results from my papers. They can allbe accessed at:

http://olallacastroalvaredo.weebly.com/publications.html

Two good introductions to the topic of twist fields and entangle-ment measures are:

John L. Cardy, O.C.-A. and Benjamin Doyon, Form factors ofbranch-point twist fields in quantum integrable models and entan-glement entropy, J. Stat. Phys. 130 (2008) 129-168, arXiv:0706.3384.

O.C.-A. and Benjamin Doyon, Bi-partite entanglement entropy inmassive 1+1 dimensional quantum field theories, J. Phys. A42(2009) 504006, arXiv:0906.2946 (Review Article).

A good source are also the lectures that B. Doyon and I gave inBologna in 2016. All the material can be found here:http://thebolognalectures.weebly.com

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 3: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

1. Entanglement in quantum mechanics

A quantum system is in an entangled state if performinga localised measurement (in space and time) may instanta-neously affect local measurements far away.A typical example: a pair of opposite-spin electrons:

|ψ〉 =1√2

(|↑ ↓ 〉+ |↓ ↑ 〉) , 〈A〉 = 〈ψ|A|ψ〉

What is special: Bell’s inequality says that this cannot bedescribed by local variables.

A situation that looks similar to |ψ〉 but without entangle-ment is a factorizable state:

|ψ〉 =1

2(|↑ ↓ 〉+ |↓ ↑ 〉+ |↑ ↑ 〉+ |↓ ↓ 〉)

=1

2(|↑ 〉+ |↓ 〉)⊗ (|↑ 〉+ |↓ 〉)

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 4: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

These examples are extremely simple but what happens inextended many-body quantum systems?

First of all, what provides a good measure of entanglement?[Plenio & Virmani’05]

1 Entanglement monotone: no increase under LOCC2 Invariant under unitary transformations3 Zero for separable states4 (Usually) Non-zero for non-separable states

Among others, the bi-partite (or von Neumann) entangle-ment entropy, the Renyi entropies and the logarithmic neg-ativity are all good measures of entanglement according tothese properties.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 5: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

2. Bi-partite (von Neumann) Entanglement Entropy

Let us consider a spin chain of length N at T = 0, subdividedinto regions A and A of lengths L and N − L [Bennett et al.’96]

A

s x i+1s xxi−1s x i+L−1s x i+Ls

����

����

����

����

����

����

����

����

����

����

...... ...i

then we define

Von Neumann Entanglement Entropy

SA = −TrA(ρA log(ρA)) with ρA = TrA(|Ψ〉〈Ψ|)

|Ψ〉 is a quantum eigenstate and ρA the reduced density matrix.Other entropies may also be defined such as

Other Entropies

SRenyiA =

log(TrA(ρnA))

1− n, STsallis

A =1− TrA(ρnA)

n− 1

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 6: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

3. Replica Trick

The object TrAρnA with n integer is also a partition function

[Callan & Wilczek’93; Holzhey, Larsen & Wiczek’94; Calabrese& Cardy’04]:

TrAρnA =

ZnZn1

,

but now it is defined on an n-sheeted Riemann surface:

A〈φ|ρA|ψ〉A ∼

TrA(ρnA) ∼ Zn =

∫[dϕ]Mn exp

[−∫Mn

d2x L[ϕ](x)

]

M3 =

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 7: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

4. Continuum Limit

We can express the bi-partite entanglement entropy directlyin terms of this partition function as

Replica Trick

SA = −TrA(ρA log(ρA)) = − limn→1+

d

dnTrA(ρnA)

However, when computing this limit we need to extend ournotion of “replica” to n ≥ 1 and n ∈ R.

In the continuum (thermodynamic limit) the analytic con-tinuation problem is not solved in general although existenceand uniqueness are expected and may be established undercertain natural conditions.

