Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP)...

321
University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class Notes Nasser M. Abbasi Spring 2017

Transcript of Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP)...

Page 1: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

University Course

Engineering Physics (EP) 548Engineering analysis II

University of Wisconsin, MadisonSpring 2017

My Class Notes

Nasser M. Abbasi

Spring 2017

Page 2: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class
Page 3: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Contents

1 Introduction 11.1 links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Resources 52.1 Review of ODE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Sturm Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 HWs 393.1 HW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 HW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803.3 HW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.4 HW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1783.5 HW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1893.6 HW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4 Study notes 2094.1 question asked 2/7/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2104.2 note on Airy added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2114.3 note p1 added 2/3/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134.4 note added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204.5 note p3 figure 3.4 in text (page 92) reproduced in color . . . . . . . . . . . . 2254.6 note p4 added 2/15/17 animations of the solutions to ODE from lecture 2/9/17

for small parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2274.7 note p5 added 2/15/17 animation figure 9.5 in text page 434 . . . . . . . . . . 2314.8 note p7 added 2/15/17, boundary layer problem solved in details . . . . . . . 2374.9 note p9. added 2/24/17, asking question about problem in book . . . . . . . . 2434.10 note p11. added 3/7/17, Showing that scaling for normalization is same for

any 𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2454.11 note p12. added 3/8/17, comparing exact solution to WKB solution using

Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2474.12 Convert ODE to Liouville form . . . . . . . . . . . . . . . . . . . . . . . . . . . 2524.13 note p13. added 3/15/17, solving πœ–2𝑦″(π‘₯) = (π‘Ž + π‘₯ + π‘₯2)𝑦(π‘₯) in Maple . . . . . . 254

5 Exams 255

iii

Page 4: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Contents CONTENTS

5.1 Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2565.2 Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

iv

Page 5: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 1

Introduction

Local contents1.1 links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1

Page 6: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

1.1. links CHAPTER 1. INTRODUCTION

1.1 links

1. Professor Leslie M. Smith web page

2. piazza class page Needs login

2

Page 7: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

1.2. syllabus CHAPTER 1. INTRODUCTION

1.2 syllabus

NE 548

Engineering Analysis II

TR 11:00-12:15 in Van Vleck B341

Leslie Smith: [email protected], Office Hours in Van Vleck Tuesday/Thursday 12:30-2:00, http://www.math.wisc.edu/ lsmith.

Textbook 1 Required: Advanced Mathematical Methods for Scientists and Engineers,Bender and Orszag, Springer.

Textbook 2 Recommended: Applied Partial Differential Equations, Haberman, Pear-son/Prentice Hall. This text is recommended because some of you may already own it (fromMath 322). Almost any intermediate-advanced PDEs text would be suitable alternative asreference.

Pre-requisite: NE 547. If you have not taken NE 547, you should have previously takencourses equivalent to Math 319, 320 or 340, 321, 322.

Assessment: Your grade for the course will be based on two take-home midterm exams(35% each) and selected homework solutions (30%). The homework and midterms examsfor undergraduate and graduate students will be different in scope; please see the separatelearning outcomes below. Graduate students will be expected to synthesize/analyze materialat a deeper level.

Undergraduate Learning Outcomes:

β€’ Students will demonstrate knowledge of asymptotic methods to analyze ordinary differ-ential equations, including (but not limited to) boundary layer theory, WKB analysisand multiple-scale analysis.

β€’ Students will demonstrate knowledge of commonly used methods to analyze partialdifferential equations, including (but not limited to) Fourier analysis, Green’s functionsolutions, similarity solutions, and method of characteristics.

β€’ Students will apply methods to idealized problems motivated by applications. Such ap-plications include heat conduction (the heat equation), quantum mechanics (Schrodinger’sequation) and plasma turbulence (dispersive wave equations).

Graduate Learning Outcomes:

β€’ Students will demonstrate knowledge of asymptotic methods to analyze ordinary differ-ential equations, including (but not limited to) boundary layer theory, WKB analysisand multiple-scale analysis.

β€’ Students will demonstrate knowledge of commonly used methods to analyze partialdifferential equations, including (but not limited to) Fourier analysis, Green’s functionsolutions, similarity solutions, and method of characteristics.

β€’ Students will apply methods to idealized problems motivated by applications. Such ap-plications include heat conduction (the heat equation), quantum mechanics (Schrodinger’sequation) and plasma turbulence (dispersive wave equations).

3

Page 8: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

1.2. syllabus CHAPTER 1. INTRODUCTION

β€’ Students will apply methods to solve problems in realistic physical settings.

β€’ Students will synthesize multiple techniques to solve equations arising from applica-tions.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69D, 59 and below F

Midterm 1: Given out Thursday March 2, 2015 and due Thursday March 9, 2017.

Midterm 2: Given out Thursday April 27, 2017 and due Thursday May 4, 2015.

Homework: Homework problems will be assigned regularly, either each week or every otherweek, paced for 6 hours out-of-class work every week. Homework groups are encouraged,but each student should separately submit solutions reflecting individual understanding ofthe material.

Piazza: There will be a Piazza course page where all course materials will be posted. Piazzais also a forum to facilitate peer-group discussions. Please take advantage of this resource tokeep up to date on class notes, homework and discussions.

Piazza Sign-Up Page: piazza.com/wisc/spring2017/neema548

Piazza Course Page: piazza.com/wisc/spring2017/neema548/home

Course Outline

Part I: Intermediate-Advanced Topics in ODEs from Bender and Orszag.

1. Review of local analysis of ODEs near ordinary points, regular singular points and irregularsingular points (BO Chapter 3, 1.5 weeks)

2. Global analysis using boundary layer theory (BO Chapter 9, 1.5 weeks).

3. Global analysis using WKB theory (BO Chapter 10, 1.5 weeks).

4. Green’s function solutions (1 week)

5. Multiple-scale analysis (BO Chapter 11, 1.5 weeks).

Part II: Intermediate-Advanced Topics in PDEs

1. Review of Sturm-Liouville theory and eigenfunction expansions (1.5 weeks)

2. Non-homogeneous problems and Green’s function solutions (1.5 weeks)

3. Infinite domain problems and Fourier transforms (1.5 weeks)

4. Quasilinear PDEs (1.5 weeks)

5. Dispersive wave systems (time remaining)

2

4

Page 9: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 2

Resources

Local contents2.1 Review of ODE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Sturm Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5

Page 10: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

2.1 Review of ODE’s

6

Page 11: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

7

Page 12: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

8

Page 13: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

9

Page 14: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

10

Page 15: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

11

Page 16: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

12

Page 17: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

13

Page 18: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

14

Page 19: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

15

Page 20: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODE’s CHAPTER 2. RESOURCES

16

Page 21: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

2.2 Sturm Liouville

17

Page 22: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

18

Page 23: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

19

Page 24: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

20

Page 25: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

21

Page 26: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

22

Page 27: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

23

Page 28: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

24

Page 29: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

25

Page 30: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

26

Page 31: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

27

Page 32: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

2.3 Wave equation

28

Page 33: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

29

Page 34: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

30

Page 35: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

31

Page 36: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

32

Page 37: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

33

Page 38: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

34

Page 39: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

35

Page 40: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

36

Page 41: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

37

Page 42: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

38

Page 43: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 3

HWs

Local contents3.1 HW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 HW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803.3 HW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.4 HW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1783.5 HW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1893.6 HW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

39

Page 44: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1 HW1

3.1.1 problem 3.3 (page 138)

3.1.1.1 Part c

problem Classify all the singular points (finite and infinite) of the following

π‘₯ (1 βˆ’ π‘₯) 𝑦′′ + (𝑐 βˆ’ (π‘Ž + 𝑏 + 1) π‘₯) 𝑦′ βˆ’ π‘Žπ‘π‘¦ = 0

Answer

Writing the DE in standard form

𝑦′′ + 𝑝 (π‘₯) 𝑦′ + π‘ž (π‘₯) 𝑦 = 0

𝑦′′ +𝑐 βˆ’ (π‘Ž + 𝑏 + 1) π‘₯

π‘₯ (1 βˆ’ π‘₯)𝑦′ βˆ’

π‘Žπ‘π‘₯ (1 βˆ’ π‘₯)

𝑦 = 0

𝑦′′ +

𝑝(π‘₯)

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝑐π‘₯ (1 βˆ’ π‘₯)

βˆ’(π‘Ž + 𝑏 + 1)(1 βˆ’ π‘₯) �𝑦′ βˆ’

π‘ž(π‘₯)

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘Žπ‘π‘₯ (1 βˆ’ π‘₯)

𝑦 = 0

π‘₯ = 0, 1 are singular points for 𝑝 (π‘₯) as well as for π‘ž (π‘₯). Now we classify what type of singularityeach point is. For 𝑝 (π‘₯)

limπ‘₯β†’0

π‘₯𝑝 (π‘₯) = limπ‘₯β†’0

π‘₯ �𝑐

π‘₯ (1 βˆ’ π‘₯)βˆ’(π‘Ž + 𝑏 + 1)(1 βˆ’ π‘₯) οΏ½

= limπ‘₯β†’0

�𝑐

(1 βˆ’ π‘₯)βˆ’π‘₯ (π‘Ž + 𝑏 + 1)(1 βˆ’ π‘₯) οΏ½

= 𝑐

Hence π‘₯𝑝 (π‘₯) is analytic at π‘₯ = 0. Therefore π‘₯ = 0 is regular singularity point. Now we checkfor π‘ž (π‘₯)

limπ‘₯β†’0

π‘₯2π‘ž (π‘₯) = limπ‘₯β†’0

π‘₯2βˆ’π‘Žπ‘

π‘₯ (1 βˆ’ π‘₯)

= limπ‘₯β†’0

βˆ’π‘₯π‘Žπ‘(1 βˆ’ π‘₯)

= 0

Hence π‘₯2π‘ž (π‘₯) is also analytic at π‘₯ = 0. Therefore π‘₯ = 0 is regular singularity point. Now we

40

Page 45: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

look at π‘₯ = 1 and classify it. For 𝑝 (π‘₯)

limπ‘₯β†’1

(π‘₯ βˆ’ 1) 𝑝 (π‘₯) = limπ‘₯β†’1

(π‘₯ βˆ’ 1) �𝑐

π‘₯ (1 βˆ’ π‘₯)βˆ’(π‘Ž + 𝑏 + 1)(1 βˆ’ π‘₯) οΏ½

= limπ‘₯β†’1

(π‘₯ βˆ’ 1) οΏ½βˆ’π‘

π‘₯ (π‘₯ βˆ’ 1)+(π‘Ž + 𝑏 + 1)(π‘₯ βˆ’ 1) οΏ½

= limπ‘₯β†’1

οΏ½βˆ’π‘π‘₯+ (π‘Ž + 𝑏 + 1)οΏ½

= βˆ’π‘ + (π‘Ž + 𝑏 + 1)

Hence (π‘₯ βˆ’ 1) 𝑝 (π‘₯) is analytic at π‘₯ = 1. Therefore π‘₯ = 1 is regular singularity point. Now wecheck for π‘ž (π‘₯)

limπ‘₯β†’1

(π‘₯ βˆ’ 1)2 π‘ž (π‘₯) = limπ‘₯β†’1

(π‘₯ βˆ’ 1)2 οΏ½βˆ’π‘Žπ‘

π‘₯ (1 βˆ’ π‘₯)οΏ½

= limπ‘₯β†’1

(π‘₯ βˆ’ 1)2 οΏ½π‘Žπ‘

π‘₯ (π‘₯ βˆ’ 1)οΏ½

= limπ‘₯β†’1

(π‘₯ βˆ’ 1) οΏ½π‘Žπ‘π‘₯ οΏ½

= 0

Hence (π‘₯ βˆ’ 1)2 π‘ž (π‘₯) is analytic also at π‘₯ = 1. Therefore π‘₯ = 1 is regular singularity point.Therefore π‘₯ = 0, 1 are regular singular points for the ODE. Now we check for π‘₯ at ∞. Tocheck the type of singularity, if any, at π‘₯ = ∞, the DE is first transformed using

π‘₯ =1𝑑

(1)

41

Page 46: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

This transformation will always results in 1 new ODE in 𝑑 of this form

𝑑2𝑦𝑑𝑑2

+οΏ½βˆ’π‘ (𝑑) + 2𝑑�

𝑑2+π‘ž (𝑑)𝑑4𝑦 = 0 (2)

But

𝑝 (𝑑) = 𝑝 (π‘₯)οΏ½π‘₯= 1

𝑑= οΏ½

𝑐 βˆ’ (π‘Ž + 𝑏 + 1) π‘₯π‘₯ (1 βˆ’ π‘₯) οΏ½

π‘₯= 1𝑑

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑐 βˆ’ (π‘Ž + 𝑏 + 1) 1𝑑1𝑑�1 βˆ’ 1

𝑑�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝑐𝑑2 βˆ’ 𝑑 (π‘Ž + 𝑏 + 1)

(𝑑 βˆ’ 1)(3)

And

π‘ž (𝑑) = π‘ž (π‘₯)οΏ½π‘₯= 1

𝑑= οΏ½βˆ’

π‘Žπ‘π‘₯ (1 βˆ’ π‘₯)οΏ½

π‘₯= 1𝑑

= βˆ’π‘Žπ‘

1𝑑�1 βˆ’ 1

𝑑�

= βˆ’π‘Žπ‘π‘‘2

(𝑑 βˆ’ 1)(4)

1Let π‘₯ = 1𝑑, then

𝑑𝑑π‘₯

=𝑑𝑑𝑑

𝑑𝑑𝑑π‘₯

= βˆ’π‘‘2𝑑𝑑𝑑

And

𝑑2

𝑑π‘₯2=

𝑑𝑑π‘₯ οΏ½

𝑑𝑑π‘₯οΏ½

= οΏ½βˆ’π‘‘2𝑑𝑑𝑑 οΏ½ οΏ½

βˆ’π‘‘2𝑑𝑑𝑑 οΏ½

= βˆ’π‘‘2𝑑𝑑𝑑 οΏ½

βˆ’π‘‘2𝑑𝑑𝑑 οΏ½

= βˆ’π‘‘2 οΏ½βˆ’2𝑑𝑑𝑑𝑑

βˆ’ 𝑑2𝑑2

𝑑𝑑2 οΏ½

= 2𝑑3𝑑𝑑𝑑

+ 𝑑4𝑑2

𝑑𝑑2

The original ODE becomes

οΏ½2𝑑3𝑑𝑑𝑑

+ 𝑑4𝑑2

𝑑𝑑2 �𝑦 + 𝑝 (π‘₯)οΏ½

π‘₯= 12οΏ½βˆ’π‘‘2

𝑑𝑑𝑑 οΏ½

𝑦 + π‘ž (π‘₯)οΏ½π‘₯= 1

𝑑

𝑦 = 0

οΏ½2𝑑3𝑦′ + 𝑑4𝑦′′� βˆ’ 𝑑2𝑝 (𝑑) 𝑦′ + π‘ž (𝑑) 𝑦 = 0

𝑑4𝑦′′ + οΏ½βˆ’π‘‘2𝑝 (𝑑) + 2𝑑3οΏ½ 𝑦′ + π‘ž (𝑑) 𝑦 = 0

𝑦′′ +οΏ½βˆ’π‘ (𝑑) + 2𝑑�

𝑑2𝑦′ +

π‘ž (𝑑)𝑑4

𝑦 = 0

42

Page 47: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Substituting equations (3,4) into (2) gives

𝑦′′ +οΏ½βˆ’ οΏ½ 𝑐𝑑

2βˆ’π‘‘(π‘Ž+𝑏+1)(π‘‘βˆ’1)

οΏ½ + 2𝑑�

𝑑2+οΏ½βˆ’ π‘Žπ‘π‘‘2

(π‘‘βˆ’1)οΏ½

𝑑4𝑦 = 0

𝑦′′ +οΏ½2𝑑 (𝑑 βˆ’ 1) βˆ’ 𝑑2𝑐 + (π‘Ž + 𝑏 + 1) 𝑑�

𝑑2 (𝑑 βˆ’ 1)𝑦′ βˆ’

π‘Žπ‘π‘‘2 (𝑑 βˆ’ 1)

𝑦 = 0

Expanding

𝑦′′ +

𝑝(𝑑)

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½2𝑑 βˆ’ 1 βˆ’ 𝑑𝑐 + π‘Ž + 𝑏

𝑑 (𝑑 βˆ’ 1) �𝑦′ βˆ’

π‘ž(𝑑)

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘Žπ‘π‘‘2 (𝑑 βˆ’ 1)

𝑦 = 0

We see that 𝑑 = 0 (this means π‘₯ = ∞) is singular point for both 𝑝 (π‘₯) , π‘ž (π‘₯). Now we checkwhat type it is. For 𝑝 (𝑑)

lim𝑑→0

𝑑𝑝 (𝑑) = lim𝑑→0

𝑑 οΏ½2π‘‘βˆ’

𝑐(𝑑 βˆ’ 1)

+(π‘Ž + 𝑏 + 1)𝑑 (𝑑 βˆ’ 1) οΏ½

= lim𝑑→0

οΏ½2 βˆ’π‘‘π‘

(𝑑 βˆ’ 1)+(π‘Ž + 𝑏 + 1)(𝑑 βˆ’ 1) οΏ½

= 1 βˆ’ π‘Ž βˆ’ 𝑏

𝑑𝑝 (𝑑) is therefore analytic at 𝑑 = 0. Hence 𝑑 = 0 is regular singular point. Now we checkfor π‘ž (𝑑)

lim𝑑→0

𝑑2π‘ž (𝑑) = lim𝑑→0

𝑑2 οΏ½βˆ’π‘Žπ‘

𝑑2 (𝑑 βˆ’ 1)οΏ½

= lim𝑑→0

οΏ½βˆ’π‘Žπ‘(𝑑 βˆ’ 1)οΏ½

= π‘Žπ‘

𝑑2π‘ž (𝑑) is therefore analytic at 𝑑 = 0. Hence 𝑑 = 0 is regular singular point for π‘ž (𝑑). Therefore𝑑 = 0 is regular singular point which mean that π‘₯ β†’ ∞ is a regular singular point for theODE.

Summary

Singular points are π‘₯ = 0, 1. Both are regular singular points. Also π‘₯ = ∞ is regular singularpoint.

3.1.1.2 Part (d)

Problem Classify all the singular points (finite and infinite) of the following

π‘₯𝑦′′ + (𝑏 βˆ’ π‘₯) 𝑦′ βˆ’ π‘Žπ‘¦ = 0

solution

Writing the ODE in standard for

𝑦′′ +(𝑏 βˆ’ π‘₯)π‘₯

𝑦′ βˆ’π‘Žπ‘₯𝑦 = 0

43

Page 48: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

We see that π‘₯ = 0 is singularity point for both 𝑝 (π‘₯) and π‘ž (π‘₯). Now we check its type. For 𝑝 (π‘₯)

limπ‘₯β†’0

π‘₯𝑝 (π‘₯) = limπ‘₯β†’0

π‘₯(𝑏 βˆ’ π‘₯)π‘₯

= 𝑏

Hence π‘₯𝑝 (π‘₯) is analytic at π‘₯ = 0. Therefore π‘₯ = 0 is regular singularity point for 𝑝 (π‘₯). For π‘ž (π‘₯)

limπ‘₯β†’0

π‘₯2π‘ž (π‘₯) = limπ‘₯β†’0

π‘₯2 οΏ½βˆ’π‘Žπ‘₯οΏ½

= limπ‘₯β†’0

(βˆ’π‘Žπ‘₯)

= 0

Hence π‘₯2π‘ž (π‘₯) is analytic at π‘₯ = 0. Therefore π‘₯ = 0 is regular singularity point for π‘ž (π‘₯).

Now we check for π‘₯ at ∞. To check the type of singularity, if any, at π‘₯ = ∞, the DE is firsttransformed using

π‘₯ =1𝑑

(1)

This results in (as was done in above part)

𝑑2𝑦𝑑𝑑2

+οΏ½βˆ’π‘ (𝑑) + 2𝑑�

𝑑2+π‘ž (𝑑)𝑑4𝑦 = 0

Where

𝑝 (𝑑) =(𝑏 βˆ’ π‘₯)π‘₯

οΏ½π‘₯= 1

𝑑

=�𝑏 βˆ’ 1

𝑑�

1𝑑

= (𝑏𝑑 βˆ’ 1)

And π‘ž (𝑑) = βˆ’ π‘Žπ‘₯ = βˆ’π‘Žπ‘‘ Hence the new ODE is

𝑑2𝑦𝑑𝑑2

+(βˆ’ (𝑏𝑑 βˆ’ 1) + 2𝑑)

𝑑2βˆ’π‘Žπ‘‘π‘‘4𝑦 = 0

𝑑2𝑦𝑑𝑑2

+βˆ’π‘π‘‘ + 1 + 2𝑑

𝑑2βˆ’π‘Žπ‘‘3𝑦 = 0

Therefore 𝑑 = 0 (or π‘₯ = ∞) is singular point. Now we will find the singularity type

lim𝑑→0

𝑑𝑝 (𝑑) = lim𝑑→0

𝑑 οΏ½βˆ’π‘π‘‘ + 1 + 2𝑑

𝑑2 οΏ½

= lim𝑑→0

οΏ½βˆ’π‘π‘‘ + 1 + 2𝑑

𝑑 οΏ½

= ∞

Hence 𝑑𝑝 (𝑑) is not analytic, since the limit do not exist, which means 𝑑 = 0 is an irregular

44

Page 49: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

singular point for 𝑝 (𝑑) . We can stop here, but will also check for π‘ž (𝑑)

lim𝑑→0

𝑑2π‘ž (𝑑) = lim𝑑→0

𝑑2 οΏ½βˆ’π‘Žπ‘‘3οΏ½

= lim𝑑→0

οΏ½βˆ’π‘Žπ‘‘οΏ½

= ∞

Therefore, 𝑑 = 0 is irregular singular point, which means π‘₯ = ∞ is an irregular singular point.

Summary

π‘₯ = 0 is regular singular point. π‘₯ = ∞ is an irregular singular point.

3.1.2 problem 3.4

3.1.2.1 part d

problem Classify π‘₯ = 0 and π‘₯ = ∞ of the following

π‘₯2𝑦′′ = 𝑦𝑒1π‘₯

Answer

In standard form

𝑦′′ βˆ’π‘’1π‘₯

π‘₯2𝑦 = 0

Hence 𝑝 (π‘₯) = 0, π‘ž (π‘₯) = βˆ’ 𝑒1π‘₯

π‘₯2 . The singularity is π‘₯ = 0. We need to check on π‘ž (π‘₯) only.

limπ‘₯β†’0

π‘₯2π‘ž (π‘₯) = limπ‘₯β†’0

π‘₯2βŽ›βŽœβŽœβŽœβŽœβŽœβŽβˆ’π‘’1π‘₯

π‘₯2

⎞⎟⎟⎟⎟⎟⎠

= limπ‘₯β†’0

οΏ½βˆ’π‘’1π‘₯ οΏ½

The above is not analytic, since limπ‘₯β†’0+ οΏ½βˆ’π‘’1π‘₯ οΏ½ = ∞ while limπ‘₯β†’0βˆ’ οΏ½βˆ’π‘’

1π‘₯ οΏ½ = 0. This means 𝑒

1π‘₯ is

not diοΏ½erentiable at π‘₯ = 0. Here is plot 𝑒1π‘₯ near π‘₯ = 0

45

Page 50: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

-0.4 -0.2 0.0 0.2 0.4

0

200

400

600

x

f(x)

Plot of exp(1/x)

Therefore π‘₯ = 0 is an irregular singular point. We now convert the ODE using π‘₯ = 1𝑑 in order

to check what happens at π‘₯ = ∞. This results in (as was done in above part)

𝑑2𝑦𝑑𝑑2

+π‘ž (𝑑)𝑑4𝑦 = 0

But

π‘ž (𝑑) = π‘ž (π‘₯)οΏ½π‘₯= 1

𝑑

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽβˆ’π‘’1π‘₯

π‘₯2

⎞⎟⎟⎟⎟⎟⎠π‘₯= 1

𝑑

= βˆ’π‘‘2𝑒𝑑

Hence the ODE becomes

𝑦′′ βˆ’βˆ’π‘‘2𝑒𝑑

𝑑4𝑦 = 0

𝑦′′ +𝑒𝑑

𝑑2𝑦 = 0

We now check π‘ž (𝑑).

lim𝑑→0

𝑑2π‘ž (𝑑) = lim𝑑→0

𝑑2𝑒𝑑

𝑑2= lim

𝑑→0𝑒𝑑

= 1

This is analytic. Hence 𝑑 = 0 is regular singular point, which means π‘₯ = ∞ is regular singularpoint.

Summary π‘₯ = 0 is irregular singular point, π‘₯ = ∞ is regular singular point.

46

Page 51: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.2.2 Part e

problem

Classify π‘₯ = 0 and π‘₯ = ∞ of the following

(tan π‘₯) 𝑦′ = 𝑦Answer

𝑦′ βˆ’1

tan π‘₯𝑦 = 0

The function tan π‘₯ looks like

-Ο€ - Ο€

20 Ο€

2Ο€

-6

-4

-2

0

2

4

6

x

tan(x)

tan(x)

Therefore, tan (π‘₯) is not analytic at π‘₯ = �𝑛 βˆ’ 12οΏ½ πœ‹ for 𝑛 ∈ β„€. Hence the function 1

tan(π‘₯) is not

analytic at π‘₯ = π‘›πœ‹ as seen in this plot

-Ο€ - Ο€

20 Ο€

2Ο€

-6

-4

-2

0

2

4

6

x

1/tan(x)

1/tan(x)

47

Page 52: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence singular points are π‘₯ = {β‹― , βˆ’2πœ‹, βˆ’πœ‹, 0, πœ‹, 2πœ‹,β‹―}. Looking at π‘₯ = 0

limπ‘₯β†’0

π‘₯𝑝 (π‘₯) = limπ‘₯β†’0

οΏ½π‘₯1

tan (π‘₯)οΏ½

= limπ‘₯β†’0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

𝑑π‘₯𝑑π‘₯

𝑑 tan(π‘₯)𝑑π‘₯

⎞⎟⎟⎟⎟⎟⎠

= limπ‘₯β†’0

1sec2 π‘₯

= limπ‘₯β†’0

cos2 π‘₯

= 1

Therefore the point π‘₯ = 0 is regular singular point. To classify π‘₯ = ∞, we use π‘₯ = 1𝑑 substitu-

tion. 𝑑𝑑π‘₯ =

𝑑𝑑𝑑

𝑑𝑑𝑑π‘₯ = βˆ’π‘‘

2 𝑑𝑑𝑑 and the ODE becomes

οΏ½βˆ’π‘‘2𝑑𝑑𝑑�

𝑦 βˆ’1

tan οΏ½1𝑑 �𝑦 = 0

βˆ’π‘‘2𝑦′ βˆ’1

tan οΏ½1𝑑 �𝑦 = 0

𝑦′ +1

𝑑2 tan οΏ½1𝑑 �𝑦 = 0

Hence

𝑝 (𝑑) =1

𝑑2 tan οΏ½1𝑑 οΏ½

This function has singularity at 𝑑 = 0 and at 𝑑 = 1π‘›πœ‹ for 𝑛 ∈ β„€. We just need to consider 𝑑 = 0

48

Page 53: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

since this maps to π‘₯ = ∞. Hence

lim𝑑→0

𝑑𝑝 (𝑑) = lim𝑑→0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘‘

1

𝑑2 tan οΏ½1𝑑 οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim𝑑→0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1

𝑑 tan οΏ½1𝑑 οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim𝑑→0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1𝑑

tan οΏ½1𝑑 οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

β†’L’hopitals

lim𝑑→0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’ 1𝑑2

βˆ’sec2οΏ½ 1𝑑 οΏ½

𝑑2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim𝑑→0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1

sec2 οΏ½1𝑑 οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim𝑑→0

οΏ½cos2 οΏ½1𝑑 οΏ½οΏ½

The following is a plot of cos2 οΏ½1𝑑 οΏ½ as 𝑑 goes to zero.

- Ο€

20 Ο€

2

0.0

0.2

0.4

0.6

0.8

1.0

t

f(t)

cos21

t

This is the same as asking for limπ‘₯β†’βˆž cos2 (π‘₯) which does not exist, since cos (π‘₯) keepsoscillating, hence it has no limit. Therefore, we conclude that 𝑑𝑝 (𝑑) is not analytic at 𝑑 = 0,hence 𝑑 is irregular singular point, which means π‘₯ = ∞ is an irregular singular point.

Summary

π‘₯ = 0 is regular singular point and π‘₯ = ∞ is an irregular singular point

49

Page 54: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.3 Problem 3.6

3.1.3.1 part b

Problem Find the Taylor series expansion about π‘₯ = 0 of the solution to the initial valueproblem

𝑦′′ βˆ’ 2π‘₯𝑦′ + 8𝑦 = 0𝑦 (0) = 0𝑦′ (0) = 4

solution

Since π‘₯ = 0 is ordinary point, then we can use power series solution

𝑦 (π‘₯) =βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛

Hence

𝑦′ (π‘₯) =βˆžοΏ½π‘›=0

π‘›π‘Žπ‘›π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=1

π‘›π‘Žπ‘›π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=0

(𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛

𝑦′′ (π‘₯) =βˆžοΏ½π‘›=0

𝑛 (𝑛 + 1) π‘Žπ‘›+1π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=1

𝑛 (𝑛 + 1) π‘Žπ‘›+1π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛

Therefore the ODE becomesβˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛 βˆ’ 2π‘₯βˆžοΏ½π‘›=0

(𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛 + 8βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛 = 0

βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛 βˆ’βˆžοΏ½π‘›=0

2 (𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛+1 +βˆžοΏ½π‘›=0

8π‘Žπ‘›π‘₯𝑛 = 0

βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛 βˆ’βˆžοΏ½π‘›=1

2π‘›π‘Žπ‘›π‘₯𝑛 +βˆžοΏ½π‘›=0

8π‘Žπ‘›π‘₯𝑛 = 0

Hence, for 𝑛 = 0 we obtain(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛 + 8π‘Žπ‘›π‘₯𝑛 = 0

2π‘Ž2 + 8π‘Ž0 = 0π‘Ž2 = βˆ’4π‘Ž0

For 𝑛 β‰₯ 1(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2 βˆ’ 2π‘›π‘Žπ‘› + 8π‘Žπ‘› = 0

π‘Žπ‘›+2 =2π‘›π‘Žπ‘› βˆ’ 8π‘Žπ‘›(𝑛 + 1) (𝑛 + 2)

=π‘Žπ‘› (2𝑛 βˆ’ 8)

(𝑛 + 1) (𝑛 + 2)Hence for 𝑛 = 1

π‘Ž3 =π‘Ž1 (2 βˆ’ 8)

(1 + 1) (1 + 2)= βˆ’π‘Ž1

50

Page 55: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

For 𝑛 = 2

π‘Ž4 =π‘Ž2 (2 (2) βˆ’ 8)(2 + 1) (2 + 2)

= βˆ’13π‘Ž2 = βˆ’

13(βˆ’4π‘Ž0) =

43π‘Ž0

For 𝑛 = 3

π‘Ž5 =π‘Ž3 (2 (3) βˆ’ 8)(3 + 1) (3 + 2)

= βˆ’110π‘Ž3 = βˆ’

110(βˆ’π‘Ž1) =

110π‘Ž1

For 𝑛 = 4

π‘Ž6 =π‘Ž4 (2 (4) βˆ’ 8)(4 + 1) (4 + 2)

= 0

For 𝑛 = 5

π‘Ž7 =π‘Ž5 (2 (5) βˆ’ 8)(5 + 1) (5 + 2)

=121π‘Ž5 =

121 οΏ½

110π‘Ž1οΏ½ =

1210

π‘Ž1

For 𝑛 = 6

π‘Ž8 =π‘Ž6 (2 (6) βˆ’ 8)(6 + 1) (6 + 2)

=114π‘Ž6 = 0

For 𝑛 = 7

π‘Ž9 =π‘Ž7 (2 (7) βˆ’ 8)(7 + 1) (7 + 2)

=112π‘Ž7 =

112 οΏ½

1210

π‘Ž1οΏ½ =1

2520π‘Ž1

Writing now few terms

𝑦 (π‘₯) =βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛

= π‘Ž0π‘₯0 + π‘Ž1π‘₯1 + π‘Ž2π‘₯2 + π‘Ž3π‘₯3 + π‘Ž4π‘₯4 + π‘Ž5π‘₯5 + π‘Ž6π‘₯6 + π‘Ž7π‘₯7 + π‘Ž8π‘₯8 + π‘Ž9π‘₯9 +β‹―

= π‘Ž0 + π‘Ž1π‘₯ + (βˆ’4π‘Ž0) π‘₯2 + (βˆ’π‘Ž1) π‘₯3 +43π‘Ž0π‘₯4 +

110π‘Ž1π‘₯5 + 0 +

1210

π‘Ž1π‘₯7 + 0 +1

2520π‘Ž1π‘₯9 +β‹―

= π‘Ž0 + π‘Ž1π‘₯ βˆ’ 4π‘Ž0π‘₯2 βˆ’ π‘Ž1π‘₯3 +43π‘Ž0π‘₯4 +

110π‘Ž1π‘₯5 +

1210

π‘Ž1π‘₯7 +1

2520π‘Ž1π‘₯9 +β‹―

= π‘Ž0 οΏ½1 βˆ’ 4π‘₯2 +43π‘₯4οΏ½ + π‘Ž1 οΏ½π‘₯ βˆ’ π‘₯3 +

110π‘₯5 +

1210

π‘₯7 +1

2520π‘₯9 +β‹―οΏ½ (1)

We notice that π‘Ž0 terms terminates at 43π‘₯

4 but the π‘Ž1 terms do not terminate. Now we needto find π‘Ž0, π‘Ž1 from initial conditions. At π‘₯ = 0, 𝑦 (0) = 0. Hence from (1)

0 = π‘Ž0Hence the solution becomes

𝑦 (π‘₯) = π‘Ž1 οΏ½π‘₯ βˆ’ π‘₯3 +110π‘₯5 +

1210

π‘₯7 +1

2520π‘₯9 +β‹―οΏ½ (2)

Taking derivative of (2), term by term

𝑦′ (π‘₯) = π‘Ž1 οΏ½1 βˆ’ 3π‘₯2 +510π‘₯4 +

7210

π‘₯6 +9

2520π‘₯8 +β‹―οΏ½

Using 𝑦′ (0) = 4 the above becomes

4 = π‘Ž1

51

Page 56: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence the solution is

𝑦 (π‘₯) = 4 οΏ½π‘₯ βˆ’ π‘₯3 +110π‘₯5 +

1210

π‘₯7 +1

2520π‘₯9 +β‹―οΏ½

Or

𝑦 (π‘₯) = 4π‘₯ βˆ’ 4π‘₯3 + 25π‘₯

5 + 2105π‘₯

7 + 1630π‘₯

9 +β‹―

The above is the Taylor series of the solution expanded around π‘₯ = 0.

3.1.4 Problem 3.7

Problem: Estimate the number of terms in the Taylor series (3.2.1) and (3.2.2) at page 68 ofthe text, that are necessary to compute

Ai(π‘₯) and Bi(π‘₯) correct to three decimal places at π‘₯ = Β±1, Β±100, Β±10000

Answer:

Ai (π‘₯) = 3βˆ’23

βˆžοΏ½π‘›=0

π‘₯3𝑛

9𝑛𝑛!Ξ“ �𝑛 + 23οΏ½βˆ’ 3

βˆ’43

βˆžοΏ½π‘›=0

π‘₯3𝑛+1

9𝑛𝑛!Ξ“ �𝑛 + 43οΏ½

(3.2.1)

Bi (π‘₯) = 3βˆ’16

βˆžοΏ½π‘›=0

π‘₯3𝑛

9𝑛𝑛!Ξ“ �𝑛 + 23οΏ½βˆ’ 3

βˆ’56

βˆžοΏ½π‘›=0

π‘₯3𝑛+1

9𝑛𝑛!Ξ“ �𝑛 + 43οΏ½

(3.2.2)

The radius of convergence of these series extends from π‘₯ = 0 to ±∞ so we know this willconverge to the correct value of Ai (π‘₯) ,Bi (π‘₯) for all π‘₯, even though we might need largenumber of terms to achieve this, as will be shown below. The following is a plot of Ai (π‘₯)and Bi (π‘₯)

-10 -5 0 5 10

-0.4

-0.2

0.0

0.2

0.4

x

AiryAi(x)

0.35503

-10 -5 0

-0.5

0.0

0.5

1.0

1.5

2.0

x

AiryBi(x)

0.6149

52

Page 57: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.4.1 AiryAI series

For Ai (π‘₯) looking at the (𝑁+1)π‘‘β„Ž

π‘π‘‘β„Ž term

Ξ” =

3βˆ’23

π‘₯3(𝑁+1)

9𝑁+1(𝑁+1)!Γ�𝑁+1+ 23 οΏ½βˆ’ 3

βˆ’43

π‘₯3𝑁+2

9𝑁+1(𝑁+1)!Γ�𝑁+1+ 43 οΏ½

3βˆ’23

π‘₯3𝑁

9𝑁𝑁!Γ�𝑁+ 23 οΏ½βˆ’ 3

βˆ’43

π‘₯3𝑁+1

9𝑁𝑁!Γ�𝑁+ 43 οΏ½

This can be simplified using Ξ“ (𝑁 + 1) = 𝑁Γ (𝑁) giving

Ξ“ ��𝑁 +23οΏ½+ 1οΏ½ = �𝑁 +

23οΏ½Ξ“ �𝑁 +

23οΏ½

Ξ“ ��𝑁 +43οΏ½+ 1οΏ½ = �𝑁 +

43οΏ½Ξ“ �𝑁 +

43οΏ½

Hence Ξ” becomes

Ξ” =

3βˆ’23 π‘₯3(𝑁+1)

9𝑁+1(𝑁+1)!�𝑁+ 23 �Γ�𝑁+ 2

3 οΏ½βˆ’ 3

βˆ’43 π‘₯3𝑁+2

9𝑁+1(𝑁+1)!�𝑁+ 43 �Γ�𝑁+ 4

3 οΏ½

3βˆ’23 π‘₯3𝑁

9𝑁𝑁!Γ�𝑁+ 23 οΏ½βˆ’ 3

βˆ’43 π‘₯3𝑁+1

9𝑁𝑁!Γ�𝑁+ 43 οΏ½

Or

Ξ” =

3βˆ’23 π‘₯3(𝑁+1)

9(𝑁+1)�𝑁+ 23 �Γ�𝑁+ 2

3 οΏ½βˆ’ 3

βˆ’43 π‘₯3𝑁+2

9(𝑁+1)�𝑁+ 43 �Γ�𝑁+ 4

3 οΏ½

3βˆ’23 π‘₯3𝑁

Γ�𝑁+ 23 οΏ½βˆ’ 3

βˆ’43 π‘₯3𝑁+1

Γ�𝑁+ 43 οΏ½

Or

Ξ” =

3βˆ’23 π‘₯3(𝑁+1)�𝑁+ 4

3 �Γ�𝑁+ 43 οΏ½βˆ’3

βˆ’43 π‘₯3𝑁+2�𝑁+ 2

3 �Γ�𝑁+ 23 οΏ½

9(𝑁+1)�𝑁+ 23 �Γ�𝑁+ 2

3 ��𝑁+ 43 �Γ�𝑁+ 4

3 οΏ½

3βˆ’23 π‘₯3𝑁Γ�𝑁+ 4

3 οΏ½βˆ’3βˆ’43 π‘₯3𝑁+1Γ�𝑁+ 2

3 οΏ½

Γ�𝑁+ 23 �Γ�𝑁+ 4

3 οΏ½

Or

Ξ” =

3βˆ’23 π‘₯3(𝑁+1)�𝑁+ 4

3 �Γ�𝑁+ 43 οΏ½βˆ’3

βˆ’43 π‘₯3𝑁+2�𝑁+ 2

3 �Γ�𝑁+ 23 οΏ½

9(𝑁+1)�𝑁+ 23 ��𝑁+ 4

3 οΏ½

3βˆ’23 π‘₯3𝑁Γ �𝑁 + 4

3οΏ½ βˆ’ 3

βˆ’43 π‘₯3𝑁+1Ξ“ �𝑁 + 2

3οΏ½

53

Page 58: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

For large𝑁, we can approximate �𝑁 + 23οΏ½ , �𝑁 + 4

3οΏ½ , (𝑁 + 1) to just 𝑁+1 and the above becomes

Ξ” =

3βˆ’23 π‘₯3(𝑁+1)Γ�𝑁+ 4

3 οΏ½βˆ’3βˆ’43 π‘₯3𝑁+2Γ�𝑁+ 2

3 οΏ½

9(𝑁+1)2

3βˆ’23 π‘₯3𝑁Γ �𝑁 + 4

3οΏ½ βˆ’ 3

βˆ’43 π‘₯3𝑁+1Ξ“ �𝑁 + 2

3οΏ½

Or

Ξ” =3βˆ’23 π‘₯3𝑁π‘₯3Ξ“ �𝑁 + 4

3οΏ½ βˆ’ 3

βˆ’43 π‘₯3𝑁π‘₯2Ξ“ �𝑁 + 2

3οΏ½

9 (𝑁 + 1)2 οΏ½3βˆ’23 π‘₯3𝑁Γ �𝑁 + 4

3οΏ½ βˆ’ 3

βˆ’43 π‘₯3𝑁π‘₯Ξ“ �𝑁 + 2

3οΏ½οΏ½

Or

Ξ” =0.488π‘₯3𝑁π‘₯2 οΏ½π‘₯Ξ“ �𝑁 + 4

3οΏ½ βˆ’ 0.488Ξ“ �𝑁 + 2

3οΏ½οΏ½

(0.488) 9 (𝑁 + 1)2 π‘₯3𝑁 οΏ½Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488π‘₯Ξ“ �𝑁 + 2

3οΏ½οΏ½

=π‘₯2

9 (𝑁 + 1)2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

π‘₯Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488Ξ“ �𝑁 + 2

3οΏ½

Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488π‘₯Ξ“ �𝑁 + 2

3οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

We want to solve for 𝑁 s.t. οΏ½π‘₯2

9(𝑁+1)2

βŽ›βŽœβŽœβŽœβŽœβŽπ‘₯Γ�𝑁+ 4

3 οΏ½βˆ’0.488Γ�𝑁+ 23 οΏ½

Γ�𝑁+ 43 οΏ½βˆ’0.488π‘₯Γ�𝑁+ 2

3 οΏ½

⎞⎟⎟⎟⎟⎠� < 0.001.

For π‘₯ = 1

19 (𝑁 + 1)2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488Ξ“ �𝑁 + 2

3οΏ½

Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488Ξ“ �𝑁 + 2

3οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠< 0.001

19 (𝑁 + 1)2

< 0.001

9 (𝑁 + 1)2 > 1000

(𝑁 + 1)2 >10009

𝑁 + 1 >οΏ½10009

𝑁 > 9.541𝑁 = 10

For π‘₯ = 100

οΏ½οΏ½

1002

9 (𝑁 + 1)2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

100Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488Ξ“ �𝑁 + 2

3οΏ½

Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488 (100) Ξ“ �𝑁 + 2

3οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

οΏ½οΏ½< 0.001

I could not simplify away the Gamma terms above any more. Is there a way? So wrote small

54

Page 59: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

function (in Mathematica, which can compute this) which increments 𝑁 and evaluate theabove, until the value became smaller than 0.001. At 𝑁 = 11, 500 this was achieved.

For π‘₯ = 10000

οΏ½οΏ½100002

9 (𝑁 + 1)2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

100Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488Ξ“ �𝑁 + 2

3οΏ½

Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.488 (10000) Ξ“ �𝑁 + 2

3οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

οΏ½οΏ½< 0.001

Using the same program, found that 𝑁 = 11, 500, 000 was needed to obtain the result below0.001.

For = βˆ’1 also 𝑁 = 10. For π‘₯ = βˆ’100, 𝑁 = 10, 030, which is little less than π‘₯ = +100. Forπ‘₯ = βˆ’10000, 𝑁 = 10, 030, 000

Summary table for AiryAI(x)

π‘₯ 𝑁1 10βˆ’1 10100 11, 500βˆ’100 10, 03010000 11, 500, 000βˆ’10000 10, 030, 000

The Mathematica function which did the estimate is the following

estimateAiryAi[x_, n_] := (x^2/(9*(n + 1)^2))*((x*Gamma[n + 4/3] -0.488*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.488*x*Gamma[n + 2/3]))estimateAiryAi[-10000, 10030000] // N-0.0009995904estimateAiryAi[100, 11500] // N0.000928983646707407estimateAiryAi[10000, 11500000] // N0.000929156800155198

55

Page 60: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.4.2 AiryBI series

For Bi (π‘₯) the diοΏ½erence is the coeοΏ½cients. Hence using the result from above, and justreplace the coeοΏ½cients

Ξ” =3βˆ’16 π‘₯3𝑁π‘₯3Ξ“ �𝑁 + 4

3οΏ½ βˆ’ 3

βˆ’58 π‘₯3𝑁π‘₯2Ξ“ �𝑁 + 2

3οΏ½

9 (𝑁 + 1)2 οΏ½3βˆ’16 π‘₯3𝑁Γ �𝑁 + 4

3οΏ½ βˆ’ 3

βˆ’58 π‘₯3𝑁π‘₯Ξ“ �𝑁 + 2

3οΏ½οΏ½

=π‘₯2 οΏ½π‘₯Ξ“ �𝑁 + 4

3οΏ½ βˆ’ 0.604 39Ξ“ �𝑁 + 2

3οΏ½οΏ½

9 (𝑁 + 1)2 οΏ½Ξ“ �𝑁 + 43οΏ½ βˆ’ 0.604 39π‘₯Ξ“ �𝑁 + 2

3οΏ½οΏ½

Hence for π‘₯ = 1, using the above reduces to1

9 (𝑁 + 1)2< 0.001

Which is the same as AiryAI, therefore 𝑁 = 10. For π‘₯ = 100, using the same small functionin Mathematica to calculate the above, here are the result.

Summary table for AiryBI(x)

π‘₯ 𝑁1 10βˆ’1 10100 11, 290βˆ’100 9, 90010000 10, 900, 000βˆ’10000 9, 950, 000

The result between AiryAi and AiryBi are similar. AiryBi needs a slightly less number ofterms in the series to obtain same accuracy.

The Mathematica function which did the estimate for the larger 𝑁 value for the above tableis the following

estimateAiryBI[x_, n_] := Abs[(x^2/(9*(n + 1)^2))*((x*Gamma[n + 4/3] -0.60439*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.6439*x*Gamma[n + 2/3]))]

3.1.5 Problem 3.8

Problem How many terms in the Taylor series solution to 𝑦′′′ = π‘₯3𝑦 with 𝑦 (0) = 1, 𝑦′ (0) =𝑦′′ (0) = 0 are needed to evaluate ∫

1

0𝑦 (π‘₯) 𝑑π‘₯ correct to three decimal places?

Answer

𝑦′′′ βˆ’ π‘₯3𝑦 = 056

Page 61: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Since π‘₯ is an ordinary point, we use

𝑦 =βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛

𝑦′ =βˆžοΏ½π‘›=0

π‘›π‘Žπ‘›π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=1

π‘›π‘Žπ‘›π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=0

(𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛

𝑦′′ =βˆžοΏ½π‘›=0

𝑛 (𝑛 + 1) π‘Žπ‘›+1π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=1

𝑛 (𝑛 + 1) π‘Žπ‘›+1π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛

𝑦′′′ =βˆžοΏ½π‘›=0

𝑛 (𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯π‘›βˆ’1 =βˆžοΏ½π‘›=1

𝑛 (𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯π‘›βˆ’1

=βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) π‘Žπ‘›+3π‘₯𝑛

Hence the ODE becomesβˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) π‘Žπ‘›+3π‘₯𝑛 βˆ’ π‘₯3βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛 = 0

βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) π‘Žπ‘›+3π‘₯𝑛 βˆ’βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+3 = 0

βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) π‘Žπ‘›+3π‘₯𝑛 βˆ’βˆžοΏ½π‘›=3

π‘Žπ‘›βˆ’3π‘₯𝑛 = 0

For 𝑛 = 0(1) (2) (3) π‘Ž3 = 0

π‘Ž3 = 0

For 𝑛 = 1(2) (3) (4) π‘Ž4 = 0

π‘Ž4 = 0

For 𝑛 = 2

π‘Ž5 = 0

For 𝑛 β‰₯ 3, recursive equation is used

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) π‘Žπ‘›+3 βˆ’ π‘Žπ‘›βˆ’3 = 0

π‘Žπ‘›+3 =π‘Žπ‘›βˆ’3

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)Or, for 𝑛 = 3

π‘Ž6 =π‘Ž0

(4) (5) (6)For 𝑛 = 4

π‘Ž7 =π‘Ž1

(4 + 1) (4 + 2) (4 + 3)=

π‘Ž1(5) (6) (7)

For 𝑛 = 5

π‘Ž8 =π‘Ž2

(5 + 1) (5 + 2) (5 + 3)=

π‘Ž2(6) (7) (8)

57

Page 62: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

For 𝑛 = 6

π‘Ž9 =π‘Ž3

(6 + 1) (6 + 2) (6 + 3)= 0

For 𝑛 = 7

π‘Ž10 =π‘Ž4

(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)= 0

For 𝑛 = 8

π‘Ž11 =π‘Ž5

(8 + 1) (8 + 2) (8 + 3)= 0

For 𝑛 = 9

π‘Ž12 =π‘Ž6

(9 + 1) (9 + 2) (9 + 3)=

π‘Ž6(10) (11) (12)

=π‘Ž0

(4) (5) (6) (10) (11) (12)For 𝑛 = 10

π‘Ž13 =π‘Ž7

(10 + 1) (10 + 2) (10 + 3)=

π‘Ž7(11) (12) (13)

=π‘Ž1

(5) (6) (7) (11) (12) (13)For 𝑛 = 11

π‘Ž14 =π‘Ž8

(11 + 1) (11 + 2) (11 + 3)=

π‘Ž8(12) (13) (14)

=π‘Ž2

(6) (7) (8) (12) (13) (14)And so on. Hence the series is

𝑦 =βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛

= π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 + 0π‘₯3 + 0π‘₯4 + 0π‘₯5 +π‘Ž0

(4) (5) (6)π‘₯6 +

π‘Ž1(5) (6) (7)

π‘₯7 +π‘Ž2

(6) (7) (8)π‘₯8

+ 0 + 0 + 0 +π‘Ž0

(4) (5) (6) (10) (11) (12)π‘₯12 +

π‘Ž1(5) (6) (7) (11) (12) (13)

π‘₯13

+π‘Ž2

(6) (7) (8) (12) (13) (14)π‘₯14 + 0 + 0 + 0 +β‹―

Or

𝑦 (π‘₯) = π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 +π‘Ž0

(4) (5) (6)π‘₯6 +

π‘Ž1(5) (6) (7)

π‘₯7 +π‘Ž2

(6) (7) (8)π‘₯8+

π‘Ž0(4) (5) (6) (10) (11) (12)

π‘₯12 +π‘Ž1

(5) (6) (7) (11) (12) (13)π‘₯13 +

π‘Ž2(6) (7) (8) (12) (13) (14)

π‘₯14 +β‹―

Or

𝑦 (π‘₯) = π‘Ž0 οΏ½1 +π‘₯6

(4) (5) (6)+

π‘₯12

(4) (5) (6) (10) (11) (12)+β‹―οΏ½

+ π‘Ž1 οΏ½π‘₯ +π‘₯7

(5) (6) (7)+

π‘₯13

(5) (6) (7) (11) (12) (13)+β‹―οΏ½

+ π‘Ž2 οΏ½π‘₯2 +π‘₯8

(6) (7) (8)+

π‘₯14

(6) (7) (8) (12) (13) (14)+β‹―οΏ½

58

Page 63: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

𝑦 (π‘₯) = π‘Ž0 οΏ½1 +1120

π‘₯6 +1

158400π‘₯12 +β‹―οΏ½

+ π‘Ž1 οΏ½π‘₯ +1210

π‘₯7 +1

360360π‘₯13 +β‹―οΏ½

+ π‘Ž2 οΏ½π‘₯2 +1336

π‘₯8 +1

733 824π‘₯14 +β‹―οΏ½

We now apply initial conditions 𝑦 (0) = 1, 𝑦′ (0) = 𝑦′′ (0) = 0 . When 𝑦 (0) = 1

1 = π‘Ž0Hence solution becomes

𝑦 (π‘₯) = οΏ½1 +1120

π‘₯6 +1

158400π‘₯12 +β‹―οΏ½

+ π‘Ž1 οΏ½π‘₯ +1210

π‘₯7 +1

360360π‘₯13 +β‹―οΏ½

+ π‘Ž2 οΏ½π‘₯2 +1336

π‘₯8 +1

733 824π‘₯14 +β‹―οΏ½

Taking derivative

𝑦′ (π‘₯) = οΏ½6120

π‘₯5 +12

158400π‘₯11 +β‹―οΏ½

+ π‘Ž1 οΏ½1 +7210

π‘₯6 +13

360360π‘₯12 +β‹―οΏ½

+ π‘Ž2 οΏ½2π‘₯ +8336

π‘₯7 +12

733 824π‘₯13 +β‹―οΏ½

Applying 𝑦′ (0) = 0 gives

0 = π‘Ž1And similarly, Applying 𝑦′′ (0) = 0 gives π‘Ž2 = 0. Hence the solution is

𝑦 (π‘₯) = π‘Ž0 οΏ½1 +π‘₯6

(4) (5) (6)+

π‘₯12

(4) (5) (6) (10) (11) (12)+β‹―οΏ½

= 1 +π‘₯6

(4) (5) (6)+

π‘₯12

(4) (5) (6) (10) (11) (12)+

π‘₯18

(4) (5) (6) (10) (11) (12) (16) (17) (18)+β‹―

= 1 +π‘₯6

120+

π‘₯12

158 400+

π‘₯18

775 526 400+β‹―

We are now ready to answer the question. We will do the integration by increasing thenumber of terms by one each time. When the absolute diοΏ½erence between each incrementbecomes less than 0.001 we stop. When using one term For

οΏ½1

0𝑦 (π‘₯) 𝑑π‘₯ = οΏ½

1

0𝑑π‘₯

= 1

59

Page 64: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

When using two terms

οΏ½1

01 +

π‘₯6

120𝑑π‘₯ = οΏ½π‘₯ +

π‘₯7

120 (7)οΏ½1

0

= 1 +1840

=841840

= 1.001190476

DiοΏ½erence between one term and two terms is 0.001190476. When using three terms

οΏ½1

01 +

π‘₯6

120+

π‘₯12

158 400𝑑π‘₯ = οΏ½π‘₯ +

π‘₯7

840+

π‘₯13

2059 200οΏ½1

0

= 1 +1840

+1

2059 200

=14 431 56714 414 400

= 1.001190962

Comparing the above result, with the result using two terms, we see that only two terms areneeded since the change in accuracy did not aοΏ½ect the first three decimal points. Hence weneed only this solution with two terms only

𝑦 (π‘₯) = 1 +1120

π‘₯6

3.1.6 Problem 3.24

3.1.6.1 part e

Problem Find series expansion of all the solutions to the following diοΏ½erential equationabout π‘₯ = 0. Try to sum in closed form any infinite series that appear.

2π‘₯𝑦′′ βˆ’ 𝑦′ + π‘₯2𝑦 = 0

Solution

𝑦′′ βˆ’12π‘₯𝑦′ +

π‘₯2𝑦 = 0

The only singularity is in 𝑝 (π‘₯) is π‘₯ = 0. We will now check if it is removable. (i.e. regular)

limπ‘₯β†’0

π‘₯𝑝 (π‘₯) = limπ‘₯β†’0

π‘₯12π‘₯

=12

60

Page 65: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Therefore π‘₯ = 0 is regular singular point. Hence we try Frobenius series

𝑦 (π‘₯) =βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ

𝑦′ (π‘₯) =βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’1

𝑦′′ (π‘₯) =βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’2

Substituting the above in 2π‘₯2𝑦′′ βˆ’ π‘₯𝑦′ + π‘₯3𝑦 = 0 results in

2π‘₯2βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’2 βˆ’ π‘₯βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’1 + π‘₯3βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ = 0

βˆžοΏ½π‘›=0

2 (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿ βˆ’βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿ +βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ+3 = 0

βˆžοΏ½π‘›=0

2 (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿ βˆ’βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿ +βˆžοΏ½π‘›=3

π‘Žπ‘›βˆ’3π‘₯𝑛+π‘Ÿ = 0 (1)

The first step is to obtain the indicial equation. As the nature of the roots will tell us howto proceed. The indicial equation is obtained from setting 𝑛 = 0 in (1) with the assumptionthat π‘Ž0 β‰  0. Setting 𝑛 = 0 in (1) gives

2 (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘› βˆ’ (𝑛 + π‘Ÿ) π‘Žπ‘› = 02 (π‘Ÿ) (π‘Ÿ βˆ’ 1) π‘Ž0 βˆ’ π‘Ÿπ‘Ž0 = 0

Since π‘Ž0 β‰  0 then we obtain the indicial equation (quadratic in π‘Ÿ)

2 (π‘Ÿ) (π‘Ÿ βˆ’ 1) βˆ’ π‘Ÿ = 0π‘Ÿ (2 (π‘Ÿ βˆ’ 1) βˆ’ 1) = 0

π‘Ÿ (2π‘Ÿ βˆ’ 3) = 0

Hence roots are

π‘Ÿ1 = 0

π‘Ÿ2 =32

Since π‘Ÿ1 βˆ’ π‘Ÿ2 is not an integer, then we know we can now construct two linearly independentsolutions

𝑦1 (π‘₯) = π‘₯π‘Ÿ1�𝑛=0π‘Žπ‘›π‘₯𝑛

𝑦2 (π‘₯) = π‘₯π‘Ÿ2�𝑛=0𝑏𝑛π‘₯𝑛

Or

𝑦1 (π‘₯) = �𝑛=0π‘Žπ‘›π‘₯𝑛

𝑦2 (π‘₯) = �𝑛=0𝑏𝑛π‘₯

𝑛+ 32

61

Page 66: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Notice that the coeοΏ½cients are not the same. Since we now know π‘Ÿ1, π‘Ÿ2, we will use the aboveseries solution to obtain 𝑦1 (π‘₯) and 𝑦2 (π‘₯).

For 𝑦1 (π‘₯) where π‘Ÿ1 = 0

𝑦1 (π‘₯) = �𝑛=0π‘Žπ‘›π‘₯𝑛

𝑦′ (π‘₯) = �𝑛=0π‘›π‘Žπ‘›π‘₯π‘›βˆ’1 = οΏ½

𝑛=1π‘›π‘Žπ‘›π‘₯π‘›βˆ’1 = οΏ½

𝑛=0(𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛

𝑦′′ (π‘₯) = �𝑛=0𝑛 (𝑛 + 1) π‘Žπ‘›+1π‘₯π‘›βˆ’1 = οΏ½

𝑛=1𝑛 (𝑛 + 1) π‘Žπ‘›+1π‘₯π‘›βˆ’1 = οΏ½

𝑛=0(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛

Substituting the above in 2π‘₯2𝑦′′ βˆ’ π‘₯𝑦′ + π‘₯3𝑦 = 0 results in

2π‘₯2�𝑛=0

(𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛 βˆ’ π‘₯�𝑛=0

(𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛 + π‘₯3�𝑛=0π‘Žπ‘›π‘₯𝑛 = 0

�𝑛=02 (𝑛 + 1) (𝑛 + 2) π‘Žπ‘›+2π‘₯𝑛+2 βˆ’οΏ½

𝑛=0(𝑛 + 1) π‘Žπ‘›+1π‘₯𝑛+1 +οΏ½

𝑛=0π‘Žπ‘›π‘₯𝑛+3 = 0

�𝑛=22 (𝑛 βˆ’ 1) (𝑛) π‘Žπ‘›π‘₯𝑛 βˆ’οΏ½

𝑛=1π‘›π‘Žπ‘›π‘₯𝑛 +οΏ½

𝑛=3π‘Žπ‘›βˆ’3π‘₯𝑛 = 0

For 𝑛 = 1 (index starts at 𝑛 = 1).

βˆ’π‘›π‘Žπ‘›π‘₯𝑛 = 0βˆ’π‘Ž1 = 0π‘Ž1 = 0

For 𝑛 = 2

2 (𝑛 βˆ’ 1) (𝑛) π‘Žπ‘›π‘₯𝑛 βˆ’ π‘›π‘Žπ‘›π‘₯𝑛 = 02 (2 βˆ’ 1) (2) π‘Ž2 βˆ’ 2π‘Ž2 = 0

2π‘Ž2 = 0π‘Ž2 = 0

For 𝑛 β‰₯ 3 we have recursive formula

2 (𝑛 βˆ’ 1) (𝑛) π‘Žπ‘› βˆ’ π‘›π‘Žπ‘› + π‘Žπ‘›βˆ’3 = 0

π‘Žπ‘› =βˆ’π‘Žπ‘›βˆ’3

𝑛 (2𝑛 βˆ’ 3)Hence, for 𝑛 = 3

π‘Ž3 =βˆ’π‘Ž0

(3) (6 βˆ’ 3)=βˆ’π‘Ž09

For 𝑛 = 4

π‘Ž4 =βˆ’π‘Ž1

𝑛 (2𝑛 βˆ’ 3)= 0

For 𝑛 = 5

π‘Ž5 =βˆ’π‘Ž2

𝑛 (2𝑛 βˆ’ 3)= 0

For 𝑛 = 6

π‘Ž6 =βˆ’π‘Ž3

𝑛 (2𝑛 βˆ’ 3)=

βˆ’π‘Ž3(6) (12 βˆ’ 3)

=βˆ’π‘Ž354

=π‘Ž0

(54) (9)=

1486

π‘Ž0

62

Page 67: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

And for 𝑛 = 7, 8 we also obtain π‘Ž7 = 0, π‘Ž8 = 0, but for π‘Ž9

π‘Ž9 =βˆ’π‘Ž6

9 (2 (9) βˆ’ 3)=βˆ’π‘Ž6135

=βˆ’π‘Ž0

(135) (486)= βˆ’

165 610

π‘Ž0

And so on. Hence from �𝑛=0π‘Žπ‘›π‘₯𝑛 we obtain

𝑦1 (π‘₯) = π‘Ž0 βˆ’βˆ’π‘Ž09π‘₯3 +

1486

π‘Ž0π‘₯6 βˆ’1

65 610π‘Ž0π‘₯9 +β‹―

= π‘Ž0 οΏ½1 βˆ’19π‘₯3 +

1486

π‘₯6 βˆ’1

65 610π‘₯9 +β‹―οΏ½

Now that we found 𝑦1 (π‘₯).

For 𝑦2 (π‘₯) with π‘Ÿ2 =32 .

𝑦 (π‘₯) = �𝑛=0𝑏𝑛π‘₯

𝑛+ 32

𝑦′ (π‘₯) = �𝑛=0

�𝑛 +32�𝑏𝑛π‘₯

𝑛+ 12

𝑦′′ (π‘₯) = �𝑛=0

�𝑛 +12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

π‘›βˆ’ 12

Substituting this into 2π‘₯2𝑦′′ βˆ’ π‘₯𝑦′ + π‘₯3𝑦 = 0 gives

2π‘₯2�𝑛=0

�𝑛 +12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

π‘›βˆ’ 12 βˆ’ π‘₯οΏ½

𝑛=0�𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 12 + π‘₯3οΏ½

𝑛=0𝑏𝑛π‘₯

𝑛+ 32 = 0

�𝑛=02 �𝑛 +

12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

π‘›βˆ’ 12+2 βˆ’οΏ½

𝑛=0�𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 12+1 +οΏ½

𝑛=0𝑏𝑛π‘₯

𝑛+ 32+3 = 0

�𝑛=02 �𝑛 +

12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

𝑛+ 32 βˆ’οΏ½

𝑛=0�𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 32 +οΏ½

𝑛=0𝑏𝑛π‘₯

𝑛+ 92 = 0

�𝑛=02 �𝑛 +

12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

𝑛+ 32 βˆ’οΏ½

𝑛=0�𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 32 +οΏ½

𝑛=3π‘π‘›βˆ’3π‘₯

𝑛+ 92βˆ’3 = 0

�𝑛=02 �𝑛 +

12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

𝑛+ 32 βˆ’οΏ½

𝑛=0�𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 32 +οΏ½

𝑛=3π‘π‘›βˆ’3π‘₯

𝑛+ 32 = 0

Now that all the π‘₯ terms have the same exponents, we can continue.

For 𝑛 = 0

2 �𝑛 +12οΏ½ οΏ½

𝑛 +32�𝑏0π‘₯

32 βˆ’ �𝑛 +

32�𝑏0π‘₯

32 = 0

2 οΏ½12οΏ½ οΏ½

32�𝑏0π‘₯

32 βˆ’ οΏ½

32�𝑏0π‘₯

32 = 0

32𝑏0π‘₯

32 βˆ’ οΏ½

32�𝑏0π‘₯

32 = 0

0𝑏0 = 0

63

Page 68: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence 𝑏0 is arbitrary.

For 𝑛 = 1

2 �𝑛 +12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

𝑛+ 32 βˆ’ �𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 32 = 0

2 οΏ½1 +12οΏ½ οΏ½

1 +32�𝑏1 βˆ’ οΏ½1 +

32�𝑏1 = 0

5𝑏1 = 0𝑏1 = 0

For 𝑛 = 2

2 �𝑛 +12οΏ½ οΏ½

𝑛 +32�𝑏𝑛π‘₯

𝑛+ 32 βˆ’ �𝑛 +

32�𝑏𝑛π‘₯

𝑛+ 32 = 0

2 οΏ½2 +12οΏ½ οΏ½

2 +32�𝑏2 βˆ’ οΏ½2 +

32�𝑏2 = 0

14𝑏2 = 0𝑏2 = 0

For 𝑛 β‰₯ 3 we use the recursive formula

2 �𝑛 +12οΏ½ οΏ½

𝑛 +32�𝑏𝑛 βˆ’ �𝑛 +

32�𝑏𝑛 + π‘π‘›βˆ’3 = 0

𝑏𝑛 =βˆ’π‘π‘›βˆ’3

𝑛 (2𝑛 + 3)Hence for 𝑛 = 3

𝑏3 =βˆ’π‘03 (9)

=βˆ’π‘027

For 𝑛 = 4, 𝑛 = 5 we will get 𝑏4 = 0 and 𝑏5 = 0 since 𝑏1 = 0 and 𝑏2 = 0.

For 𝑛 = 6

𝑏6 =βˆ’π‘3

6 (12 + 3)=βˆ’π‘390

=𝑏0

27 (90)=

𝑏02430

For 𝑛 = 7, 𝑛 = 8 we will get 𝑏7 = 0 and 𝑏8 = 0 since 𝑏4 = 0 and 𝑏5 = 0

For 𝑛 = 9

π‘Ž9 =βˆ’π‘6

𝑛 (2𝑛 + 3)=

βˆ’π‘69 (18 + 3)

=βˆ’π‘6189

=βˆ’π‘0

2430 (189)=

βˆ’π‘0459270

And so on. Hence, from 𝑦2 (π‘₯) = �𝑛=0𝑏𝑛π‘₯

𝑛+ 32 the series is

𝑦2 (π‘₯) = 𝑏0π‘₯32 βˆ’

𝑏027π‘₯3+

32 +

𝑏02430

π‘₯6+32 βˆ’

𝑏0459 270

π‘₯9+32 +β‹―

= 𝑏0π‘₯32 οΏ½1 βˆ’

π‘₯3

27+

π‘₯6

2430βˆ’

π‘₯9

459270+β‹―οΏ½

64

Page 69: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

The final solution is

𝑦 (π‘₯) = 𝑦1 (π‘₯) + 𝑦2 (π‘₯)

Or

𝑦 (π‘₯) = π‘Ž0 οΏ½1 βˆ’19π‘₯

3 + 1486π‘₯

6 βˆ’ 165 610π‘₯

9 +β‹―οΏ½ + 𝑏0π‘₯32 οΏ½1 βˆ’ π‘₯3

27 +π‘₯6

2430 βˆ’π‘₯9

459270 +β‹―οΏ½ (2)

Now comes the hard part. Finding closed form solution.

The Taylor series of cos οΏ½13π‘₯32√2οΏ½ is (using CAS)

cos οΏ½13π‘₯32√2οΏ½ β‰ˆ 1 βˆ’

19π‘₯3 +

1486

π‘₯6 βˆ’1

65610π‘₯9 +β‹― (3)

And the Taylor series for sin οΏ½13π‘₯32√2οΏ½ is (Using CAS)

sin οΏ½13π‘₯32√2οΏ½ β‰ˆ

13π‘₯32√2 βˆ’

181π‘₯92√2 +

17290

π‘₯152 √2 βˆ’β‹―

= π‘₯32 οΏ½13√

2 βˆ’181π‘₯3√2 +

17290

π‘₯6√2 βˆ’β‹―οΏ½

=13√

2π‘₯32 οΏ½1 βˆ’

127π‘₯3 +

12430

π‘₯6 βˆ’β‹―οΏ½ (4)

Comparing (3,4) with (2) we see that (2) can now be written as

𝑦 (π‘₯) = π‘Ž0 cos οΏ½13π‘₯32√2οΏ½ +

𝑏013√2

sin οΏ½13π‘₯32√2οΏ½

Or letting 𝑐 = 𝑏013√2

𝑦 (π‘₯) = π‘Ž0 cos οΏ½13π‘₯32√2οΏ½ + 𝑐0 sin οΏ½13π‘₯

32√2�

This is the closed form solution. The constants π‘Ž0, 𝑐0 can be found from initial conditions.

3.1.6.2 part f

Problem Find series expansion of all the solutions to the following diοΏ½erential equationabout π‘₯ = 0. Try to sum in closed form any infinite series that appear.

(sin π‘₯) 𝑦′′ βˆ’ 2 (cos π‘₯) 𝑦′ βˆ’ (sin π‘₯) 𝑦 = 0Solution

In standard form

𝑦′′ βˆ’ 2 οΏ½cos π‘₯sin π‘₯

οΏ½ 𝑦′ βˆ’ 𝑦 = 0

65

Page 70: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence the singularities are in 𝑝 (π‘₯) only and they occur when sin π‘₯ = 0 or π‘₯ = 0, Β±πœ‹, Β±2πœ‹,β‹―but we just need to consider π‘₯ = 0. Let us check if the singularity is removable.

limπ‘₯β†’0

π‘₯𝑝 (π‘₯) = 2 limπ‘₯β†’0

π‘₯cos π‘₯sin π‘₯ = 2 lim

π‘₯β†’0π‘₯1 βˆ’ π‘₯2

2 +π‘₯4

4! βˆ’β‹―

π‘₯ βˆ’ π‘₯3

3! +π‘₯5

5! βˆ’β‹―= 2 lim

π‘₯β†’0

1 βˆ’ π‘₯2

2 +π‘₯4

4! βˆ’β‹―

1 βˆ’ π‘₯2

3! +π‘₯4

5! βˆ’β‹―= 2

Hence the singularity is regular. So we can use Frobenius series

𝑦 (π‘₯) =βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ

𝑦′ (π‘₯) =βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’1

𝑦′′ (π‘₯) =βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’2

Substituting the above in sin (π‘₯) 𝑦′′ βˆ’ 2 cos (π‘₯) 𝑦′ βˆ’ sin (π‘₯) 𝑦 = 0 results in

sin (π‘₯)βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’2 βˆ’ 2 cos (π‘₯)βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’1 βˆ’ sin (π‘₯)βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ = 0

Now using Taylor series for sin π‘₯, cos π‘₯ expanded around 0, the above becomesβˆžοΏ½π‘š=0

(βˆ’1)π‘šπ‘₯2π‘š+1

(2π‘š + 1)!

βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’2

βˆ’2βˆžοΏ½π‘š=0

(βˆ’1)π‘šπ‘₯2π‘š

(2π‘š)!

βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘š=0

(βˆ’1)π‘šπ‘₯2π‘š+1

(2π‘š + 1)!

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ = 0 (1)

We need now to evaluate products of power series. Using what is called Cauchy product rule,where

𝑓 (π‘₯) 𝑔 (π‘₯) = οΏ½βˆžοΏ½π‘š=0

π‘π‘šπ‘₯π‘šοΏ½ οΏ½βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛� =βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

π‘π‘šπ‘Žπ‘›π‘₯π‘š+𝑛 (2)

Applying (2) to first term in (1) givesβˆžοΏ½π‘š=0

(βˆ’1)π‘šπ‘₯2π‘š+1

(2π‘š + 1)!

βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’2 =βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1)(2π‘š + 1)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1

(3)

Applying (2) to second term in (1) givesβˆžοΏ½π‘š=0

(βˆ’1)π‘šπ‘₯2π‘š

(2π‘š)!

βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘›π‘₯𝑛+π‘Ÿβˆ’1 =βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + π‘Ÿ)(2π‘š)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1 (4)

Applying (2) to the last term in (1) givesβˆžοΏ½π‘š=0

(βˆ’1)π‘šπ‘₯2π‘š+1

(2π‘š + 1)!

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯𝑛+π‘Ÿ =βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š π‘Žπ‘›(2π‘š + 1)!

π‘₯2π‘š+𝑛+π‘Ÿ+1 (5)

66

Page 71: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Substituting (3,4,5) back into (1) givesβˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1)(2π‘š + 1)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1

βˆ’2βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + π‘Ÿ)(2π‘š)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š π‘Žπ‘›(2π‘š + 1)!

π‘₯2π‘š+𝑛+π‘Ÿ+1 = 0

We now need to make all π‘₯ exponents the same. This givesβˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1)(2π‘š + 1)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1

βˆ’2βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + π‘Ÿ)(2π‘š)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=2

(βˆ’1)π‘š π‘Žπ‘›βˆ’2(2π‘š + 1)!

π‘₯2π‘š+𝑛+π‘Ÿβˆ’1 = 0 (6)

The first step is to obtain the indicial equation. As the nature of the roots will tell us how toproceed. The indicial equation is obtained from setting 𝑛 = π‘š = 0 in (6) with the assumptionthat π‘Ž0 β‰  0. This results in

(βˆ’1)π‘š (𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1)(2π‘š + 1)!

π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1 βˆ’ 2(βˆ’1)π‘š (𝑛 + π‘Ÿ)

(2π‘š)!π‘Žπ‘›π‘₯2π‘š+𝑛+π‘Ÿβˆ’1 = 0

(π‘Ÿ) (π‘Ÿ βˆ’ 1) π‘Ž0 βˆ’ 2π‘Ÿπ‘Ž0 = 0

π‘Ž0 οΏ½π‘Ÿ2 βˆ’ π‘Ÿ βˆ’ 2π‘ŸοΏ½ = 0

Since π‘Ž0 β‰  0 then we obtain the indicial equation (quadratic in π‘Ÿ)

π‘Ÿ2 βˆ’ 3π‘Ÿ = 0π‘Ÿ (π‘Ÿ βˆ’ 3) = 0

Hence roots are

π‘Ÿ1 = 3π‘Ÿ2 = 0

(it is always easier to make π‘Ÿ1 > π‘Ÿ2). Since π‘Ÿ1 βˆ’ π‘Ÿ2 = 3 is now an integer, then this is case IIpart (b) in textbook, page 72. In this case, the two linearly independent solutions are

𝑦1 (π‘₯) = π‘₯3�𝑛=0π‘Žπ‘›π‘₯𝑛 = οΏ½

𝑛=0π‘Žπ‘›π‘₯𝑛+3

𝑦2 (π‘₯) = π‘˜π‘¦1 (π‘₯) ln (π‘₯) + π‘₯π‘Ÿ2�𝑛=0𝑏𝑛π‘₯𝑛 = π‘˜π‘¦1 (π‘₯) ln (π‘₯) +οΏ½

𝑛=0𝑏𝑛π‘₯𝑛

67

Page 72: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Where π‘˜ is some constant. Now we will find 𝑦1. From (6), where now we set π‘Ÿ = 3βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + 3) (𝑛 + 2)(2π‘š + 1)!

π‘Žπ‘›π‘₯2π‘š+𝑛++2

βˆ’2βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=0

(βˆ’1)π‘š (𝑛 + 3)(2π‘š)!

π‘Žπ‘›π‘₯2π‘š+𝑛+2

βˆ’βˆžοΏ½π‘š=0

βˆžοΏ½π‘›=2

(βˆ’1)π‘š π‘Žπ‘›βˆ’2(2π‘š + 1)!

π‘₯2π‘š+𝑛+2 = 0

For π‘š = 0, 𝑛 = 1(βˆ’1)π‘š (𝑛 + 3) (𝑛 + 2)

(2π‘š + 1)!π‘Žπ‘› βˆ’ 2 οΏ½

(βˆ’1)π‘š (𝑛 + 3)(2π‘š)!

π‘Žπ‘›οΏ½ = 0

(4) (3) π‘Ž1 βˆ’ 2 (4π‘Ž1) = 0π‘Ž1 = 0

For π‘š = 0, 𝑛 β‰₯ 2 we obtain recursive equation

(𝑛 + 3) (𝑛 + 2) π‘Žπ‘› βˆ’ 2 (𝑛 + 3) π‘Žπ‘› βˆ’ π‘Žπ‘›βˆ’2 = 0

π‘Žπ‘› =βˆ’π‘Žπ‘›βˆ’2

(𝑛 + 3) (𝑛 + 2) βˆ’ 2 (𝑛 + 3)=

βˆ’π‘Žπ‘›βˆ’2𝑛 (𝑛 + 3)

Hence, for π‘š = 0, 𝑛 = 2

π‘Ž2 =βˆ’π‘Ž010

For π‘š = 0, 𝑛 = 3

π‘Ž3 =βˆ’π‘Ž1

𝑛 (𝑛 + 3)= 0

For π‘š = 0, 𝑛 = 4

π‘Ž4 =βˆ’π‘Ž24 (7)

=π‘Ž0280

For π‘š = 0, 𝑛 = 5

π‘Ž5 = 0

For π‘š = 0, 𝑛 = 6

π‘Ž6 =βˆ’π‘Ž4

6 (6 + 3)=

βˆ’π‘Ž06 (6 + 3) (280)

=βˆ’π‘Ž015120

For π‘š = 0, 𝑛 = 7, π‘Ž7 = 0 and for π‘š = 0, 𝑛 = 8

π‘Ž8 =βˆ’π‘Ž6

8 (8 + 3)=

11330560

π‘Ž0

68

Page 73: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

And so on. Since 𝑦1 (π‘₯) = �𝑛=0π‘Žπ‘›π‘₯𝑛+3, then the first solution is now found. It is

𝑦1 (π‘₯) = π‘Ž0π‘₯3 + π‘Ž1π‘₯4 + π‘Ž2π‘₯5 + π‘Ž3π‘₯6 + π‘Ž4π‘₯7 + π‘Ž5π‘₯8 + π‘Ž6π‘₯9 + π‘Ž7π‘₯10 + π‘Ž8π‘₯11 +β‹―

= π‘Ž0π‘₯3 + 0 βˆ’π‘Ž010π‘₯5 + 0 +

π‘Ž0280

π‘₯7 + 0 βˆ’π‘Ž0

15 120π‘₯9 + 0 +

11330560

π‘Ž0π‘₯11 +β‹―

= π‘Ž0π‘₯3 οΏ½1 βˆ’π‘₯2

10+π‘₯5

280βˆ’

π‘₯6

15120+

π‘₯8

1330560βˆ’β‹―οΏ½ (7)

The second solution can now be found from

𝑦2 = π‘˜π‘¦1 (π‘₯) ln (π‘₯) +�𝑛=0𝑏𝑛π‘₯𝑛

I could not find a way to convert the complete solution to closed form solution, or even findclosed form for 𝑦1 (π‘₯). The computer claims that the closed form final solution is

𝑦 (π‘₯) = 𝑦1 (π‘₯) + 𝑦2 (π‘₯)

= π‘Ž0 cos (π‘₯) + 𝑏0 οΏ½βˆ’βˆšcos2 π‘₯ βˆ’ 1 + cos π‘₯ ln οΏ½cos (π‘₯) + √cos2 π‘₯ βˆ’ 1οΏ½οΏ½

Which appears to imply that (7) is cos (π‘₯) series. But it is not. Converting series solution toclosed form solution is hard. Is this something we are supposed to know how to do? Otherby inspection, is there a formal process to do it?

69

Page 74: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7 key solution of selected problems

3.1.7.1 section 3 problem 8

Problem Statement: How many terms are needed in the Taylor series solution to yβ€²β€²β€² = x3y,

y(0) = 1, yβ€²(0) = 0, yβ€²β€²(0) = 0 are needed to evaluate∞∫0

y(x)dx correct to 3 decimal places?

Solution: Let

y =βˆžβˆ‘

n=0

anxn

yβ€² =βˆžβˆ‘

n=0

nanxnβˆ’1

yβ€²β€² =βˆžβˆ‘

n=0

nan(nβˆ’ 1)xnβˆ’1

yβ€²β€²β€² =

βˆžβˆ‘n=0

n(nβˆ’ 1)(nβˆ’ 2)anxnβˆ’3 = x3y = x3

βˆžβˆ‘n=0

anxn =

βˆžβˆ‘n=0

anxn+3.

Shift indices by letting n β†’ (nβˆ’ 6) in the RHS:

βˆžβˆ‘n=0

anxn+3 β†’

βˆžβˆ‘n=6

anβˆ’6xnβˆ’3

βˆžβˆ‘n=0

n(nβˆ’ 1)(nβˆ’ 2)anxnβˆ’3 = 0 Β· xβˆ’3 + 0 Β· xβˆ’2 + 0 Β· xβˆ’1 + 3 Β· 2 Β· 1 Β· a3x

0 + 4 Β· 3 Β· 2 Β· a4x1

+ 5 Β· 4 Β· 3 Β· a5x2 +

βˆžβˆ‘n=6

n(nβˆ’ 1)(nβˆ’ 2)anxnβˆ’3

From here,a3 = 0, a4 = 0, a5 = 0

xnβˆ’3{n(nβˆ’ 1)(nβˆ’ 2)an βˆ’ anβˆ’6} = 0 for n = 6, 7, 8, ...

The recurrence relation becomes:

an =1

n(nβˆ’ 1)(nβˆ’ 2)anβˆ’6 n β‰₯ 6

Solution to D.E. becomes:

y =

βˆžβˆ‘n=0

anxn = a0 + a1 Β· x+ a2 Β· x

2 +

βˆžβˆ‘n=6

[1

n(nβˆ’ 1)(nβˆ’ 2)anβˆ’6x

n]

y(0) = a0 = 1 ==> a0 = 1

1

70

Page 75: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

yβ€²(0) = a1 = 0 ==> a1 = 0

yβ€²β€²(0) = 2 Β· a2 = 0 ==> a2 = 0

y(x) = 1 +

βˆžβˆ‘n=6

1

n(nβˆ’ 1)(nβˆ’ 2)anβˆ’6x

n

∫ 1

0

y(x)dx = [x+βˆžβˆ‘

n=6

1

(n+ 1)n(nβˆ’ 1)(nβˆ’ 2)anβˆ’6x

n+1]10

= 1 +

βˆžβˆ‘n=6

1

(n+ 1)(n)(nβˆ’ 1)(nβˆ’ 2)anβˆ’6

= 1 +1

7 Β· 6 Β· 5 Β· 4(1) +

1

13 Β· 12 Β· 11 Β· 10(

1

6 Β· Β·4(1)) + ...

= 1 +1

840+

1

2, 059, 200+ ...

∫ 1

0

y(x)dx ≃ 1 + 0.00119 + 4.856Γ— 10βˆ’7

So the 2nd non-zero term is required. All other terms are below the specified tolerance of0.001.

2

71

Page 76: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7.2 section 3 problem 6

72

Page 77: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

73

Page 78: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7.3 section 3 problem 4

74

Page 79: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

75

Page 80: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

76

Page 81: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7.4 section 3 problem 24

1 Closed form of Problem 3.24e

In problem 3.24e, we find Frobenius series solutions

yΞ±(x) =βˆžβˆ‘

n=0

anxn+Ξ± (1)

for Ξ± = 0, 3

2, and recurrence relation on the coefficients:

an+3 =βˆ’an

(n+ Ξ± + 3)(2n+ 2Ξ±+ 3).

For each Ξ±, a1 = a2 = 0, so only the a3k survive. Rewriting the recurrence relation:

a3k+3 =βˆ’a3k

(3k + 3 + Ξ±)(6k + 3 + 2Ξ±)=

βˆ’a3k9(k + 1 + Ξ±/3)(2k + 1 + 2Ξ±/3)

.

To identify a closed-form sum, we need to find the general form of the coefficients a3k. Towards thisend, consider the case Ξ± = 0. Now

a3k =βˆ’1/9

k(2k βˆ’ 1)a3kβˆ’3 =

(βˆ’1/9)2

k(k βˆ’ 1) Β· (2k βˆ’ 1)(2k βˆ’ 3)a3kβˆ’6 = Β· Β· Β· =

(βˆ’1/9)k

k! Β· (2k βˆ’ 1)!!a0.

Now note that

(2k βˆ’ 1)!! =(2k)!

(2k)!!=

(2k)!

2k Β· k!=β‡’ k! Β· (2k βˆ’ 1)!! = 2βˆ’k(2k)!,

so

a3k =(βˆ’1/9)k

2βˆ’k(2k)!a0 =

(βˆ’2/9)k

(2k)!a0.

Therefore,

y0(x) = a0

βˆžβˆ‘

k=0

(βˆ’2/9)k

(2k)!x3k = a0

βˆžβˆ‘

k=0

(βˆ’1)k

(2k)!(x3/2

√2/3)2k =: a0

βˆžβˆ‘

k=0

βˆ’z2k

(2k)!,

where z := x3/2√2/3. We recognize the remaining series as the Taylor series for cos z, so

y0(x) = a0 cos z(x) = a0 cos

(√2

3x3/2

)

.

For Ξ± = 3

2,

a3k+3 =βˆ’a3k

9(k + 3/2)(2k + 2)=

βˆ’a3k9(k + 1)(2k + 3)

.

Following the same argument as before,

a3k =(βˆ’1/9)k

k! Β· (2k + 1)!!a0.

This is the same as before, but divided by 2k + 1, so

y3/2(x) = a0

βˆžβˆ‘

k=0

(βˆ’2/9)k

(2k + 1)!x3k = a0 sin

(√2

3x3/2

)

.

Therefore, the general solution is

y(x) = y0(x) + y3/2(x) = c1 cos

(√2

3x3/2

)

+ c2 sin

(√2

3x3/2

)

.

1

77

Page 82: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

2 Closed form of Problem 3.24f

Problem 3.24f asks us to solve (sin x)yβ€²β€² βˆ’ 2(cosx)yβ€² βˆ’ (sin x)y = 0. Dividing by sin x,

yβ€²β€² βˆ’ 2(cotx)yβ€² βˆ’ y = 0,

so x = 0 is a regular singular point (cotx is not analytic at x = 0, but x cot x is). Thus, we can look fora Frobenius series solution.

Expanding sin x and cos x:

0 =

(

βˆžβˆ‘

m=0

(βˆ’1)m

(2m+ 1)!x2m+1

)

βˆžβˆ‘

n=0

(n+ Ξ±)(n+ Ξ±βˆ’ 1)anxn+Ξ±βˆ’2 βˆ’ 2

(

βˆžβˆ‘

m=0

(βˆ’1)m

(2m)!x2m

)

βˆžβˆ‘

n=0

(n + Ξ±)anxn+Ξ±βˆ’1

βˆ’

(

βˆžβˆ‘

m=0

(βˆ’1)m

(2m+ 1)!x2m+1

)

βˆžβˆ‘

n=0

anxn+Ξ±.