Note that this is only a difficult problem when trying toobtain analytical results in QFT. On a discrete system, ifthe eigenvalues of ρA are known then the entropy is known.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 8: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

5. Measures of Entanglement in QFT: Why?

The EE of the ground state in QFT satisfies an area law: itgrows proportionally to the number of boundary points (in1D), the length of the boundary (2D) etc.

This is “broken” in critical systems where logarithmic diver-gencies occur. For instance [Callan & Wilczek’93; Holzhey,Larsen & Wiczek’94; Vidal, Latorre, Rico and Kitaev’03;Calabrese & Cardy’04]:

EE of one interval with |∂A| boundary points in 1+1D CFT

S1(`) = |∂A| c6

log`

ε, ε non− universal UV cut− off

The EE of excited states displays different kinds of behaviour:For zero density states in gapped systems, it gives precise in-formation about the number of excitations.

The EE encodes universal information about the QFT whichcan be effectively accessed numerically.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 9: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

6. Renyi Entropies at and near Critical Points

Short distance (CFT): Renyi Entropy for 0� `� ξ,logarithmic behavior

Sn(`) ∼ |∂A| c(n+ 1)

12nlog

`

ε

where |∂A| is the number of boundary points.Large distance (massive QFT): 0� ξ � `, saturation

Sn(A) ∼ |∂A| c(n+ 1)

12nlog(

1

m1ε)+|∂A|Un+exp. corrections

At n = 1, |∂A| = 2

Universal Correction to Saturation

S1(A) ∼ − c3

log(m1ε) + 2U1 −1

8

N∑α=1

K0(2`mα) +O(e−3m1`

)mα is the mass spectrum, m1 ∝ ξ−1 is the smallest mass,N is the number of particles in the spectrum.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 10: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

7. Example: the Ising model

H = −J2

N∑i=1

(σxi σ

xi+1 + hσzi

)

We may carry out the“scaling limit” of thistheory in two differ-ent ways:

Set h = 1 from thebeginning: then ξ =∞ and in the limitN →∞ this is a crit-ical model.

Take h > 1: ξ ∝ m−1 finite butlarge. Taking N →∞ while `/ξ isfinite we obtain Ising field theory.

æ

æ

æ

æ

æ

æ

æ

æææææææææææææææææææææææææææææææææææææææææææææææææææ

ææææææææ

ææææææææ

æ

èèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

èèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

èèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

èèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

ò

ò

ò

ò

ò

ò

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

òòòòòòòò

òòòòòòòòòò

òòòòòòòòòò

à

à

à

à

à

ààààààààààààààà

ààààààààààààààààààààààààààààààààààààààààààààààààààààààà

ì

ì

ì

ì

ììììììììììììì

ìììììììììììììììììììììììììììììììììììììììììììììììììììììììììì

0 10 20 30 40 50 60 70

0.4

0.6

0.8

1.0

1.2

L

SHLL

ì h=1.08

à h=1.05

ò h=1.005

è h=1 Fit

æ h=1

S(`) = 0.5000033 log `+ 0.478551 for

h = 1. For h > 1 saturation isreached.

The corrections to saturation areexactly fitted by 1

8K0(2m`)[Levi, OC-A & Doyon’12]

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 11: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

8. Branch Point Twist Fields

In the context of entanglement, the idea of quantum fieldsassociated with branch points of the Riemann surfaces Mn

appeared first in [Calabrese & Cardy’04].

The interpretation of these fields as symmetry fields of aQFT replica model was first given in [Cardy, OC-A & Doyon’08]:

Φi(y)T (x) = T (x)Φi+1(y) x1 > y1,

Φi(y)T (x) = T (x)Φi(y) x1 < y1,

for i = 1, . . . , n and n+ i ≡ i. Similarly T = T † implementsthe symmetry i 7→ i− 1.

Twist fields have a quantum spin chain counterpart [OC-A& Doyon’11] as product of local operators on replica chains.

Branch point twist fields were studied earlier in the contextof orbifold CFT [Knizhnik’87; Dixon et al.’87] and their con-formal dimension was known: ∆n = c

24

(n− 1

n

).