The lowest order is xΞ±βˆ’1:0 = Ξ±(Ξ±βˆ’ 1)a0 βˆ’ 2Ξ±a0 = Ξ±(Ξ±βˆ’ 3)a0,

so Ξ± = 0, 3. We are in case II(b) on page 72.Let Ξ± = 0. Then

0 =

(

βˆžβˆ‘

m=0

(βˆ’1)m

(2m+ 1)!x2m+1

)

βˆžβˆ‘

n=0

n(nβˆ’ 1)anxnβˆ’2 βˆ’ 2

(

βˆžβˆ‘

m=0

(βˆ’1)m

(2m)!x2m

)

βˆžβˆ‘

n=0

nanxnβˆ’1

βˆ’

(

βˆžβˆ‘

m=0

(βˆ’1)m

(2m+ 1)!x2m+1

)

βˆžβˆ‘

n=0

anxn.

We solve order-by-order:

x0 : 0 = βˆ’2a1 =β‡’ a1 = 0,

x1 : 0 = 2a2 βˆ’ 2 Β· 2a2 βˆ’ a0 =β‡’ a2 = βˆ’a02,

x2k : 0 =

kβˆ‘

β„“=0

(βˆ’1)kβˆ’β„“ 2β„“(2β„“+ 1)

(2k βˆ’ 2β„“+ 1)!a2β„“+1 βˆ’ 2

kβˆ‘

β„“=0

(βˆ’1)kβˆ’β„“ 2β„“+ 1

(2k βˆ’ 2β„“)!a2β„“+1 βˆ’

kβˆ’1βˆ‘

β„“=0

(βˆ’1)kβˆ’β„“βˆ’1

(2k βˆ’ 2β„“βˆ’ 1)!a2β„“+1,

x2k+1 : 0 =

k+1βˆ‘

β„“=0

(βˆ’1)kβˆ’β„“+12β„“(2β„“βˆ’ 1)

(2k βˆ’ 2β„“+ 3)!a2β„“ βˆ’ 2

k+1βˆ‘

β„“=0

(βˆ’1)kβˆ’β„“+12β„“

(2k βˆ’ 2β„“+ 2)!a2β„“ βˆ’

kβˆ‘

β„“=0

(βˆ’1)kβˆ’β„“

(2k βˆ’ 2β„“+ 1)!a2β„“,

where k β‰₯ 1. From the x2k terms, we see that a2n+1 depends only on a1, a3, ..., a2nβˆ’1. As a1 = 0, it is asimple (strong) induction to show that each a2n+1 = 0.

We use the x2k+1 terms for k = 1 to see that

0 =

(

0a0 βˆ’2

6a2 +

12

1a4

)

βˆ’ 2

(

0a0 βˆ’2

2a2 +

4

1a4

)

βˆ’(

βˆ’1

6a0 +

1

1a2

)

=β‡’ a4 = βˆ’1

4

(

1

6a0 βˆ’

2

3a2

)

.

As a2 = βˆ’1

2a0, we see that a4 = 1

24a0. We notice a pattern that these coefficients are starting to look

like those in the Taylor series expansion of y0(x) = a0 cos x, which we now verify by plugging into theODE:

(sin x)yβ€²β€²0(x)βˆ’ 2(cosx)yβ€²0(x)βˆ’ (sin x)y0(x) = βˆ’a0 sin x cos x+ 2a0 cos x sin xβˆ’ a0 sin x cosx = 0.

2

78

Page 83: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

To find the other solution, we use reduction of order: look for a solution of the form y3(x) = v(x) cosx(we keep the Ξ± = 3 subscript to remind us that we expect the Taylor series of our solution to start atthe x3-term). Plugging into the ODE:

(sin x)(vβ€²β€²(x) cosxβˆ’ 2vβ€²(x) sin xβˆ’ v(x) cosx)βˆ’ (2 cosx)(vβ€²(x) cos xβˆ’ v(x) sin x)βˆ’ (sin x)(v(x) cosx) = 0.

Simplifying,

(sin x cosx)vβ€²β€²(x)βˆ’ 2vβ€²(x) = 0 =β‡’ vβ€²(x) = c1 tan2 x =β‡’ v(x) = c1(tanxβˆ’ x) + c0.

We set c0 = 0, since this corresponds to y0(x). Then y3(x) = c1(tan xβˆ’ x) cosx = c1(sin xβˆ’ x cosx).The full solution is therefore

y(x) = c0 cosx+ c1(sin xβˆ’ x cosx).

3

79

Page 84: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2 HW2

3.2.1 problem 3.27 (page 138)

Problem derive 3.4.28. Below is a screen shot from the book giving 3.4.28 at page 88, andthe context it is used in before solving the problem

Solution

For π‘›π‘‘β„Ž order ODE, 𝑆0 (π‘₯) is given by

𝑆0 (π‘₯) ∼ πœ”οΏ½π‘₯𝑄 (𝑑)

1𝑛 𝑑𝑑

And (page 497, textbook)

𝑆1 (π‘₯) ∼1 βˆ’ 𝑛2𝑛

ln (𝑄 (π‘₯)) + 𝑐 (10.2.11)

80

Page 85: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Therefore

𝑦 (π‘₯) ∼ exp (𝑆0 + 𝑆1)

∼ exp οΏ½πœ”οΏ½π‘₯𝑄 (𝑑)

1𝑛 𝑑𝑑 +

1 βˆ’ 𝑛2𝑛

ln (𝑄 (π‘₯)) + 𝑐�

∼ 𝑐 [𝑄 (π‘₯)]1βˆ’π‘›2𝑛 exp οΏ½πœ”οΏ½

π‘₯𝑄 (𝑑)

1𝑛 𝑑𝑑�

Note: I have tried other methods to proof this, such as a proof by induction. But was notable to after many hours trying. The above method uses a given formula which the bookdid not indicate how it was obtained. (see key solution)

3.2.2 Problem 3.33(b) (page 140)

Problem Find leading behavior as π‘₯ β†’ 0+ for π‘₯4𝑦′′′ βˆ’ 3π‘₯2𝑦′ + 2𝑦 = 0

Solution Let

𝑦 (π‘₯) = 𝑒𝑆(π‘₯)

𝑦′ = 𝑆′𝑒𝑆

𝑦′′ = 𝑆′′𝑒𝑆 + (𝑆′)2 𝑒𝑆

𝑦′′′ = 𝑆′′′𝑒𝑆 + 𝑆′′𝑆′𝑒𝑆 + 2𝑆′𝑆′′𝑒𝑆 + (𝑆′)3 𝑒𝑆

Hence the ODE becomes

π‘₯4 �𝑆′′′ + 3𝑆′𝑆′′ + (𝑆′)3οΏ½ βˆ’ 3π‘₯2𝑆′ = βˆ’2 (1)

Now, we define 𝑆 (π‘₯) as sum of a number of leading terms, which we try to find

𝑆 (π‘₯) = 𝑆0 (π‘₯) + 𝑆1 (π‘₯) + 𝑆2 (π‘₯) +β‹―

Therefore (1) becomes (using only two terms for now 𝑆 = 𝑆0 + 𝑆1)

{𝑆0 + 𝑆1}β€²β€²β€² + 3 οΏ½(𝑆0 + 𝑆1) (𝑆0 + 𝑆1)

β€²β€²οΏ½ + οΏ½(𝑆0 + 𝑆1)β€²οΏ½3βˆ’3π‘₯2{𝑆0 + 𝑆1}

β€² = βˆ’2π‘₯4

�𝑆′′′0 + 𝑆′′′1 οΏ½ + 3 οΏ½(𝑆0 + 𝑆1) �𝑆′′0 + 𝑆′′1 οΏ½οΏ½ + �𝑆′0 + 𝑆′1οΏ½3βˆ’3π‘₯2�𝑆′0 + 𝑆′1οΏ½ = βˆ’

2π‘₯4

�𝑆′′′0 + 𝑆′′′1 οΏ½ + 3 �𝑆′′0 𝑆′0 + 𝑆′′0 𝑆′1 + 𝑆′′1 𝑆′0οΏ½ + ��𝑆′0οΏ½3+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0 �𝑆′1οΏ½

2οΏ½ βˆ’

3π‘₯2�𝑆′0 + 𝑆′1οΏ½ = βˆ’

2π‘₯4

(2)

Assuming that 𝑆′0 β‹™ 𝑆′1, 𝑆′′′0 β‹™ 𝑆′′′1 , �𝑆′0οΏ½3β‹™ 3�𝑆′0οΏ½

2𝑆′1 then equation (2) simplifies to

𝑆′′′0 + 3𝑆′′0 𝑆′0 + �𝑆′0οΏ½3βˆ’3π‘₯2𝑆′0 ∼ βˆ’

2π‘₯4

Assuming �𝑆′0οΏ½3β‹™ 𝑆′′′0 , �𝑆′0οΏ½

3β‹™ 3𝑆′′0 𝑆′0, �𝑆′0οΏ½

3β‹™ 3

π‘₯2𝑆′0 (which we need to verify later), then

the above becomes

�𝑆′0οΏ½3∼ βˆ’

2π‘₯4

Verification2

2When carrying out verification, all constant multipliers and signs are automticaly simplified and removed

81

Page 86: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Since 𝑆′0 ∼ οΏ½βˆ’2π‘₯4οΏ½13= 1

π‘₯43then 𝑆′′0 ∼ 1

π‘₯73and 𝑆′′′0 ∼ 1

π‘₯103. Now we need to verify the three

assumptions made above, which we used to obtain 𝑆′0.

�𝑆′0οΏ½3β‹™ 𝑆′′′0

1π‘₯4β‹™

1

π‘₯103

Yes.

�𝑆′0οΏ½3β‹™ 3𝑆′′0 𝑆′0

1π‘₯4β‹™

βŽ›βŽœβŽœβŽœβŽœβŽ1

π‘₯73

⎞⎟⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽ1

π‘₯43

⎞⎟⎟⎟⎟⎠

1π‘₯4β‹™

βŽ›βŽœβŽœβŽœβŽœβŽ1

π‘₯113

⎞⎟⎟⎟⎟⎠

Yes.

�𝑆′0οΏ½3β‹™

3π‘₯2𝑆′0

1π‘₯4β‹™ οΏ½

1π‘₯2 οΏ½

1

π‘₯43

1π‘₯4β‹™

1

π‘₯103

Yes. Assumed balance ise verified. Therefore

�𝑆′0οΏ½3∼ βˆ’

2π‘₯4

𝑆′0 ∼ πœ”π‘₯βˆ’43

Where πœ”3 = βˆ’2. Integrating

𝑆0 ∼ πœ”οΏ½π‘₯βˆ’43 𝑑π‘₯

∼ πœ”οΏ½π‘₯βˆ’43𝑑π‘₯

∼ βˆ’3πœ”π‘₯βˆ’13

Where we ignored the constant of integration since subdominant. To find leading behavior,we go back to equation (2) and now solve for 𝑆1.

�𝑆′′′0 + 𝑆′′′1 οΏ½ + 3 �𝑆′′0 𝑆′0 + 𝑆′′0 𝑆′1 + 𝑆′′1 𝑆′0οΏ½ + ��𝑆′0οΏ½3+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0 �𝑆′1οΏ½

2οΏ½ βˆ’

3π‘₯2�𝑆′0 + 𝑆′1οΏ½ = βˆ’

2π‘₯4

Moving all known quantities (those which are made of 𝑆0 and its derivatives) to the RHS

going from one step to the next, as they do not aοΏ½ect the final result.

82

Page 87: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

and simplifying, gives

�𝑆′′′1 οΏ½ + 3 �𝑆′′0 𝑆′1 + 𝑆′′1 𝑆′0οΏ½ + οΏ½3 �𝑆′0οΏ½2𝑆′1 + 3𝑆′0 �𝑆′1οΏ½

2οΏ½ βˆ’

3𝑆′1π‘₯2

∼ βˆ’π‘†β€²β€²β€²0 βˆ’ 3𝑆′′0 𝑆′0 +3π‘₯2𝑆′0

Now we assume the following (then will verify later)

3 �𝑆′0οΏ½2𝑆′1 β‹™ 3𝑆′0 �𝑆′1οΏ½

2

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′′1

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′1 𝑆′0

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′0 𝑆′1

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′1 𝑆′0

Hence

3 �𝑆′0οΏ½2𝑆′1 βˆ’

3𝑆′1π‘₯2

∼ βˆ’π‘†β€²β€²β€²0 βˆ’ 3𝑆′′0 𝑆′0 +3𝑆′0π‘₯2

(3)

But

𝑆′0 ∼ πœ”π‘₯βˆ’43

�𝑆′0οΏ½2∼ πœ”2π‘₯

βˆ’83

𝑆′′0 ∼ βˆ’43πœ”π‘₯

βˆ’73

𝑆′′′0 ∼289πœ”π‘₯

βˆ’103

Hence (3) becomes

3 οΏ½πœ”2π‘₯βˆ’83 οΏ½ 𝑆′1 βˆ’

3𝑆′1π‘₯2

∼289πœ”π‘₯

βˆ’103 + 3 οΏ½

43πœ”2π‘₯

βˆ’73 π‘₯

βˆ’43 οΏ½ +

3πœ”π‘₯βˆ’43

π‘₯2

3πœ”2π‘₯βˆ’83 𝑆′1 βˆ’ 3π‘₯βˆ’2𝑆′1 ∼

289πœ”π‘₯

βˆ’103 + 4πœ”2π‘₯

βˆ’113 + 3πœ”π‘₯

βˆ’103

For small π‘₯, π‘₯βˆ’83 𝑆′1 β‹™ π‘₯βˆ’2𝑆′1 and π‘₯

βˆ’113 β‹™ π‘₯

βˆ’103 , then the above simplifies to

3πœ”2π‘₯βˆ’83 𝑆′1 ∼ 4πœ”2π‘₯

βˆ’113

𝑆′1 ∼43π‘₯βˆ’1

𝑆1 ∼43

ln π‘₯

Where constant of integration was dropped, since subdominant.

83

Page 88: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Verification Using 𝑆′0 ∽ π‘₯βˆ’43 , �𝑆′0οΏ½

2∽ π‘₯

βˆ’83 , 𝑆′′0 ∽ π‘₯

βˆ’73 , 𝑆′1 ∼

1π‘₯ , 𝑆

β€²β€²1 ∼ 1

π‘₯2 , 𝑆′′′1 ∼ 1

π‘₯3

3 �𝑆′0οΏ½2𝑆′1 β‹™ 3𝑆′0 �𝑆′1οΏ½

2

π‘₯βˆ’831π‘₯β‹™ π‘₯

βˆ’431π‘₯2

π‘₯βˆ’83 β‹™ π‘₯

βˆ’73

Yes.

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′′1

π‘₯βˆ’831π‘₯β‹™

1π‘₯3

1

π‘₯83

β‹™1π‘₯2

Yes.

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′1 𝑆′0

π‘₯βˆ’831π‘₯β‹™

1π‘₯2π‘₯βˆ’43

π‘₯βˆ’83 β‹™ π‘₯

βˆ’73

Yes.

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′0 𝑆′1

π‘₯βˆ’831π‘₯β‹™ π‘₯

βˆ’731π‘₯

π‘₯βˆ’83 β‹™ π‘₯

βˆ’73

Yes

3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′′1 𝑆′0

π‘₯βˆ’831π‘₯β‹™

1π‘₯2π‘₯βˆ’43

π‘₯βˆ’83 β‹™ π‘₯

βˆ’73

Yes. All verified. Leading behavior is

𝑦 (π‘₯) ∽ 𝑒𝑆0(π‘₯)+𝑆1(π‘₯)

= exp οΏ½π‘πœ”π‘₯βˆ’13 +

43

ln π‘₯οΏ½

= π‘₯43 π‘’π‘πœ”π‘₯

βˆ’13

I now wanted to see how Maple solution to this problem compare with the leading behaviornear π‘₯ = 0. To obtain a solution from Maple, one have to give initial conditions a little bitremoved from π‘₯ = 0 else no solution could be generated. So using arbitrary initial conditionsat π‘₯ = 1

100 a solution was obtained and compared to the above leading behavior. Another

84

Page 89: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

problem is how to select 𝑐 in the above leading solution. By trial and error a constant wasselected. Here is screen shot of the result. The exact solution generated by Maple is verycomplicated, in terms of hypergeom special functions.

ode:=x^4*diff(y(x),x$3)-3*x^2*diff(y(x),x)+2*y(x);pt:=1/100:ic:=y(pt)=500,D(y)(pt)=0,(D@@2)(y)(pt)=0:sol:=dsolve({ode,ic},y(x)):leading:=(x,c)->x^(4/3)*exp(c*x^(-1/3));plot([leading(x,.1),rhs(sol)],x=pt..10,y=0..10,color=[blue,red],legend=["leading behavior","exact solution"],legendstyle=[location=top]);

3.2.3 problem 3.33(c) (page 140)

Problem Find leading behavior as π‘₯ β†’ 0+ for 𝑦′′ = √π‘₯𝑦

Solution

Let 𝑦 (π‘₯) = 𝑒𝑆(π‘₯). Hence

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)

𝑦′ (π‘₯) = 𝑆′0𝑒𝑆0

𝑦′′ = 𝑆′′0 𝑒𝑆0 + �𝑆′0οΏ½2𝑒𝑆0

= �𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0

Substituting in the ODE gives

𝑆′′0 + �𝑆′0οΏ½2= √π‘₯ (1)

85

Page 90: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Assuming 𝑆′′0 ∼ �𝑆′0οΏ½2then (1) becomes

𝑆′′0 ∼ βˆ’ �𝑆′0οΏ½2

Let 𝑆′0 = 𝑧 then the above becomes 𝑧′ = βˆ’π‘§2. Hence 𝑑𝑧𝑑π‘₯

1𝑧2 = βˆ’1 or 𝑑𝑧

𝑧2 = βˆ’π‘‘π‘₯. Integratingβˆ’1𝑧 = βˆ’π‘₯ + 𝑐 or 𝑧 =

1π‘₯+𝑐1

. Hence 𝑆′0 =1

π‘₯+𝑐1. Integrating again gives

𝑆0 (π‘₯) ∼ ln |π‘₯ + 𝑐1| + 𝑐2

Verification

𝑆′0 =1

π‘₯+𝑐1, �𝑆′0οΏ½

2= 1

(π‘₯+𝑐1)2 , 𝑆′′0 =

βˆ’1(π‘₯+𝑐1)

2

𝑆′′0 β‹™ π‘₯12

1(π‘₯ + 𝑐1)

2 β‹™ π‘₯12

Yes for π‘₯ β†’ 0+.

�𝑆′0οΏ½2β‹™ π‘₯

12

1(π‘₯ + 𝑐1)

2 β‹™ π‘₯12

Yes for π‘₯ β†’ 0+. Verified. Controlling factor is

𝑦 (π‘₯) ∼ 𝑒𝑆0(π‘₯)

∼ 𝑒ln|π‘₯+𝑐1|+𝑐2

∼ 𝐴π‘₯ + 𝐡

3.2.4 problem 3.35

Problem: Obtain the full asymptotic behavior for small π‘₯ of solutions to the equation

π‘₯2𝑦′′ + (2π‘₯ + 1) 𝑦′ βˆ’ π‘₯2 �𝑒2π‘₯ + 1οΏ½ 𝑦 = 0

Solution

86

Page 91: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Let 𝑦 (π‘₯) = 𝑒𝑆(π‘₯). Hence

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)

𝑦′ (π‘₯) = 𝑆′0𝑒𝑆0

𝑦′′ = 𝑆′′0 𝑒𝑆0 + �𝑆′0οΏ½2𝑒𝑆0

= �𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0

Substituting in the ODE gives

π‘₯2 �𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0 + (2π‘₯ + 1) 𝑆′0𝑒𝑆0 βˆ’ π‘₯2 �𝑒

2π‘₯ + 1οΏ½ 𝑒𝑆0(π‘₯) = 0

π‘₯2 �𝑆′′0 + �𝑆′0οΏ½2οΏ½ + (2π‘₯ + 1) 𝑆′0 βˆ’ π‘₯2 �𝑒

2π‘₯ + 1οΏ½ = 0

π‘₯2 �𝑆′′0 + �𝑆′0οΏ½2οΏ½ + (2π‘₯ + 1) 𝑆′0 = π‘₯2 �𝑒

2π‘₯ + 1οΏ½

𝑆′′0 + �𝑆′0οΏ½2+(2π‘₯ + 1)π‘₯2

𝑆′0 = 𝑒2π‘₯ + 1

Assuming balance

�𝑆′0οΏ½2∼ �𝑒

2π‘₯ + 1οΏ½

�𝑆′0οΏ½2∼ 𝑒

2π‘₯

𝑆′0 ∼ ±𝑒1π‘₯

Where 1 was dropped since subdominant to 𝑒1π‘₯ for small π‘₯.

Verification Since �𝑆′0οΏ½2∼ 𝑒

2π‘₯ then 𝑆′0 ∼ 𝑒

1π‘₯ and 𝑆′′0 ∼ βˆ’ 1

π‘₯2 𝑒1π‘₯ , hence

�𝑆′0οΏ½2β‹™ 𝑆′′0

𝑒2π‘₯ β‹™

1π‘₯2𝑒1π‘₯

𝑒1π‘₯ β‹™

1π‘₯2

Yes, As π‘₯ β†’ 0+

�𝑆′0οΏ½2β‹™

(2π‘₯ + 1) 𝑆′0π‘₯2

𝑒2π‘₯ β‹™

(2π‘₯ + 1)π‘₯2

𝑒1π‘₯

𝑒1π‘₯ β‹™

(2π‘₯ + 1)π‘₯2

𝑒1π‘₯ β‹™

2π‘₯+1π‘₯2

87

Page 92: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes as π‘₯ β†’ 0+. Verified. Hence both assumptions used were verified OK. Hence

𝑆′0 ∼ ±𝑒2π‘₯

𝑆0 ∼ ±�𝑒1π‘₯𝑑π‘₯

Since the integral do not have closed form, we will do asymptotic expansion on the integral.

Rewriting ∫ 𝑒1π‘₯𝑑π‘₯ as ∫ 𝑒

1π‘₯

οΏ½βˆ’π‘₯2οΏ½οΏ½βˆ’π‘₯2οΏ½ 𝑑π‘₯. Using βˆ«π‘’π‘‘π‘£ = 𝑒𝑣 βˆ’ βˆ«π‘£π‘‘π‘’, where 𝑒 = βˆ’π‘₯2, 𝑑𝑣 = βˆ’π‘’

1π‘₯

π‘₯2 , gives

𝑑𝑒 = βˆ’2π‘₯ and 𝑣 = 𝑒1π‘₯ , hence

�𝑒1π‘₯𝑑π‘₯ = 𝑒𝑣 βˆ’οΏ½π‘£π‘‘π‘’

= βˆ’π‘₯2𝑒1π‘₯ βˆ’οΏ½βˆ’2π‘₯𝑒

1π‘₯𝑑π‘₯

= βˆ’π‘₯2𝑒1π‘₯ + 2οΏ½π‘₯𝑒

1π‘₯𝑑π‘₯ (1)

Now we apply integration by parts on ∫π‘₯𝑒1π‘₯𝑑π‘₯ = ∫π‘₯ 𝑒

1π‘₯

βˆ’π‘₯3οΏ½βˆ’π‘₯3οΏ½ 𝑑𝑒 = ∫ 𝑒

1π‘₯

βˆ’π‘₯2οΏ½βˆ’π‘₯3οΏ½ 𝑑𝑒, where

𝑒 = βˆ’π‘₯3, 𝑑𝑣 = 𝑒1π‘₯

βˆ’π‘₯2 , hence 𝑑𝑒 = βˆ’3π‘₯2, 𝑣 = 𝑒

1π‘₯ , hence we have

οΏ½π‘₯𝑒1π‘₯𝑑π‘₯ = 𝑒𝑣 βˆ’οΏ½π‘£π‘‘π‘’

= βˆ’π‘₯3𝑒1π‘₯ +οΏ½3π‘₯2𝑒

1π‘₯𝑑π‘₯

Substituting this into (1) gives

�𝑒1π‘₯𝑑π‘₯ = βˆ’π‘₯2𝑒

1π‘₯ + 2 οΏ½βˆ’π‘₯3𝑒

1π‘₯ +οΏ½3π‘₯2𝑒

1π‘₯𝑑π‘₯οΏ½

= βˆ’π‘₯2𝑒1π‘₯ βˆ’ 2π‘₯3𝑒

1π‘₯ + 6οΏ½3π‘₯2𝑒

1π‘₯𝑑π‘₯

And so on. The series will become

�𝑒1π‘₯𝑑π‘₯ = βˆ’π‘₯2𝑒

1π‘₯ βˆ’ 2π‘₯3𝑒

1π‘₯ + 6π‘₯4𝑒

1π‘₯ + 24π‘₯5𝑒

1π‘₯ +β‹―+ 𝑛!π‘₯𝑛+1𝑒

1π‘₯ +β‹―

= βˆ’π‘’1π‘₯ οΏ½π‘₯2 + 2π‘₯3 + 6π‘₯4 +β‹―+ 𝑛!π‘₯𝑛+1 +β‹―οΏ½

Now as π‘₯ β†’ 0+, we can decide how many terms to keep in the RHS, If we keep one term,then we can say

𝑆0 ∼ ±�𝑒1π‘₯𝑑π‘₯

∼ Β±π‘₯2𝑒1π‘₯

For two terms

𝑆0 ∼ ±�𝑒1π‘₯𝑑π‘₯ ∼ ±𝑒

1π‘₯ οΏ½π‘₯2 + 2π‘₯3οΏ½

And so on. Let us use one term for now for the rest of the solution.

𝑆0 ∼ Β±π‘₯2𝑒1π‘₯

88

Page 93: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

To find leading behavior, let

𝑆 (π‘₯) = 𝑆0 (π‘₯) + 𝑆1 (π‘₯)

Then 𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)+𝑆1(π‘₯) and hence now

𝑦′ (π‘₯) = (𝑆0 (π‘₯) + 𝑆1 (π‘₯))β€² 𝑒𝑆0+𝑆1

𝑦′′ (π‘₯) = οΏ½(𝑆0 + 𝑆1)β€²οΏ½2𝑒𝑆0+𝑆1 + (𝑆0 + 𝑆1)

β€²β€² 𝑒𝑆0+𝑆1

Substituting into the given ODE gives

π‘₯2 οΏ½οΏ½(𝑆0 + 𝑆1)β€²οΏ½2+ (𝑆0 + 𝑆1)

β€²β€²οΏ½ + (2π‘₯ + 1) (𝑆0 (π‘₯) + 𝑆1 (π‘₯))β€² βˆ’ π‘₯2 �𝑒

2π‘₯ + 1οΏ½ = 0

π‘₯2 ��𝑆′0 + 𝑆′1οΏ½2+ (𝑆0 + 𝑆1)

β€²β€²οΏ½ + (2π‘₯ + 1) �𝑆′0 (π‘₯) + 𝑆′1 (π‘₯)οΏ½ βˆ’ π‘₯2 �𝑒2π‘₯ + 1οΏ½ = 0

π‘₯2 ��𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + �𝑆′′0 + 𝑆′′1 οΏ½οΏ½ + (2π‘₯ + 1) 𝑆′0 (π‘₯) + (2π‘₯ + 1) 𝑆′1 (π‘₯) βˆ’ π‘₯2 �𝑒

2π‘₯ + 1οΏ½ = 0

π‘₯2 �𝑆′0οΏ½2+ π‘₯2 �𝑆′1οΏ½

2+ 2π‘₯2𝑆′0𝑆′1 + π‘₯2𝑆′′0 + π‘₯2𝑆′′1 + (2π‘₯ + 1) 𝑆′0 (π‘₯) + (2π‘₯ + 1) 𝑆′1 (π‘₯) = π‘₯2 �𝑒

2π‘₯ + 1οΏ½

But π‘₯2 �𝑆′0οΏ½2∼ π‘₯2 �𝑒

2π‘₯ + 1οΏ½ since we found that 𝑆′0 ∼ 𝑒

1π‘₯ . Hence the above simplifies to

π‘₯2 �𝑆′1οΏ½2+ 2π‘₯2𝑆′0𝑆′1 + π‘₯2𝑆′′0 + π‘₯2𝑆′′1 + (2π‘₯ + 1) 𝑆′0 (π‘₯) + (2π‘₯ + 1) 𝑆′1 (π‘₯) = 0

�𝑆′1οΏ½2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 +

(2π‘₯ + 1)π‘₯2

𝑆′0 (π‘₯) +(2π‘₯ + 1)π‘₯2

𝑆′1 (π‘₯) = 0 (2)

Now looking at 𝑆′′0 +(2π‘₯+1)π‘₯2 𝑆′0 (π‘₯) terms in the above. We can simplify this since we know

𝑆′0 = 𝑒1π‘₯ ,𝑆′′0 = βˆ’

1π‘₯2 𝑒

1π‘₯ This terms becomes

βˆ’1π‘₯2𝑒1π‘₯ +

(2π‘₯ + 1)π‘₯2

𝑒1π‘₯ =

βˆ’π‘’1π‘₯ + 2π‘₯𝑒

1π‘₯ + 𝑒

1π‘₯

π‘₯2=2π‘₯𝑒

1π‘₯

π‘₯2=2𝑒

1π‘₯

π‘₯Therefore (2) becomes

�𝑆′1οΏ½2+ 2𝑆′0𝑆′1 + 𝑆′′1 +

(2π‘₯ + 1)π‘₯2

𝑆′1 (π‘₯) βˆΌβˆ’2𝑒

1π‘₯

π‘₯�𝑆′1οΏ½

2

𝑆′0+ 2𝑆′1 +

𝑆′′1𝑆′0

+(2π‘₯ + 1)π‘₯2𝑆′0

𝑆′1 (π‘₯) βˆΌβˆ’2𝑒

1π‘₯

π‘₯𝑆′0�𝑆′1οΏ½

2

𝑒1π‘₯

+ 2𝑆′1 +𝑆′′1𝑒1π‘₯

+(2π‘₯ + 1)

π‘₯2𝑒1π‘₯

𝑆′1 (π‘₯) βˆΌβˆ’2π‘₯

Assuming the balance is

𝑆′1 βˆΌβˆ’1π‘₯

Hence

𝑆1 (π‘₯) ∼ βˆ’ ln (π‘₯) + 𝑐

89

Page 94: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Since 𝑐 subdominant as π‘₯ β†’ 0+ then

𝑆1 (π‘₯) ∼ βˆ’ ln (π‘₯)

Verification

𝑆′1 ⋙�𝑆′1οΏ½

2

𝑒1π‘₯

1π‘₯β‹™

1π‘₯2

1

𝑒1π‘₯

𝑒1π‘₯ β‹™

1π‘₯

Yes, for π‘₯ β†’ 0+

𝑆′1 ⋙𝑆′′1𝑒1π‘₯

1π‘₯β‹™

1π‘₯2

1

𝑒1π‘₯

Yes.

𝑆′1 β‹™(2π‘₯ + 1)

π‘₯2𝑒1π‘₯

𝑆′1 (π‘₯)

1π‘₯β‹™

(2π‘₯ + 1)

π‘₯2𝑒1π‘₯

1π‘₯

1π‘₯β‹™

1

π‘₯3𝑒1π‘₯

Yes. All assumptions verified. Hence leading behavior is

𝑦 (π‘₯) ∼ exp (𝑆0 (π‘₯) + 𝑆1 (π‘₯))

∼ exp οΏ½Β±π‘₯2𝑒1π‘₯ βˆ’ ln (π‘₯)οΏ½

∼1π‘₯οΏ½exp οΏ½π‘₯2𝑒

1π‘₯ οΏ½ + exp οΏ½βˆ’π‘₯2𝑒

1π‘₯ οΏ½οΏ½

For small π‘₯, then we ignore exp οΏ½βˆ’π‘₯2𝑒1π‘₯ οΏ½ since much smaller than exp οΏ½π‘₯2𝑒

1π‘₯ οΏ½. Therefore

𝑦 (π‘₯) ∼1π‘₯

exp οΏ½π‘₯2𝑒1π‘₯ οΏ½

3.2.5 problem 3.39(h)

problem Find leading asymptotic behavior as π‘₯ β†’ ∞ for 𝑦′′ = π‘’βˆ’3π‘₯𝑦

90

Page 95: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

solution Let 𝑦 (π‘₯) = 𝑒𝑆(π‘₯). Hence

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)

𝑦′ (π‘₯) = 𝑆′0𝑒𝑆0

𝑦′′ = 𝑆′′0 𝑒𝑆0 + �𝑆′0οΏ½2𝑒𝑆0

= �𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0

Substituting in the ODE gives

�𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0 = π‘’βˆ’

3π‘₯ 𝑒𝑆0

𝑆′′0 + �𝑆′0οΏ½2= π‘’βˆ’

3π‘₯

Assuming �𝑆′0οΏ½2β‹™ 𝑆′′0 the above becomes

�𝑆′0οΏ½2∼ π‘’βˆ’

3π‘₯

𝑆′0 ∼ Β±π‘’βˆ’32π‘₯

Hence

𝑆0 ∼ Β±οΏ½π‘’βˆ’32π‘₯𝑑π‘₯

Integration by parts. Since 𝑑𝑑π‘₯𝑒

βˆ’32π‘₯ = 3

2π‘₯2 π‘’βˆ’ 32π‘₯ , then we rewrite the integral above as

οΏ½π‘’βˆ’32π‘₯𝑑π‘₯ = οΏ½

32π‘₯2

π‘’βˆ’32π‘₯ οΏ½

2π‘₯2

3 οΏ½ 𝑑π‘₯

And now apply integration by parts. Let 𝑑𝑣 = 32π‘₯2 𝑒

βˆ’ 32π‘₯ β†’ 𝑣 = π‘’βˆ’

32π‘₯ , 𝑒 = 2π‘₯2

3 β†’ 𝑑𝑒 = 43π‘₯, hence

οΏ½π‘’βˆ’32π‘₯𝑑π‘₯ = [𝑒𝑣] βˆ’οΏ½π‘£π‘‘π‘’

=2π‘₯2

3π‘’βˆ’

32π‘₯ βˆ’οΏ½

43π‘₯π‘’βˆ’

32π‘₯𝑑π‘₯

Ignoring higher terms, then we use

𝑆0 ∼ Β±2π‘₯2

3π‘’βˆ’

32π‘₯

Verification

�𝑆′0οΏ½2β‹™ 𝑆′′0

οΏ½π‘’βˆ’32π‘₯ οΏ½

2β‹™

32π‘₯2

π‘’βˆ’32π‘₯

π‘’βˆ’3π‘₯ β‹™

32π‘₯2

π‘’βˆ’32π‘₯

Yes, as π‘₯ β†’ ∞. To find leading behavior, let

𝑆 (π‘₯) = 𝑆0 (π‘₯) + 𝑆1 (π‘₯)

91

Page 96: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Then 𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)+𝑆1(π‘₯) and hence now

𝑦′ (π‘₯) = (𝑆0 (π‘₯) + 𝑆1 (π‘₯))β€² 𝑒𝑆0+𝑆1

𝑦′′ (π‘₯) = οΏ½(𝑆0 + 𝑆1)β€²οΏ½2𝑒𝑆0+𝑆1 + (𝑆0 + 𝑆1)

β€²β€² 𝑒𝑆0+𝑆1

Using the above, the ODE 𝑦′′ = π‘’βˆ’3π‘₯𝑦 now becomes

οΏ½(𝑆0 + 𝑆1)β€²οΏ½2+ (𝑆0 + 𝑆1)

β€²β€² = π‘’βˆ’3π‘₯

�𝑆′0 + 𝑆′1οΏ½2+ 𝑆′′0 + 𝑆′′1 = 𝑒

βˆ’ 3π‘₯

�𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 = 𝑒

βˆ’ 3π‘₯

But �𝑆′0οΏ½2∼ π‘’βˆ’

3π‘₯ hence the above simplifies to

�𝑆′1οΏ½2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 = 0

Assuming οΏ½2𝑆′0𝑆′1οΏ½ β‹™ 𝑆′′1 the above becomes

�𝑆′1οΏ½2+ 2𝑆′0𝑆′1 + 𝑆′′0 = 0

Assuming 2𝑆′0𝑆′1 β‹™ �𝑆′1οΏ½2

2𝑆′0𝑆′1 + 𝑆′′0 = 0

𝑆′1 ∼ βˆ’π‘†β€²β€²02𝑆′0

𝑆1 ∼ βˆ’12

ln �𝑆′0οΏ½

But 𝑆′0 ∼ π‘’βˆ’32π‘₯ , hence the above becomes

𝑆1 ∼ βˆ’12

ln οΏ½π‘’βˆ’32π‘₯ οΏ½ + 𝑐

∼34π‘₯+ 𝑐

Verification

οΏ½2𝑆′0𝑆′1οΏ½ β‹™ 𝑆′′1

οΏ½2π‘’βˆ’32π‘₯βˆ’34π‘₯2 οΏ½

β‹™32π‘₯3

32π‘’βˆ’

32π‘₯

π‘₯2β‹™

32π‘₯3

For large π‘₯ the above simplifies to1π‘₯2β‹™

1π‘₯3

92

Page 97: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes.

οΏ½2𝑆′0𝑆′1οΏ½ β‹™ �𝑆′1οΏ½2

οΏ½2π‘’βˆ’32π‘₯βˆ’34π‘₯2 οΏ½

β‹™ οΏ½βˆ’34π‘₯2 οΏ½

2

32π‘’βˆ’

32π‘₯

π‘₯2β‹™

916π‘₯4

For large π‘₯ the above simplifies to1π‘₯2β‹™

1π‘₯4

Yes. All verified. Therefore, the leading behavior is

𝑦 (π‘₯) ∼ exp (𝑆0 (π‘₯) + 𝑆1 (π‘₯))

∼ exp οΏ½Β±2π‘₯2

3π‘’βˆ’

32π‘₯ βˆ’

12

ln οΏ½π‘’βˆ’32π‘₯ οΏ½ + 𝑐�

∼ 𝑐𝑒34π‘₯ exp οΏ½Β±

2π‘₯2

3π‘’βˆ’

32π‘₯ οΏ½ (1)

Check if we can use 3.4.28 to verify:

limπ‘₯β†’βˆž

|π‘₯𝑛𝑄 (π‘₯)| = limπ‘₯β†’βˆž

οΏ½π‘₯2π‘’βˆ’3π‘₯ οΏ½ β†’ ∞

We can use it. Lets verify using 3.4.28

𝑦 (π‘₯) ∼ 𝑐 [𝑄 (π‘₯)]1βˆ’π‘›2𝑛 exp οΏ½πœ”οΏ½

π‘₯𝑄 [𝑑]

1𝑛 𝑑𝑑�

Where πœ”2 = 1. For 𝑛 = 2,𝑄 (π‘₯) = π‘’βˆ’3π‘₯ , the above gives

𝑦 (π‘₯) ∼ 𝑐 οΏ½π‘’βˆ’3π‘₯ οΏ½

1βˆ’24

exp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽπœ”οΏ½

π‘₯οΏ½π‘’βˆ’

3𝑑 οΏ½

12𝑑𝑑

⎞⎟⎟⎟⎟⎟⎠

∼ 𝑐 οΏ½π‘’βˆ’3π‘₯ οΏ½

βˆ’14

exp οΏ½πœ”οΏ½π‘₯π‘’βˆ’

32𝑑𝑑𝑑�

∼ 𝑐𝑒34π‘₯ exp οΏ½πœ”οΏ½

π‘₯π‘’βˆ’

32𝑑𝑑𝑑� (2)

We see that (1,2) are the same. Verified OK. Notice that in (1), we use the approximation for

the π‘’βˆ’32π‘₯𝑑π‘₯ β‰ˆ 2π‘₯2

3 π‘’βˆ’ 32π‘₯ we found earlier. This was done, since there is no closed form solution

for the integral.

QED.

3.2.6 problem 3.42(a)

Problem: Extend investigation of example 1 of section 3.5 (a) Obtain the next few correctionsto the leading behavior (3.5.5) then see how including these terms improves the numerical

93

Page 98: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

approximation of 𝑦 (π‘₯) in 3.5.1.

Solution Example 1 at page 90 is π‘₯𝑦′′ + 𝑦′ = 𝑦. The leading behavior is given by 3.5.5 as(π‘₯ β†’ ∞)

𝑦 (π‘₯) ∼ 𝑐π‘₯βˆ’14 𝑒2π‘₯

12 (3.5.5)

Where the book gives 𝑐 = 12πœ‹

βˆ’12 on page 91. And 3.5.1 is

𝑦 (π‘₯) =βˆžοΏ½π‘›=0

π‘₯𝑛

(𝑛!)2(3.5.1)

To see the improvement, the book method is followed. This is described at end of page 91.This is done by plotting the leading behavior as ratio to 𝑦 (π‘₯) as given in 3.5.1. Hence forthe above leading behavior, we need to plot

12πœ‹

βˆ’12 π‘₯

βˆ’14 𝑒2π‘₯

12

𝑦 (π‘₯)We are given 𝑆0 (π‘₯) , 𝑆1 (π‘₯) in the problem. They are

𝑆0 (π‘₯) = 2π‘₯12

𝑆1 (π‘₯) = βˆ’14

ln π‘₯ + 𝑐

Hence

𝑆′0 (π‘₯) = π‘₯βˆ’12

𝑆′′0 =βˆ’12π‘₯βˆ’

32

𝑆′1 (π‘₯) = βˆ’141π‘₯

𝑆′′1 (π‘₯) =14π‘₯2

(1)

We need to find 𝑆2 (π‘₯) , 𝑆3 (π‘₯) ,β‹― to see that this will improve the solution 𝑦 (π‘₯) ∼ exp (𝑆0 + 𝑆1 + 𝑆2 +β‹―)as π‘₯ β†’ π‘₯0 compared to just using leading behavior 𝑦 (π‘₯) ∼ exp (𝑆0 + 𝑆1). So now we need tofind 𝑆2 (π‘₯)

Let 𝑦 (π‘₯) = 𝑒𝑆, then the ODE becomes

π‘₯ �𝑆′′ + (𝑆′)2οΏ½ + 𝑆′ = 1

Replacing 𝑆 by 𝑆0 (π‘₯) + 𝑆1 (π‘₯) + 𝑆2 (π‘₯) in the above gives

(𝑆0 + 𝑆1 + 𝑆2)β€²β€² + οΏ½(𝑆0 + 𝑆1 + 𝑆2)

β€²οΏ½2+1π‘₯(𝑆0 + 𝑆1 + 𝑆2)

β€² ∼1π‘₯

�𝑆′′0 + 𝑆′′1 + 𝑆′′2 οΏ½ + ��𝑆′0 + 𝑆′1 + 𝑆′2οΏ½οΏ½2+1π‘₯�𝑆′0 + 𝑆′1 + 𝑆′2οΏ½ ∼

1π‘₯

�𝑆′′0 + 𝑆′′1 + 𝑆′′2 οΏ½ + ��𝑆′0οΏ½2+ 2𝑆′0𝑆′1 + 2𝑆′0𝑆′2 + �𝑆′1οΏ½

2+ 2𝑆′1𝑆′2 + �𝑆′2οΏ½

2οΏ½ +

1π‘₯�𝑆′0 + 𝑆′1 + 𝑆′2οΏ½ ∼

1π‘₯

Moving all known quantities to the RHS, these are 𝑆′′0 , 𝑆′′1 , �𝑆′0οΏ½2, 2𝑆′0𝑆′1, 𝑆′0, 𝑆′1, �𝑆′1οΏ½

2then the

94

Page 99: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

above reduces to

�𝑆′′2 οΏ½ + οΏ½+2𝑆′0𝑆′2 + 2𝑆′1𝑆′2 + �𝑆′2οΏ½2οΏ½ +

1π‘₯�𝑆′2οΏ½ ∼

1π‘₯βˆ’ 𝑆′′0 βˆ’ 𝑆′′1 βˆ’ �𝑆′0οΏ½

2βˆ’ 2𝑆′0𝑆′1 βˆ’

1π‘₯𝑆′0 βˆ’

1π‘₯𝑆′1 βˆ’ �𝑆′1οΏ½

2

Replacing known terms, by using (1) into the above gives

�𝑆′′2 οΏ½ + οΏ½2𝑆′0𝑆′2 + 2𝑆′1𝑆′2 + �𝑆′2οΏ½2οΏ½ +

1π‘₯�𝑆′2οΏ½ ∼

1π‘₯+12π‘₯βˆ’

32 βˆ’

14π‘₯2

βˆ’ οΏ½π‘₯βˆ’12 οΏ½

2βˆ’ 2 οΏ½π‘₯

βˆ’12 οΏ½ οΏ½βˆ’

141π‘₯οΏ½βˆ’1π‘₯οΏ½π‘₯

βˆ’12 οΏ½ βˆ’

1π‘₯ οΏ½βˆ’141π‘₯οΏ½βˆ’ οΏ½βˆ’

141π‘₯οΏ½

2

Simplifying gives

�𝑆′′2 οΏ½ + οΏ½2𝑆′0𝑆′2 + 2𝑆′1𝑆′2 + �𝑆′2οΏ½2οΏ½ +

1π‘₯�𝑆′2οΏ½ ∼

1π‘₯+12π‘₯βˆ’

32 βˆ’

14π‘₯2

βˆ’ π‘₯βˆ’1 +12π‘₯βˆ’32 βˆ’ π‘₯

βˆ’32 +

141π‘₯2βˆ’116

1π‘₯2

Hence

�𝑆′′2 οΏ½ + οΏ½2𝑆′0𝑆′2 + 2𝑆′1𝑆′2 + �𝑆′2οΏ½2οΏ½ +

1π‘₯�𝑆′2οΏ½ ∼ βˆ’

116

1π‘₯2

Lets assume now that

2𝑆′0𝑆′2 ∼ βˆ’116

1π‘₯2

(2)

Therefore

𝑆′2 ∼ βˆ’132

1𝑆′0π‘₯2

∼ βˆ’132

1

οΏ½π‘₯βˆ’12 οΏ½ π‘₯2

∼ βˆ’132π‘₯βˆ’32

We can now verify this before solving the ODE. We need to check that (as π‘₯ β†’ ∞)

2𝑆′0𝑆′2 β‹™ 𝑆′′22𝑆′0𝑆′2 β‹™ 2𝑆′1𝑆′2

2𝑆′0𝑆′2 β‹™ �𝑆′2οΏ½2

2𝑆′0𝑆′2 β‹™1π‘₯𝑆′2

Where 𝑆′′2 ∼ π‘₯βˆ’52 , Hence

2𝑆′0𝑆′2 β‹™ 𝑆′′2

π‘₯βˆ’12 οΏ½π‘₯

βˆ’32 οΏ½ β‹™ π‘₯

βˆ’52

π‘₯βˆ’2 β‹™ π‘₯βˆ’52

95

Page 100: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes.

2𝑆′0𝑆′2 β‹™ 2𝑆′1𝑆′2

π‘₯βˆ’2 β‹™ οΏ½1π‘₯οΏ½οΏ½π‘₯

βˆ’32 οΏ½

π‘₯βˆ’2 β‹™ π‘₯βˆ’52

Yes

2𝑆′0𝑆′2 β‹™ �𝑆′2οΏ½2

π‘₯βˆ’2 β‹™ οΏ½π‘₯βˆ’32 οΏ½

2

π‘₯βˆ’2 β‹™ π‘₯βˆ’3

Yes

2𝑆′0𝑆′2 β‹™1π‘₯𝑆′2

π‘₯βˆ’2 β‹™1π‘₯π‘₯βˆ’32

π‘₯βˆ’2 β‹™ π‘₯βˆ’52

Yes. All assumptions are verified. Therefore we can g ahead and solve for 𝑆2 using (2)

2𝑆′0𝑆′2 ∼ βˆ’116

1π‘₯2

𝑆′2 ∼ βˆ’132

1π‘₯2

1𝑆′0

∼ βˆ’132

1π‘₯2

1

π‘₯βˆ’12

∼ βˆ’132

1

π‘₯32

Hence

𝑆2 ∼116

1

√π‘₯

The leading behavior now is

𝑦 (π‘₯) ∼ exp (𝑆0 + 𝑆1 + 𝑆2)

∼ exp οΏ½2π‘₯12 βˆ’

14

ln π‘₯ + 𝑐 + 116

1

√π‘₯οΏ½

Now we will find 𝑆3. From

π‘₯ �𝑆′′ + (𝑆′)2οΏ½ + 𝑆′ = 1

96

Page 101: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Replacing 𝑆 by 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 in the above gives

(𝑆0 + 𝑆1 + 𝑆2 + 𝑆3)β€²β€² + οΏ½(𝑆0 + 𝑆1 + 𝑆2 + 𝑆3)

β€²οΏ½2+1π‘₯(𝑆0 + 𝑆1 + 𝑆2 + 𝑆3)

β€² ∼1π‘₯

�𝑆′′0 + 𝑆′′1 + 𝑆′′2 + 𝑆′′3 οΏ½ + ��𝑆′0 + 𝑆′1 + 𝑆′2 + 𝑆′3οΏ½οΏ½2+1π‘₯�𝑆′0 + 𝑆′1 + 𝑆′2 + 𝑆′3οΏ½ ∼

1π‘₯

Hence

�𝑆′′0 + 𝑆′′1 + 𝑆′′2 + 𝑆′′3 οΏ½ +

��𝑆′0οΏ½2+ 2𝑆′0𝑆′1 + 2𝑆′0𝑆′2 + 2𝑆′1𝑆′2 + �𝑆′1οΏ½

2+ �𝑆′2οΏ½

2+ 2𝑆′0𝑆′3 + 2𝑆′1𝑆′3 + 2𝑆′2𝑆′3 + �𝑆′3οΏ½

2οΏ½

+1π‘₯�𝑆′0 + 𝑆′1 + 𝑆′2 + 𝑆′3οΏ½ ∼

1π‘₯

Moving all known quantities to the RHS gives

�𝑆′′3 οΏ½ + οΏ½2𝑆′0𝑆′3 + 2𝑆′1𝑆′3 + 2𝑆′2𝑆′3 + �𝑆′3οΏ½2οΏ½ +

1π‘₯�𝑆′3οΏ½

∼1π‘₯βˆ’ 𝑆′′0 βˆ’ 𝑆′′1 βˆ’ 𝑆′′2 βˆ’ �𝑆′0οΏ½

2βˆ’ 2𝑆′0𝑆′1 βˆ’ 2𝑆′0𝑆′2 βˆ’ 2𝑆′1𝑆′2 βˆ’ �𝑆′1οΏ½

2βˆ’ �𝑆′2οΏ½

2βˆ’1π‘₯𝑆′0 βˆ’

1π‘₯𝑆′1 βˆ’

1π‘₯𝑆′2 (3)

Now we will simplify the RHS, since it is all known. Using

𝑆′0 (π‘₯) = π‘₯βˆ’12

�𝑆′0οΏ½2= π‘₯βˆ’1

𝑆′′0 =βˆ’12π‘₯βˆ’

32

𝑆′1 (π‘₯) = βˆ’141π‘₯

�𝑆′1 (π‘₯)οΏ½2=116

1π‘₯2

𝑆′′1 (π‘₯) =14π‘₯2

𝑆′2 (π‘₯) = βˆ’132

1

π‘₯32

�𝑆′2 (π‘₯)οΏ½2=

11024π‘₯3

𝑆′′2 (π‘₯) =364

1

π‘₯52

2𝑆′0𝑆′1 = 2 οΏ½π‘₯βˆ’12 οΏ½ οΏ½βˆ’

141π‘₯οΏ½= βˆ’

121

π‘₯32

2𝑆′0𝑆′2 = 2 οΏ½π‘₯βˆ’12 οΏ½βŽ›βŽœβŽœβŽœβŽœβŽβˆ’

132

1

π‘₯32

⎞⎟⎟⎟⎟⎠ = βˆ’

116π‘₯2

2𝑆′1𝑆′2 = 2 οΏ½βˆ’141π‘₯οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽβˆ’

132

1

π‘₯32

⎞⎟⎟⎟⎟⎠ =

1

64π‘₯52

97

Page 102: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Hence (3) becomes

�𝑆′′3 οΏ½ + οΏ½2𝑆′0𝑆′3 + 2𝑆′1𝑆′3 + 2𝑆′2𝑆′3 + �𝑆′3οΏ½2οΏ½ +

1π‘₯�𝑆′3οΏ½ ∼

1π‘₯+

1

2π‘₯32

βˆ’14π‘₯2

βˆ’364

1

π‘₯52

βˆ’1π‘₯+121

π‘₯32

+1

16π‘₯2βˆ’

1

64π‘₯52

βˆ’116

1π‘₯2βˆ’

11024π‘₯3

βˆ’1

π‘₯32

+141π‘₯2+132

1

π‘₯52

Simplifying gives

�𝑆′′3 οΏ½ + οΏ½2𝑆′0𝑆′3 + 2𝑆′1𝑆′3 + 2𝑆′2𝑆′3 + �𝑆′3οΏ½2οΏ½ +

1π‘₯�𝑆′3οΏ½ ∼ βˆ’

βŽ›βŽœβŽœβŽœβŽœβŽ

32

1024π‘₯52

+1

1024π‘₯3

⎞⎟⎟⎟⎟⎠

Let us now assume that

𝑆′0𝑆′3 β‹™ 𝑆′1𝑆′3𝑆′0𝑆′3 β‹™ 𝑆′2𝑆′3

𝑆′0𝑆′3 β‹™ �𝑆′3οΏ½2

𝑆′0𝑆′3 β‹™1π‘₯�𝑆′3οΏ½

𝑆′0𝑆′3 β‹™ 𝑆′′3Therefore, we end up with the balance

2𝑆′0𝑆′3 ∼ βˆ’βŽ›βŽœβŽœβŽœβŽœβŽ

32

1024π‘₯52

+1

1024π‘₯3

⎞⎟⎟⎟⎟⎠

𝑆′3 ∼ βˆ’

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

32

1024π‘₯52𝑆′0

+1

1024π‘₯3𝑆′0

⎞⎟⎟⎟⎟⎟⎠

∼ βˆ’

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

32

1024π‘₯52 οΏ½π‘₯

βˆ’12 οΏ½

+1

1024π‘₯3 οΏ½π‘₯βˆ’12 οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ βˆ’βŽ›βŽœβŽœβŽœβŽœβŽ1

32π‘₯2+

1

1024π‘₯52

⎞⎟⎟⎟⎟⎠

Hence

𝑆3 ∼1

1024οΏ½ 232π‘₯2 +

32π‘₯οΏ½

Where constant of integration was ignored. Let us now verify the assumptions made

𝑆′0𝑆′3 β‹™ 𝑆′1𝑆′3𝑆′0 β‹™ 𝑆′1

Yes.

𝑆′0𝑆′3 β‹™ 𝑆′2𝑆′3𝑆′0 β‹™ 𝑆′2

98

Page 103: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes

𝑆′0𝑆′3 β‹™ �𝑆′3οΏ½2

𝑆′0 β‹™ 𝑆′3Yes.

𝑆′0𝑆′3 β‹™1π‘₯�𝑆′3οΏ½

𝑆′0 β‹™1π‘₯

π‘₯βˆ’12 β‹™

1π‘₯

Yes, as π‘₯ β†’ ∞, and finally

𝑆′0𝑆′3 β‹™ 𝑆′′3

π‘₯βˆ’12

βŽ›βŽœβŽœβŽœβŽœβŽ1

32π‘₯2+

1

1024π‘₯52

⎞⎟⎟⎟⎟⎠ β‹™

βŽ›βŽœβŽœβŽœβŽœβŽ

5

2048π‘₯72

+1

16π‘₯3

⎞⎟⎟⎟⎟⎠

οΏ½32√π‘₯ + 1οΏ½1024π‘₯3

β‹™128√π‘₯ + 5

2048π‘₯72

Yes, as π‘₯ β†’ ∞. All assumptions verified. The leading behavior now is

𝑦 (π‘₯) ∼ exp (𝑆0 + 𝑆1 + 𝑆2 + 𝑆3)

∼ exp οΏ½2π‘₯12 βˆ’

14

ln π‘₯ + 𝑐 + 116

1

√π‘₯+

11024 οΏ½

232π‘₯2

+32π‘₯ οΏ½οΏ½

∼ 𝑐π‘₯βˆ’14 exp οΏ½2π‘₯

12 +

116

1

√π‘₯+

11024 οΏ½

232π‘₯2

+32π‘₯ οΏ½οΏ½

Now we will show how adding more terms to leading behavior improved the 𝑦 (π‘₯) solutionfor large π‘₯. When plotting the solutions, we see that exp(𝑆0+𝑆1+𝑆2+𝑆3)

𝑦(π‘₯) approached the ratio

1 sooner than exp(𝑆0+𝑆1+𝑆2)𝑦(π‘₯) and this in turn approached the ratio 1 sooner than just using

exp(𝑆0+𝑆1)𝑦(π‘₯) . So the eοΏ½ect of adding more terms, is that the solution becomes more accurate

for larger range of π‘₯ values. Below is the code used and the plot generated.

99

Page 104: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

ClearAll[y, x];

s0[x_] :=

1

2 Pi12

Exp2 x12

y[x, 300];

s0s1[x_] :=

1

2 Pi12

Exp2 x12 -

1

4Log[x]

y[x, 300];

s0s1s2[x_] :=

1

2 Pi12

Exp2 x12 -

1

4Log[x] +

1

16

1

Sqrt[x]

y[x, 300];

s0s1s2s3[x_] :=

1

2 Pi12

Exp2 x12 -

1

4Log[x] +

1

16

1

Sqrt[x]+

1

1024

2

32 x2+

32

x

y[x, 300];

y[x_, max_] := Sum[ x^n / (Factorial[n]^2), {n, 0, max}];

LogLinearPlot[Evaluate[{s0s1[x], s0s1s2[x], s0s1s2s3[x]}], {x, 1, 30},

PlotRange β†’ All, Frame β†’ True, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

PlotLegends β†’ {"exp(S0+S1)", "exp(S0+S1+S2)", "exp(S0+S1+S2+S3)"},

FrameLabel β†’ {{None, None}, {"x", "Showing improvement as more terms are added"}},

PlotStyle β†’ {Red, Blue, Black}, BaseStyle β†’ 14]

Out[59]=

1 2 5 10 20

0.92

0.94

0.96

0.98

1.00

x

Showing improvement as more terms are added

exp(S0+S1)

exp(S0+S1+S2)

exp(S0+S1+S2+S3)

100

Page 105: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.7 problem 3.49(c)

Problem Find the leading behavior as π‘₯ β†’ ∞ of the general solution of 𝑦′′ + π‘₯𝑦 = π‘₯5

Solution This is non-homogenous ODE. We solve this by first finding the homogenoussolution (asymptotic solution) and then finding particular solution. Hence we start with

π‘¦β€²β€²β„Ž + π‘₯π‘¦β„Ž = 0

π‘₯ = ∞ is ISP point. Therefore, we assume π‘¦β„Ž (π‘₯) = 𝑒𝑆(π‘₯) and obtain

𝑆′′ + (𝑆′)2 + π‘₯ = 0 (1)

Let

𝑆 (π‘₯) = 𝑆0 + 𝑆1 +β‹―

Therefore (1) becomes

�𝑆′′0 + 𝑆′′1 +β‹―οΏ½ + �𝑆′0 + 𝑆′1 +β‹―οΏ½2= βˆ’π‘₯

�𝑆′′0 + 𝑆′′1 +β‹―οΏ½ + ��𝑆′0οΏ½2+ 2𝑆′0𝑆′1 + �𝑆′1οΏ½

2+β‹―οΏ½ = βˆ’π‘₯ (2)

Assuming �𝑆′0οΏ½2β‹™ 𝑆′′0 we obtain

�𝑆′0οΏ½2∼ βˆ’π‘₯

𝑆′0 ∼ πœ”βˆšπ‘₯

Where πœ” = ±𝑖

Verification

�𝑆′0οΏ½2β‹™ 𝑆′′0

π‘₯ β‹™121

√π‘₯Yes, as π‘₯ β†’ ∞. Hence

𝑆0 ∼32πœ”π‘₯

32

Now we will find 𝑆1. From (2), and moving all known terms to RHS

�𝑆′′1 +β‹―οΏ½ + οΏ½2𝑆′0𝑆′1 + �𝑆′1οΏ½2+β‹―οΏ½ ∼ βˆ’π‘₯ βˆ’ 𝑆′′0 βˆ’ �𝑆′0οΏ½

2(3)

Assuming

2𝑆′0𝑆′1 β‹™ 𝑆′′1

2𝑆′0𝑆′1 β‹™ �𝑆′1οΏ½2

101

Page 106: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Then (3) becomes (where 𝑆′0 ∼ πœ”βˆšπ‘₯, �𝑆′0οΏ½2∼ βˆ’π‘₯, 𝑆′′0 ∼ 1

2πœ”1

√π‘₯)

2𝑆′0𝑆′1 ∼ βˆ’π‘₯ βˆ’ 𝑆′′0 βˆ’ �𝑆′0οΏ½2

𝑆′1 βˆΌβˆ’π‘₯ βˆ’ 𝑆′′0 βˆ’ �𝑆′0οΏ½

2

2𝑆′0

βˆΌβˆ’π‘₯ βˆ’ 1

2πœ”1

√π‘₯βˆ’ (βˆ’π‘₯)

2πœ”βˆšπ‘₯

∼ βˆ’14π‘₯

Verification (where 𝑆′′1 ∼ 141π‘₯2 )

2𝑆′0𝑆′1 β‹™ 𝑆′′1

√π‘₯ οΏ½14π‘₯οΏ½

β‹™141π‘₯2

1

π‘₯12

β‹™1π‘₯2

Yes, as π‘₯ β†’ ∞

2𝑆′0𝑆′1 β‹™ �𝑆′1οΏ½2

1

π‘₯12

β‹™ οΏ½14π‘₯οΏ½

2

1

π‘₯12

β‹™1

16π‘₯2

Yes, as π‘₯ β†’ ∞. All validated. We solve for 𝑆1

𝑆′1 ∼ βˆ’14π‘₯

𝑆1 ∼ βˆ’14

ln π‘₯ + 𝑐

π‘¦β„Ž is found. It is given by

π‘¦β„Ž (π‘₯) ∼ exp (𝑆0 (π‘₯) + 𝑆1 (π‘₯))

∼ exp οΏ½32πœ”π‘₯

32 βˆ’

14

ln π‘₯ + 𝑐�

∼ 𝑐π‘₯βˆ’14 exp οΏ½

32πœ”π‘₯

32 οΏ½

Now that we have found π‘¦β„Ž, we go back and look at

𝑦′′ + π‘₯𝑦 = π‘₯5

And consider two cases (a) 𝑦′′ ∼ π‘₯5 (b) π‘₯𝑦 ∼ π‘₯5. The case of 𝑦′′ ∼ π‘₯𝑦 was covered above.This is what we did to find π‘¦β„Ž (π‘₯).

102

Page 107: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

case (a)

𝑦′′𝑝 ∼ π‘₯5

𝑦′𝑝 ∼15π‘₯4

𝑦𝑝 ∼120π‘₯3

Where constants of integration are ignored since subdominant for π‘₯ β†’ ∞. Now we check ifthis case is valid.

π‘₯𝑦𝑝 β‹˜ π‘₯5

π‘₯120π‘₯3 β‹˜ π‘₯5

π‘₯4 β‹˜ π‘₯5

No. Therefore case (a) did not work out. We try case (b) now

π‘₯𝑦𝑝 ∼ π‘₯5

𝑦𝑝 ∼ π‘₯4

Now we check is this case is valid.

𝑦′′𝑝 β‹˜ π‘₯5

12π‘₯2 β‹˜ π‘₯5

Yes. Therefore, we found

𝑦𝑝 ∼ π‘₯4

Hence the complete asymptotic solution is

𝑦 (π‘₯) ∼ π‘¦β„Ž (π‘₯) + 𝑦𝑝 (π‘₯)

∼ 𝑐π‘₯βˆ’14 exp οΏ½

32πœ”π‘₯

32 οΏ½ + π‘₯4

103

Page 108: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8 key solution of selected problems

3.2.8.1 section 3 problem 27

104

Page 109: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

105

Page 110: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

106

Page 111: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

107

Page 112: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.2 section 3 problem 33 b

NEEP 548: Engineering Analysis II 2/6/2011

Problem 3.33: Bender & Orszag

Instructor: Leslie Smith

1 Problem Statement

Find the leading behavoir of the following equation as x β†’ 0+:

x4yβ€²β€²β€² βˆ’ 3x2yβ€² + 2y = 0 (1)

2 Solution

Need to make the substitution: y = eS(x)

yβ€² = Sβ€²eS(x)

yβ€²β€² = Sβ€²β€²eS(x) + (Sβ€²)2eS(x)

yβ€²β€²β€² = Sβ€²β€²β€²eS(x) + 3Sβ€²β€²Sβ€²eS(x) + (Sβ€²)3eS(x)

After substituting and diving through by y, one obtains,

Sβ€²β€²β€² + 3Sβ€²β€²Sβ€² + (Sβ€²)3 βˆ’3

x2Sβ€² +

2

x4∼ 0 (2)

Typically, Sβ€²β€² << (Sβ€²)2 =β‡’ Sβ€²β€²β€² << (Sβ€²)3. Similarly, assume Sβ€²β€²β€² << (Sβ€²)3

With these assumptions, 2 becomes:

(Sβ€²)3 βˆ’3

x2Sβ€²

∼ βˆ’2

x4

which is still a difficult problem to solve. Therefore, also want to assume (Sβ€²)3 >> 3x2S

β€² as x β†’ 0+.Then,

(Sβ€²)3 βˆΌβˆ’2

x4x β†’ 0+

Sβ€²βˆΌ wxβˆ’4/3 x β†’ 0+

w = (βˆ’2)1/3

So(x) ∼ βˆ’3wxβˆ’1/3 x β†’ 0+

Sβ€²β€²βˆΌ βˆ’

4w

3xβˆ’7/3

Sβ€²β€²β€²βˆΌ

28w

9xβˆ’10/3

1

108

Page 113: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Now, check our assumptions,

(Sβ€²)3 ∼ βˆ’2xβˆ’12/3 >> βˆ’3Sβ€²xβˆ’2∼ βˆ’3wxβˆ’10/3 x β†’ 0+ X

(Sβ€²)3 ∼ βˆ’2xβˆ’12/3 >> Sβ€²β€²β€²βˆΌ

28w

9xβˆ’10/3 x β†’ 0+ X

(Sβ€²)3 ∼ βˆ’2xβˆ’12/3 >> Sβ€²β€²Sβ€²βˆΌ

βˆ’4w2

3xβˆ’11/3 x β†’ 0+ X

Now estimate the inegrating function C(x) by letting,

S(x) = So(x) + C(x) (3)

and substitute this into 2.

Sβ€²β€²β€²

o + C β€²β€²β€² + 3 (Sβ€²β€²

o + C β€²β€²)(Sβ€²

o + C β€²)οΈΈ οΈ·οΈ· οΈΈ

term 1

+(Sβ€²

o + C β€²)3οΈΈ οΈ·οΈ· οΈΈ

term 2

βˆ’3

x2(Sβ€²

o + C β€²) +2

x4= 0 (4)

term 1: (Sβ€²β€²

oSβ€²

o +C β€²β€²Sβ€²

o + Sβ€²β€²

oCβ€² + C β€²β€²C β€²)

term 2: (Sβ€²

o)3 + (C β€²)3 + 3(Sβ€²)2C β€² + 3(Sβ€²)(C β€²)2

From here, notice that we have already balanced the terms (Sβ€²

o)3 and βˆ’2

x4 , so they are removedat this point. Now we make the following assumptions:

Sβ€²

o >> C β€², Sβ€²β€²

o >> C β€²β€², Sβ€²β€²β€²

o >> C β€²β€²β€² as x β†’ 0+

These assumptions result in,

Sβ€²β€²β€²

o + 3Sβ€²β€²

oSβ€²

o + 3(Sβ€²

o)2C β€²

∼3Sβ€²

o

x2+

3C β€²

x2x β†’ 0+

Insert the value of So found in the previous step,

28w

9xβˆ’10/3

βˆ’ 4w2xβˆ’11/3 + 3w2xβˆ’8/3C β€²βˆΌ 3wxβˆ’10/3 + 3C β€²xβˆ’6/3

In keeping with the dominant balance idea, it is clear that the middle two terms dominate, thusleading to the following simplified relation,

3w2xβˆ’8/3C β€²βˆΌ 4w2xβˆ’11/3 x β†’ 0+

C β€²βˆΌ

4

3xβˆ’1 x β†’ 0+

C ∼4

3ln(x) x β†’ 0+

Then C β€²β€²βˆΌ

βˆ’43 xβˆ’2, C β€²β€²β€²

∼83x

βˆ’3 and once again, check assumptions made,

2

109

Page 114: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Sβ€²

o ∼ wxβˆ’4/3 >> C β€²βˆΌ

4

3xβˆ’1 x β†’ 0+ X

Sβ€²β€²

o βˆΌβˆ’4

3xβˆ’7/3 >> C β€²β€²

βˆΌβˆ’4

3xβˆ’2 x β†’ 0+ X

Sβ€²β€²β€²

o ∼28w

9xβˆ’10/3 >> C β€²β€²β€²

∼8

3xβˆ’3 x β†’ 0+ X

With the appearance of the ln(x) term, we have likely found the leading behavior already. However,lets find D, the third term, just to check.

Substitute y = e(So+Co+D), then divide by y,

yβ€² = [Sβ€²

o + C β€²

o +Dβ€²]e(So+Co+D)

yβ€²β€² = [Sβ€²β€²

o + C β€²β€²

o +Dβ€²β€²]e(So+Co+D) + [Sβ€²

o + C β€²

o +Dβ€²]2e(So+Co+D)

yβ€²β€²β€² = [Sβ€²β€²β€²

o + C β€²β€²β€²

o +Dβ€²β€²β€²]e(So+Co+D) + 3[Sβ€²β€²

o + C β€²β€²

o +Dβ€²β€²][Sβ€²

o + C β€²

o +Dβ€²]e(So+Co+D) + [Sβ€²

o + C β€²

o +Dβ€²]3e(So+Co+D)

And...here we go...

Sβ€²β€²β€²

o +οΏ½οΏ½C β€²β€²β€²

o +οΏ½οΏ½Dβ€²β€²β€²+3[οΏ½οΏ½οΏ½Sβ€²β€²

oSβ€²

o + Sβ€²β€²

oCβ€²

o +οΏ½οΏ½οΏ½Sβ€²β€²

oDβ€² + C β€²β€²

oSβ€²

o +οΏ½οΏ½οΏ½C β€²β€²

oCβ€²

o +οΏ½οΏ½οΏ½C β€²β€²

oDβ€² +οΏ½οΏ½οΏ½

Dβ€²β€²Sβ€²

o +οΏ½οΏ½οΏ½Dβ€²β€²C β€²

o +οΏ½οΏ½οΏ½Dβ€²β€²Dβ€²]

+οΏ½οΏ½οΏ½οΏ½οΏ½6Sβ€²

oCβ€²

oDβ€² + 3[οΏ½οΏ½οΏ½οΏ½

(Sβ€²

o)2C β€²

o + (Sβ€²

o)2Dβ€² + (C β€²

o)2Sβ€²

oοΈΈ οΈ·οΈ· οΈΈ

Unknown balance

+οΏ½οΏ½οΏ½οΏ½(C β€²

o)2Dβ€² +οΏ½οΏ½οΏ½οΏ½

(Dβ€²)2Sβ€²

o +οΏ½οΏ½οΏ½οΏ½οΏ½(Dβ€²)2C β€²

o] +οΏ½οΏ½οΏ½(Sβ€²

o)3

+οΏ½οΏ½οΏ½(C β€²

o)3 +οΏ½οΏ½οΏ½(Dβ€²)3 βˆ’

3

x2[Sβ€²

o + C β€²

o +Dβ€²] +οΏ½οΏ½οΏ½2

x4= 0

Assumptions: Sβ€²

o >> C β€²

o >> Dβ€², Sβ€²β€²

o >> C β€²β€²

o >> Dβ€²β€², Sβ€²β€²β€²

o >> C β€²β€²β€²

o >> Dβ€²β€²β€² all as x β†’ 0+ and removepreviously balanced terms,

Sβ€²β€²β€²

o + 3Sβ€²β€²

oCβ€²

o + 3C β€²β€²

oSβ€²

o + 3(Sβ€²

o)2Dβ€²

∼ βˆ’3(C β€²

o)Sβ€²

o x β†’ 0+

Subbing in the previously found values for So, Co,

βˆ’3wxβˆ’10/3 +28w

9xβˆ’10/3

βˆ’

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½16w

3xβˆ’10/3

βˆ’ 4wxβˆ’10/3 + 3w2xβˆ’8/3Dβ€²βˆΌοΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βˆ’16w

3xβˆ’10/3

3

110

Page 115: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

βˆ’3w2xβˆ’8/3Dβ€²βˆΌ

35w

9xβˆ’10/3

Dβ€²βˆΌ

35

27wxβˆ’2/3

D ∼35

27w(1

3)x1/3 + d

So since x1/3 β†’ 0 as x β†’ 0+, the leading order behavior is

y ∼ exp[βˆ’w

3xβˆ’1/3 +

4

3ln(x) + d] x β†’ 0+

4

111

Page 116: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.3 section 3 problem 33 c

112

Page 117: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

113

Page 118: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

114

Page 119: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

115

Page 120: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

116

Page 121: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.4 section 3 problem 35

Some notes on BO 3.35 (to get the leading behavior):

β€’ a consistent balance at lowest order seems to be

(S β€²

o)2 ∼ exp(2/x), x β†’ 0

β€’ taking the square root and integrating leads to

So ∼ ±

∫ x

1

exp(1/s)ds

β€’ then change variables s = 1/t to find

So ∼ ±

∫ (1/x)

1

exp(t)

(

βˆ’1

t2

)

dt

β€’ integration by parts gives

So ∼ βˆ“x2 exp(1/x) +Β±ao +βˆ“

∫ (1/x)

1

2

t3exp(t)dt

∼ βˆ“x2 exp(1/x)

and subdominant terms have been dropped. [Why are these terms subdominant andwhy is this the only consistent integration by parts?]

117

Page 122: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.5 section 3 problem 42a

118

Page 123: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

119

Page 124: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

120

Page 125: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

121

Page 126: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

122

Page 127: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

123

Page 128: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3 HW3

3.3.1 problem 9.3 (page 479)

problem (a) show that if π‘Ž (π‘₯) < 0 for 0 ≀ π‘₯ ≀ 1 then the solution to 9.1.7 has boundarylayer at π‘₯ = 1. (b) Find a uniform approximation with error 𝑂 (πœ€) to the solution 9.1.7 whenπ‘Ž (π‘₯) < 0 for 0 ≀ π‘₯ ≀ 1 (c) Show that if π‘Ž (π‘₯) > 0 it is impossible to match to a boundary layerat π‘₯ = 1

solution

3.3.1.1 Part a

Equation 9.1.7 at page 422 is

πœ€π‘¦β€²β€² + π‘Ž (π‘₯) 𝑦′ + 𝑏 (π‘₯) 𝑦 (π‘₯) = 0 (9.1.7)

𝑦 (0) = 𝐴𝑦 (1) = 𝐡

For 0 ≀ π‘₯ ≀ 1. Now we solve for 𝑦𝑖𝑛 (π‘₯), but first we introduce inner variable πœ‰. Weassume boundary layer is at π‘₯ = 0, then show that this leads to inconsistency. Let πœ‰ = π‘₯

πœ€π‘be the inner variable. We express the original ODE using this new variable. We also needto determine 𝑝. Since 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰πœ€

βˆ’π‘. Hence 𝑑𝑑π‘₯ ≑ πœ€

βˆ’π‘ π‘‘π‘‘πœ‰

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½ οΏ½

πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

Therefore 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and (9.1.7) becomes

πœ€πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ π‘Ž (π‘₯) πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ π‘Ž (π‘₯) πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0

The largest terms are οΏ½πœ€1βˆ’2𝑝, πœ€βˆ’π‘οΏ½, therefore balance gives 1 βˆ’ 2𝑝 = βˆ’π‘ or 𝑝 = 1. The ODE nowbecomes

πœ€βˆ’1𝑑2π‘¦π‘‘πœ‰2

+ π‘Ž (π‘₯) πœ€βˆ’1π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0 (1)

Assuming that

𝑦𝑖𝑛 (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

124

Page 129: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And substituting the above into (1) gives

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + π‘Ž (π‘₯) πœ€βˆ’1 �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0 (1A)

Collecting powers of π‘‚οΏ½πœ€βˆ’1οΏ½ terms, gives the ODE to solve for 𝑦𝑖𝑛0 as

𝑦′′0 ∼ βˆ’π‘Ž (π‘₯) 𝑦′0In the rapidly changing region, because the boundary layer is very thin, we can approximateπ‘Ž (π‘₯) by π‘Ž (0). The above becomes

𝑦′′0 ∼ βˆ’π‘Ž (0) 𝑦′0But we are told that π‘Ž (π‘₯) < 0, so π‘Ž (0) < 0, hence βˆ’π‘Ž (0) is positive. Let βˆ’π‘Ž (0) = 𝑛2, to make itmore clear this is positive, then the ODE to solve is

𝑦′′0 ∼ 𝑛2𝑦′0The solution to this ODE is

𝑦0 (πœ‰) ∼𝐢1𝑛2𝑒𝑛2πœ‰ + 𝐢2

Using 𝑦 (0) = 𝐴, then the above gives 𝐴 = 𝐢1𝑛2 + 𝐢2 or 𝐢2 = 𝐴 βˆ’

𝐢1𝑛2 and the ODE becomes

𝑦0 (πœ‰) ∼𝐢1𝑛2𝑒𝑛2πœ‰ + �𝐴 βˆ’

𝐢1𝑛2 οΏ½

∼𝐢1𝑛2�𝑒𝑛2πœ‰ βˆ’ 1οΏ½ + 𝐴

We see from the above solution for the inner layer, that as πœ‰ increases (meaning we aremoving away from π‘₯ = 0), then the solution 𝑦0 (πœ‰) and its derivative is increasing and notdecreasing since 𝑦′0 (πœ‰) = 𝐢1𝑒𝑛

2πœ‰ and 𝑦′′0 (πœ‰) = 𝐢1𝑛2𝑒𝑛2πœ‰.

But this contradicts what we assumed that the boundary layer is at π‘₯ = 0 since we expectthe solution to change less rapidly as we move away from π‘₯ = 0. Hence we conclude that ifπ‘Ž (π‘₯) < 0, then the boundary layer can not be at π‘₯ = 0.

Let us now see what happens by taking the boundary layer to be at π‘₯ = 1. We repeat thesame process as above, but now the inner variable as defined as

πœ‰ =1 βˆ’ π‘₯πœ€π‘

We express the original ODE using this new variable and determine 𝑝. Since 𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then

𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰(βˆ’πœ€βˆ’π‘). Hence 𝑑

𝑑π‘₯ ≑ (βˆ’πœ€βˆ’π‘) 𝑑

π‘‘πœ‰

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½(βˆ’πœ€βˆ’π‘)π‘‘π‘‘πœ‰οΏ½ οΏ½

(βˆ’πœ€βˆ’π‘)π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

125

Page 130: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and equation (9.1.7) becomes

πœ€πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

βˆ’ π‘Ž (π‘₯) πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

βˆ’ π‘Ž (π‘₯) πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0

The largest terms are οΏ½πœ€1βˆ’2𝑝, πœ€βˆ’π‘οΏ½, therefore matching them gives 1 βˆ’ 2𝑝 = βˆ’π‘ or

𝑝 = 1

The ODE now becomes

πœ€βˆ’1𝑑2π‘¦π‘‘πœ‰2

βˆ’ π‘Ž (π‘₯) πœ€βˆ’1π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0 (2)

Assuming that

𝑦𝑖𝑛 (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

And substituting the above into (2) gives

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ βˆ’ π‘Ž (π‘₯) πœ€βˆ’1 �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0 (2A)

Collecting π‘‚οΏ½πœ€βˆ’1οΏ½ terms, gives the ODE to solve for 𝑦𝑖𝑛0 as

𝑦′′0 ∼ π‘Ž (π‘₯) 𝑦′0In the rapidly changing region, 𝛼 = π‘Ž (1), because the boundary layer is very thin, weapproximated π‘Ž (π‘₯) by π‘Ž (1). The above becomes

𝑦′′0 ∼ 𝛼𝑦′0But we are told that π‘Ž (π‘₯) < 0, so 𝛼 < 0, and the above becomes

𝑦′′0 ∼ 𝛼𝑦′0The solution to this ODE is

𝑦0 (πœ‰) ∼𝐢1π›Όπ‘’π›Όπœ‰ + 𝐢2 (3)

Using

𝑦 (π‘₯ = 1) = 𝑦 (πœ‰ = 0)= 𝐡

Then (3) gives 𝐡 = 𝐢1𝛼 + 𝐢2 or 𝐢2 = 𝐡 βˆ’

𝐢1𝛼 and (3) becomes

𝑦0 (πœ‰) ∼𝐢1π›Όπ‘’π›Όπœ‰ + �𝐡 βˆ’

𝐢1𝛼 οΏ½

∼𝐢1π›ΌοΏ½π‘’π›Όπœ‰ βˆ’ 1οΏ½ + 𝐡 (4)

From the above, 𝑦′0 (πœ‰) = βˆ’πΆ1π‘’π›Όπœ‰ and 𝑦′′0 (πœ‰) = 𝐢1π›Όπ‘’π›Όπœ‰. We now see that as that as πœ‰ increases(meaning we are moving away from π‘₯ = 1 towards the left), then the solution 𝑦0 (πœ‰) is actuallychanging less rapidly. This is because 𝛼 < 0. The solution is changing less rapidly as we

126

Page 131: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

move away from the boundary layer as what we expect. Therefore, we conclude that ifπ‘Ž (π‘₯) < 0 then the boundary layer can not be at π‘₯ = 0 and has to be at π‘₯ = 1.

3.3.1.2 Part b

To find uniform approximation, we need now to find π‘¦π‘œπ‘’π‘‘ (π‘₯) and then do the matching. Sincefrom part(a) we concluded that 𝑦𝑖𝑛 is near π‘₯ = 1, then we assume now that π‘¦π‘œπ‘’π‘‘ (π‘₯) is nearπ‘₯ = 0. Let

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Substituting this into (9.1.7) gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + π‘Ž (π‘₯) �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ + 𝑏 (π‘₯) �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0

Collecting terms of 𝑂 (1) gives the ODE

π‘Ž (π‘₯) 𝑦′0 + 𝑏 (π‘₯) 𝑦0 = 0

The solution to this ODE is

𝑦0 (π‘₯) = 𝐢2π‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

Applying 𝑦 (0) = 𝐴 gives

𝐴 = 𝐢2π‘’βˆ’βˆ«

10

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

= 𝐢2𝐸

Where 𝐸 is constant, which is the value of the definite integral 𝐸 = π‘’βˆ’βˆ«10

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠. Hence the

solution π‘¦π‘œπ‘’π‘‘ (π‘₯) can now be written as

π‘¦π‘œπ‘’π‘‘0 (π‘₯) =π΄πΈπ‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

We are now ready to do the matching.

limπœ‰β†’βˆž

𝑦𝑖𝑛 (πœ‰) ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπœ‰β†’βˆž

𝐢1π›ΌοΏ½π‘’π›Όπœ‰ βˆ’ 1οΏ½ + 𝐡 ∼ lim

π‘₯β†’0

π΄πΈπ‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

But since 𝛼 = π‘Ž (1) < 0 then the above simplifies to

βˆ’πΆ1π‘Ž (1)

+ 𝐡 =𝐴𝐸

𝐢1 = βˆ’π‘Ž (1) οΏ½π΄πΈβˆ’ 𝐡�

127

Page 132: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence inner solution becomes

𝑦𝑖𝑛0 (πœ‰) βˆΌβˆ’π‘Ž (1) �𝐴𝐸 βˆ’ 𝐡�

π‘Ž (1)οΏ½π‘’π‘Ž(1)πœ‰ βˆ’ 1οΏ½ + 𝐡

∼ �𝐡 βˆ’π΄πΈ οΏ½

οΏ½π‘’π‘Ž(1)πœ‰ βˆ’ 1οΏ½ + 𝐡

∼ 𝐡 οΏ½π‘’π‘Ž(1)πœ‰ βˆ’ 1οΏ½ βˆ’π΄πΈοΏ½π‘’π‘Ž(1)πœ‰ βˆ’ 1οΏ½ + 𝐡

∼ �𝐡 βˆ’π΄πΈ οΏ½

οΏ½π‘’π‘Ž(1)πœ‰ βˆ’ 1οΏ½ + 𝐡

The uniform solution is

𝑦uniform (π‘₯) ∼ 𝑦𝑖𝑛 (πœ‰) + π‘¦π‘œπ‘’π‘‘ (π‘₯) βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž

∼

𝑦𝑖𝑛

��������������������������������𝐡 βˆ’

𝐴𝐸 �

οΏ½π‘’π‘Ž(1)πœ‰ βˆ’ 1οΏ½ + 𝐡 +

π‘¦π‘œπ‘’π‘‘

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π΄πΈπ‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 βˆ’

𝐴𝐸

Or in terms of π‘₯ only

𝑦uniform (π‘₯) ∼ �𝐡 βˆ’π΄πΈ οΏ½

οΏ½π‘’π‘Ž(1)1βˆ’π‘₯πœ€ βˆ’ 1οΏ½ + 𝐡 +

π΄πΈπ‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 βˆ’

𝐴𝐸

3.3.1.3 Part c

We now assume the boundary layer is at π‘₯ = 1 but π‘Ž (π‘₯) > 0. From part (a), we found thatthe solution for 𝑦𝑖𝑛0 (πœ‰) where boundary layer at π‘₯ = 1 is

𝑦0 (πœ‰) ∼𝐢1π›ΌοΏ½π‘’π›Όπœ‰ βˆ’ 1οΏ½ + 𝐡

But now 𝛼 = π‘Ž (1) > 0 and not negative as before. We also found that π‘¦π‘œπ‘’π‘‘0 (π‘₯) solution was

π‘¦π‘œπ‘’π‘‘0 (π‘₯) =π΄πΈπ‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

Lets now try to do the matching and see what happens

limπœ‰β†’βˆž

𝑦𝑖𝑛 (πœ‰) ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπœ‰β†’βˆž

𝐢1π›ΌοΏ½π‘’π›Όπœ‰ βˆ’ 1οΏ½ + 𝐡 + 𝑂 (πœ€) ∼ lim

π‘₯β†’0

π΄πΈπ‘’βˆ’βˆ«

π‘₯0

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 + 𝑂 (πœ€)

limπœ‰β†’βˆž

𝐢1 οΏ½π‘’π›Όπœ‰

π›Όβˆ’1𝛼�

βˆΌπ΄πΈβˆ’ 𝐡

Since now 𝛼 > 0, then the term on the left blows up, while the term on the right is finite.Not possible to match, unless 𝐢1 = 0. But this means the boundary layer solution is just aconstant 𝐡 and that 𝐴

𝐸 = 𝐡. So the matching does not work in general for arbitrary conditions.This means if π‘Ž (π‘₯) > 0, it is not possible to match boundary layer at π‘₯ = 1.