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 12: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 13: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

9. Entanglement-Correlators Dictionary (GS)

ε2∆n 〈T 〉n

EE of semi-infinite region. ByCTM approach [Calabrese, Cardy,Peschel, Bianchini, Ercolessi,Franchini, Evangelisti, Ra-vanini,...], Toplitz determinants[Its, Jin & Korepin’04], QFT tech-niques [Cardy, OC-A & Doyon’08,Blondeau-Fournier & Doyon’16]or numerically [Vidal et al.’03]

ε4∆n 〈T (0)T (`)〉n

EE of finite interval. In CFT[Callan & Wilczek’93; Holzhey etal.’94; Vidal et al.’03;Calabrese &Cardy’04...]. In massive models[Cardy, OC-A, Doyon, Levi, Bian-chini...]

ε8∆n 〈T (0)T (`1)T (`2)T (`3)〉n

EE of two disconnected regions[Calabrese, Cardy, Tonni, Casini,Huerta, Furukawa, Pasquier,Shiraishi, Caraglio, Gliozzi,Igloi, Peschel, Alba, Taglia-cozzo, Fagotti, Rajabpour, Datta,David...]

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 14: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

10. Form Factors of Local Fields: Definition

Let |θ1, . . . , θk〉µ1...µk a k-particle in-state. The particleshave rapidities θ1 > · · · > θk and quantum numbers µ1 . . . µk.Let O(0) be a local field located at the origin of space-time.Let |0〉 = (〈0|)† be the ground state (vacuum).

Form Factor

FO|µ1...µkk (θ1, . . . , θk) := 〈0|O(0)|θ1, . . . , θk〉µ1...µk

=

Form factors are the building blocks of correlation functions.If all FFs of local fields are known then all correlators of theQFT are known (at least formally).

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 15: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

11. Form Factors of Local Fields: Properties

It is easy to “shift” operators away from the origin by using:

〈0|O(x)|θ1, . . . , θk〉µ1...µk =

k∏j=1

eipν(θj)xν

FO|µ1...µkk (θ1, . . . , θk).

Note that p0(θj) = mµj cosh θj and p1(θj) = mµj sinh θj .

Under Hermitian conjugation:

µ1...µk〈θk . . . θ1|O(0)|0〉 = (FO†|µ1...µkk (θ1, . . . , θk))

For local fields in integrable quantum field theory, FFs areknown to be the solutions of a Riemann-Hilbert problem andhave been computed for many models [Karowski & Weisz’78;Smirnov’90s]

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 16: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

12. Two-Point Functions

The computation of measures of entanglement is reduced tothe computation of multi-point functions of twist fields andof their analytic continuation in n.

The two-point function of branch-point twist fields can bedecomposed as follows, giving a large-distance expansion:

〈T (0)T (r)〉n = 〈0|T (0)T (r)|0〉=

∑state k

〈0|T (0)|k〉〈k|T (r)|0〉

where∑k

|k〉〈k| is a sum over a complete set of states and

|0〉 is the ground state

The matrix elements 〈0|T (0)|k〉 are the form factors

In 1+1 dimensions∑k

|k〉〈k| 7→∫ ∞−∞

dθ1

2π· · ·∫ ∞−∞

dθk2π|θ1, . . . , θk〉〈θk, · · · , θ1|

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 17: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

13. Standard Watson’s Equations

FO|...µpµp+1...

k (. . . θp, θp+1 . . .) = Sµpµp+1 (θp,p+1)FO|...µp+1µp...

k (. . . , θp+1, θp, . . .)

FO|µ1...µkk (θ1 + 2πi, . . . , θk) = ωF

O|µ2...µkµ1k (θ2, . . . , θk, θ1)

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 18: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

14. Twist Field Watson’s Equations

FT |...µpµp+1...

k (. . . θp, θp+1 . . .) = Sµpµp+1 (θp,p+1)FT |...µp+1µp...

k (. . . , θp+1, θp, . . .)