128

Page 133: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.2 problem 9.4(b)

Problem Find the leading order uniform asymptotic approximation to the solution of

πœ€π‘¦β€²β€² + οΏ½1 + π‘₯2οΏ½ 𝑦′ βˆ’ π‘₯3𝑦 (π‘₯) = 0 (1)

𝑦 (0) = 1𝑦 (1) = 1

For 0 ≀ π‘₯ ≀ 1 in the limit as πœ€ β†’ 0.

solution

Since π‘Ž (π‘₯) = οΏ½1 + π‘₯2οΏ½ is positive, we expect the boundary layer to be near π‘₯ = 0. First we findπ‘¦π‘œπ‘’π‘‘ (π‘₯), which is near π‘₯ = 1. Assuming

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

And substituting this into (1) gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + οΏ½1 + π‘₯2οΏ½ �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ βˆ’ π‘₯3 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0

Collecting terms in 𝑂 (1) gives the ODE

οΏ½1 + π‘₯2οΏ½ 𝑦′0 ∼ π‘₯3𝑦0

The ODE becomes 𝑦′0 ∼π‘₯3

οΏ½1+π‘₯2�𝑦0 with integrating factor πœ‡ = 𝑒

∫ βˆ’π‘₯3

οΏ½1+π‘₯2�𝑑π‘₯. To evaluate ∫ βˆ’π‘₯3

οΏ½1+π‘₯2�𝑑π‘₯,

let 𝑒 = π‘₯2, hence 𝑑𝑒𝑑π‘₯ = 2π‘₯ and the integral becomes

οΏ½βˆ’π‘₯3

οΏ½1 + π‘₯2�𝑑π‘₯ = βˆ’οΏ½

𝑒π‘₯(1 + 𝑒)

𝑑𝑒2π‘₯

= βˆ’12 οΏ½

𝑒(1 + 𝑒)

𝑑𝑒

But

�𝑒

(1 + 𝑒)𝑑𝑒 = οΏ½1 βˆ’

1(1 + 𝑒)

𝑑𝑒

= 𝑒 βˆ’ ln (1 + 𝑒)But 𝑒 = π‘₯2, hence

οΏ½βˆ’π‘₯3

οΏ½1 + π‘₯2�𝑑π‘₯ =

βˆ’12οΏ½π‘₯2 βˆ’ ln οΏ½1 + π‘₯2οΏ½οΏ½

129

Page 134: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore the integrating factor is πœ‡ = exp οΏ½βˆ’12 π‘₯2 + 1

2 ln οΏ½1 + π‘₯2οΏ½οΏ½. The ODE becomes

𝑑𝑑π‘₯οΏ½πœ‡π‘¦0οΏ½ = 0

πœ‡π‘¦0 ∼ 𝑐

π‘¦π‘œπ‘’π‘‘ (π‘₯) ∼ 𝑐 exp οΏ½12π‘₯2 βˆ’

12

ln οΏ½1 + π‘₯2οΏ½οΏ½

∼ 𝑐𝑒12π‘₯

2𝑒lnοΏ½1+π‘₯

2οΏ½βˆ’12

∼ 𝑐𝑒π‘₯22

√1 + π‘₯2To find 𝑐, using boundary conditions 𝑦 (1) = 1 gives

1 = 𝑐𝑒12

√2

𝑐 = √2π‘’βˆ’12

Hence

π‘¦π‘œπ‘’π‘‘0 (π‘₯) ∼ √2𝑒π‘₯2βˆ’12

√1 + π‘₯2

Now we find 𝑦𝑖𝑛 (π‘₯) near π‘₯ = 0. Let πœ‰ = π‘₯πœ€π‘ be the inner variable. We express the original ODE

using this new variable and determine 𝑝. Since 𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰πœ€

βˆ’π‘. Hence 𝑑𝑑π‘₯ ≑ πœ€

βˆ’π‘ π‘‘π‘‘πœ‰

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½ οΏ½

πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

Therefore 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and πœ€π‘¦

β€²β€² + οΏ½1 + π‘₯2οΏ½ 𝑦′ βˆ’ π‘₯3𝑦 (π‘₯) = 0 becomes

πœ€πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ οΏ½1 + (πœ‰πœ€π‘)2οΏ½ πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

βˆ’ (πœ‰πœ€π‘)3 𝑦 = 0

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ οΏ½1 + πœ‰2πœ€2𝑝� πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

βˆ’ πœ‰3πœ€3𝑝𝑦 = 0

The largest terms are οΏ½πœ€1βˆ’2𝑝, πœ€βˆ’π‘οΏ½, therefore matching them gives 1 βˆ’ 2𝑝 = βˆ’π‘ or 𝑝 = 1. TheODE now becomes

πœ€βˆ’1𝑑2π‘¦π‘‘πœ‰2

+ οΏ½1 + πœ‰2πœ€2οΏ½ πœ€βˆ’1π‘‘π‘¦π‘‘πœ‰

βˆ’ πœ‰3πœ€3𝑦 = 0 (2)

130

Page 135: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Assuming that

𝑦𝑖𝑛 (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

And substituting the above into (2) gives

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + οΏ½1 + πœ‰2πœ€2οΏ½ πœ€βˆ’1 �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ βˆ’ πœ‰3πœ€3 �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0 (2A)

Collecting terms in π‘‚οΏ½πœ€βˆ’1οΏ½ gives the ODE

𝑦′′0 (πœ‰) ∼ βˆ’π‘¦β€²0 (πœ‰)

The solution to this ODE is

𝑦𝑖𝑛0 (πœ‰) ∼ 𝑐1 + 𝑐2π‘’βˆ’πœ‰ (3)

Applying 𝑦𝑖𝑛0 (0) = 1 gives

1 = 𝑐1 + 𝑐2𝑐1 = 1 βˆ’ 𝑐2

Hence (3) becomes

𝑦𝑖𝑛0 (πœ‰) ∼ (1 βˆ’ 𝑐2) + 𝑐2π‘’βˆ’πœ‰

∼ 1 + 𝑐2 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½ (4)

Now that we found π‘¦π‘œπ‘’π‘‘ and 𝑦𝑖𝑛, we apply matching to find 𝑐2 in the 𝑦𝑖𝑛 solution.

limπœ‰β†’βˆž

𝑦𝑖𝑛0 (πœ‰) ∼ limπ‘₯β†’0+

π‘¦π‘œπ‘’π‘‘0 (π‘₯)

limπœ‰β†’βˆž

1 + 𝑐2 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½ ∼ limπ‘₯β†’0+

√2𝑒π‘₯2βˆ’12

√1 + π‘₯2

1 βˆ’ 𝑐2 ∼�2𝑒

limπ‘₯β†’0+

𝑒π‘₯22

√1 + π‘₯2

∼�2𝑒

limπ‘₯β†’0+

𝑒π‘₯22

√1 + π‘₯2

=οΏ½2𝑒

Hence

𝑐2 = 1 βˆ’οΏ½2𝑒

131

Page 136: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore the 𝑦𝑖𝑛0 (πœ‰) becomes

𝑦𝑖𝑛0 (πœ‰) ∼ 1 +βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’οΏ½

2𝑒

⎞⎟⎟⎟⎟⎠ �𝑒

βˆ’πœ‰ βˆ’ 1οΏ½

∼ 1 + οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½ βˆ’οΏ½2π‘’οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

∼ π‘’βˆ’πœ‰ βˆ’οΏ½2π‘’οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

∼ π‘’βˆ’πœ‰ βˆ’οΏ½2π‘’π‘’βˆ’πœ‰ +

οΏ½2𝑒

∼ π‘’βˆ’πœ‰βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’οΏ½

2𝑒

⎞⎟⎟⎟⎟⎠ +�

2𝑒

∼ 0.858 + 0.142π‘’βˆ’πœ‰

Therefore, the uniform solution is

π‘¦π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š ∼ 𝑦𝑖𝑛 (π‘₯) + π‘¦π‘œπ‘’π‘‘ (π‘₯) βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž + 𝑂 (πœ€) (4)

Where π‘¦π‘šπ‘Žπ‘‘π‘β„Ž is 𝑦𝑖𝑛 (π‘₯) at the boundary layer matching location. (or π‘¦π‘œπ‘’π‘‘ at same matchinglocation). Hence

π‘¦π‘šπ‘Žπ‘‘π‘β„Ž ∼ 1 βˆ’ 𝑐2

∼ 1 βˆ’βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’οΏ½

2𝑒

⎞⎟⎟⎟⎟⎠

∼�2𝑒

Hence (4) becomes

π‘¦π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š ∼

π‘¦π‘–π‘›οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½π‘’βˆ’πœ‰

βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’οΏ½

2𝑒

⎞⎟⎟⎟⎟⎠ +�

2𝑒+

π‘¦π‘œπ‘’π‘‘οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

√2𝑒π‘₯2βˆ’12

√1 + π‘₯2βˆ’

π‘¦π‘šπ‘Žπ‘‘π‘β„ŽοΏ½

οΏ½2𝑒

∼ π‘’βˆ’π‘₯πœ€

βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’οΏ½

2𝑒

⎞⎟⎟⎟⎟⎠ + √2

𝑒π‘₯2βˆ’12

√1 + π‘₯2+ 𝑂 (πœ€)

This is the leading order uniform asymptotic approximation solution. To verify the result,the numerical solution was plotted against the above solution for πœ€ = {0.1, 0.05, 0.01}. We seefrom these plots that as πœ€ becomes smaller, the asymptotic solution becomes more accuratewhen compared to the numerical solution. This is because the error, which is 𝑂 (πœ€) , becomessmaller. The code used to generate these plots is

132

Page 137: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[180]:= eps = 0.1;

sol = NDSolve[{1 / 100 y''[x] + (1 + x^2) y'[x] - x^3 y[x] β©΅ 0, y[0] β©΅ 1, y[1] β©΅ 1}, y, {x, 0, 1}];

p1 = Plot[Evaluate[y[x] /. sol], {x, 0, 1}, Frame β†’ True,

FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"numberical vs. asymptotic for eps =", eps}]}},

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray];

mysol[x_, eps_] := Exp-x

eps 1 - Sqrt

2

Exp[1] +

Sqrt[2] Exp x2-1

2

Sqrt[1 + x^2];

p2 = Plot[mysol[x, eps], {x, 0, 1}, PlotRange β†’ All, PlotStyle β†’ Red];

Show[Legended[p1, Style["Numerical", Red]], Legended[p2, Style["Asymtotic", Blue]]]

The following are the three plots for each value of πœ€

Out[6]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

numberical vs. asymptotic for eps =0.1

NumericalAsymptotic

Out[12]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

numberical vs. asymptotic for eps =0.05

NumericalAsymptotic

133

Page 138: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Out[17]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

numberical vs. asymptotic for eps =0.01

NumericalAsymptotic

To see the eοΏ½ect on changing πœ€ on only the asymptotic approximation, the following plotgives the approximation solution only as πœ€ changes. We see how the approximation convergesto the numerical solution as πœ€ becomes smaller.

In[236]:= Plot[{mysol[x, .1], mysol[x, .05], mysol[x, .01]}, {x, 0, 1},

PlotLegends β†’ {"∈=0.1", "∈=0.05", "∈=0.01"}, Frame β†’ True,

FrameLabel β†’ {{"y(x)", None}, {"x", "Asymptotic solution as eps changes"}},

BaseStyle β†’ 14]

Out[236]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Asymptotic solution as eps changes

∈=0.1

∈=0.05

∈=0.01

3.3.3 problem 9.6

Problem Consider initial value problem

𝑦′ = οΏ½1 +π‘₯βˆ’2

100�𝑦2 βˆ’ 2𝑦 + 1

With 𝑦 (1) = 1 on the interval 0 ≀ π‘₯ ≀ 1. (a) Formulate this problem as perturbation problemby introducing a small parameter πœ€. (b) Find outer approximation correct to order πœ€ witherrors of order πœ€2. Where does this approximation break down? (c) Introduce inner variableand find the inner solution valid to order 1 (with errors of order πœ€). By matching to the outersolution find a uniform valid solution to 𝑦 (π‘₯) on interval 0 ≀ π‘₯ ≀ 1. Estimate the accuracy of

134

Page 139: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

this approximation. (d) Find inner solution correct to order πœ€ (with errors of order πœ€2) andshow that it matches to the outer solution correct to order πœ€.

solution

3.3.3.1 Part a

Since 1100 is relatively small compared to all other coeοΏ½cients, we replace it with πœ€ and the

ODE becomes

𝑦′ βˆ’ οΏ½1 +πœ€π‘₯2οΏ½ 𝑦2 + 2𝑦 = 1 (1)

3.3.3.2 Part b

Assuming boundary layer is on the left side at π‘₯ = 0. We now solve for π‘¦π‘œπ‘’π‘‘ (π‘₯), which is thesolution near π‘₯ = 1.

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Substituting this into (1) gives

�𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ βˆ’ οΏ½1 +πœ€π‘₯2οΏ½ �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½

2+ 2 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 1

Expanding the above to see more clearly the terms gives

�𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ βˆ’ οΏ½1 +πœ€π‘₯2οΏ½ �𝑦20 + πœ€ οΏ½2𝑦0𝑦1οΏ½ + πœ€2 οΏ½2𝑦0𝑦2 + 𝑦21οΏ½ +β‹―οΏ½ + 2 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 1

(2)

The leading order are those terms of coeοΏ½cient 𝑂 (1). This gives

𝑦′0 βˆ’ 𝑦20 + 2𝑦0 ∼ 1

With boundary conditions 𝑦 (1) = 1.𝑑𝑦0𝑑π‘₯

∼ 𝑦20 βˆ’ 2𝑦0 + 1

This is separable𝑑𝑦0

𝑦20 βˆ’ 2𝑦0 + 1∼ 𝑑π‘₯

𝑑𝑦0�𝑦0 βˆ’ 1οΏ½

2 ∼ 𝑑π‘₯

135

Page 140: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

For 𝑦0 β‰  1. Integrating

�𝑑𝑦0

�𝑦0 βˆ’ 1οΏ½2 βˆΌοΏ½π‘‘π‘₯

βˆ’1𝑦0 βˆ’ 1

∼ π‘₯ + 𝐢

�𝑦0 βˆ’ 1οΏ½ (π‘₯ + 𝐢) ∼ βˆ’1

𝑦0 βˆΌβˆ’1π‘₯ + 𝐢

+ 1 (3)

To find 𝐢, from 𝑦 (1) = 1, we find

1 βˆΌβˆ’11 + 𝐢

+ 1

1 ∼𝐢

1 + 𝐢This is only possible if 𝐢 = ∞. Therefore from (2), we conclude that

𝑦0 (π‘₯) ∼ 1

The above is leading order for the outer solution. Now we repeat everything to find π‘¦π‘œπ‘’π‘‘1 (π‘₯).From (2) above, we now keep all terms with 𝑂 (πœ€) which gives

𝑦′1 βˆ’ 2𝑦0𝑦1 + 2𝑦1 ∼1π‘₯2𝑦20

But we found 𝑦0 (π‘₯) ∼ 1 from above, so the above ODE becomes

𝑦′1 βˆ’ 2𝑦1 + 2𝑦1 ∼1π‘₯2

𝑦′1 ∼1π‘₯2

Integrating gives

𝑦1 (π‘₯) ∼ βˆ’1π‘₯+ 𝐢

The boundary condition now becomes 𝑦1 (1) = 0 (since we used 𝑦 (1) = 1 earlier with 𝑦0).This gives

0 = βˆ’11+ 𝐢

𝐢 = 1

Therefore the solution becomes

𝑦1 (π‘₯) ∼ 1 βˆ’ 1π‘₯

Therefore, the outer solution is

π‘¦π‘œπ‘’π‘‘ (π‘₯) ∼ 𝑦0 + πœ€π‘¦1

136

Page 141: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Or

𝑦 (π‘₯) ∼ 1 + πœ€ οΏ½1 βˆ’ 1π‘₯οΏ½ + 𝑂 οΏ½πœ€2οΏ½

Since the ODE is 𝑦′ βˆ’ οΏ½1 + πœ€π‘₯2οΏ½ 𝑦2 + 2𝑦 = 1, the approximation breaks down when π‘₯ < βˆšπœ€ or

π‘₯ < 110 . Because when π‘₯ < βˆšπœ€, the

πœ€π‘₯2 will start to become large. The term πœ€

π‘₯2 should remainsmall for the approximation to be accurate. The following are plots of the 𝑦0 and 𝑦0 + πœ€π‘¦1solutions (using πœ€ = 1

100 ) showing that with two terms the approximation has improved forthe outer layer, compared to the full solution of the original ODE obtained using CAS. Butthe outer solution breaks down near π‘₯ = 0.1 and smaller as can be seen in these plots. Hereis the solution of the original ODE obtained using CAS

In[46]:= eps =1

100;

ode = y'[x] == 1 +eps

x2 y[x]^2 - 2 y[x] + 1;

sol = y[x] /. First@DSolve[{ode, y[1] β©΅ 1}, y[x], x]

Out[48]=

10 x -12 - 5 6 - 12 x2 65 + 5 6 x

2 65

- 6 - 120 x - 50 6 x + 6 x2 65 - 120 x1+

2 65 + 50 6 x1+

2 65

In[53]:= Plot[sol, {x, 0, 1}, PlotRange β†’ All, Frame β†’ True, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

FrameLabel β†’ {{"y(x)", None}, {"x", "Exact solution to use to compare with"}}, BaseStyle β†’ 14,

PlotStyle β†’ Red, ImageSize β†’ 400]

Out[53]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact solution to use to compare with

In the following plot, the 𝑦0 and the 𝑦0 + πœ€π‘¦1 solutions are superimposed on same figure, toshow how the outer solution has improved when adding another term. But we also noticethat the outer solution 𝑦0+πœ€π‘¦1 only gives good approximation to the exact solution for aboutπ‘₯ > 0.1 and it breaks down quickly as π‘₯ becomes smaller.

137

Page 142: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[164]:= outer1 = 1;

outer2 = 1 + eps * (1 - 1 / x);

p2 = Plot[Callout[outer1, "y0", Scaled[0.1]], {x, 0, 1}, PlotRange β†’ All, Frame β†’ True,

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

FrameLabel β†’ {{"y(x)", None}, {"x", "comparing outer solution y0 with y0+ ∈y1"}},

BaseStyle β†’ 14, PlotStyle β†’ Red, ImageSize β†’ 400];

p3 = Plot[Callout[outer2, "y0+ ∈y1", {Scaled[0.5], Below}], {x, 0.01, 1}, AxesOrigin β†’ {0, 0}];

Show[p2, p3, PlotRange β†’ {{0.01, .5}, {0, 1.2}}]

Out[168]=

y0

y0+ ∈y1

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

y(x)

comparing outer solution y0 with y0+ ∈y1

3.3.3.3 Part c

Now we will obtain solution inside the boundary layer 𝑦𝑖𝑛 (πœ‰) = 𝑦𝑖𝑛0 (πœ‰) + 𝑂 (πœ€). The first stepis to always introduce new inner variable. Since the boundary layer is on the right side, then

πœ‰ =π‘₯πœ€π‘

And then to express the original ODE using this new variable. We also need to determine𝑝 in the above expression. Since the original ODE is 𝑦′ βˆ’ οΏ½1 + πœ€π‘₯βˆ’2οΏ½ 𝑦2 + 2𝑦 = 1, then 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ =

π‘‘π‘¦π‘‘πœ‰(πœ€βˆ’π‘), then the ODE now becomes

π‘‘π‘¦π‘‘πœ‰πœ€βˆ’π‘ βˆ’ οΏ½1 +

πœ€πœ‰πœ€π‘2 οΏ½

𝑦2 + 2𝑦 = 1

π‘‘π‘¦π‘‘πœ‰πœ€βˆ’π‘ βˆ’ οΏ½1 +

πœ€1βˆ’2𝑝

πœ‰2 οΏ½ 𝑦2 + 2𝑦 = 1

Where in the above 𝑦 ≑ 𝑦 (πœ‰). We see that we have οΏ½πœ€βˆ’π‘, πœ€οΏ½1βˆ’2𝑝�� as the two biggest terms to

match. This means βˆ’π‘ = 1 βˆ’ 2𝑝 or

𝑝 = 1

Hence the above ODE becomesπ‘‘π‘¦π‘‘πœ‰πœ€βˆ’1 βˆ’ οΏ½1 +

πœ€βˆ’1

πœ‰2 �𝑦2 + 2𝑦 = 1

138

Page 143: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

We are now ready to replace 𝑦 (πœ‰) with βˆ‘βˆžπ‘›=0 πœ€

𝑛𝑦𝑛 which gives

�𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ πœ€βˆ’1 βˆ’ οΏ½1 +πœ€βˆ’1

πœ‰2 ��𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½

2+ 2 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 1

�𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ πœ€βˆ’1 βˆ’ οΏ½1 +πœ€βˆ’1

πœ‰2 ��𝑦20 + πœ€ οΏ½2𝑦0𝑦1οΏ½ +β‹―οΏ½ + 2 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 1 (3)

Collecting terms with π‘‚οΏ½πœ€βˆ’1οΏ½ gives

𝑦′0 ∼1πœ‰2𝑦20

This is separable

�𝑑𝑦0𝑦20

∼�1πœ‰2π‘‘πœ‰

βˆ’π‘¦βˆ’10 ∼ βˆ’πœ‰βˆ’1 + 𝐢1𝑦0

∼1πœ‰βˆ’ 𝐢

1𝑦0

∼1 βˆ’ πΆπœ‰πœ‰

𝑦𝑖𝑛0 βˆΌπœ‰

1 βˆ’ πœ‰πΆNow we use matching with π‘¦π‘œπ‘’π‘‘ to find 𝐢. We have found before that π‘¦π‘œπ‘’π‘‘0 (π‘₯) ∼ 1 therefore

limπœ‰β†’βˆž

𝑦𝑖𝑛0 (πœ‰) + 𝑂 (πœ€) = limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘0 (π‘₯) + 𝑂 (πœ€)

limπœ‰β†’βˆž

πœ‰1 βˆ’ πœ‰πΆ

= 1 + 𝑂 (πœ€)

limπœ‰β†’βˆž

(βˆ’πΆ) + 𝑂 οΏ½πœ‰βˆ’1οΏ½ + 𝑂 (πœ€) = 1 + 𝑂 (πœ€)

βˆ’πΆ = 1

Therefore

𝑦𝑖𝑛0 (πœ‰) βˆΌπœ‰

1 + πœ‰(4)

Therefore,

π‘¦π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š = 𝑦𝑖𝑛0 + π‘¦π‘œπ‘’π‘‘0 βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž

=

π‘¦π‘–π‘›οΏ½πœ‰1+ πœ‰

+π‘¦π‘œπ‘’π‘‘βž1 βˆ’ 1

Since π‘¦π‘šπ‘Žπ‘‘π‘β„Ž = 1 (this is what limπœ‰β†’βˆž 𝑦𝑖𝑛0 is). Writing everything in π‘₯, using πœ‰ = π‘₯πœ€ the above

becomes

𝑦uniform =π‘₯πœ€

1 + π‘₯πœ€

=π‘₯

πœ€ + π‘₯

139

Page 144: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

The following is a plot of the above, using πœ€ = 1100 to compare with the exact solution.,

In[189]:= y[x_, eps_] :=x

x + eps

p1 = Plot[{exactSol, y[x, 1 / 100]}, {x, 0.02, 1}, PlotRange β†’ All,

Frame β†’ True, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

FrameLabel β†’

{{"y(x)", None},

{"x", "Exact solution vs. uniform solution found. 9.6 part(c)"}},

BaseStyle β†’ 14, PlotStyle β†’ {Red, Blue}, ImageSize β†’ 400,

PlotLegends β†’ {"exact", "uniform approximation"}]

Plot[y[x, 1 / 100], {x, 0, 1}, PlotRange β†’ {{.05, 1}, Automatic}]

Out[190]=

0.0 0.2 0.4 0.6 0.8 1.00.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

x

y(x)

Exact solution vs. uniform solution found. 9.6 part(c)

exact

uniform approximation

3.3.3.4 Part (d)

Now we will obtain 𝑦𝑖𝑛1 solution inside the boundary layer. Using (3) we found in part (c),reproduced here

�𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ πœ€βˆ’1 βˆ’ οΏ½1 +πœ€βˆ’1

πœ‰2 ��𝑦20 + πœ€ οΏ½2𝑦0𝑦1οΏ½ +β‹―οΏ½ + 2 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 1 (3)

But now collecting all terms of order of 𝑂 (1), this results in

𝑦′1 βˆ’ 𝑦20 βˆ’2πœ‰2𝑦0𝑦1 + 2𝑦0 ∼ 1

Using 𝑦𝑖𝑛0 found in part (c) into the above gives

𝑦′1 βˆ’2πœ‰ οΏ½

11 + πœ‰οΏ½

𝑦1 ∼ 1 βˆ’ 2 οΏ½πœ‰

1 + πœ‰οΏ½+ οΏ½

πœ‰1 + πœ‰οΏ½

2

𝑦′1 βˆ’ οΏ½2

πœ‰ (1 + πœ‰)�𝑦1 ∼

1(πœ‰ + 1)2

140

Page 145: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

This can be solved using integrating factor πœ‡ = π‘’βˆ« βˆ’2

πœ‰+πœ‰2π‘‘πœ‰

using partial fractions gives πœ‡ =exp (βˆ’2 ln πœ‰ + 2 ln (1 + πœ‰)) or πœ‡ = 1

πœ‰2(1 + πœ‰)2. Hence we obtain

𝑑𝑑π‘₯οΏ½πœ‡π‘¦1οΏ½ ∼ πœ‡

1(πœ‰ + 1)2

𝑑𝑑π‘₯ οΏ½

1πœ‰2(1 + πœ‰)2 𝑦1οΏ½ ∼

1πœ‰2

Integrating1πœ‰2(1 + πœ‰)2 𝑦1 ∼�

1πœ‰2π‘‘πœ‰

1πœ‰2(1 + πœ‰)2 𝑦1 ∼

βˆ’1πœ‰+ 𝐢2

(1 + πœ‰)2 𝑦1 ∼ βˆ’πœ‰ + πœ‰2𝐢2

𝑦1 βˆΌβˆ’πœ‰ + πœ‰2𝐢2

(1 + πœ‰)2

Therefore, the inner solution becomes

𝑦𝑖𝑛 (πœ‰) = 𝑦0 + πœ€π‘¦1

=πœ‰

1 + πœ‰πΆ1+ πœ€

πœ‰2𝐢2 βˆ’ πœ‰(1 + πœ‰)2

To find 𝐢1, 𝐢2 we do matching with with π‘¦π‘œπ‘’π‘‘ that we found in part (a) which is π‘¦π‘œπ‘’π‘‘ (π‘₯) ∼1 + πœ€ οΏ½1 βˆ’ 1

π‘₯οΏ½

limπœ‰β†’βˆž

οΏ½πœ‰

1 + πœ‰πΆ1+ πœ€

πœ‰2𝐢2 βˆ’ πœ‰(1 + πœ‰)2

οΏ½ ∼ limπ‘₯β†’0

1 + πœ€ οΏ½1 βˆ’1π‘₯οΏ½

Doing long division πœ‰1+πœ‰πΆ1

= 1𝐢1βˆ’ 1

πœ‰πΆ21+ 1

πœ‰2𝐢31+β‹― and πœ‰2𝐢2βˆ’πœ‰

(1+πœ‰)2= 𝐢2 βˆ’

2𝐢2+1πœ‰ βˆ’β‹―, hence the above

becomes

limπœ‰β†’βˆž

��1𝐢1

βˆ’1πœ‰πΆ2

1+

1πœ‰2𝐢3

1+β‹―οΏ½ + οΏ½πœ€πΆ2 βˆ’ πœ€

2𝐢2 + 1πœ‰

+β‹―οΏ½οΏ½ ∼ limπ‘₯β†’0

1 + πœ€ οΏ½1 βˆ’1π‘₯οΏ½

1𝐢1

+ πœ€πΆ2 ∼ limπ‘₯β†’0

1 + πœ€ οΏ½1 βˆ’1π‘₯οΏ½

Using π‘₯ = πœ‰πœ€ on the RHS, the above simplifies to

1𝐢1

+ πœ€πΆ2 ∼ limπœ‰β†’βˆž

1 + πœ€ οΏ½1 βˆ’1πœ‰πœ€οΏ½

∼ limπœ‰β†’βˆž

1 + οΏ½πœ€ βˆ’1πœ‰οΏ½

∼ 1 + πœ€

141

Page 146: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore, 𝐢1 = 1 and 𝐢2 = 1. Hence the inner solution is

𝑦𝑖𝑛 (πœ‰) = 𝑦0 + πœ€π‘¦1

=πœ‰

1 + πœ‰+ πœ€

πœ‰2 βˆ’ πœ‰(1 + πœ‰)2

Therefore

𝑦uniform = 𝑦𝑖𝑛 + π‘¦π‘œπ‘’π‘‘ βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž

=

π‘¦π‘–π‘›οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½πœ‰1 + πœ‰

+ πœ€πœ‰2 βˆ’ πœ‰(1 + πœ‰)2

+

π‘¦π‘œπ‘’π‘‘οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½1 + πœ€ οΏ½1 βˆ’

1π‘₯οΏ½βˆ’ (1 + πœ€)

Writing everything in π‘₯, using πœ‰ = π‘₯πœ€ the above becomes

𝑦uniform =π‘₯πœ€

1 + π‘₯πœ€

+ πœ€π‘₯2

πœ€2 βˆ’π‘₯πœ€

οΏ½1 + π‘₯πœ€οΏ½2 + 1 + πœ€ οΏ½1 βˆ’

1π‘₯οΏ½βˆ’ (1 + πœ€)

=π‘₯

πœ€ + π‘₯+

π‘₯2 βˆ’ π‘₯πœ€

πœ€ οΏ½1 + π‘₯πœ€οΏ½2 + 1 + πœ€ βˆ’

πœ€π‘₯βˆ’ 1 βˆ’ πœ€

=π‘₯

πœ€ + π‘₯+

π‘₯2 βˆ’ π‘₯πœ€

πœ€ οΏ½1 + π‘₯πœ€οΏ½2 βˆ’

πœ€π‘₯+ 𝑂 οΏ½πœ€2οΏ½

The following is a plot of the above, using πœ€ = 1100 to compare with the exact solution.

In[192]:= y[x_, eps_] :=x

x + eps+

x2 - x eps

eps 1 +x

eps2-eps

x

p1 = Plot[{exactSol, y[x, 1 / 100]}, {x, 0.02, 1}, PlotRange β†’ All, Frame β†’ True,

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

FrameLabel β†’ {{"y(x)", None}, {"x", "Exact solution vs. uniform solution found. 9.6 part(d)"}},

BaseStyle β†’ 14, PlotStyle β†’ {Red, Blue}, ImageSize β†’ 400,

PlotLegends β†’ {"exact", "uniform approximation"}]

Plot[y[x, 1 / 100], {x, 0, 1}, PlotRange β†’ {{.05, 1}, Automatic}]

Out[193]=

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact solution vs. uniform solution found. 9.6 part(d)

exact

uniform approximation

142

Page 147: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Let us check if 𝑦uniform (π‘₯) satisfies 𝑦 (1) = 1 or not.

𝑦uniform (1) =1

πœ€ + 1+

1 βˆ’ πœ€

πœ€ οΏ½1 + 1πœ€οΏ½2 βˆ’ πœ€ + 𝑂 οΏ½πœ€

2οΏ½

=1 βˆ’ πœ€3 βˆ’ 3πœ€2 + πœ€

(πœ€ + 1)2

Taking the limit πœ€ β†’ 0 gives 1. Therefore 𝑦uniform (π‘₯) satisfies 𝑦 (1) = 1.

3.3.4 problem 9.9

problem Use boundary layer methods to find an approximate solution to initial value problem

πœ€π‘¦β€²β€² + π‘Ž (π‘₯) 𝑦′ + 𝑏 (π‘₯) 𝑦 = 0 (1)

𝑦 (0) = 1𝑦′ (0) = 1

And π‘Ž > 0. Show that leading order uniform approximation satisfies 𝑦 (0) = 1 but not 𝑦′ (0) = 1for arbitrary 𝑏. Compare leading order uniform approximation with the exact solution tothe problem when π‘Ž (π‘₯) , 𝑏 (π‘₯) are constants.

Solution

Since π‘Ž (π‘₯) > 0 then we expect the boundary layer to be at π‘₯ = 0. We start by finding π‘¦π‘œπ‘’π‘‘ (π‘₯).

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Substituting this into (1) gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + π‘Ž �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ + 𝑏 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0

Collecting terms with 𝑂 (1) results in

π‘Žπ‘¦β€²0 ∼ βˆ’π‘π‘¦0𝑑𝑦0𝑑π‘₯

∼ βˆ’π‘π‘Žπ‘¦0

This is separable

�𝑑𝑦0𝑦0

∼ βˆ’οΏ½π‘ (π‘₯)π‘Ž (π‘₯)

𝑑π‘₯

ln �𝑦0οΏ½ ∼ βˆ’οΏ½π‘ (π‘₯)π‘Ž (π‘₯)

𝑑π‘₯ + 𝐢

𝑦0 ∼ πΆπ‘’βˆ’βˆ«π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

Now we find 𝑦𝑖𝑛. First we introduce interval variable

πœ‰ =π‘₯πœ€π‘

143

Page 148: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And transform the ODE. Since 𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰πœ€

βˆ’π‘. Hence 𝑑𝑑π‘₯ ≑ πœ€

βˆ’π‘ π‘‘π‘‘πœ‰

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½ οΏ½

πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

Therefore 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and the ODE becomes

πœ€πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ π‘Ž (πœ‰)π‘‘π‘¦π‘‘πœ‰πœ€βˆ’π‘ + 𝑏 (πœ‰) 𝑦 = 0

πœ€1βˆ’2𝑝𝑦′′ + π‘Žπœ€βˆ’π‘π‘¦β€² + 𝑏𝑦 = 0

Balancing 1 βˆ’ 2𝑝 with βˆ’π‘ shows that

𝑝 = 1

Hence

πœ€βˆ’1𝑦′′ + π‘Žπœ€βˆ’1𝑦′ + 𝑏𝑦 = 0

Substituting 𝑦𝑖𝑛 = βˆ‘βˆžπ‘›=0 πœ€

𝑛𝑦𝑛 = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹― in the above gives

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + π‘Žπœ€βˆ’1 �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ + 𝑏 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0

Collecting terms with order π‘‚οΏ½πœ€βˆ’1οΏ½ gives

𝑦′′0 ∼ βˆ’π‘Žπ‘¦β€²0Assuming 𝑧 = 𝑦′0 then the above becomes 𝑧′ ∼ βˆ’π‘Žπ‘§ or 𝑑𝑧

π‘‘πœ‰ ∼ βˆ’π‘Žπ‘§. This is separable. The

solution is 𝑑𝑧𝑧 ∼ βˆ’π‘Žπ‘‘πœ‰ or

ln |𝑧| ∼ βˆ’οΏ½πœ‰

0π‘Ž (𝑠) 𝑑𝑠 + 𝐢1

𝑧 ∼ 𝐢1π‘’βˆ’βˆ«

πœ‰0

π‘Ž(𝑠)𝑑𝑠

Hence𝑑𝑦0π‘‘πœ‰

∼ 𝐢1π‘’βˆ’βˆ«

πœ‰0

π‘Ž(𝑠)𝑑𝑠

𝑑𝑦0 ∼ �𝐢1π‘’βˆ’βˆ«

πœ‰0

π‘Ž(𝑠)𝑑𝑠� π‘‘πœ‰

Integrating again

𝑦𝑖𝑛0 βˆΌοΏ½πœ‰

0�𝐢1𝑒

βˆ’βˆ«πœ‚0

π‘Ž(𝑠)𝑑𝑠� π‘‘πœ‚ + 𝐢2

Applying initial conditions at 𝑦 (0) since this is where the 𝑦𝑖𝑛 exist. Using 𝑦𝑖𝑛 (0) = 1 then theabove becomes

1 = 𝐢2

144

Page 149: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence the solution becomes

𝑦𝑖𝑛0 βˆΌοΏ½πœ‰

0�𝐢1𝑒

βˆ’βˆ«πœ‚0

π‘Ž(𝑠)𝑑𝑠� π‘‘πœ‚ + 1

To apply the second initial condition, which is 𝑦′ (0) = 1, we first take derivative of the abovew.r.t. πœ‰

𝑦′0 ∼ 𝐢1π‘’βˆ’βˆ«

πœ‰0

π‘Ž(𝑠)𝑑𝑠

Applying 𝑦′0 (0) = 1 gives

1 = 𝐢1

Hence

𝑦𝑖𝑛0 ∼ 1 +οΏ½πœ‰

0π‘’βˆ’βˆ«

πœ‚0

π‘Ž(𝑠)π‘‘π‘ π‘‘πœ‚

Now to find constant of integration for π‘¦π‘œπ‘’π‘‘ from earlier, we need to do matching.

limπœ‰β†’βˆž

𝑦𝑖𝑛0 ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘0

limπœ‰β†’βˆž

1 +οΏ½πœ‰

0π‘’βˆ’βˆ«

πœ‚0

π‘Ž(𝑠)π‘‘π‘ π‘‘πœ‚ ∼ limπ‘₯β†’0

πΆπ‘’βˆ’βˆ«π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

On the LHS the integral βˆ«πœ‰

0π‘’βˆ’βˆ«

πœ‚0

π‘Ž(𝑠)π‘‘π‘ π‘‘πœ‚ since π‘Ž > 0 and negative power on the exponential.So as πœ‰ β†’ ∞ the integral value is zero. So we have now

1 ∼ limπ‘₯β†’0

πΆπ‘’βˆ’βˆ«π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

Let limπ‘₯β†’0 π‘’βˆ’βˆ«

π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 β†’ 𝐸, where 𝐸 is the value of the definite integral πΆπ‘’βˆ’βˆ«

01

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠. Another

constant, which if we know π‘Ž (π‘₯) , 𝑏 (π‘₯) we can evaluate. Hence the above gives the value of 𝐢as

𝐢 =1𝐸

The uniform solution can now be written as

𝑦uniform = 𝑦𝑖𝑛 + π‘¦π‘œπ‘’π‘‘ βˆ’ 𝑦match

= 1 +οΏ½πœ‰

0π‘’βˆ’βˆ«

πœ‚0

π‘Ž(𝑠)π‘‘π‘ π‘‘πœ‚ +1πΈπ‘’βˆ’βˆ«

π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 βˆ’ 1

= οΏ½πœ‰

0π‘’βˆ’βˆ«

πœ‚0

π‘Ž(𝑠)π‘‘π‘ π‘‘πœ‚ +1πΈπ‘’βˆ’βˆ«

π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 (2)

Finally, we need to show that 𝑦uniform (0) = 1 but not 𝑦′uniform (0) = 1. From (2), at π‘₯ = 0 whichalso means πœ‰ = 0, since boundary layer at left side, equation (2) becomes

𝑦uniform (0) = 0 +1𝐸

limπ‘₯β†’0

π‘’βˆ’βˆ«π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

But we said that limπ‘₯β†’0 π‘’βˆ’βˆ«

π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠 = 𝐸, therefore

𝑦uniform (0) = 1

145

Page 150: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Now we take derivative of (2) w.r.t. π‘₯ and obtain

𝑦′uniform (π‘₯) =𝑑𝑑π‘₯

βŽ›βŽœβŽœβŽœβŽοΏ½

π‘₯πœ€

0π‘’βˆ’βˆ«

πœ‚0

π‘Ž(𝑠)π‘‘π‘ π‘‘πœ‚βŽžβŽŸβŽŸβŽŸβŽ  +

1𝐸𝑑𝑑π‘₯ οΏ½

π‘’βˆ’βˆ«π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠�

= π‘’βˆ’βˆ«π‘₯πœ€

0π‘Ž(𝑠)𝑑𝑠 βˆ’

1𝐸𝑏 (π‘₯)π‘Ž (π‘₯)

π‘’βˆ’βˆ«π‘₯1

𝑏(𝑠)π‘Ž(𝑠)𝑑𝑠

And at π‘₯ = 0 the above becomes

𝑦′uniform (0) = 1 βˆ’1𝐸𝑏 (0)π‘Ž (0)

The above is zero only if 𝑏 (0) = 0 (since we know π‘Ž (0) > 0). Therefore, we see that𝑦′uniform (0) β‰  1 for any arbitrary 𝑏 (π‘₯). Which is what we are asked to show.

Will now solve the whole problem again, when π‘Ž, 𝑏 are constants.

πœ€π‘¦β€²β€² + π‘Žπ‘¦β€² + 𝑏𝑦 = 0 (1A)

𝑦 (0) = 1𝑦′ (0) = 1

And π‘Ž > 0. And compare leading order uniform approximation with the exact solution tothe problem when π‘Ž (π‘₯) , 𝑏 (π‘₯) are constants. Since π‘Ž > 0 then boundary layer will occur atπ‘₯ = 0. We start by finding π‘¦π‘œπ‘’π‘‘ (π‘₯).

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Substituting this into (1) gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + π‘Ž �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ + 𝑏 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0

Collecting terms with 𝑂 (1) results in

π‘Žπ‘¦β€²0 ∼ βˆ’π‘π‘¦0𝑑𝑦0𝑑π‘₯

∼ βˆ’π‘π‘Žπ‘¦0

This is separable

�𝑑𝑦0𝑦0

∼ βˆ’π‘π‘Žπ‘‘π‘₯

ln �𝑦0οΏ½ ∼ βˆ’π‘π‘Žπ‘₯ + 𝐢

π‘¦π‘œπ‘’π‘‘0 ∼ 𝐢1π‘’βˆ’ π‘π‘Žπ‘₯

Now we find 𝑦𝑖𝑛. First we introduce internal variable πœ‰ =π‘₯πœ€π‘ and transform the ODE as we

did above. This results in

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + π‘Žπœ€βˆ’1 �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ + 𝑏 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0

Collecting terms with order π‘‚οΏ½πœ€βˆ’1οΏ½ gives

𝑦′′0 ∼ βˆ’π‘Žπ‘¦β€²0

146

Page 151: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Assuming 𝑧 = 𝑦′0 then the above becomes 𝑧′ ∼ βˆ’π‘Žπ‘§ or π‘‘π‘§π‘‘πœ‰ ∼ βˆ’π‘Žπ‘§. This is separable. The

solution is 𝑑𝑧𝑧 ∼ βˆ’π‘Žπ‘‘πœ‰ or

ln |𝑧| ∼ βˆ’π‘Žπœ‰ + 𝐸1𝑧 ∼ 𝐸1π‘’βˆ’π‘Žπœ‰

Hence𝑑𝑦0π‘‘πœ‰

∼ 𝐸1π‘’βˆ’π‘Žπœ‰

𝑑𝑦0 ∼ 𝐸1π‘’βˆ’π‘Žπœ‰π‘‘πœ‰

Integrating again

𝑦𝑖𝑛0 ∼ 𝐸1 οΏ½βˆ’1π‘Ž οΏ½

π‘’βˆ’π‘Žπœ‰ + 𝐸2

Applying initial conditions at 𝑦 (0) since this is where the 𝑦𝑖𝑛 exist. Using 𝑦𝑖𝑛 (0) = 1 then theabove becomes

1 = 𝐸1 οΏ½βˆ’1π‘Ž οΏ½

+ 𝐸2

π‘Ž (𝐸2 βˆ’ 1) = 𝐸1Hence the solution becomes

𝑦𝑖𝑛0 ∼ (1 βˆ’ 𝐸2) π‘’βˆ’π‘Žπœ‰ + 𝐸2 (1B)

To apply the second initial condition, which is 𝑦′ (0) = 1, we first take derivative of the abovew.r.t. πœ‰

𝑦′0 ∼ βˆ’π‘Ž (1 βˆ’ 𝐸2) π‘’βˆ’π‘Žπœ‰

Hence 𝑦′ (0) = 1 gives

1 = βˆ’π‘Ž (1 βˆ’ 𝐸2)1 = βˆ’π‘Ž + π‘ŽπΈ2

𝐸2 =1 + π‘Žπ‘Ž

And the solution 𝑦𝑖𝑛 in (1B) becomes

𝑦𝑖𝑛0 ∼ οΏ½1 βˆ’1 + π‘Žπ‘Ž οΏ½ π‘’βˆ’π‘Žπœ‰ +

1 + π‘Žπ‘Ž

∼ οΏ½βˆ’1π‘Ž οΏ½

π‘’βˆ’π‘Žπœ‰ +1 + π‘Žπ‘Ž

∼(1 + π‘Ž) βˆ’ π‘’βˆ’π‘Žπœ‰

π‘Ž

147

Page 152: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Now to find constant of integration for π‘¦π‘œπ‘’π‘‘ (π‘₯) from earlier, we need to do matching.

limπœ‰β†’βˆž

𝑦𝑖𝑛0 ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘0

limπœ‰β†’βˆž

(1 + π‘Ž) βˆ’ π‘’βˆ’π‘Žπœ‰

π‘ŽβˆΌ lim

π‘₯β†’0𝐢1𝑒

βˆ’ π‘π‘Žπ‘₯

1 + π‘Žπ‘Ž

∼ 𝐢1

Hence now the uniform solution can be written as

𝑦uniform (π‘₯) ∼ 𝑦𝑖𝑛 + π‘¦π‘œπ‘’π‘‘ βˆ’ 𝑦match

∼

𝑦𝑖𝑛�����������������(1 + π‘Ž) βˆ’ π‘’βˆ’π‘Ž

π‘₯πœ€

π‘Ž+

π‘¦π‘œπ‘’π‘‘οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½1 + π‘Žπ‘Ž

π‘’βˆ’π‘π‘Žπ‘₯ βˆ’

1 + π‘Žπ‘Ž

∼(1 + π‘Ž)π‘Ž

βˆ’π‘’βˆ’π‘Ž

π‘₯πœ€

π‘Ž+1 + π‘Žπ‘Ž

π‘’βˆ’π‘π‘Žπ‘₯ βˆ’

1 + π‘Žπ‘Ž

∼ βˆ’π‘’βˆ’π‘Ž

π‘₯πœ€

π‘Ž+1 + π‘Žπ‘Ž

π‘’βˆ’π‘π‘Žπ‘₯

∼1π‘ŽοΏ½(1 + π‘Ž) π‘’βˆ’

π‘π‘Žπ‘₯ βˆ’ π‘’βˆ’π‘Ž

π‘₯πœ€ οΏ½ (2A)

Now we compare the above, which is the leading order uniform approximation, to the exactsolution. Since now π‘Ž, 𝑏 are constants, then the exact solution is

𝑦𝑒π‘₯π‘Žπ‘π‘‘ (π‘₯) = π΄π‘’πœ†1π‘₯ + π΅π‘’πœ†2π‘₯ (3)

Where πœ†1,2 are roots of characteristic equation of πœ€π‘¦β€²β€² + π‘Žπ‘¦β€² + 𝑏𝑦 = 0. These are πœ† = βˆ’π‘Ž2πœ€ Β±

12πœ€βˆšπ‘Ž

2 βˆ’ 4πœ€π‘. Hence

πœ†1 =βˆ’π‘Ž2+12βˆšπ‘Ž2 βˆ’ 4πœ€π‘

πœ†2 =βˆ’π‘Ž2βˆ’12βˆšπ‘Ž2 βˆ’ 4πœ€π‘

Applying initial conditions to (3). 𝑦 (0) = 1 gives

1 = 𝐴 + 𝐡𝐡 = 1 βˆ’ 𝐴

And solution becomes 𝑦𝑒π‘₯π‘Žπ‘π‘‘ (π‘₯) = π΄π‘’πœ†1π‘₯ + (1 βˆ’ 𝐴) π‘’πœ†2π‘₯. Taking derivatives gives

𝑦′𝑒π‘₯π‘Žπ‘π‘‘ (π‘₯) = π΄πœ†1π‘’πœ†1π‘₯ + (1 βˆ’ 𝐴) πœ†2π‘’πœ†2π‘₯

Using 𝑦′ (0) = 1 gives

1 = π΄πœ†1 + (1 βˆ’ 𝐴) πœ†21 = 𝐴 (πœ†1 βˆ’ πœ†2) + πœ†2

𝐴 =1 βˆ’ πœ†2πœ†1 βˆ’ πœ†2

148

Page 153: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore, 𝐡 = 1 βˆ’ 1βˆ’πœ†2πœ†1βˆ’πœ†2

and the exact solution becomes

𝑦𝑒π‘₯π‘Žπ‘π‘‘ (π‘₯) =1 βˆ’ πœ†2πœ†1 βˆ’ πœ†2

π‘’πœ†1π‘₯ + οΏ½1 βˆ’1 βˆ’ πœ†2πœ†1 βˆ’ πœ†2

οΏ½ π‘’πœ†2π‘₯

=1 βˆ’ πœ†2πœ†1 βˆ’ πœ†2

π‘’πœ†1π‘₯ + οΏ½(πœ†1 βˆ’ πœ†2) βˆ’ (1 βˆ’ πœ†2)

πœ†1 βˆ’ πœ†2οΏ½ π‘’πœ†2π‘₯

=1 βˆ’ πœ†2πœ†1 βˆ’ πœ†2

π‘’πœ†1π‘₯ + οΏ½πœ†1 βˆ’ 1πœ†1 βˆ’ πœ†2

οΏ½ π‘’πœ†2π‘₯ (4)

While the uniform solution above was found to be 1π‘ŽοΏ½(1 + π‘Ž) π‘’βˆ’

π‘π‘Žπ‘₯ βˆ’ π‘’βˆ’π‘Ž

π‘₯πœ€ οΏ½. Here is a plot

of the exact solution above, for πœ€ = {1/10, 1/50, 1/100} , and for some values for π‘Ž, 𝑏 such asπ‘Ž = 1, 𝑏 = 10 in order to compare with the uniform solution. Note that the uniform solutionis 𝑂 (πœ€). As πœ€ becomes smaller, the leading order uniform solution will better approximatethe exact solution. At πœ€ = 0.01 the uniform approximation gives very good approximation.This is using only leading term approximation.

In[134]:= ClearAll[x, y]

eps = 1/ 10; a = 1; b = 10;

mySol = 1/ a ((1 + a)* Exp[-b/ a x] - Exp[-a x/ eps]);

sol = y[x] /. First@DSolve[{eps y''[x] + a y'[x] + b y[x] β©΅ 0, y[0] β©΅ 1, y'[0] β©΅ 1}, y[x], x]

Out[137]=15β…‡-5 x

5 Cos5 3 x + 2 3 Sin5 3 x

In[125]:= Plot[{sol, mySol}, {x, 0, 1}, PlotRange β†’ All, PlotStyle β†’ {Blue, Red}, PlotLegends β†’ {"Exact", "approximation"},

Frame β†’ True, FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for Ο΅ =", eps}]}},

BaseStyle β†’ 14, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray]

Out[125]=

0.0 0.2 0.4 0.6 0.8 1.0-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact vs. approximation for Ο΅ = 1

10

Exact

approximation

149

Page 154: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[126]:= ClearAll[x, y]

eps = 1/ 50; a = 1; b = 10;

sol = y[x] /. First@DSolve[{eps y''[x] + a y'[x] + b y[x] β©΅ 0, y[0] β©΅ 1, y'[0] β©΅ 1}, y[x], x]

Plot[{sol, mySol}, {x, 0, 1}, PlotRange β†’ All, PlotStyle β†’ {Blue, Red}, PlotLegends β†’ {"Exact", "approximation"},

Frame β†’ True, FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for Ο΅ =", eps}]}},

BaseStyle β†’ 14, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray]

Out[128]=150

25 β…‡-25-5 5 x- 26 5 β…‡

-25-5 5 x+ 25 β…‡-25+5 5 x

+ 26 5 β…‡-25+5 5 x

Out[129]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact vs. approximation for Ο΅ = 1

50

Exact

approximation

In[130]:= ClearAll[x, y]

eps = 1/ 100; a = 1; b = 10;

sol = y[x] /. First@DSolve[{eps y''[x] + a y'[x] + b y[x] β©΅ 0, y[0] β©΅ 1, y'[0] β©΅ 1}, y[x], x]

Plot[{sol, mySol}, {x, 0, 1}, PlotRange β†’ All, PlotStyle β†’ {Blue, Red}, PlotLegends β†’ {"Exact", "approximation"},

Frame β†’ True, FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for Ο΅ =", eps}]}},

BaseStyle β†’ 14, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray]

Out[132]=1100

50 β…‡-50-10 15 x- 17 15 β…‡

-50-10 15 x+ 50 β…‡-50+10 15 x

+ 17 15 β…‡-50+10 15 x

Out[133]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact vs. approximation for Ο΅ = 1

100

Exact

approximation

3.3.5 problem 9.15(b)

Problem Find first order uniform approximation valid as πœ€ β†’ 0+ for 0 ≀ π‘₯ ≀ 1

πœ€π‘¦β€²β€² + οΏ½π‘₯2 + 1οΏ½ 𝑦′ βˆ’ π‘₯3𝑦 = 0 (1)

𝑦 (0) = 1𝑦 (1) = 1

Solution

Since π‘Ž (π‘₯) = οΏ½π‘₯2 + 1οΏ½ is positive for 0 ≀ π‘₯ ≀ 1, therefore we expect the boundary layer to be

150

Page 155: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

on the left side at π‘₯ = 0. Assuming this is the case for now (if it is not, then we expect notto be able to do the matching). We start by finding π‘¦π‘œπ‘’π‘‘ (π‘₯).

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Substituting this into (1) gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + οΏ½π‘₯2 + 1οΏ½ �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ βˆ’ π‘₯3 �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0 (2)

Collecting terms with 𝑂 (1) results inοΏ½π‘₯2 + 1οΏ½ 𝑦′0 ∼ π‘₯3𝑦0

𝑑𝑦0𝑑π‘₯

∼π‘₯3

οΏ½π‘₯2 + 1�𝑦0

This is separable.

�𝑑𝑦0𝑦0

∼�π‘₯3

οΏ½π‘₯2 + 1�𝑑π‘₯

ln �𝑦0οΏ½ ∼�π‘₯ βˆ’π‘₯

1 + π‘₯2𝑑π‘₯

∼π‘₯2

2βˆ’12

ln οΏ½1 + π‘₯2οΏ½ + 𝐢

Hence

𝑦0 ∼ 𝑒π‘₯22 βˆ’ 1

2 lnοΏ½1+π‘₯2οΏ½+𝐢

βˆΌπΆπ‘’

π‘₯22

√1 + π‘₯2

Applying π‘¦π‘œπ‘’π‘‘0 (1) = 1 to the above (since this is where the outer solution is), we solve for 𝐢

1 βˆΌπΆπ‘’

12

√2

𝐢 ∼ √2π‘’βˆ’12

Therefore

π‘¦π‘œπ‘’π‘‘0 ∼ √2π‘’βˆ’12 𝑒

π‘₯22

√1 + π‘₯2

∼�2𝑒

𝑒π‘₯22

√1 + π‘₯2

Now we need to find π‘¦π‘œπ‘’π‘‘1 . From (2), but now collecting terms in 𝑂 (πœ€) gives

𝑦′′0 + οΏ½π‘₯2 + 1οΏ½ 𝑦′1 ∽ π‘₯3𝑦1 (3)

151

Page 156: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In the above 𝑦′′0 is known.

𝑦′0 (π‘₯) = οΏ½2𝑒𝑑𝑑π‘₯

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑒π‘₯22

√1 + π‘₯2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=οΏ½2𝑒

π‘₯3𝑒π‘₯22

οΏ½1 + π‘₯2οΏ½32

And

𝑦′′0 (π‘₯) = οΏ½2𝑒π‘₯2𝑒

π‘₯22 οΏ½π‘₯4 + π‘₯2 + 3οΏ½

οΏ½1 + π‘₯2οΏ½52

Hence (3) becomes

οΏ½π‘₯2 + 1οΏ½ 𝑦′1 ∽ π‘₯3𝑦1 βˆ’ 𝑦′′0

οΏ½π‘₯2 + 1οΏ½ 𝑦′1 ∽ π‘₯3𝑦1 βˆ’οΏ½2𝑒π‘₯2𝑒

π‘₯22 οΏ½π‘₯4 + π‘₯2 + 3οΏ½

οΏ½1 + π‘₯2οΏ½52

𝑦′1 βˆ’π‘₯3

οΏ½π‘₯2 + 1�𝑦1 ∽ βˆ’οΏ½

2𝑒π‘₯2𝑒

π‘₯22 οΏ½π‘₯4 + π‘₯2 + 3οΏ½

οΏ½1 + π‘₯2οΏ½72

Integrating factor is πœ‡ = π‘’βˆ’βˆ« π‘₯3

οΏ½π‘₯2+1�𝑑π‘₯= π‘’βˆ’

π‘₯22 + 1

2 lnοΏ½1+π‘₯2οΏ½ = οΏ½1 + π‘₯2οΏ½12 𝑒

βˆ’π‘₯22 , hence the above becomes

𝑑𝑑π‘₯ οΏ½

οΏ½1 + π‘₯2οΏ½12 𝑒

βˆ’π‘₯22 𝑦1οΏ½ ∽ βˆ’οΏ½

2𝑒�1 + π‘₯2οΏ½

12 𝑒

βˆ’π‘₯22π‘₯2𝑒

π‘₯22 οΏ½π‘₯4 + π‘₯2 + 3οΏ½

οΏ½1 + π‘₯2οΏ½72

∽ βˆ’οΏ½2𝑒π‘₯2 οΏ½π‘₯4 + π‘₯2 + 3οΏ½

οΏ½1 + π‘₯2οΏ½3

Integrating gives (with help from CAS)

οΏ½1 + π‘₯2οΏ½12 𝑒

βˆ’π‘₯22 𝑦1 (π‘₯) ∽ βˆ’οΏ½

2𝑒 οΏ½

π‘₯2 οΏ½π‘₯4 + π‘₯2 + 3οΏ½

οΏ½1 + π‘₯2οΏ½3 𝑑π‘₯

∽ βˆ’οΏ½2𝑒 οΏ½

1 βˆ’3

οΏ½1 + π‘₯2οΏ½3 +

4

οΏ½1 + π‘₯2οΏ½2 βˆ’

21 + π‘₯2

𝑑π‘₯

∽ βˆ’οΏ½2𝑒

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘₯ βˆ’

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 +

7π‘₯8 οΏ½1 + π‘₯2οΏ½

βˆ’ 9arctan (π‘₯)

8

⎞⎟⎟⎟⎟⎟⎟⎠ + 𝐢1

152

Page 157: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence

π‘¦π‘œπ‘’π‘‘1 (π‘₯) ∽ βˆ’οΏ½2𝑒

𝑒π‘₯22

οΏ½1 + π‘₯2οΏ½12

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘₯ βˆ’

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 +

7π‘₯8 οΏ½1 + π‘₯2οΏ½

βˆ’ 9arctan (π‘₯)

8

⎞⎟⎟⎟⎟⎟⎟⎠ + 𝐢1

𝑒π‘₯22

οΏ½1 + π‘₯2οΏ½12

Now we find 𝐢1 from boundary conditions 𝑦1 (1) = 0. (notice the BC now is 𝑦1 (1) = 0 andnot 𝑦1 (1) = 1, since we used 𝑦1 (1) = 1 already).

οΏ½2𝑒

𝑒12

(1 + 1)12οΏ½1 βˆ’

34 (1 + 1)2

+7

8 (1 + 1)βˆ’ 9

arctan (1)8 � = 𝐢1

𝑒12

(1 + 1)12

οΏ½2𝑒𝑒12

√2οΏ½1 βˆ’

316+716βˆ’98

arctan (1)οΏ½ = 𝐢1𝑒12

√2Simplifying

1 βˆ’316+716βˆ’98

arctan (1) = 𝐢1𝑒12

√2

𝐢1 = οΏ½2𝑒 οΏ½54βˆ’98

arctan (1)οΏ½

𝐢1 = οΏ½2𝑒 οΏ½54βˆ’932πœ‹οΏ½

= 0.31431

Hence

π‘¦π‘œπ‘’π‘‘1 ∼ βˆ’οΏ½2𝑒

𝑒π‘₯22

οΏ½οΏ½1 + π‘₯2οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘₯ βˆ’

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 +

7π‘₯8 οΏ½1 + π‘₯2οΏ½

βˆ’98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠ +�

2𝑒 οΏ½54βˆ’932πœ‹οΏ½

𝑒π‘₯22

οΏ½οΏ½1 + π‘₯2οΏ½

∼�2𝑒

𝑒π‘₯22

οΏ½οΏ½1 + π‘₯2οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽοΏ½54βˆ’932πœ‹οΏ½ βˆ’

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘₯ βˆ’

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 +

7π‘₯8 οΏ½1 + π‘₯2οΏ½

βˆ’98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

∼�2𝑒

𝑒π‘₯22

οΏ½οΏ½1 + π‘₯2οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

153

Page 158: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence

π‘¦π‘œπ‘’π‘‘ (π‘₯) ∼ π‘¦π‘œπ‘’π‘‘0 + πœ€π‘¦π‘œπ‘’π‘‘1

∼�2𝑒

𝑒π‘₯22

√1 + π‘₯2+ πœ€

οΏ½2𝑒

𝑒π‘₯22

οΏ½οΏ½1 + π‘₯2οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠ + 𝑂 οΏ½πœ€

2οΏ½

∼�2𝑒

𝑒π‘₯22

√1 + π‘₯2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ1 + πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ + 𝑂 οΏ½πœ€

2οΏ½

(3A)

Now that we found π‘¦π‘œπ‘’π‘‘ (π‘₯), we need to find 𝑦𝑖𝑛 (π‘₯) and then do the matching and the finduniform approximation. Since the boundary layer at π‘₯ = 0, we introduce inner variable πœ‰ = π‘₯

πœ€π‘and then express the original ODE using this new variable. We also need to determine 𝑝 inthe above expression. Since 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰πœ€

βˆ’π‘. Hence 𝑑𝑑π‘₯ ≑ πœ€

βˆ’π‘ π‘‘π‘‘πœ‰

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½ οΏ½

πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

Therefore 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and the ODE πœ€π‘¦β€²β€² + οΏ½π‘₯2 + 1οΏ½ 𝑦′ βˆ’ π‘₯3𝑦 = 0 now becomes

πœ€πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ οΏ½(πœ‰πœ€π‘)2 + 1οΏ½ πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

βˆ’ (πœ‰πœ€π‘)3 𝑦 = 0

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ οΏ½πœ‰2πœ€π‘ + πœ€βˆ’π‘οΏ½π‘‘π‘¦π‘‘πœ‰

βˆ’ πœ‰3πœ€3𝑝𝑦 = 0

The largest terms are οΏ½πœ€1βˆ’2𝑝, πœ€βˆ’π‘οΏ½, therefore matching them gives 𝑝 = 1. The ODE nowbecomes

πœ€βˆ’1𝑑2π‘¦π‘‘πœ‰2

+ οΏ½πœ‰2πœ€ + πœ€βˆ’1οΏ½π‘‘π‘¦π‘‘πœ‰

βˆ’ πœ‰3πœ€3𝑦 = 0 (4)

Assuming that

𝑦𝑖𝑛 (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

And substituting the above into (4) gives

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + οΏ½πœ‰2πœ€ + πœ€βˆ’1οΏ½ �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ βˆ’ πœ‰3πœ€3 �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0 (4A)

Collecting terms in π‘‚οΏ½πœ€βˆ’1οΏ½ gives

𝑦′′0 ∽ βˆ’π‘¦β€²0

154

Page 159: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Letting 𝑧 = 𝑦′0, the above becomesπ‘‘π‘§π‘‘πœ‰

∽ βˆ’π‘§

π‘‘π‘§π‘§βˆ½ βˆ’π‘‘πœ‰

ln |𝑧| ∽ βˆ’πœ‰ + 𝐢1

𝑧 ∽ 𝐢1π‘’βˆ’πœ‰

Hence𝑑𝑦0π‘‘πœ‰

∽ 𝐢1π‘’βˆ’πœ‰

𝑦0 ∽ 𝐢1οΏ½π‘’βˆ’πœ‰π‘‘πœ‰ + 𝐢2

∽ βˆ’πΆ1π‘’βˆ’πœ‰ + 𝐢2 (5)

Applying boundary conditions 𝑦𝑖𝑛0 (0) = 1 gives

1 = βˆ’πΆ1 + 𝐢2

𝐢2 = 1 + 𝐢1

And (5) becomes

𝑦𝑖𝑛0 (πœ‰) ∽ βˆ’πΆ1π‘’βˆ’πœ‰ + (1 + 𝐢1)

∽ 1 + 𝐢1 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ (6)

We now find 𝑦𝑖𝑛1 . Going back to (4) and collecting terms in 𝑂 (1) gives the ODE

𝑦′′1 ∽ 𝑦′1This is the same ODE we solved above. But it will have diοΏ½erent B.C. Hence

𝑦𝑖𝑛1 ∽ βˆ’πΆ3π‘’βˆ’πœ‰ + 𝐢4

Applying boundary conditions 𝑦𝑖𝑛1 (0) = 0 gives

0 = βˆ’πΆ3 + 𝐢4

𝐢3 = 𝐢4

Therefore

𝑦𝑖𝑛1 ∽ βˆ’πΆ3π‘’βˆ’πœ‰ + 𝐢3

∽ 𝐢3 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½

Now we have the leading order 𝑦𝑖𝑛

𝑦𝑖𝑛 (πœ‰) = 𝑦𝑖𝑛0 + πœ€π‘¦π‘–π‘›1= 1 + 𝐢1 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + πœ€πΆ3 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝑂 οΏ½πœ€2οΏ½ (7)

155

Page 160: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Now we are ready to do the matching between (7) and (3A)

limπœ‰β†’βˆž

1 + 𝐢1 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + πœ€πΆ3 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ ∼

limπ‘₯β†’0οΏ½

2𝑒

𝑒π‘₯22

√1 + π‘₯2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ1 + πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

Or

1+𝐢1+πœ€πΆ3 ∼�2𝑒

limπ‘₯β†’0

𝑒π‘₯22

√1 + π‘₯2+οΏ½2π‘’πœ€ limπ‘₯β†’0

𝑒π‘₯22

√1 + π‘₯2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

But limπ‘₯β†’0𝑒π‘₯22

√1+π‘₯2β†’ 1, limπ‘₯β†’0

3π‘₯

4οΏ½1+π‘₯2οΏ½2 β†’ 0 limπ‘₯β†’0

7π‘₯8οΏ½1+π‘₯2οΏ½

β†’ 0 therefore the above becomes

1 + 𝐢1 + πœ€πΆ3 ∼�2𝑒+οΏ½2π‘’πœ€ οΏ½54βˆ’932πœ‹οΏ½

Hence

1 + 𝐢1 = οΏ½2𝑒

𝐢1 = οΏ½2π‘’βˆ’ 1

𝐢3 = οΏ½2𝑒 οΏ½54βˆ’932πœ‹οΏ½

This means that

𝑦𝑖𝑛 (πœ‰) ∼ 1 + 𝐢1 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + πœ€πΆ3 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½

∼ 1 +βŽ›βŽœβŽœβŽœβŽœβŽοΏ½

2π‘’βˆ’ 1⎞⎟⎟⎟⎟⎠ οΏ½1 βˆ’ 𝑒

βˆ’πœ‰οΏ½ + πœ€οΏ½2𝑒 οΏ½54βˆ’932πœ‹οΏ½ οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½

Therefore

𝑦uniform(π‘₯) ∼ 𝑦𝑖𝑛 (πœ‰) + π‘¦π‘œπ‘’π‘‘ (π‘₯) βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž

∼ 1 +βŽ›βŽœβŽœβŽœβŽœβŽοΏ½

2π‘’βˆ’ 1⎞⎟⎟⎟⎟⎠ οΏ½1 βˆ’ 𝑒

βˆ’πœ‰οΏ½ + πœ€οΏ½2𝑒 οΏ½54βˆ’932πœ‹οΏ½ οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½

+οΏ½2𝑒

𝑒π‘₯22

√1 + π‘₯2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ1 + πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

βˆ’βŽ›βŽœβŽœβŽœβŽœβŽοΏ½

2𝑒+οΏ½2π‘’πœ€ οΏ½54βˆ’932πœ‹οΏ½

⎞⎟⎟⎟⎟⎠

156

Page 161: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Or (replacing πœ‰ by π‘₯πœ€ and simplifying)

𝑦uniform(π‘₯) ∼ 1 +βŽ›βŽœβŽœβŽœβŽœβŽοΏ½

2π‘’βˆ’ 1⎞⎟⎟⎟⎟⎠ οΏ½1 βˆ’ 𝑒

βˆ’πœ‰οΏ½ βˆ’ π‘’βˆ’πœ‰πœ€οΏ½2𝑒 οΏ½54βˆ’932πœ‹οΏ½

+οΏ½2𝑒

𝑒π‘₯22

√1 + π‘₯2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ1 + πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

βˆ’οΏ½2𝑒

Or

𝑦uniform(π‘₯) ∼ βˆ’οΏ½2π‘’π‘’βˆ’πœ‰ + π‘’βˆ’πœ‰ βˆ’ π‘’βˆ’πœ‰πœ€

οΏ½2𝑒 οΏ½54βˆ’932πœ‹οΏ½

+οΏ½2𝑒

𝑒π‘₯22

√1 + π‘₯2

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ1 + πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ54βˆ’932πœ‹ βˆ’ π‘₯ +

3π‘₯

4 οΏ½1 + π‘₯2οΏ½2 βˆ’

7π‘₯8 οΏ½1 + π‘₯2οΏ½

+98

arctan (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

To check validity of the above solution, the approximate solution is plotted against thenumerical solution for diοΏ½erent values of πœ€ = {0.1, 0.05, 0.01}. This shows very good agreementwith the numerical solution. At πœ€ = 0.01 the solutions are almost the same.

ClearAll[x, y, Ο΅];

Ο΅ = 0.01;

r =2

Exp[1];

ode = Ο΅ y''[x] + x2 + 1 y'[x] - x3 y[x] β©΅ 0;

sol = First@NDSolve[{ode, y[0] β©΅ 1, y[1] β©΅ 1}, y, {x, 0, 1}];

p1 = Plot[Evaluate[y[x] /. sol], {x, 0, 1}];

mysol[x_, Ο΅_] := -r Exp-x

Ο΅ + Exp

-x

Ο΅ - Ο΅ r

5

4-

9

32Ο€ + r

Exp x2

2

1 + x2

1 + Ο΅5

4-

9

32Ο€ - x +

3 x

4 1 + x2

2-

7 x

8 1 + x2

+9

8ArcTan[x] ;

p2 = Plot[{Evaluate[y[x] /. sol], mysol[x, Ο΅]}, {x, 0, 1}, Frame β†’ True, PlotStyle β†’ {Red, Blue},

FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"Comparing numerical and apprxoimation, using Ο΅ = ", N@Ο΅}]}}, GridLines β†’ Automatic,

GridLinesStyle β†’ LightGray, PlotLegends β†’ {"Approximation", "Numerical"}, BaseStyle β†’ 14, ImageSize β†’ 400]

157

Page 162: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Out[145]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Comparing numerical and apprxoimation, using Ο΅ = 0.1

Approximation

Numerical

Out[153]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Comparing numerical and apprxoimation, using Ο΅ = 0.05

Approximation

Numerical

158

Page 163: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Out[161]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Comparing numerical and apprxoimation, using Ο΅ = 0.01

Approximation

Numerical

3.3.6 problem 9.19

Problem Find lowest order uniform approximation to boundary value problem

πœ€π‘¦β€²β€² + (sin π‘₯) 𝑦′ + 𝑦 sin (2π‘₯) = 0𝑦 (0) = πœ‹π‘¦ (πœ‹) = 0

Solution

We expect a boundary layer at left end at π‘₯ = 0. Therefore, we need to find 𝑦𝑖𝑛 (πœ‰) , π‘¦π‘œπ‘’π‘‘ (π‘₯) ,where πœ‰ is an inner variable defined by πœ‰ = π‘₯

πœ€π‘ .

159

Page 164: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

x0 Ο€

ΞΆ Ξ·

leftboundarylayer

outer region

matching at these locations

rightboundarylayer

Finding 𝑦𝑖𝑛 (πœ‰)

At π‘₯ = 0, we introduce inner variable πœ‰ = π‘₯πœ€π‘ and then express the original ODE using this

new variable. We also need to determine 𝑝 in the above expression. Since 𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then

𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰πœ€

βˆ’π‘. Hence 𝑑𝑑π‘₯ ≑ πœ€

βˆ’π‘ π‘‘π‘‘πœ‰

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½ οΏ½

πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

Therefore 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and the ODE πœ€π‘¦β€²β€² + (sin π‘₯) 𝑦′ + 𝑦 sin (2π‘₯) = 0 now becomes

πœ€πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ (sin (πœ‰πœ€π‘)) πœ€βˆ’π‘ π‘‘π‘¦π‘‘πœ‰

+ sin (2πœ‰πœ€π‘) 𝑦 = 0

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ (sin (πœ‰πœ€π‘)) πœ€βˆ’π‘ π‘‘π‘¦π‘‘πœ‰

+ sin (2πœ‰πœ€π‘) 𝑦 = 0

160

Page 165: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Expanding the sin terms in the above, in Taylor series around zero, sin (π‘₯) = π‘₯ βˆ’ π‘₯3

3! +β‹― gives

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+βŽ›βŽœβŽœβŽœβŽπœ‰πœ€π‘ βˆ’

(πœ‰πœ€π‘)3

3!+β‹―

⎞⎟⎟⎟⎠ πœ€βˆ’π‘

π‘‘π‘¦π‘‘πœ‰

+βŽ›βŽœβŽœβŽœβŽ2πœ‰πœ€π‘ βˆ’

(2πœ‰πœ€π‘)3

3!+β‹―

⎞⎟⎟⎟⎠ 𝑦 = 0

πœ€1βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2

+ οΏ½πœ‰ βˆ’πœ‰3πœ€2𝑝

3!+β‹―οΏ½

π‘‘π‘¦π‘‘πœ‰

+βŽ›βŽœβŽœβŽœβŽ2πœ‰πœ€π‘ βˆ’

(2πœ‰πœ€π‘)3

3!+β‹―

⎞⎟⎟⎟⎠ 𝑦 = 0

Then the largest terms are οΏ½πœ€1βˆ’2𝑝, 1οΏ½, therefore 1 βˆ’ 2𝑝 = 0 or

𝑝 = 12

The ODE now becomes

𝑦′′ + οΏ½πœ‰ βˆ’πœ‰3πœ€3!

+β‹―οΏ½ 𝑦′ +

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ2πœ‰βˆšπœ€ βˆ’

οΏ½2πœ‰βˆšπœ€οΏ½3

3!+β‹―

⎞⎟⎟⎟⎟⎟⎟⎠ 𝑦 = 0 (1)

Assuming that

𝑦𝑙𝑒𝑓𝑑 (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Then (1) becomes

�𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + οΏ½πœ‰ βˆ’πœ‰3πœ€3!

+β‹―οΏ½ �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ +

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ2πœ‰βˆšπœ€ βˆ’

οΏ½2πœ‰βˆšπœ€οΏ½3

3!+β‹―

⎞⎟⎟⎟⎟⎟⎟⎠ �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

Collecting terms in 𝑂 (1) gives the balance

𝑦′′0 (πœ‰) ∼ βˆ’πœ‰π‘¦β€²0 (πœ‰)𝑦0 (0) = πœ‹

Assuming 𝑧 = 𝑦′0, then

𝑧′ ∼ βˆ’πœ‰π‘§π‘‘π‘§π‘§

∼ βˆ’πœ‰

ln |𝑧| ∼ βˆ’πœ‰2

2+ 𝐢1

𝑧 ∼ 𝐢1π‘’βˆ’πœ‰22

Therefore 𝑦′0 ∼ 𝐢1π‘’βˆ’πœ‰22 . Hence

𝑦0 (πœ‰) ∼ 𝐢1οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 + 𝐢2

With boundary conditions 𝑦 (0) = πœ‹. Hence

πœ‹ = 𝐢2

161

Page 166: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And the solution becomes

𝑦𝑖𝑛0 (πœ‰) ∼ 𝐢1οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 + πœ‹ (2)

Now we need to find π‘¦π‘œπ‘’π‘‘ (π‘₯). Assuming that

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Then πœ€π‘¦β€²β€² + (sin π‘₯) 𝑦′ + 𝑦 sin (2π‘₯) = 0 becomes

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + sin (π‘₯) �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + sin (2π‘₯) �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0Collecting terms in 𝑂 (1) gives the balance

sin (π‘₯) 𝑦′0 (π‘₯) ∼ βˆ’ sin (2π‘₯) 𝑦0 (π‘₯)𝑑𝑦0𝑦0

∼ βˆ’sin (2π‘₯)sin (π‘₯) 𝑑π‘₯

ln �𝑦0οΏ½ ∼ βˆ’οΏ½sin (2π‘₯)sin (π‘₯) 𝑑π‘₯

∼ βˆ’οΏ½2 sin π‘₯ cos π‘₯

sin (π‘₯) 𝑑π‘₯

∼ βˆ’οΏ½2 cos π‘₯𝑑π‘₯

∼ βˆ’2 sin π‘₯ + 𝐢5

Hence

π‘¦π‘œπ‘’π‘‘0 (π‘₯) ∼ π΄π‘’βˆ’2 sin π‘₯

𝑦0 (πœ‹) = 0

Therefore 𝐴 = 0 and π‘¦π‘œπ‘’π‘‘0 (π‘₯) = 0.Now that we found all solutions, we can do the matching.The matching on the left side gives

limπœ‰β†’βˆž

𝑦𝑖𝑛 (πœ‰) = limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπœ‰β†’βˆž

𝐢1οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 + πœ‹ = lim

π‘₯β†’0𝐢5π‘’βˆ’2 sin π‘₯

limπœ‰β†’βˆž

𝐢1οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 + πœ‹ = 0 (3)

But

οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 =

οΏ½πœ‹2

erf οΏ½πœ‰

√2�

162

Page 167: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And limπœ‰β†’βˆž erf οΏ½ πœ‰

√2� = 1, hence (3) becomes

𝐢1οΏ½πœ‹2+ πœ‹ = 0

𝐢1 = βˆ’πœ‹οΏ½2πœ‹

= βˆ’βˆš2πœ‹ (4)

Therefore from (2)

𝑦𝑖𝑛0 (πœ‰) ∼ βˆ’βˆš2πœ‹οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 + πœ‹ (5)

Near π‘₯ = πœ‹, using πœ‚ = πœ‹βˆ’π‘₯πœ€π‘ . Expansion 𝑦

𝑖𝑛 οΏ½πœ‚οΏ½ ∼ 𝑦0 οΏ½πœ‚οΏ½ + πœ€π‘¦1 οΏ½πœ‚οΏ½ + 𝑂 οΏ½πœ€2οΏ½ gives 𝑝 =12 . Hence

𝑂 (1) terms gives

𝑦′′0 οΏ½πœ‚οΏ½ ∼ πœ‚π‘¦β€²0 οΏ½πœ‚οΏ½

𝑦𝑖𝑛0 (0) = 0

𝑦𝑖𝑛0 οΏ½πœ‚οΏ½ ∼ π·οΏ½πœ‚

0π‘’βˆ’π‘ 22 𝑑𝑠

And matching on the right side gives

limπœ‚β†’βˆž

𝑦𝑖𝑛 οΏ½πœ‚οΏ½ = limπ‘₯β†’πœ‹

π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπœ‚β†’βˆž

π·οΏ½πœ‚

0π‘’βˆ’π‘ 22 𝑑𝑠 = 0

𝐷 = 0 (6)

Therefore the solution is

𝑦 (π‘₯) ∼ 𝑦𝑖𝑛 (πœ‰) + 𝑦𝑖𝑛 οΏ½πœ‚οΏ½ + π‘¦π‘œπ‘’π‘‘ (π‘₯) βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž

∼ βˆ’βˆš2πœ‹οΏ½πœ‰

0π‘’βˆ’π‘ 22 𝑑𝑠 + πœ‹ + 0

∼ βˆ’βˆš2πœ‹οΏ½πœ‹2

erf οΏ½πœ‰

√2οΏ½ + πœ‹

∼ βˆ’βˆš2πœ‹οΏ½πœ‹2

erf οΏ½π‘₯

√2πœ€οΏ½ + πœ‹

∼ πœ‹ βˆ’ πœ‹ erf οΏ½π‘₯

√2πœ€οΏ½ (7)

The following plot compares exact solution with (7) for πœ€ = 0.1, 0.05. We see from theseresults, that as πœ€ decreased, the approximation solution improved.

163

Page 168: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[37]:= ClearAll[x, Ο΅, y]

mySol[x_, Ο΅_] := Pi - Pi Erfx

2 Ο΅

;

Ο΅ = 0.1;

ode = Ο΅ y''[x] + Sin[x] y'[x] + y[x] Sin[2 x] β©΅ 0;

sol = NDSolve[{ode, y[0] β©΅ Ο€, y'[Ο€] β©΅ 0}, y, {x, 0, Ο€}];

Plot[{mySol[x, Ο΅], Evaluate[y[x] /. sol]}, {x, 0, Pi}, Frame β†’ True,

FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"Numerical vs. approximation for Ο΅=", Ο΅}]}}, GridLines β†’ Automatic,

GridLinesStyle β†’ LightGray, BaseStyle β†’ 16, ImageSize β†’ 500, PlotLegends β†’ {"Approximation", "Numerical"},

PlotStyle β†’ {Red, Blue}, PlotRange β†’ All]

Out[42]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

x

y(x)

Numerical vs. approximation for Ο΅=0.1

Approximation

Numerical

Out[54]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y(x)

Numerical vs. approximation for Ο΅=0.05

Approximation

Numerical

164

Page 169: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7 key solution of selected problems

3.3.7.1 section 9 problem 9

Problem 9.9 asks us to use boundary layer theory to find the leading order solution to the initialvalue problem Ξ΅yβ€²β€²(x) + ayβ€²(x) + by(x) = 0 with y(0) = yβ€²(0) = 1 and a > 0. Then we are to compareto the exact solution. The problem is ambiguous as to whether a and b are functions or constants.For clarity’s sake, we assume a and b are constants, but all the following work can be generalized fornonconstant a and b as well.

Since a > 0, the boundary layer occurs at x = 0, where the initial conditions are specified. We setx = Ρξ,1 and then in the inner region,

1

Ξ΅yβ€²β€²in(ΞΎ) +

a

Ξ΅yβ€²in(ΞΎ) + byin(ΞΎ) = 0. (1)

Thus, to leading order, yβ€²β€²in(ΞΎ) ∼ βˆ’ayβ€²in(ΞΎ), which has solution yin(ΞΎ) = C0 + C1eβˆ’aΞΎ. Solving for C0 and

C1, we see that y(0) = 1 =β‡’ C0 + C1 = 1, and

yβ€²(x)

∣∣∣∣x=0

= 1 =β‡’ yβ€²(ΞΎ)

∣∣∣∣ξ=0

= Ξ΅ =β‡’ βˆ’aC1 = Ξ΅ =β‡’ C1 = βˆ’Ξ΅/a = O(Ξ΅).

This means that C1eβˆ’aΞΎ = O(Ξ΅) shouldn’t appear at this order in the expansion, and C1 = 0. We

should throw this information out because we have already thrown out information at O(Ξ΅) in solvingthe equation, and we have no guarantee that the O(Ξ΅) value for C1 is actually correct to O(Ξ΅).

So there is no boundary layer at leading order! The inner solution yin(x) = C0 = 1 does not changerapidly, and it will cancel when we match, just leaving the outer solution. This is okay and happensoccasionally when you get lucky.

In the outer region, we have yout ∼ βˆ’ bayout, so yout(x) = Ceβˆ’bx/a + O(Ξ΅). Matching to the inner

solution, C = 1, so yuniform(x) = eβˆ’bx/a +O(Ξ΅). We note that yβ€²uniform(0) = βˆ’ ba6= 1 in general.

Although the problem does not ask for it, we can also go to the next order in our asymptoticexpansion. And even though no boundary layer appeared at leading order, one will appear at O(Ξ΅).

Going back to the inner region, let yin(ΞΎ) = Y0(ΞΎ) + Ξ΅Y1(ΞΎ) + O(Ξ΅2). We already computed thatY0(ΞΎ) = 1. Now looking at (1) at O(1), Y β€²β€²1 (ΞΎ) +aY β€²1(ΞΎ) + bY0(ΞΎ) = 0 =β‡’ Y β€²β€²1 (ΞΎ) +aY β€²1(ΞΎ) = βˆ’b. Solving,Y1(ΞΎ) = C2 + C3e

βˆ’aΞΎ βˆ’ baΞΎ. We have initial conditions Y1(0) = 0, but since yβ€²(0) = 1 was not satisfied,

we note that Y β€²1(0) = 1. Thus, C2 + C3 = 0 and βˆ’aC3 βˆ’ ba

= 1, so

C3 = βˆ’1

aβˆ’ b

a2and C2 = βˆ’C3 =

1

a+

b

a2.

Therefore,

yin(ΞΎ) = 1 + Ξ΅

((1

a+

b

a2

)(1βˆ’ eβˆ’aΞΎ

)βˆ’ b

aΞΎ

)+O(Ξ΅2),

so

yin(x) = 1 + Ξ΅

((1

a+

b

a2

)(1βˆ’ eβˆ’ax/Ξ΅

)βˆ’ b

a

x

Ξ΅

)+O(Ξ΅2).

Turning to the outer solution, let yout(x) = y0(x) + Ξ΅y1(x) + O(Ξ΅2). We already found that y0(x) =eβˆ’bx/a. At order Ξ΅, the outer equation reads:

yβ€²β€²0(x) + ayβ€²1(x) + by1(x) = 0 =β‡’ yβ€²1(x) +b

ay1(x) = βˆ’1

aeβˆ’bx/a.

1We know that we can use Ξ΅ instead of Ξ΅p for some unknown constant p because a is positive near zero, and p 6= 1 onlyoccurs when a(x)β†’ 0 at the boundary layer.

1

165

Page 170: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore,

y1(x) = C4eβˆ’bx/a βˆ’ x

aeβˆ’bx/a,

andyout(x) = eβˆ’bx/a + Ξ΅

((C4 βˆ’

x

a

)eβˆ’bx/a

)+O(Ξ΅2).

Now we match. As x→ 0+, the outer solution goes to

yout(x) ∼ 1 + C4Ρ+O(Ρ2),

while as ΞΎ β†’βˆž, the inner solution approaches

yin(x) ∼ 1 +

(1

a+

b

a2

)Ξ΅+O(Ξ΅2),

where I have cheated slightly.2 Matching,

C4 =1

a+

b

a2,

and thus,

yuniform(x) = eβˆ’bx/a + Ξ΅

(((1

a+

b

a2

)βˆ’ x

a

)eβˆ’bx/a βˆ’

(1

a+

b

a2

)eβˆ’ax/Ξ΅

)+O(Ξ΅2).

Let us now graphically compare the asymptotic solutions accurate to O(1) and O(Ξ΅) with the exactsolution:

yexact(x) =1

2√a2 βˆ’ 4bΞ΅

(βˆ’aeβˆ’(a/Ξ΅+

√a2βˆ’4bΞ΅/Ξ΅)x/2 βˆ’ 2Ξ΅eβˆ’(a/Ξ΅+

√a2βˆ’4bΞ΅/Ξ΅)x/2 +

√a2 βˆ’ 4bΞ΅eβˆ’(a/Ξ΅+

√a2βˆ’4bΞ΅/Ξ΅)x/2

+aeβˆ’(a/Ξ΅βˆ’βˆša2βˆ’4bΞ΅/Ξ΅)x/2 + 2Ξ΅eβˆ’(a/Ξ΅βˆ’

√a2βˆ’4bΞ΅/Ξ΅)x/2 +

√a2 βˆ’ 4bΞ΅eβˆ’(a/Ξ΅βˆ’

√a2βˆ’4bΞ΅/Ξ΅)x/2

).