FT |µ1...µkk (θ1 + 2πi, . . . , θk) = F

T |µ2...µkµ1k (θ2, . . . , θk, θ1)

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 19: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

15. Standard Kinematic Residue Equations

limθ0→θ0

(θ0 − θ0)FO|µµµ1...µkk+2 (θ0 + iπ, θ0, θ1, . . . , θk)

= i

1− ωk∏j=1

Sµµj (θ0j)

FO|µ1...µkk (θ1, . . . , θk)

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 20: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

16. Twist Field Residue Equations

For twist fields, the kinematic residue equation splits intotwo equations:

limθ0→θ0

(θ0 − θ0)FT |µµµ1...µkk+2 (θ0 + iπ, θ0, θ1, . . . , θk) = iF

T |µ1...µkk (θ1, . . . , θk)

limθ0→θ0

(θ0−θ0)FT |µµµ1...µkk+2 (θ0+iπ, θ0, θ1, . . . , θk) = −i

k∏j=1

Sµµj (θ0j)FT |µ1...µkk (θ1, . . . , θk)

...

kµk0!0! µ

"i+

T(0)

...

µ 0! µ

T(0)

!kµkµ+10!

"i+

!

The bound state residue equations remain unchanged.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 21: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

17. Two-Particle Form Factor

In the absence of bound state poles, it is possible to writea general expression for the two particle form factor, whichfollows directly from this ansatz:

Two Particle Form Factor

FT |µ1µ22 (θ1, θ2) =

〈T 〉n sin πn

(F

T |µ1µ2min

(θ1,θ2)

FT |µ1µ2min

(iπ,0)

)2n sinh

(θ1−θ2+iπ(2(j1−j2)−1)

2n

)sinh

(iπ(2(j2−j1)−1)−θ1+θ2

2n

)

where µ1 = (a1, j1) and µ2 = (a2, j2).

The sin πn term guarantees that the FF is zero at n = 1.

Repeated use of the FF equations shows that every FF maybe expressed in terms of FFs of particles in the same copy.

Also, all FFs of T can be expressed in terms of FFs of T .

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 22: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

18. Application: Exponential Corrections to EE

Recall that

S(`) = − limn→1

∂h(n)

∂nwith h(n) = ε4∆n〈T (0)T (`)〉n

So the basic object we need to compute is the two-pointfunction:

〈T (0)T (`)〉n = 〈T 〉2n +∑µ

∫ ∞−∞

2π(FT |µ1 (θ))∗(F

T |µ1 (θ))e−`mµ cosh θ

+1

2

∑µ1µ2

∫ ∞−∞

dθ1

∫ ∞−∞

dθ2

2π(FT |µ1µ22 (θ1, θ2))∗(F

T |µ1µ22 (θ1, θ2))e−`mµ1

cosh θ1−`mµ2cosh θ2

+ · · ·

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 23: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

19. Some Simplifications

Let us consider now a simple case: a theory with a singleparticle in the spectrum.

In that case we can label particles just by the copy numberj = 1 . . . n.

We also know the twist field is a spinless field: one-particleform factors are rapidity-independent and they are all equal

because all copies are identical: FT |µ1 (θ) := F1(n).

Two-particle form factors only depend on rapidity differ-

ences: FT |µ1µ2

2 (θ1, θ2) := F ij2 (θ, n) and FT |µ1µ2

2 (θ1, θ2) :=

F ij2 (θ, n) with θ = θ1 − θ2.

Finally, recall that all form factors are zero at n = 1.

The 0- and 1-particle contributions only contribute to thesaturation value of the EE. `-dependent corrections comefrom the two-particle contribution.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 24: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

20. In Summary: Leading Correction to EE

In summary, we need to compute

−1

4limn→1

∂n

∫ ∞−∞

∫ ∞−∞

2πn

n−1∑j=0

∣∣F 112 (−θ + 2πij, n)

∣∣2 e−2m` cosh θ2

cosh β2

with θ = θ1 − θ2 and β = θ1 + θ2.