For simplicity, take a = b = 1.

2I ignored the term which was linear in ΞΎ, which blows up as ΞΎ β†’βˆž. This term came from ignoring the outer expansion,which changes on the same order, and is called a secular term. This occurs because we ignored the outer expansion, as isconventional when working with the boundary layer, but the outer solution, when Taylor expanded about zero, matchesthis term exactly at order x, and so we do not have any problems. The outer solution changes at a slow rate compared toΞΎ, and so the appearance of two time scales in the boundary layer causes problems with the match (which I swept underthe rug by cheating). This problem is therefore far better suited for multiscale methods, which form the subject matterof Chapter 11.

2

166

Page 171: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

For the first graph, Ξ΅ = 0.1:

The blue curve represents the exact solution, the orange curve the uniform solution to leading order, andthe green curve the uniform solution accurate to O(Ξ΅). We see that the differences between the curvesremains small always, and that the higher order approximation is much closer to the exact solution. Theleading order solution never differs by more than about 0.1 β‰ˆ Ξ΅, while the next order solution differsfrom the exact solution by a much smaller amount (approximately O(Ξ΅2)).

Now let Ξ΅ = 0.05:

The color scheme is the same as before. We notice that the same qualitative observations from beforehold for this graph as well. The difference between the orange and blue curves is even half as much, ingood agreement with our O(Ξ΅) error estimation. This also validates our conclusion that the boundarylayer only appears at O(Ξ΅). It is somewhat more difficult to verify pictorially that the error for the greencurve is O(Ξ΅2), but it is also clear that the error in this plot is less than in the first plot, and by a greaterfactor than two.

3

167

Page 172: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.2 section 9 problem 15

168

Page 173: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

169

Page 174: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

170

Page 175: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

171

Page 176: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.3 section 9 problem 19

Here is an outline for the solution to BO 9.19.

The boundary value problem is

Η«yβ€²β€² + sin(x)yβ€² + 2 sin(x) cos(x)y = 0, y(0) = Ο€, y(Ο€) = 0

using sin(2x) = 2 sin(x) cos(x). Our heuristic argument based on the 1D advection-diffusion equation suggests a boundary layer on the left at x = 0. An outer expansionyout(x) ∼ yo(x) + ǫy1(x) +O(ǫ2) gives

O(1) : yβ€²o ∼ βˆ’2 cos(x)yo

with solution

yo(x) ∼ A exp[βˆ’2 sin(x)]

which cannot satisfy y(Ο€) = 0 unless A = 0 (see below).

For the inner solution near x = 0 let ξ = x/ǫp. The expansion yin(ξ) ∼ yo(ξ)+ǫy1(ξ)+O(ǫ2)leads to p = 1/2 and

O(1) : yβ€²β€²o (ΞΎ) ∼ βˆ’ΞΎyβ€²o(ΞΎ), y(ΞΎ = 0) = Ο€

with solution

yo(ΞΎ) ∼ Ο€ + C

∫ ξ

0

exp(βˆ’t2/2)dt

yo(ΞΎ) ∼ Ο€ +√2C

∫ ξ/√2

0

exp(βˆ’s2)ds = Ο€ +√2C

βˆšΟ€

2erf(ΞΎ/

√2).

On the other side near x = Ο€, let Ξ· = (Ο€βˆ’ x)/Η«p. The expansion yin(Ξ·) ∼ yo(Ξ·)+ Η«y1(Ξ·)+O(Η«2) leads to p = 1/2 and

O(1) : yβ€²β€²o (Ξ·) ∼ Ξ·yβ€²o(Ξ·), y(Ξ· = 0) = 0

using sin(Ο€ βˆ’ Η«1/2Ξ·) = sin(Η«1/2Ξ·) ∼ Η«1/2Ξ· for Η«1/2Ξ· β†’ 0. Then

yo(η) ∼ D

∫ η

0

exp(t2/2)dt

Now matching

limΞΎβ†’βˆž

yin(ξ) = limx→0

yout(x)

limΞ·β†’βˆž

yin(η) = limx→π

yout(x)

gives A = D = 0 and C = βˆ’βˆš2Ο€. Thus we obtain

y(x) ∼ Ο€ βˆ’ Ο€ erf(x/√2Η«).

1

172

Page 177: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.4 section 9 problem 4b

NEEP 548: Engineering Analysis II 2/27/2011

Problem 9.4-b: Bender & Orszag

Instructor: Leslie Smith

1 Problem Statement

Find the boundary layer solution for

Η«yβ€²β€² + (x2 + 1)yβ€² βˆ’ x3y = 0 (1)

2 Solution

We can expect a boundary layer at x = 0.

2.1 Outer Solution

(x2 + 1)yβ€²o βˆ’ x3yo = 0

yβ€²o βˆ’

(

x3

x2 + 1

)

yo = 0

This is in a form that we can find an integrating factor for,

Β΅ = exp

(∫

x3

x2 + 1dx

)

= exp

[

βˆ’1

2(ln[x2 + 1]βˆ’ x2)

]

= (x2 + 1)βˆ’1/2eβˆ’x2/2

=β‡’ [yo(x2 + 1)βˆ’1/2eβˆ’x2/2]β€² = 0

yo = C1(x2 + 1)βˆ’1/2ex

2/2

B.C.: y(1) = 1 =β‡’ 1 = C1(2)βˆ’1/2e1/2 =β‡’ C1 =

√2eβˆ’1/2. Therefore, the outer solution is:

yo =√2eβˆ’1/2(x2 + 1)βˆ’1/2ex

2/2 (2)

1

173

Page 178: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

2.2 Inner Solution

Define ξ = x/ǫ such that when x ∼ ǫ, ξ ∼ 1

βˆ‚y

βˆ‚x=

dy

dΞΎ

dΞΎ

dx

βˆ‚2y

βˆ‚x2=

1

Η«2d2y

dΞΎ2

Plug this into the D. E. to get,

1

Η«

d2y

dΞΎ2+ Η«ΞΎ2

dy

dΞΎ+

1

Η«

dy

dΞΎβˆ’ ΞΎ2Η«2y = 0 (3)

The let the inner solution take the form,

yin = yo(ΞΎ) + Η«y1(ΞΎ) + Η«2y2(ΞΎ) + ...

Balance terms, order by order,

O

(

1

Η«

)

: yβ€²β€²o + yβ€²o = 0 y(0) = 1

O(1) : yβ€²β€²1 + yβ€²1 = 0 y(0) = 0

To the lowest order,

yβ€²β€²in + yβ€²in = 0 let z = yβ€²in

=β‡’ ln z = βˆ’ΞΎ + C2

ln yβ€²in = βˆ’ΞΎ + C2

yβ€²in = C3eβˆ’ΞΎ

yin = C3eΞΎ + C4

We can solve for one of the constants by imposing the boundary conditions, yin(0) = 1 =β‡’ 1 =βˆ’C3 + C4 =β‡’ C4 = 1 + C3

yin = 1 + C(

1βˆ’ eβˆ’ΞΎ)

(4)

The other constant we get by matching the β€˜outer’ and β€˜inner’ solutions:

2

174

Page 179: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

limx→0

yo = limΞΎβ†’βˆž

yin

limx→0

√2eβˆ’1/2(x2 + 1)βˆ’1/2ex

2/2 = limΞΎβ†’βˆž

[1 +C(1βˆ’ eβˆ’ΞΎ)]

√2eβˆ’1/2 = 1 +C

=β‡’ C =√2eβˆ’1/2 βˆ’ 1

Note: ymatch =√2eβˆ’1/2

ytot = yin + yout βˆ’ ymatch (5)

ytot =√2eβˆ’1/2(x2 + 1)βˆ’1/2ex

2/2 + eβˆ’x/Η«(1βˆ’βˆš2eβˆ’1/2) (6)

3

175

Page 180: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.5 section 9 problem 6

Here is an outline for the solution to BO 9.6.

Write the equation as

yβ€² = (1 + Η«xβˆ’2)y2 βˆ’ 2y + 1, y(1) = 1

and we want to solve this on 0 ≀ x ≀ 1. For the outer solution, the expansion yout(x) ∼yo(x) + Η«y1(x) +O(Η«2) gives

O(1) : yβ€²o ∼ (yo βˆ’ 1)2, yo(1) = 1

O(Η«) : yβ€²1∼ 2yoy1 + y2ox

βˆ’2βˆ’ 2y1, y1(1) = 0

with solutions

yo(x) ∼ 1, y1(x) ∼ 1βˆ’ xβˆ’1

valid away from zero. So yout(x) ∼ 1 + Η«(1βˆ’ xβˆ’1) +O(Η«2).

For the inner solution let ξ = x/ǫp. The expansion yout(ξ) ∼ yo(ξ) + ǫy1(ξ) +O(ǫ2) leadsto ξ ∝ ǫ (so we take ξ = ǫ for convenience). The biggest terms are:

O(Η«βˆ’1) : yβ€²o ∼ y2oΞΎβˆ’2

with solution

yo(ΞΎ) ∼ ΞΎ(1βˆ’ AΞΎ)βˆ’1.

Now matching

limΞΎβ†’βˆž

yo(ξ) +O(ǫ) = limx→0

yo(x) +O(Η«)

limΞΎβ†’βˆž

ΞΎ(1βˆ’ AΞΎ)βˆ’1 +O(Η«) = limxβ†’0

1 +O(Η«)

limΞΎβ†’βˆž

βˆ’Aβˆ’1 +O(ΞΎβˆ’1) +O(Η«) = limxβ†’0

1 +O(Η«)

gives A = βˆ’1 with matching region Η« β‰ͺ x β‰ͺ 1.

The next-order problem is

O(1) : yβ€²1∼ y2o + 2yoy1ΞΎ

βˆ’2βˆ’ 2yo + 1.

Use yo(ΞΎ) from above and the integrating factor method to find

y1(ΞΎ) ∼ βˆ’ΞΎ(1 + ΞΎ)βˆ’2 + CΞΎ2(1 + ΞΎ)βˆ’2.

Now matching

1

176

Page 181: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

limΞΎβ†’βˆž

yo(ξ) + ǫy1(ξ) +O(ǫ2) = limx→0

yo(x) + Η«y1(x) +O(Η«2)

limΞΎβ†’βˆž

ΞΎ(1 + ΞΎ)βˆ’1 + Η«

(

CΞΎ2(1 + ΞΎ)βˆ’2βˆ’ ΞΎ(1 + ΞΎ)βˆ’2

)

+O(ǫ2) = limx→0

1 + Η«

(

1βˆ’ xβˆ’1

)

+O(Η«2)

limΞΎβ†’βˆž

1

1 + ΞΎβˆ’1+ Η«

(

CΞΎ2(1 + ΞΎ)βˆ’2βˆ’ ΞΎ(1 + ΞΎ)βˆ’2

)

+O(ǫ2) = limx→0

1 + Η«βˆ’Η«

x+O(Η«2)

limΞΎβ†’βˆž

1βˆ’ ΞΎβˆ’1 +O(ΞΎβˆ’2) + Η«C +O(Η«ΞΎβˆ’1) +O(Η«2) = limxβ†’0

1 + Η«βˆ’Η«

x+O(Η«2)

and so we choose C = 1.

Question for you: what is the matching region? (I think Η«1/2 β‰ͺ x β‰ͺ 1). Is this correct?

Now we form the uniform approximation y ∼ yin + yout βˆ’ ymatch +O(Η«2):

y ∼ 1 + Η«(1βˆ’ xβˆ’1) + ΞΎ(1 + ΞΎ)βˆ’1 + Η«

(

ΞΎ2(1 + ΞΎ)βˆ’2βˆ’ ΞΎ(1 + ΞΎ)βˆ’2

)

βˆ’

(

1 + Η«βˆ’Η«

x

)

+O(Η«2)

with ΞΎ = x/Η« and simplify. Notice that there is no singularity at x = 0 the solution isuniformly valid on 0 ≀ x ≀ 1.

More questions for you: Does the solution above satisfy the initial condition y(1) = 1?If not, can you add an O(Η«2) correction so that y(1) = 1? Will you still have a solutionuniformly valid to O(Η«2)?

I encourage you to make plots so that you can visualize the solution!

2

177

Page 182: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

3.4 HW4

3.4.1 problem 10.5 (page 540)

problem Use WKB to obtain solution to

πœ€π‘¦β€²β€² + π‘Ž (π‘₯) 𝑦′ + 𝑏 (π‘₯) 𝑦 = 0 (1)

with π‘Ž (π‘₯) > 0, 𝑦 (0) = 𝐴, 𝑦 (1) = 𝐡 correct to order πœ€.

solution

Assuming

𝑦 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ 𝛿 β†’ 0

Therefore

𝑦′ (π‘₯) ∼1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯) exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½

𝑦′′ (π‘₯) ∼1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯) exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ + οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½2

exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½

Substituting the above into (1) and simplifying gives (writing = instead of ∼ for simplicityfor now)

πœ€βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯) + οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½2⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦ +

π‘Žπ›Ώ

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯) + 𝑏 = 0

πœ€π›Ώ

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯) +πœ€π›Ώ2 οΏ½

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½ +π‘Žπ›Ώ

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯) + 𝑏 = 0

Expanding gives

πœ€π›ΏοΏ½π‘†β€²β€²0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +β‹―οΏ½

+πœ€π›Ώ2��𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½ �𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½οΏ½

+π‘Žπ›ΏοΏ½π‘†β€²0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½ + 𝑏 = 0

Simplifying

οΏ½πœ€π›Ώπ‘†β€²β€²0 + πœ€π‘†β€²β€²1 + πœ€π›Ώπ‘†β€²β€²2 +β‹―οΏ½

+ οΏ½πœ€π›Ώ2�𝑆′0οΏ½

2+2πœ€π›ΏοΏ½π‘†β€²0𝑆′1οΏ½ + πœ€ οΏ½2𝑆′0𝑆′2 + �𝑆′1οΏ½

2οΏ½ +β‹―οΏ½

+ οΏ½π‘Žπ›Ώπ‘†β€²0 + π‘Žπ‘†β€²1 + π‘Žπ›Ώπ‘†β€²2 +β‹―οΏ½ + 𝑏 = 0 (1A)

The largest terms in the left are πœ€π›Ώ2�𝑆′0οΏ½

2and π‘Ž

𝛿𝑆′0. By dominant balance these must be equal in

magnitude. Hence πœ€π›Ώ2 = 𝑂�

1𝛿� or πœ€

𝛿 = 𝑂 (1). Therefore 𝛿 is proportional to πœ€ and for simplicity

178

Page 183: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

πœ€ is taken as equal to 𝛿, hence (1A) becomes

�𝑆′′0 + πœ€π‘†β€²β€²1 + πœ€2𝑆′′2 +β‹―οΏ½

+ οΏ½πœ€βˆ’1 �𝑆′0οΏ½2+ 2𝑆′0𝑆′1 + πœ€ οΏ½2𝑆′0𝑆′2 + �𝑆′1οΏ½

2οΏ½ +β‹―οΏ½

+ οΏ½π‘Žπœ€βˆ’1𝑆′0 + π‘Žπ‘†β€²1 + π‘Žπœ€π‘†β€²2 +β‹―οΏ½ + 𝑏 = 0

Terms of π‘‚οΏ½πœ€βˆ’1οΏ½ give

�𝑆′0οΏ½2+ π‘Žπ‘†β€²0 = 0 (2)

And terms of 𝑂 (1) give

𝑆′′0 + 2𝑆′0𝑆′1 + π‘Žπ‘†β€²1 + 𝑏 = 0 (3)

And terms of 𝑂 (πœ€) give

2𝑆′0𝑆′2 + π‘Žπ‘†β€²2 + �𝑆′1οΏ½2+ 𝑆′′1 = 0

𝑆′2 = βˆ’οΏ½π‘†β€²1οΏ½

2+ 𝑆′′1

οΏ½π‘Ž + 2𝑆′0οΏ½(4)

Starting with (2)

𝑆′0 �𝑆′0 + π‘ŽοΏ½ = 0

There are two cases to consider.

case 1 𝑆′0 = 0. This means that 𝑆0 (π‘₯) = 𝑐0. A constant. Using this result in (3) gives an ODEto solve for 𝑆1 (π‘₯)

π‘Žπ‘†β€²1 + 𝑏 = 0

𝑆′1 = βˆ’π‘ (π‘₯)π‘Ž (π‘₯)

𝑆1 ∼ βˆ’οΏ½π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + 𝑐1

Using this result in (4) gives an ODE to solve for 𝑆2 (π‘₯)

𝑆′2 = βˆ’οΏ½βˆ’ 𝑏(π‘₯)

π‘Ž(π‘₯)οΏ½2+ οΏ½βˆ’ 𝑏(π‘₯)

π‘Ž(π‘₯)οΏ½β€²

π‘Ž (π‘₯)

= βˆ’

𝑏2(π‘₯)π‘Ž2(π‘₯) βˆ’ οΏ½

𝑏′(π‘₯)π‘Ž(π‘₯) βˆ’

𝑏(π‘₯)π‘Žβ€²(π‘₯)π‘Ž2(π‘₯)

οΏ½

π‘Ž (π‘₯)

= βˆ’π‘2(π‘₯)π‘Ž2(π‘₯) βˆ’

π‘Ž(π‘₯)𝑏′(π‘₯)π‘Ž2(π‘₯) + π‘Žβ€²(π‘₯)𝑏(π‘₯)

π‘Ž2(π‘₯)

π‘Ž (π‘₯)

=π‘Ž (π‘₯) 𝑏′ (π‘₯) βˆ’ 𝑏2 (π‘₯) βˆ’ π‘Žβ€² (π‘₯) 𝑏 (π‘₯)

π‘Ž3 (π‘₯)

179

Page 184: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Therefore

𝑆2 = οΏ½π‘₯

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑 + 𝑐2

For case one, the solution becomes

𝑦1 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ 𝛿 β†’ 0

∼ exp οΏ½1πœ€οΏ½π‘†0 (π‘₯) + πœ€π‘†1 (π‘₯) + πœ€2𝑆2 (π‘₯)οΏ½οΏ½ πœ€ β†’ 0+

∼ exp οΏ½1πœ€π‘†0 (π‘₯) + 𝑆1 (π‘₯) + πœ€π‘†2 (π‘₯)οΏ½

∼ exp οΏ½1πœ€π‘0 βˆ’οΏ½

π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + 𝑐1 + πœ€οΏ½π‘₯

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑 + 𝑐2οΏ½

∼ 𝐢1 exp οΏ½βˆ’οΏ½π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½π‘₯

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑� (5)

Where 𝐢1 is a constant that combines all 𝑒1πœ€ 𝑐0+𝑐1+𝑐2 constants into one. Equation (5) gives

the first WKB solution of order 𝑂 (πœ€) for case one. Case 2 now is considered.

case 2 In this case 𝑆′0 = βˆ’π‘Ž, therefore

𝑆0 = βˆ’οΏ½π‘₯

0π‘Ž (𝑑) 𝑑𝑑 + 𝑐0

Equation (3) now gives

𝑆′′0 + 2𝑆′0𝑆′1 + π‘Žπ‘†β€²1 + 𝑏 = 0βˆ’π‘Žβ€² βˆ’ 2π‘Žπ‘†β€²1 + π‘Žπ‘†β€²1 + 𝑏 = 0

βˆ’π‘Žπ‘†β€²1 = π‘Žβ€² βˆ’ 𝑏

𝑆′1 =𝑏 βˆ’ π‘Žβ€²

π‘Ž

𝑆′1 =π‘π‘Žβˆ’π‘Žβ€²

π‘ŽIntegrating the above results in

𝑆1 = οΏ½π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 βˆ’ ln (π‘Ž) + 𝑐1

180

Page 185: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

𝑆2 (π‘₯) is now found from (4)

𝑆′2 = βˆ’οΏ½π‘†β€²1οΏ½

2+ 𝑆′′1

οΏ½π‘Ž + 2𝑆′0οΏ½

= βˆ’οΏ½ π‘βˆ’π‘Ž

β€²

π‘ŽοΏ½2+ οΏ½ π‘βˆ’π‘Ž

β€²

π‘ŽοΏ½β€²

(π‘Ž + 2 (βˆ’π‘Ž))

= βˆ’π‘2+(π‘Žβ€²)2βˆ’2π‘π‘Žβ€²

π‘Ž2 + π‘β€²βˆ’π‘Žβ€²β€²

π‘Ž βˆ’ π‘Žβ€²π‘βˆ’(π‘Žβ€²)2

π‘Ž2

βˆ’π‘Ž

=𝑏2 + (π‘Žβ€²)2 βˆ’ 2π‘π‘Žβ€² + π‘Žπ‘β€² βˆ’ π‘Žπ‘Žβ€²β€² βˆ’ π‘Žβ€²π‘ βˆ’ (π‘Žβ€²)2

π‘Ž3

=𝑏2 βˆ’ 2π‘π‘Žβ€² + π‘Žπ‘β€² βˆ’ π‘Žπ‘Žβ€²β€² βˆ’ π‘Žβ€²π‘

π‘Ž3Hence

𝑆2 = οΏ½π‘₯

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑 + 𝑐2

Therefore for this case the solution becomes

𝑦2 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ 𝛿 β†’ 0

∼ exp οΏ½1πœ€οΏ½π‘†0 (π‘₯) + πœ€π‘†1 (π‘₯) + πœ€2𝑆2 (π‘₯)οΏ½οΏ½ πœ€ β†’ 0+

∼ exp οΏ½1πœ€π‘†0 (π‘₯) + 𝑆1 (π‘₯) + πœ€π‘†2 (π‘₯)οΏ½

Or

𝑦2 (π‘₯) ∼ exp οΏ½βˆ’1πœ€ οΏ½

π‘₯

0π‘Ž (𝑑) 𝑑𝑑 + 𝑐0οΏ½ exp οΏ½οΏ½

π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 βˆ’ ln (π‘Ž) + 𝑐1οΏ½

exp οΏ½πœ€οΏ½π‘₯

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑 + 𝑐2οΏ½

Which simplifies to

𝑦2 (π‘₯) ∼𝐢2π‘Ž

exp οΏ½βˆ’1πœ€ οΏ½

π‘₯

0π‘Ž (𝑑) 𝑑𝑑 +οΏ½

π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½π‘₯

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

(6)

Where 𝐢2 is new constant that combines 𝑐0, 𝑐1, 𝑐2 constants. The general solution is linearcombinations of 𝑦1, 𝑦2

𝑦 (π‘₯) ∼ 𝐴𝑦1 (π‘₯) + 𝐡𝑦2 (π‘₯)

181

Page 186: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Or

𝑦 (π‘₯) ∼ 𝐢1 exp οΏ½βˆ’οΏ½π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½π‘₯

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

+𝐢2π‘Ž (π‘₯)

exp οΏ½βˆ’1πœ€ οΏ½

π‘₯

0π‘Ž (𝑑) 𝑑𝑑 +οΏ½

π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½π‘₯

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

Now boundary conditions are applied to find 𝐢1, 𝐢2. Using 𝑦 (0) = 𝐴 in the above gives

𝐴 = 𝐢1 +𝐢2π‘Ž (0)

(7)

And using 𝑦 (1) = 𝐡 gives

𝐡 = 𝐢1 exp οΏ½βˆ’οΏ½1

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½1

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

+𝐢2π‘Ž (1)

exp οΏ½βˆ’1πœ€ οΏ½

1

0π‘Ž (𝑑) 𝑑𝑑 +οΏ½

1

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½1

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

Neglecting exponentially small terms involving π‘’βˆ’1πœ€ the above becomes

𝐡 = 𝐢1 exp οΏ½βˆ’οΏ½1

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑� exp οΏ½πœ€οΏ½1

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

+𝐢2π‘Ž (1)

exp οΏ½οΏ½1

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑� exp οΏ½πœ€οΏ½1

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑� (8)

To simplify the rest of the solution which finds 𝐢1, 𝐢2, let

𝑧1 = οΏ½1

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑

𝑧2 = οΏ½1

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑

𝑧3 = οΏ½1

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑

Hence (8) becomes

𝐡 = 𝐢1π‘’βˆ’π‘§1π‘’πœ€π‘§2 +𝐢2π‘Ž (1)

𝑒𝑧1π‘’πœ€π‘§3 (8A)

182

Page 187: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

From (7) 𝐢2 = π‘Ž (0) (𝐴 βˆ’ 𝐢1). Substituting this in (8A) gives

𝐡 = 𝐢1π‘’βˆ’π‘§1π‘’πœ€π‘§2 +π‘Ž (0) (𝐴 βˆ’ 𝐢1)

π‘Ž (1)𝑒𝑧1π‘’πœ€π‘§3

= 𝐢1π‘’βˆ’π‘§1π‘’πœ€π‘§2 +π‘Ž (0)π‘Ž (1)

𝐴𝑒𝑧1π‘’πœ€π‘§3 βˆ’π‘Ž (0)π‘Ž (1)

𝐢1𝑒𝑧1π‘’πœ€π‘§3

𝐡 = 𝐢1 οΏ½π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’π‘Ž (0)π‘Ž (1)

𝑒𝑧1π‘’πœ€π‘§3οΏ½ + π΄π‘Ž (0)π‘Ž (1)

𝑒𝑧1π‘’πœ€π‘§3

𝐢1 =𝐡 βˆ’ 𝐴 π‘Ž(0)

π‘Ž(1)𝑒𝑧1π‘’πœ€π‘§3

π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’ π‘Ž(0)π‘Ž(1)𝑒

𝑧1π‘’πœ€π‘§3

=π‘Ž (1) 𝐡 βˆ’ π΄π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3

π‘Ž (1) π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’ π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3(9)

Using (7), now 𝐢2 is found

𝐴 = 𝐢1 +𝐢2π‘Ž (0)

𝐴 =π‘Ž (1) 𝐡 βˆ’ π΄π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3

π‘Ž (1) π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’ π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3+

𝐢2π‘Ž (0)

𝐢2 = π‘Ž (0) �𝐴 βˆ’π‘Ž (1) 𝐡 βˆ’ π΄π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3

π‘Ž (1) π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’ π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3 οΏ½(10)

The constants 𝐢1, 𝐢2, are now found, hence the solution is now complete.

Summary of solution

𝑦 (π‘₯) ∼ 𝐢1 exp οΏ½βˆ’οΏ½π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½π‘₯

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

+𝐢2π‘Ž (π‘₯)

exp οΏ½βˆ’1πœ€ οΏ½

π‘₯

0π‘Ž (𝑑) 𝑑𝑑 +οΏ½

π‘₯

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑 + πœ€οΏ½π‘₯

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑�

Where

𝐢1 =π‘Ž (1) 𝐡 βˆ’ π΄π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3

π‘Ž (1) π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’ π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3

𝐢2 = π‘Ž (0) �𝐴 βˆ’π‘Ž (1) 𝐡 βˆ’ π΄π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3

π‘Ž (1) π‘’βˆ’π‘§1π‘’πœ€π‘§2 βˆ’ π‘Ž (0) 𝑒𝑧1π‘’πœ€π‘§3 οΏ½

And

𝑧1 = οΏ½1

0

𝑏 (𝑑)π‘Ž (𝑑)

𝑑𝑑

𝑧2 = οΏ½1

0

π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ 𝑏2 (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑

𝑧3 = οΏ½1

0

𝑏2 (𝑑) βˆ’ 2𝑏 (𝑑) π‘Žβ€² (𝑑) + π‘Ž (𝑑) 𝑏′ (𝑑) βˆ’ π‘Ž (𝑑) π‘Žβ€²β€² (𝑑) βˆ’ π‘Žβ€² (𝑑) 𝑏 (𝑑)π‘Ž3 (𝑑)

𝑑𝑑

183

Page 188: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

3.4.2 problem 10.6

problem Use second order WKB to derive formula which is more accurate than (10.1.31)

for the π‘›π‘‘β„Ž eigenvalue of the Sturm-Liouville problem in 10.1.27. Let 𝑄 (π‘₯) = (π‘₯ + πœ‹)4 andcompare your formula with value of 𝐸𝑛 in table 10.1

solution

Problem 10.1.27 is

𝑦′′ + 𝐸𝑄 (π‘₯) 𝑦 = 0

With 𝑄 (π‘₯) = (π‘₯ + πœ‹)4 and boundary conditions 𝑦 (0) = 0, 𝑦 (πœ‹) = 0. Letting

𝐸 =1πœ€

Then the ODE becomes

πœ€π‘¦β€²β€² (π‘₯) + (π‘₯ + πœ‹)4 𝑦 (π‘₯) = 0 (1)

Physical optics approximation is obtained when πœ† β†’ ∞ or πœ€ β†’ 0+. Since the ODE is linear,and the highest derivative is now multiplied by a very small parameter πœ€, WKB can be usedto solve it. Assuming the solution is

𝑦 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ 𝛿 β†’ 0

Then

𝑦′ (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½

𝑦′′ (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½2

+ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯)οΏ½

Substituting these into (1) and canceling the exponential terms gives

πœ€βŽ›βŽœβŽœβŽœβŽœβŽοΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½2

+1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯)⎞⎟⎟⎟⎟⎠ ∼ βˆ’ (π‘₯ + πœ‹)4

πœ€π›Ώ2�𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½ �𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½ +

πœ€π›ΏοΏ½π‘†β€²β€²0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +β‹―οΏ½ ∼ βˆ’ (π‘₯ + πœ‹)4

πœ€π›Ώ2��𝑆′0οΏ½

2+ 𝛿 οΏ½2𝑆′1𝑆′0οΏ½ + 𝛿2 οΏ½2𝑆′0𝑆′2 + �𝑆′0οΏ½

2οΏ½ +β‹―οΏ½ +

πœ€π›ΏοΏ½π‘†β€²β€²0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +β‹―οΏ½ ∼ βˆ’ (π‘₯ + πœ‹)4

οΏ½πœ€π›Ώ2�𝑆′0οΏ½

2+πœ€π›ΏοΏ½2𝑆′1𝑆′0οΏ½ + πœ€ οΏ½2𝑆′0𝑆′2 + �𝑆′0οΏ½

2οΏ½ +β‹―οΏ½ + οΏ½

πœ€π›Ώπ‘†β€²β€²0 + πœ€2𝑆′′1 +β‹―οΏ½ ∼ βˆ’ (π‘₯ + πœ‹)4 (2)

The largest term in the left side is πœ€π›Ώ2�𝑆′0οΏ½

2. By dominant balance, this term has the same

order of magnitude as right side βˆ’ (π‘₯ + πœ‹)4. Hence 𝛿2 is proportional to πœ€ and for simplicity,𝛿 can be taken equal to βˆšπœ€ or

𝛿 = βˆšπœ€

184

Page 189: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Equation (2) becomes

��𝑆′0οΏ½2+ βˆšπœ€ οΏ½2𝑆′1𝑆′0οΏ½ + πœ€ οΏ½2𝑆′0𝑆′2 + �𝑆′0οΏ½

2οΏ½ +β‹―οΏ½ + οΏ½βˆšπœ€π‘†β€²β€²0 + πœ€π‘†β€²β€²1 +β‹―οΏ½ ∼ βˆ’ (π‘₯ + πœ‹)4

Balance of 𝑂 (1) gives

�𝑆′0οΏ½2∼ βˆ’ (π‘₯ + πœ‹)4 (3)

And Balance of π‘‚οΏ½βˆšπœ€οΏ½ gives

2𝑆′1𝑆′0 ∼ βˆ’π‘†β€²β€²0 (4)

Balance of 𝑂 (πœ€) gives

2𝑆′0𝑆′2 + �𝑆′1οΏ½2∼ βˆ’π‘†β€²β€²1 (5)

Equation (3) is solved first in order to find 𝑆0 (π‘₯). Therefore

𝑆′0 ∼ ±𝑖 (π‘₯ + πœ‹)2

Hence

𝑆0 (π‘₯) ∼ ±𝑖�π‘₯

0(𝑑 + πœ‹)2 𝑑𝑑 + 𝐢±

∼ ±𝑖 �𝑑3

3+ πœ‹π‘‘2 + πœ‹2𝑑�

π‘₯

0+ 𝐢±

∼ ±𝑖 οΏ½π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ + 𝐢± (6)

𝑆1 (π‘₯) is now found from (4), and since 𝑆′′0 = Β±2𝑖 (π‘₯ + πœ‹) therefore

𝑆′1 ∼ βˆ’12𝑆′′0𝑆′0

∼ βˆ’12Β±2𝑖 (π‘₯ + πœ‹)±𝑖 (π‘₯ + πœ‹)2

∼ βˆ’1

π‘₯ + πœ‹Hence

𝑆1 (π‘₯) ∼ βˆ’οΏ½π‘₯

0

1𝑑 + πœ‹

𝑑𝑑

∼ βˆ’ ln οΏ½πœ‹ + π‘₯πœ‹

οΏ½ (7)

𝑆2 (π‘₯) is now solved from from (5)

2𝑆′0𝑆′2 + �𝑆′1οΏ½2∼ βˆ’π‘†β€²β€²1

𝑆′2 βˆΌβˆ’π‘†β€²β€²1 βˆ’ �𝑆′1οΏ½

2

2𝑆′0

185

Page 190: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Since 𝑆′1 ∼ βˆ’ 1π‘₯+πœ‹ , then 𝑆

β€²β€²1 ∼ 1

(π‘₯+πœ‹)2and the above becomes

𝑆′2 βˆΌβˆ’ 1(π‘₯+πœ‹)2

βˆ’ οΏ½βˆ’ 1π‘₯+πœ‹

οΏ½2

2 �±𝑖 (π‘₯ + πœ‹)2οΏ½

βˆΌβˆ’ 1(π‘₯+πœ‹)2

βˆ’ 1(π‘₯+πœ‹)2

Β±2𝑖 (π‘₯ + πœ‹)2

∼ ±𝑖1

(π‘₯ + πœ‹)4

Hence

𝑆2 ∼ ±𝑖 οΏ½οΏ½π‘₯

0

1(𝑑 + πœ‹)4

𝑑𝑑� + π‘˜Β±

∼ ±𝑖3 οΏ½

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½ + π‘˜Β±

Therefore the solution becomes

𝑦 (π‘₯) ∼ exp οΏ½1

βˆšπœ€οΏ½π‘†0 (π‘₯) + βˆšπœ€π‘†1 (π‘₯) + πœ€π‘†2 (π‘₯)οΏ½οΏ½

∼ exp �1

βˆšπœ€π‘†0 (π‘₯) + 𝑆1 (π‘₯) + βˆšπœ€π‘†2 (π‘₯)οΏ½

But 𝐸 = 1πœ€ , hence βˆšπœ€ =

1

√𝐸, and the above becomes

𝑦 (π‘₯) ∼ exp οΏ½βˆšπΈπ‘†0 (π‘₯) + 𝑆1 (π‘₯) +1

βˆšπΈπ‘†2 (π‘₯)οΏ½

Therefore

𝑦 (π‘₯) ∼ exp οΏ½Β±π‘–βˆšπΈ οΏ½π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ + 𝐢± βˆ’ ln οΏ½πœ‹ + π‘₯

πœ‹οΏ½ Β± 𝑖

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½ + π‘˜Β±οΏ½

Which can be written as

𝑦 (π‘₯) ∼ οΏ½πœ‹ + π‘₯πœ‹

οΏ½βˆ’1𝐢 exp �𝑖 �√𝐸 οΏ½

π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ +

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½οΏ½οΏ½

βˆ’ 𝐢 οΏ½πœ‹ + π‘₯πœ‹

οΏ½βˆ’1

exp οΏ½βˆ’π‘– �√𝐸 οΏ½π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ +

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½οΏ½οΏ½

Where all constants combined into ±𝐢. In terms of sin / cos the above becomes

𝑦 (π‘₯) βˆΌπœ‹π΄πœ‹ + π‘₯

cos �√𝐸 οΏ½π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ +

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½οΏ½

+πœ‹π΅πœ‹ + π‘₯

sin �√𝐸 οΏ½π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ +

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½οΏ½ (8)

186

Page 191: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Boundary conditions 𝑦 (0) = 0 gives

0 ∼ 𝐴 cos �0 +1

√𝐸�1πœ‹3 βˆ’

1πœ‹3 οΏ½οΏ½ + 𝐡 sin οΏ½0 +

1

√𝐸13 �

1πœ‹3 βˆ’

1πœ‹3 οΏ½οΏ½

∼ 𝐴

Hence solution in (8) reduces to

𝑦 (π‘₯) βˆΌπœ‹π΅πœ‹ + π‘₯

sin �√𝐸 οΏ½π‘₯3

3+ πœ‹π‘₯2 + πœ‹2π‘₯οΏ½ +

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + π‘₯)3

οΏ½οΏ½

Applying B.C. 𝑦 (πœ‹) = 0 gives

0 βˆΌπœ‹π΅πœ‹ + πœ‹

sin �√𝐸 οΏ½πœ‹3

3+ πœ‹πœ‹2 + πœ‹2πœ‹οΏ½ +

1

√𝐸13 �

1πœ‹3 βˆ’

1(πœ‹ + πœ‹)3

οΏ½οΏ½

∼𝐡2

sin �√𝐸 οΏ½73πœ‹3οΏ½ +

1

√𝐸�7

24πœ‹3 οΏ½οΏ½

For non trivial solution, therefore

�𝐸𝑛 οΏ½73πœ‹3οΏ½ +

1

βˆšπΈπ‘›οΏ½7

24πœ‹3 οΏ½ = π‘›πœ‹ 𝑛 = 1, 2, 3,β‹―

Solving for βˆšπΈπ‘›. Let βˆšπΈπ‘› = π‘₯, then the above becomes

π‘₯2 οΏ½73πœ‹3οΏ½ + οΏ½

724πœ‹6 οΏ½ = π‘₯π‘›πœ‹

π‘₯2 βˆ’37πœ‹2π‘₯𝑛 +

18πœ‹6 = 0

Solving using quadratic formula and taking the positive root, since 𝐸𝑛 > 0 gives

π‘₯ =1

28πœ‹3 �√2√18πœ‹2𝑛2 βˆ’ 49 + 6πœ‹π‘›οΏ½ 𝑛 = 1, 2, 3,β‹―

�𝐸𝑛 =1

28πœ‹3 �√2√18πœ‹2𝑛2 βˆ’ 49 + 6πœ‹π‘›οΏ½

𝐸𝑛 = �√2√18πœ‹2𝑛2 βˆ’ 49 + 6πœ‹π‘›οΏ½2

Table 10.1 is now reproduced to compare the above more accurate 𝐸𝑛. The following tableshows the actual 𝐸𝑛 values obtained this more accurate method. Values computed fromabove formula are in column 3.

187

Page 192: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

In[207]:= sol = x /. Last@Solvex2 -3

7 Pi2x n +

1

8 Pi^6β©΅ 0, x

Out[207]=3 n Ο€ +

-49+18 n2 Ο€2

2

14 Ο€3

In[244]:= lam[n_] := (Evaluate@sol)^2

nPoints = {1, 2, 3, 4, 5, 10, 20, 40};

book = {0.00188559, 0.00754235, 0.0169703, 0.0301694, 0.0471397, 0.188559, 0.754235, 3.01694};

exact = {0.00174401, 0.00734865, 0.0167524, 0.0299383, 0.0469006, 0.188395, 0.753977, 3.01668};

hw = Table[N@(lam[n]), {n, nPoints}];

data = Table[{nPoints[[i]], book[[i]], hw[[i]], exact[[i]]}, {i, 1, Length[nPoints]}];

data = Join[{{"n", "En using S0+S1 (book)", "En using S0+S1+S2 (HW)", "Exact"}}, data];

Style[Grid[data, Frame β†’ All], 18]

Out[251]=

n En using S0+S1 (book) En using S0+S1+S2 (HW) Exact

1 0.0018856 0.0016151 0.001744

2 0.0075424 0.00728 0.0073487

3 0.01697 0.016709 0.016752

4 0.030169 0.029909 0.029938

5 0.04714 0.046879 0.046901

10 0.18856 0.1883 0.1884

20 0.75424 0.75398 0.75398

40 3.0169 3.0167 3.0167

The following table shows the relative error in place of the actual values of 𝐸𝑛 to bettercompare how more accurate the result obtained in this solution is compared to the bookresult

In[252]:= data = Table[{nPoints[[i]],

100* Abs@(exact[[i]] - book[[i]])/ exact[[i]],

100* Abs@(exact[[i]] - hw[[i]])/ exact[[i]]}, {i, 1, Length[nPoints]}];

data = Join[{{"n", "En using S0+S1 (book) Rel error", "En using S0+S1+S2 (HW) Rel error"}}, data];

Style[Grid[data, Frame β†’ All], 18]

Out[254]=

n En using S0+S1 (book) Rel error En using S0+S1+S2 (HW) Rel error

1 8.1181 7.3927

2 2.6359 0.9343

3 1.3007 0.2576

4 0.77192 0.098497

5 0.5098 0.045387

10 0.087051 0.051101

20 0.034219 0.00021643

40 0.0086187 0.000055619

The above shows clearly that adding one more term in the WKB series resulted in moreaccurate eigenvalue estimate.

188

Page 193: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

3.5 HW5

NE548 Problem: Similarity solution for the 1D homogeneous heat equation

Due Thursday April 13, 2017

1. (a) Non-dimensionalize the 1D homogeneous heat equation:

βˆ‚u(x, t)

βˆ‚t= Ξ½

βˆ‚2u(x, t)

βˆ‚x2(1)

with βˆ’βˆž < x < ∞, and u(x, t) bounded as x β†’ ±∞.

(b) Show that the non-dimensional equations motivate a similarity variable ΞΎ = x/t1/2.

(c) Find a similarity solution u(x, t) = H(ΞΎ) by solving the appropriate ODE for H(ΞΎ).

(d) Show that the similarity solution is related to the solution we found in class on 4/6/17for initial condition

u(x, 0) = 0, x < 0 u(x, 0) = C, x > 0.

1

solution

3.5.1 Part a

Let οΏ½οΏ½ be the non-dimensional space coordinate and 𝑑 the non-dimensional time coordinate.Therefore we need

οΏ½οΏ½ =π‘₯𝑙0

𝑑 =𝑑𝑑0

οΏ½οΏ½ =𝑒𝑒0

Where 𝑙0 is the physical characteristic length scale (even if this infinitely long domain, 𝑙0is given) whose dimensions is [𝐿] and 𝑑0 of dimensions [𝑇] is the characteristic time scaleand οΏ½οΏ½ (οΏ½οΏ½, 𝑑) is the new dependent variable, and 𝑒0 characteristic value of 𝑒 to scale against(typically this is the initial conditions) but this will cancel out. We now rewrite the PDEπœ•π‘’πœ•π‘‘ = 𝜐

πœ•2π‘’πœ•π‘₯2 in terms of the new dimensionless variables.

πœ•π‘’πœ•π‘‘

=πœ•π‘’πœ•οΏ½οΏ½

πœ•οΏ½οΏ½πœ• π‘‘πœ• π‘‘πœ•π‘‘

= 𝑒0πœ•οΏ½οΏ½πœ• 𝑑

1𝑑0

(1)

189

Page 194: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

Andπœ•π‘’πœ•π‘₯

=πœ•π‘’πœ•οΏ½οΏ½

πœ•οΏ½οΏ½πœ•οΏ½οΏ½πœ•οΏ½οΏ½πœ•π‘₯

= 𝑒0πœ•οΏ½οΏ½πœ•οΏ½οΏ½

1𝑙0

Andπœ•2π‘’πœ•π‘₯2

= 𝑒0πœ•2οΏ½οΏ½πœ•οΏ½οΏ½2

1𝑙20

(2)

Substituting (1) and (2) into πœ•π‘’πœ•π‘‘ = 𝜐

πœ•2π‘’πœ•π‘₯2 gives

𝑒0πœ•οΏ½οΏ½πœ• 𝑑

1𝑑0= πœπ‘’0

πœ•2οΏ½οΏ½πœ•οΏ½οΏ½2

1𝑙20

πœ•οΏ½οΏ½πœ• 𝑑

= οΏ½πœπ‘‘0𝑙20οΏ½πœ•2οΏ½οΏ½πœ•οΏ½οΏ½2

The above is now non-dimensional. Since 𝜐 has units �𝐿2

𝑇 οΏ½ and𝑑0𝑙20also has units οΏ½ 𝑇𝐿2 οΏ½, therefore

the product 𝜐 𝑑0𝑙20is non-dimensional quantity.