The integral in β can be carried out giving a Bessel function.So, we end up with:

− limn→1

∂n

∫ ∞−∞

(2π)2n

n−1∑j=0

∣∣F 112 (−θ + 2πij, n)

∣∣2K0(2m` coshθ

2)

In order to take the derivative, we need to somehow get ridof the sum up to n− 1.

A well-known way of doing this is to use the cotangent trick.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 25: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

21.Cotangent Trick I

The idea is that the sum may be replaced by a contour in-tegral

1

2πi

∮dzπ cot(πz)s(z, θ, n)

with s(z, θ, n) =∣∣F 11

2 (−θ + 2πiz, n)∣∣2, in such a way that the

sum of the residues of poles of the cotangent enclosed bycontour reproduces the original sum.

Here the red crosses represent the poles of the cotangent atz = 1, 2, . . . , n− 1 and the blue crosses represent other polesin the contour due to the kinematic poles of the functions(z, θ, n) at z = 1

2 ±θ

2πi and z = n− 12 ±

θ2πi .

We shift iL → iL − ε so as to avoid the pole at z = n. Itincludes z = 0 but this does not affect the result.

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 26: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

22. Derivative

It is possible to show that the contributions to the integralcoming from the contour itself are vanishing under differen-tiation.

The only two-particle contribution to the derivative comesfrom the FF kinematic poles:

Im(F 112 (−2θ + iπ, n)− F 11

2 (−2θ + 2πin− iπ, n))

tanhθ

2

Based on previous observations, it would seem that thisshould be zero as F 11

2 (θ, 1) = 0. However, something specialhappens to this function as n→ 1 and θ → 0 simultaneously.

This can be best understood by doing some simple numerics...

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 27: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

23. Ising & Sinh-Gordon Models

The sum n∑n−1

j=0

∣∣F 112 (−θ + 2πij, n)

∣∣2 for θ = 0 in the Isingmodel (blue) and the sinh-Gordon model (red).

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 28: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

24. Delta Function

Near θ = 0 and n = 1:

Im(F 11

2 (−2θ + iπ, n)− F 112 (−2θ + 2πin− iπ, n)

)tanh

θ

2

∼ −1

2

(iπ(n− 1)

2(θ + iπ(n− 1))−

iπ(n− 1)

2(θ − iπ(n− 1))

)∼π2(n− 1)

2δ(θ).

Putting this result back into the θ integral and differentiatingw.r.t. n we obtain the two-particle form factor contribution:

−1

8K0(2m`)

The result is striking for its simplicity. From the derivationwe see that it follows from the pole structure of the FFs,which is universal.

For this reason the same result can even be found for non-integrable 1+1 dimensional models [Doyon’09].

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 29: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

26. Conclusions & Open Problems

Branch point twist fields provide a powerful approach to thecomputation of partition functions in non-trivial geometries,which are related to measures of entanglement in QFT.

There are many interesting open problems to be addressedwithin this approach:

◦ Measures of entanglement in higher dimensions: can one de-fine twist fields?

◦ Measures of entanglement in excited states: work in progress...◦ Generic understanding of analytic continuations of replica

partition functions: analytic structure of form factors andcorrelation functions

◦ A more complete set of form factor solutions for integrablemodels: computation of higher-particle form factors for di-agonal theories

◦ The study of multi-point functions: are there any simple uni-versal features?

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT

Page 30: Entanglement Measures in 1+1 Dimensional Quantum Field Theory · 2018. 5. 16. · glement entropy, J. Stat. Phys. 130 (2008) 129-168,arXiv:0706.3384. O.C.-A. and Benjamin Doyon, Bi-partite

Olalla Castro-Alvaredo, City, University of London Entanglement Measures in 1+1 Dimensional QFT