If we choose 𝑑0 to have same magnitude (not units) as 𝑙20, i.e. 𝑑0 = 𝑙20, then𝑑0𝑙20= 1 (with units

οΏ½ 𝑇𝐿2 οΏ½) and now we obtain the same PDE as the original, but it is non-dimensional. Where

now οΏ½οΏ½ ≑ οΏ½οΏ½ ( 𝑑, οΏ½οΏ½).

3.5.2 Part (b)

I Will use the Buckingham πœ‹ theorem for finding expression for the solution in the form

𝑒 (π‘₯, 𝑑) = 𝑓 (πœ‰) where πœ‰ is the similarity variable. Starting with πœ•π‘’πœ•π‘‘ = πœπœ•2𝑒

πœ•π‘₯2 , in this PDE, thediοΏ½usion substance is heat with units of Joule 𝐽. Hence the concentration of heat, whichis what 𝑒 represents, will have units of [𝑒] = 𝐽

𝐿3 . (heat per unit volume). From physics, weexpect the solution 𝑒 (π‘₯, 𝑑) to depend on π‘₯, 𝑑, 𝜐 and initial conditions 𝑒0 as these are the onlyrelevant quantities involved that can aοΏ½ect the diοΏ½usion. Therefore, by Buckingham theoremwe say

𝑒 ≑ 𝑓 (π‘₯, 𝑑, 𝜐, 𝑒0) (1)

190

Page 195: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

We have one dependent quantity 𝑒 and 4 independent quantities.The units of each of theabove quantities is

[𝑒] =𝐽𝐿3

[π‘₯] = 𝐿[𝑑] = 𝑇

[𝜐] =𝐿2

𝑇

[𝑒0] =𝐽𝐿3

Hence using Buckingham theorem, we write

[𝑒] = οΏ½π‘₯π‘Žπ‘‘π‘πœπ‘π‘’π‘‘0οΏ½ (2)

We now determine π‘Ž, 𝑏, 𝑐, 𝑑, by dimensional analysis. The above is

𝐽𝐿3

= πΏπ‘Žπ‘‡π‘ �𝐿2

𝑇 �𝑐

�𝐽𝐿3 �

𝑑

(𝐽) οΏ½πΏβˆ’3οΏ½ = οΏ½πΏπ‘Ž+2π‘βˆ’3𝑑� οΏ½π‘‡π‘βˆ’π‘οΏ½ �𝐽𝑑�

Comparing powers of same units on both sides, we see that

𝑑 = 1𝑏 βˆ’ 𝑐 = 0

π‘Ž + 2𝑐 βˆ’ 3𝑑 = βˆ’3

From second equation above, 𝑏 = 𝑐, hence third equation becomes

π‘Ž + 2𝑐 βˆ’ 3𝑑 = βˆ’3π‘Ž + 2𝑐 = 0

Since 𝑑 = 1. Hence

𝑐 = βˆ’π‘Ž2

𝑏 = βˆ’π‘Ž2

Therefore, now that we found all the powers, (we have one free power π‘Ž which we can setto any value), then from equation (1)

[𝑒] = οΏ½π‘₯π‘Žπ‘‘π‘πœπ‘π‘’π‘‘0�𝑒𝑒0

= οΏ½οΏ½ = π‘₯π‘Žπ‘‘π‘πœπ‘

Therefore οΏ½οΏ½ is function of all the variables in the RHS. Let this function be 𝑓 (This is thesame as 𝐻 in problem statement). Hence the above becomes

οΏ½οΏ½ = 𝑓 οΏ½π‘₯π‘Žπ‘‘βˆ’π‘Ž2πœβˆ’

π‘Ž2 οΏ½

= 𝑓 οΏ½π‘₯π‘Ž

πœπ‘Ž2 𝑑

π‘Ž2οΏ½

191

Page 196: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

Since π‘Ž is free variable, we can choose

π‘Ž = 1 (2)

And obtain

οΏ½οΏ½ ≑ 𝑓 οΏ½π‘₯

βˆšπœπ‘‘οΏ½ (3)

In the above π‘₯

βˆšπœπ‘‘is now non-dimensional quantity, which we call, the similarity variable

πœ‰ =π‘₯

βˆšπœπ‘‘(4)

Notice that another choice of π‘Ž in (2), for example π‘Ž = 2 would lead to πœ‰ = π‘₯2

πœπ‘‘ instead ofπœ‰ = π‘₯

βˆšπœπ‘‘but we will use the latter for the rest of the problem.

3.5.3 Part (c)

Using 𝑒 ≑ 𝑓 (πœ‰) where πœ‰ = π‘₯

βˆšπœπ‘‘then

πœ•π‘’πœ•π‘‘

=π‘‘π‘“π‘‘πœ‰πœ•πœ‰πœ•π‘‘

=π‘‘π‘“π‘‘πœ‰

πœ•πœ•π‘‘ οΏ½

π‘₯

βˆšπœπ‘‘οΏ½

= βˆ’12π‘‘π‘“π‘‘πœ‰

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

π‘₯

βˆšπœπ‘‘32

⎞⎟⎟⎟⎟⎟⎠

Andπœ•π‘’πœ•π‘₯

=π‘‘π‘“π‘‘πœ‰πœ•πœ‰πœ•π‘₯

=π‘‘π‘“π‘‘πœ‰

πœ•πœ•π‘₯ οΏ½

π‘₯

βˆšπœπ‘‘οΏ½

=π‘‘π‘“π‘‘πœ‰

1

βˆšπœπ‘‘

192

Page 197: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

Andπœ•2π‘’πœ•π‘₯2

=πœ•πœ•π‘₯ οΏ½

π‘‘π‘“π‘‘πœ‰

1

βˆšπœπ‘‘οΏ½

=1

βˆšπœπ‘‘πœ•πœ•π‘₯ οΏ½

π‘‘π‘“π‘‘πœ‰οΏ½

=1

βˆšπœπ‘‘οΏ½π‘‘2π‘“π‘‘πœ‰2

πœ•πœ‰πœ•π‘₯οΏ½

=1

βˆšπœπ‘‘οΏ½π‘‘2π‘“π‘‘πœ‰2

1

βˆšπœπ‘‘οΏ½

=1πœπ‘‘π‘‘2π‘“π‘‘πœ‰2

Hence the PDE πœ•π‘’πœ•π‘‘ = 𝜐

πœ•2π‘’πœ•π‘₯2 becomes

βˆ’12π‘‘π‘“π‘‘πœ‰

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

π‘₯

βˆšπœπ‘‘32

⎞⎟⎟⎟⎟⎟⎠ = 𝜐

1πœπ‘‘π‘‘2π‘“π‘‘πœ‰2

1𝑑𝑑2π‘“π‘‘πœ‰2

+12

π‘₯

βˆšπœπ‘‘32

π‘‘π‘“π‘‘πœ‰

= 0

𝑑2π‘“π‘‘πœ‰2

+12π‘₯

βˆšπœπ‘‘π‘‘π‘“π‘‘πœ‰

= 0

But π‘₯

βˆšπœπ‘‘= πœ‰, hence we obtain the required ODE as

𝑑2𝑓 (πœ‰)π‘‘πœ‰2

+12πœ‰π‘‘π‘“ (πœ‰)π‘‘πœ‰

= 0

𝑓′′ +πœ‰2𝑓′ = 0

We now solve the above ODE for 𝑓 (πœ‰). Let 𝑓′ = 𝑧, then the ODE becomes

𝑧′ +πœ‰2𝑧 = 0

Integrating factor is πœ‡ = π‘’βˆ«πœ‰2 π‘‘πœ‰ = 𝑒

πœ‰24 , hence

π‘‘π‘‘πœ‰οΏ½π‘§πœ‡οΏ½ = 0

π‘§πœ‡ = 𝑐1

𝑧 = 𝑐1π‘’βˆ’πœ‰24

Therefore, since 𝑓′ = 𝑧, then

𝑓′ = 𝑐1π‘’βˆ’πœ‰24

193

Page 198: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

Integrating gives

𝑓 (πœ‰) = 𝑐2 + 𝑐1οΏ½πœ‰

0π‘’βˆ’π‘ 24 𝑑𝑠

3.5.4 Part (d)

For initial conditions of step function

𝑒 (π‘₯, 0) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩0 π‘₯ < 0𝐢 π‘₯ > 0

The solution found in class was

𝑒 (π‘₯, 𝑑) =𝐢2+𝐢2

erf οΏ½π‘₯

√4πœπ‘‘οΏ½ (1)

Where erf οΏ½ π‘₯

√4πœπ‘‘οΏ½ = 2

βˆšπœ‹βˆ«

π‘₯√4πœπ‘‘

0π‘’βˆ’π‘§2𝑑𝑧. The solution found in part (c) earlier is

𝑓 (πœ‰) = 𝑐1οΏ½πœ‰

0π‘’βˆ’π‘ 24 𝑑𝑠 + 𝑐2

Let 𝑠 = √4𝑧, then𝑑𝑠𝑑𝑧 = √4, when 𝑠 = 0, 𝑧 = 0 and when 𝑠 = πœ‰, 𝑧 = πœ‰

√4, therefore the integral

becomes

𝑓 (πœ‰) = 𝑐1√4οΏ½πœ‰βˆš4

0π‘’βˆ’π‘§2𝑑𝑧 + 𝑐2

But 2

βˆšπœ‹βˆ«

πœ‰βˆš4

0π‘’βˆ’π‘§2𝑑𝑧 = erf οΏ½ πœ‰

√4�, hence ∫

πœ‰βˆš4

0π‘’βˆ’π‘§2𝑑𝑧 = βˆšπœ‹

2 erf οΏ½ πœ‰

√4� and the above becomes

𝑓 (πœ‰) = 𝑐1βˆšπœ‹ erf οΏ½πœ‰

√4οΏ½ + 𝑐2

= 𝑐3 erf οΏ½πœ‰

√4οΏ½ + 𝑐2

Since πœ‰ = π‘₯

βˆšπœπ‘‘, then above becomes, when converting back to 𝑒 (π‘₯, 𝑑)

𝑒 (π‘₯, 𝑑) = 𝑐3 erf οΏ½π‘₯

√4πœπ‘‘οΏ½ + 𝑐2 (2)

Comparing (1) and (2), we see they are the same. Constants of integration are arbitraryand can be found from initial conditions.

194

Page 199: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

3.6 HW6

3.6.1 Problem 1

NE548 Problems

Due Tuesday April 25, 2017

1. Use the Method of Images to solve

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2+Q(x, t), x > 0

(a)u(0, t) = 0, u(x, 0) = 0.

(b)u(0, t) = 1, u(x, 0) = 0.

(c)ux(0, t) = A(t), u(x, 0) = f(x).

2. (a) Solve by the Method of Characteristics:

βˆ‚2u

βˆ‚t2= c2

βˆ‚2u

βˆ‚x2, x β‰₯ 0, t β‰₯ 0

u(x, 0) = f(x),βˆ‚u(x, 0)

βˆ‚t= g(x),

βˆ‚u(0, t)

βˆ‚x= h(t)

(b) For the special case h(t) = 0, explain how you could use a symmetry argument to helpconstruct the solution.

(c) Sketch the solution if g(x) = 0, h(t) = 0 and f(x) = 1 for 4 ≀ x ≀ 5 and f(x) = 0otherwise.

1

Note, I will use π‘˜ in place of 𝜈 since easier to type.

3.6.1.1 Part (a)

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

+ 𝑄 (π‘₯, 𝑑)

π‘₯ > 0𝑒 (0, 𝑑) = 0𝑒 (π‘₯, 0) = 0

Multiplying both sides by 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) and integrating over the domain gives (where in thefollowing 𝐺 is used instead of 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) for simplicity).

�∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑒𝑑 𝑑𝑑𝑑π‘₯ = οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’π‘₯π‘₯𝐺 𝑑𝑑𝑑π‘₯ +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝑄𝐺 𝑑𝑑𝑑π‘₯ (1)

For the integral on the LHS, we apply integration by parts once to move the time derivativefrom 𝑒 to 𝐺

�∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑒𝑑 𝑑𝑑𝑑π‘₯ = οΏ½

∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑑𝑒 𝑑𝑑𝑑π‘₯

195

Page 200: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

And the first integral in the RHS of (1) gives, after doing integration by parts two times

�∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’π‘₯π‘₯𝐺 𝑑𝑑𝑑π‘₯ = οΏ½

∞

𝑑=0[𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 βˆ’οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’π‘₯𝐺π‘₯ 𝑑𝑑𝑑π‘₯

= �∞

𝑑=0[𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 βˆ’ οΏ½οΏ½

∞

𝑑=0[𝑒𝐺π‘₯]

∞π‘₯=0 𝑑𝑑 βˆ’οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯οΏ½

= �∞

𝑑=0οΏ½[𝑒π‘₯𝐺]

∞π‘₯=0 βˆ’ [𝑒𝐺π‘₯]

∞π‘₯=0οΏ½ 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯

= �∞

𝑑=0[𝑒π‘₯𝐺 βˆ’ 𝑒𝐺π‘₯]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯

= βˆ’οΏ½βˆž

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯

Hence (1) becomes

�∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯βˆ’οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑑𝑒 𝑑𝑑𝑑π‘₯ = οΏ½

∞

𝑑=0[𝑒π‘₯𝐺 βˆ’ 𝑒𝐺π‘₯]

∞π‘₯=0 𝑑𝑑+οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯+οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯

Or

�∞

π‘₯=0οΏ½

∞

𝑑=0βˆ’πΊπ‘‘π‘’ βˆ’ π‘˜π‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯ = βˆ’οΏ½

∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

∞

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯

(2)

We now want to choose 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) such that

βˆ’πΊπ‘‘π‘’ βˆ’ π‘˜π‘’πΊπ‘₯π‘₯ = 𝛿 (π‘₯ βˆ’ π‘₯0) 𝛿 (𝑑 βˆ’ 𝑑0)βˆ’πΊπ‘‘π‘’ = π‘˜π‘’πΊπ‘₯π‘₯ + 𝛿 (π‘₯ βˆ’ π‘₯0) 𝛿 (𝑑 βˆ’ 𝑑0) (3)

This way, the LHS of (2) becomes 𝑒 (π‘₯0, 𝑑0). Hence (2) now becomes

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (4)

We now need to find the Green function which satisfies (3). But (3) is equivalent to solutionof problem of

βˆ’πΊπ‘‘π‘’ = π‘˜π‘’πΊπ‘₯π‘₯

𝐺 (π‘₯, 0) = 𝛿 (π‘₯ βˆ’ π‘₯0) 𝛿 (𝑑 βˆ’ 𝑑0)βˆ’βˆž < π‘₯ < ∞

𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) = 0 𝑑 > 𝑑0𝐺 (±∞, 𝑑; π‘₯0, 𝑑0) = 0𝐺 (π‘₯, 𝑑0; π‘₯0, 𝑑0) = 𝛿 (π‘₯ βˆ’ π‘₯0)

But the above problem has a known fundamental solution which we found, but for theforward heat PDE instead of the reverse heat PDE. The fundamental solution to the forwardheat PDE is

𝐺 (π‘₯, 𝑑) =1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ 0 ≀ 𝑑0 ≀ 𝑑

196

Page 201: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

Hence for the reverse heat PDE the above becomes

𝐺 (π‘₯, 𝑑) =1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ 0 ≀ 𝑑 ≀ 𝑑0 (5)

The above is the infinite space Green function and what we will use in (4). Now we goback to (4) and simplify the boundary conditions term. Starting with the term ∫∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯.

Since 𝐺 (π‘₯,∞; π‘₯0, 𝑑0) = 0 then upper limit is zero. At 𝑑 = 0 we are given that 𝑒 (π‘₯, 0) = 0, hencethis whole term is zero. So now (4) simplifies to

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (6)

We are told that 𝑒 (0, 𝑑) = 0. Hence

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = (𝑒 (∞, 𝑑) 𝐺π‘₯ (∞, 𝑑) βˆ’ 𝑒π‘₯ (∞, 𝑑) 𝐺 (∞, 𝑑)) βˆ’ (𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) βˆ’ 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑))

= (𝑒 (∞, 𝑑) 𝐺π‘₯ (∞, 𝑑) βˆ’ 𝑒π‘₯ (∞, 𝑑) 𝐺 (∞, 𝑑)) + 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑)

We also know that 𝐺 (±∞, 𝑑; π‘₯0, 𝑑0) = 0, Hence 𝐺 (∞) = 0 and also 𝐺π‘₯ (∞) = 0, hence the abovesimplifies

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑)

To make 𝐺 (0, 𝑑) = 0 we place an image impulse at βˆ’π‘₯0 with negative value to the impulse atπ‘₯0. This will make 𝐺 at π‘₯ = 0 zero.

xx = 0x0

βˆ’x0

+

βˆ’

Therefore the Green function to use is, from (5) becomes

𝐺 (π‘₯, 𝑑) =1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ 0 ≀ 𝑑 ≀ 𝑑0

Therefore the solution, from (4) becomes

𝑒 (π‘₯0, 𝑑0) = �∞

π‘₯=0οΏ½

𝑑0

𝑑=0

1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯, 𝑑) 𝑑𝑑𝑑π‘₯ (7)

Switching the order of π‘₯0, 𝑑0 with π‘₯, 𝑑 gives

𝑒 (π‘₯, 𝑑) = �∞

π‘₯0=0οΏ½

𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0 (8)

Notice, for the terms (π‘₯0 βˆ’ π‘₯)2 , (π‘₯0 + π‘₯)

2, since they are squared, the order does not matter,so we might as well write the above as

𝑒 (π‘₯, 𝑑) = �∞

π‘₯0=0οΏ½

𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0 (8)

197

Page 202: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

3.6.1.2 Part (b)

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

+ 𝑄 (π‘₯, 𝑑)

π‘₯ > 0𝑒 (0, 𝑑) = 1𝑒 (π‘₯, 0) = 0

Everything follows the same as in part (a) up to the point where boundary condition termsneed to be evaluated.

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (4)

Where

𝐺 (π‘₯, 𝑑) =1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ 0 ≀ 𝑑 ≀ 𝑑0 (5)

Starting with the term ∫∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯. Since 𝐺 (π‘₯,∞; π‘₯0, 𝑑0) = 0 then upper limit is zero. At

𝑑 = 0 we are given that 𝑒 (π‘₯, 0) = 0, hence this whole term is zero. So now (4) simplifies to

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (6)

Now

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = (𝑒 (∞, 𝑑) 𝐺π‘₯ (∞, 𝑑) βˆ’ 𝑒π‘₯ (∞, 𝑑) 𝐺 (∞, 𝑑)) βˆ’ (𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) βˆ’ 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑))

We are told that 𝑒 (0, 𝑑) = 1, we also know that 𝐺 (±∞, 𝑑; π‘₯0, 𝑑0) = 0, Hence 𝐺 (∞, 𝑑) = 0 andalso 𝐺π‘₯ (∞, 𝑑) = 0, hence the above simplifies

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = βˆ’πΊπ‘₯ (0, 𝑑) + 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑)

To make 𝐺 (0) = 0 we place an image impulse at βˆ’π‘₯0 with negative value to the impulse atπ‘₯0. This is the same as part(a)

xx = 0x0

βˆ’x0

+

βˆ’

𝐺 (π‘₯, 𝑑) =1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ 0 ≀ 𝑑 ≀ 𝑑0

Now the boundary terms reduces to just

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = βˆ’πΊπ‘₯ (0, 𝑑)

We need now to evaluate 𝐺π‘₯ (0, 𝑑), the only remaining term. Since we know what 𝐺 (π‘₯, 𝑑) from198

Page 203: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

the above, then

πœ•πœ•π‘₯𝐺 (π‘₯, 𝑑) =

1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)2π‘˜ (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ +

2 (π‘₯ + π‘₯0)4π‘˜ (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

And at π‘₯ = 0 the above simplifies to

𝐺π‘₯ (0, 𝑑) =1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½

π‘₯02π‘˜ (𝑑0 βˆ’ 𝑑)

exp οΏ½βˆ’π‘₯20

4π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½ +

π‘₯02π‘˜ (𝑑0 βˆ’ 𝑑)

exp οΏ½βˆ’π‘₯20

4π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½οΏ½

=1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½

π‘₯0π‘˜ (𝑑0 βˆ’ 𝑑)

exp οΏ½βˆ’π‘₯20

4π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½οΏ½

Hence the complete solution becomes from (4)

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯

= βˆ’οΏ½π‘‘0

𝑑=0βˆ’πΊπ‘₯ (0, 𝑑) 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯

Substituting 𝐺 and 𝐺π‘₯ in the above gives

𝑒 (π‘₯0, 𝑑0) = �𝑑0

𝑑=0

1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½

π‘₯0π‘˜ (𝑑0 βˆ’ 𝑑)

exp οΏ½βˆ’π‘₯20

4π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½οΏ½ 𝑑𝑑

+�∞

π‘₯=0οΏ½

𝑑0

𝑑=0

1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯, 𝑑) 𝑑𝑑𝑑π‘₯

Switching the order of π‘₯0, 𝑑0 with π‘₯, 𝑑

𝑒 (π‘₯, 𝑑) = �𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)οΏ½

π‘₯π‘˜ (𝑑 βˆ’ 𝑑0)

exp οΏ½βˆ’π‘₯2

4π‘˜ (𝑑 βˆ’ 𝑑0)οΏ½οΏ½ 𝑑𝑑0

+�∞

π‘₯0=0οΏ½

𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0 (7)

But

�𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)οΏ½

π‘₯π‘˜ (𝑑 βˆ’ 𝑑0)

exp οΏ½βˆ’π‘₯2

4π‘˜ (𝑑 βˆ’ 𝑑0)οΏ½οΏ½ 𝑑𝑑0 = erfc οΏ½

π‘₯2βˆšπ‘‘

οΏ½

Hence (7) becomes

𝑒 (π‘₯, 𝑑) = erfc οΏ½π‘₯2βˆšπ‘‘

� +�∞

π‘₯0=0οΏ½

𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ βˆ’ exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0

The only diοΏ½erence between this solution and part(a) solution is the extra term erfc οΏ½ π‘₯2βˆšπ‘‘οΏ½

due to having non-zero boundary conditions in this case.

199

Page 204: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

3.6.1.3 part(c)

πœ•π‘’πœ•π‘‘

= π‘˜πœ•2π‘’πœ•π‘₯2

+ 𝑄 (π‘₯, 𝑑)

π‘₯ > 0πœ•π‘’ (0, 𝑑)πœ•π‘₯

= 𝐴 (𝑑)

𝑒 (π‘₯, 0) = 𝑓 (π‘₯)

Everything follows the same as in part (a) up to the point where boundary condition termsneed to be evaluated.

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (4)

Starting with the term ∫∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯. Since 𝐺 (π‘₯,∞; π‘₯0, 𝑑0) = 0 then upper limit is zero. At

𝑑 = 0 we are given that 𝑒 (π‘₯, 0) = 𝑓 (π‘₯), hence

�∞

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ = οΏ½

∞

π‘₯=0βˆ’π‘’ (π‘₯, 0) 𝐺 (π‘₯, 0) 𝑑π‘₯

= �∞

π‘₯=0βˆ’π‘“ (π‘₯)𝐺 (π‘₯, 0) 𝑑π‘₯

Looking at the second term in RHS of (4)

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = (𝑒 (∞, 𝑑) 𝐺π‘₯ (∞, 𝑑) βˆ’ 𝑒π‘₯ (∞, 𝑑) 𝐺 (∞, 𝑑)) βˆ’ (𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) βˆ’ 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑))

We are told that 𝑒π‘₯ (0, 𝑑) = 𝐴 (𝑑), we also know that 𝐺 (±∞, 𝑑; π‘₯0, 𝑑0) = 0, Hence 𝐺 (∞, 𝑑) = 0 andalso 𝐺π‘₯ (∞, 𝑑) = 0. The above simplifies

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = βˆ’ (𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) βˆ’ 𝐴 (𝑑) 𝐺 (0, 𝑑)) (5)

We see now from the above, that to get rid of the 𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) term (since we do not knowwhat 𝑒 (0, 𝑑) is), then we now need

𝐺π‘₯ (0, 𝑑) = 0

This means we need an image at βˆ’π‘₯0 which is of same sign as at +π‘₯0 as shown in this diagram

xx = 0x0βˆ’x0

++

Which means the Green function we need to use is the sum of the Green function solutionsfor the infinite domain problem

𝐺 (π‘₯, 𝑑) =1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ 0 ≀ 𝑑 ≀ 𝑑0 (6)

200

Page 205: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

The above makes 𝐺π‘₯ (0, 𝑑) = 0 and now equation (5) reduces to

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]∞π‘₯=0 = 𝐴 (𝑑) 𝐺 (0, 𝑑)

= 𝐴 (𝑑)βŽ›βŽœβŽœβŽœβŽ

1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (βˆ’π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

=𝐴 (𝑑)

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½exp οΏ½

βˆ’π‘₯204π‘˜ (𝑑0 βˆ’ 𝑑)

οΏ½ + exp οΏ½βˆ’π‘₯20

4π‘˜ (𝑑0 βˆ’ 𝑑)οΏ½οΏ½

=𝐴 (𝑑)

βˆšπœ‹π‘˜ (𝑑0 βˆ’ 𝑑)exp οΏ½

βˆ’π‘₯204π‘˜ (𝑑0 βˆ’ 𝑑)

οΏ½

We now know all the terms needed to evaluate the solution. From (4)

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½βˆž

π‘₯=0βˆ’π‘“ (π‘₯)𝐺 (π‘₯, 0) 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0𝐴 (𝑑) 𝐺 (0, 𝑑) 𝑑𝑑 +οΏ½

∞

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (7)

Using the Green function we found in (6), then (7) becomes

𝑒 (π‘₯0, 𝑑0) = �∞

π‘₯=0𝑓 (π‘₯)

1

√4πœ‹π‘˜π‘‘0

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜π‘‘0

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜π‘‘0

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ 𝑑π‘₯

βˆ’οΏ½π‘‘0

𝑑=0

𝐴 (𝑑)

βˆšπœ‹π‘˜ (𝑑0 βˆ’ 𝑑)exp οΏ½

βˆ’π‘₯204π‘˜ (𝑑0 βˆ’ 𝑑)

οΏ½ 𝑑𝑑

+�∞

π‘₯=0οΏ½

𝑑0

𝑑=0

1

√4πœ‹π‘˜ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4π‘˜ (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ 𝑑𝑑𝑑π‘₯

Changing the roles of π‘₯, 𝑑 and π‘₯0, 𝑑0 the above becomes

𝑒 (π‘₯, 𝑑) =1

√4πœ‹π‘˜π‘‘οΏ½

∞

π‘₯0=0𝑓 (π‘₯0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜π‘‘

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜π‘‘

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ 𝑑π‘₯0

βˆ’οΏ½π‘‘

𝑑0=0

𝐴 (𝑑0)

βˆšπœ‹π‘˜ (𝑑 βˆ’ 𝑑0)exp οΏ½

βˆ’π‘₯2

4π‘˜ (𝑑 βˆ’ 𝑑0)οΏ½ 𝑑𝑑0

+�∞

π‘₯0=0οΏ½

𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0

Summary

𝑒 (π‘₯, 𝑑) =1

√4πœ‹π‘˜π‘‘Ξ”1 βˆ’ Ξ”2 + Ξ”3

Where

Ξ”1 = �∞

π‘₯0=0𝑓 (π‘₯0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜π‘‘

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜π‘‘

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ 𝑑π‘₯0

Ξ”2 = �𝑑

𝑑0=0

𝐴 (𝑑0)

βˆšπœ‹π‘˜ (𝑑 βˆ’ 𝑑0)exp οΏ½

βˆ’π‘₯2

4π‘˜ (𝑑 βˆ’ 𝑑0)οΏ½ 𝑑𝑑0

Ξ”3 = �∞

π‘₯0=0οΏ½

𝑑

𝑑0=0

1

√4πœ‹π‘˜ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 + π‘₯)

2

4π‘˜ (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βŽžβŽŸβŽŸβŽŸβŽ π‘„ (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0

201

Page 206: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

Where Ξ”1 comes from the initial conditions and Ξ”2 comes from the boundary conditionsand Ξ”3 comes from for forcing function. It is also important to note that Ξ”1 is valid for only𝑑 > 0 and not for 𝑑 = 0.

3.6.2 Problem 2

NE548 Problems

Due Tuesday April 25, 2017

1. Use the Method of Images to solve

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2+Q(x, t), x > 0

(a)u(0, t) = 0, u(x, 0) = 0.

(b)u(0, t) = 1, u(x, 0) = 0.

(c)ux(0, t) = A(t), u(x, 0) = f(x).

2. (a) Solve by the Method of Characteristics:

βˆ‚2u

βˆ‚t2= c2

βˆ‚2u

βˆ‚x2, x β‰₯ 0, t β‰₯ 0

u(x, 0) = f(x),βˆ‚u(x, 0)

βˆ‚t= g(x),

βˆ‚u(0, t)

βˆ‚x= h(t)

(b) For the special case h(t) = 0, explain how you could use a symmetry argument to helpconstruct the solution.

(c) Sketch the solution if g(x) = 0, h(t) = 0 and f(x) = 1 for 4 ≀ x ≀ 5 and f(x) = 0otherwise.

1

3.6.2.1 Part (a)

The general solution we will use as starting point is

𝑒 (π‘₯, 𝑑) = 𝐹 (π‘₯ βˆ’ 𝑐𝑑) + 𝐺 (π‘₯ + 𝑐𝑑)

Where 𝐹 (π‘₯ βˆ’ 𝑐𝑑) is the right moving wave and 𝐺 (π‘₯ + 𝑐𝑑) is the left moving wave. Applying𝑒 (π‘₯, 0) = 𝑓 (π‘₯) gives

𝑓 (π‘₯) = 𝐹 (π‘₯) + 𝐺 (π‘₯) (1)

Andπœ•π‘’ (π‘₯, 𝑑)πœ•π‘‘

=𝑑𝐹

𝑑 (π‘₯ βˆ’ 𝑐𝑑)πœ• (π‘₯ βˆ’ 𝑐𝑑)

πœ•π‘‘+

𝑑𝐺𝑑 (π‘₯ + 𝑐𝑑)

πœ• (π‘₯ + 𝑐𝑑)πœ•π‘‘

= βˆ’π‘πΉβ€² + 𝑐𝐺′

Hence from second initial conditions we obtain

𝑔 (π‘₯) = βˆ’π‘πΉβ€² + 𝑐𝐺′ (2)

Equation (1) and (2) are for valid only for positive argument, which means for π‘₯ β‰₯ 𝑐𝑑.𝐺 (π‘₯ + 𝑐𝑑) has positive argument always since π‘₯ β‰₯ 0 and 𝑑 β‰₯ 0, but 𝐹 (π‘₯ βˆ’ 𝑐𝑑) can have negativeargument when π‘₯ < 𝑐𝑑. For π‘₯ < 𝑐𝑑, we will use the boundary conditions to define 𝐹 (π‘₯ βˆ’ 𝑐𝑑).Therefore for π‘₯ β‰₯ 𝑐𝑑 we solve (1,2) for 𝐺, 𝐹 and find

𝐹 (π‘₯ βˆ’ 𝑐𝑑) =12𝑓 (π‘₯ βˆ’ 𝑐𝑑) βˆ’

12𝑐 οΏ½

π‘₯βˆ’π‘π‘‘

0𝑔 (𝑠) 𝑑𝑠 (2A)

𝐺 (π‘₯ + 𝑐𝑑) =12𝑓 (π‘₯ + 𝑐𝑑) +

12𝑐 οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠 (2B)

202

Page 207: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

This results in

𝑒 (π‘₯, 𝑑) =𝑓 (π‘₯ + 𝑐𝑑) + 𝑓 (π‘₯ βˆ’ 𝑐𝑑)

2+12𝑐 οΏ½

π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘” (𝑠) 𝑑𝑠 π‘₯ β‰₯ 𝑐𝑑 (3)

The solution (3) is only valid for arguments that are positive. This is not a problem for𝐺 (π‘₯ + 𝑐𝑑) since its argument is always positive. But for 𝐹 (π‘₯ βˆ’ 𝑐𝑑) its argument can becomenegative when 0 < π‘₯ < 𝑐𝑑. So we need to obtain a new solution for 𝐹 (π‘₯ βˆ’ 𝑐𝑑) for the case whenπ‘₯ < 𝑐𝑑. First we find πœ•π‘’(π‘₯,𝑑)

πœ•π‘₯

πœ•π‘’ (π‘₯, 𝑑)πœ•π‘₯

=𝑑𝐹

𝑑 (π‘₯ βˆ’ 𝑐𝑑)πœ• (π‘₯ βˆ’ 𝑐𝑑)πœ•π‘₯

+𝑑𝐺

𝑑 (π‘₯ + 𝑐𝑑)πœ• (π‘₯ + 𝑐𝑑)πœ•π‘₯

=𝑑𝐹 (π‘₯ βˆ’ 𝑐𝑑)𝑑 (π‘₯ βˆ’ 𝑐𝑑)

+𝑑𝐺 (π‘₯ + 𝑐𝑑)𝑑 (π‘₯ + 𝑐𝑑)

Hence at π‘₯ = 0

β„Ž (𝑑) =𝑑𝐹 (βˆ’π‘π‘‘)𝑑 (βˆ’π‘π‘‘)

+𝑑𝐺 (𝑐𝑑)𝑑 (𝑐𝑑)

𝑑𝐹 (βˆ’π‘π‘‘)𝑑 (βˆ’π‘π‘‘)

= β„Ž (𝑑) βˆ’π‘‘πΊ (𝑐𝑑)𝑑 (𝑐𝑑)

(4)

Let 𝑧 = βˆ’π‘π‘‘, therefore (4) becomes, where 𝑑 = βˆ’π‘§π‘ also

𝑑𝐹 (𝑧)𝑑𝑧

= β„Ž οΏ½βˆ’π‘§π‘οΏ½ βˆ’

𝑑𝐺 (βˆ’π‘§)𝑑 (βˆ’π‘§)

𝑧 < 0

𝑑𝐹 (𝑧)𝑑𝑧

= β„Ž οΏ½βˆ’π‘§π‘οΏ½ +

𝑑𝐺 (βˆ’π‘§)𝑑𝑧

𝑧 < 0

To find 𝐹 (𝑧), we integrate the above which gives

�𝑧

0

𝑑𝐹 (𝑠)𝑑𝑠

𝑑𝑠 = �𝑧

0β„Ž οΏ½βˆ’

𝑠𝑐� 𝑑𝑠 +οΏ½

𝑧

0

𝑑𝐺 (βˆ’π‘ )𝑑𝑠

𝑑𝑠

𝐹 (𝑧) βˆ’ 𝐹 (0) = �𝑧

0β„Ž οΏ½βˆ’

𝑠𝑐� 𝑑𝑠 + 𝐺 (βˆ’π‘§) βˆ’ 𝐺 (0)

Ignoring the constants of integration 𝐹 (0) , 𝐺 (0) gives

𝐹 (𝑧) = �𝑧

0β„Ž οΏ½βˆ’

𝑠𝑐� 𝑑𝑠 + 𝐺 (βˆ’π‘§) (4A)

Replacing 𝑧 = π‘₯ βˆ’ 𝑐𝑑 in the above gives

𝐹 (π‘₯ βˆ’ 𝑐𝑑) = οΏ½π‘₯βˆ’π‘π‘‘

0β„Ž οΏ½βˆ’

𝑠𝑐� 𝑑𝑠 + 𝐺 (𝑐𝑑 βˆ’ π‘₯)

Let π‘Ÿ = βˆ’ 𝑠𝑐 then when 𝑠 = 0, π‘Ÿ = 0 and when 𝑠 = π‘₯ βˆ’ 𝑐𝑑 then π‘Ÿ = βˆ’π‘₯βˆ’π‘π‘‘

𝑐 = π‘π‘‘βˆ’π‘₯𝑐 . And π‘‘π‘Ÿ

𝑑𝑠 = βˆ’1𝑐 .

Using these the integral in the above becomes

𝐹 (π‘₯ βˆ’ 𝑐𝑑) = οΏ½π‘π‘‘βˆ’π‘₯𝑐

0β„Ž (π‘Ÿ) (βˆ’π‘π‘‘π‘Ÿ) + 𝐺 (𝑐𝑑 βˆ’ π‘₯)

= βˆ’π‘οΏ½π‘‘βˆ’ π‘₯

𝑐

0β„Ž (π‘Ÿ) π‘‘π‘Ÿ + 𝐺 (𝑐𝑑 βˆ’ π‘₯) (5)

203

Page 208: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

The above is 𝐹 (β‹…) when its argument are negative. But in the above 𝐺 (𝑐𝑑 βˆ’ π‘₯) is the same aswe found above in (2b), which just replace it argument in 2B which was π‘₯+ 𝑐𝑑 with 𝑐𝑑 βˆ’ π‘₯ andobtain

𝐺 (𝑐𝑑 βˆ’ π‘₯) =12𝑓 (𝑐𝑑 βˆ’ π‘₯) +

12𝑐 οΏ½

π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 π‘₯ < 𝑐𝑑

Therefore (5) becomes

𝐹 (π‘₯ βˆ’ 𝑐𝑑) = βˆ’π‘οΏ½π‘‘βˆ’ π‘₯

𝑐

0β„Ž (π‘Ÿ) π‘‘π‘Ÿ +

12𝑓 (𝑐𝑑 βˆ’ π‘₯) +

12𝑐 οΏ½

π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 π‘₯ < 𝑐𝑑 (7)

Hence for π‘₯ < 𝑐𝑑

𝑒 (π‘₯, 𝑑) = 𝐹 (π‘₯ βˆ’ 𝑐𝑑) + 𝐺 (π‘₯ + 𝑐𝑑) (8)

But in the above 𝐺 (π‘₯ + 𝑐𝑑) do not change, and we use the same solution for 𝐺 for π‘₯ β‰₯ 𝑐𝑑which is in (2B), given again below

𝐺 (π‘₯ + 𝑐𝑑) =12𝑓 (π‘₯ + 𝑐𝑑) +

12𝑐 οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠 (9)

Hence, plugging (7,9) into (8) gives

𝑒 (π‘₯, 𝑑) = βˆ’π‘οΏ½π‘π‘‘βˆ’π‘₯𝑐

0β„Ž (𝑠) 𝑑𝑠 +

12𝑓 (𝑐𝑑 βˆ’ π‘₯) +

12𝑐 οΏ½

π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 +

12𝑓 (π‘₯ + 𝑐𝑑) +

12𝑐 οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠 π‘₯ < 𝑐𝑑

= βˆ’π‘οΏ½π‘π‘‘βˆ’π‘₯𝑐

0β„Ž (𝑠) 𝑑𝑠 +

𝑓 (𝑐𝑑 βˆ’ π‘₯) + 𝑓 (π‘₯ + 𝑐𝑑)2

+12𝑐 οΏ½οΏ½

π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 +οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠�

The above for π‘₯ < 𝑐𝑑. Therefore the full solution is

𝑒 (π‘₯, 𝑑) =

⎧βŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺ⎩

𝑓(π‘₯+𝑐𝑑)+𝑓(π‘₯βˆ’π‘π‘‘)2 + 1

2π‘βˆ«π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘” (𝑠) 𝑑𝑠 π‘₯ β‰₯ 𝑐𝑑

βˆ’π‘βˆ«π‘‘βˆ’ π‘₯

𝑐0

β„Ž (𝑠) 𝑑𝑠 + 𝑓(π‘π‘‘βˆ’π‘₯)+𝑓(π‘₯+𝑐𝑑)2 + 1

2π‘οΏ½βˆ«π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 + ∫

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠� π‘₯ < 𝑐𝑑

(10)

3.6.2.2 Part(b)

From (10) above, for β„Ž (𝑑) = 0 the solution becomes

𝑒 (π‘₯, 𝑑) =

⎧βŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺ⎩

𝑓(π‘₯+𝑐𝑑)+𝑓(π‘₯βˆ’π‘π‘‘)2 + 1

2π‘βˆ«π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘” (𝑠) 𝑑𝑠 π‘₯ β‰₯ 𝑐𝑑

𝑓(π‘π‘‘βˆ’π‘₯)+𝑓(π‘₯+𝑐𝑑)2 + 1

2π‘οΏ½βˆ«π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 + ∫

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠� π‘₯ < 𝑐𝑑

(1)

The idea of symmetry is to obtain the same solution (1) above but by starting from d’Almbertsolution (which is valid only for positive arguments)

𝑒 (π‘₯, 𝑑) =𝑓 (π‘₯ + 𝑐𝑑) + 𝑓 (π‘₯ βˆ’ 𝑐𝑑)

2+12𝑐 οΏ½

π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘” (𝑠) 𝑑𝑠 π‘₯ > 𝑐𝑑 (1A)

But by using 𝑓𝑒π‘₯𝑑, 𝑔𝑒π‘₯𝑑 in the above instead of 𝑓, 𝑔, where the d’Almbert solution becomesvalid for π‘₯ < 𝑐𝑑 when using 𝑓𝑒π‘₯𝑑, 𝑔𝑒π‘₯𝑑

𝑒 (π‘₯, 𝑑) =𝑓𝑒π‘₯𝑑 (π‘₯ + 𝑐𝑑) + 𝑓𝑒π‘₯𝑑 (π‘₯ βˆ’ 𝑐𝑑)

2+12𝑐 οΏ½

π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘”π‘’π‘₯𝑑 (𝑠) 𝑑𝑠 π‘₯ < 𝑐𝑑 (2)

204

Page 209: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

Then using (1A) and (2) we show it is the same as (1). We really need to show that (2) leadsto the second part of (1), since (1A) is the same as first part of (1).

The main issue is how to determine 𝑓𝑒π‘₯𝑑, 𝑔𝑒π‘₯𝑑 and determine if they should be even or oddextension of 𝑓, 𝑔 . From boundary conditions, in part (a) equation (4A) we found that

𝐹 (𝑧) = �𝑧

0β„Ž οΏ½βˆ’

𝑠𝑐� 𝑑𝑠 + 𝐺 (βˆ’π‘§)

But now β„Ž (𝑑) = 0, hence

𝐹 (𝑧) = 𝐺 (βˆ’π‘§) (3)

Now, looking at the first part of the solution in (1). we see that for positive argument thesolution has 𝑓 (π‘₯ βˆ’ 𝑐𝑑) for π‘₯ > 𝑐𝑑 and it has 𝑓 (𝑐𝑑 βˆ’ π‘₯) when π‘₯ < 𝑐𝑑. So this leads us to pick 𝑓𝑒π‘₯𝑑being even as follows. Let

𝑧 = π‘₯ βˆ’ 𝑐𝑑

Then we see that

𝑓 (π‘₯ βˆ’ 𝑐𝑑) = 𝑓 (βˆ’ (π‘₯ βˆ’ 𝑐𝑑))𝑓 (𝑧) = 𝑓 (βˆ’π‘§)

Therefore we need 𝑓𝑒π‘₯𝑑 to be an even function.

𝑓𝑒π‘₯𝑑 (𝑧) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘“ (𝑧) 𝑧 > 0𝑓 (βˆ’π‘§) 𝑧 < 0

But since 𝐹 (𝑧) = 𝐺 (βˆ’π‘§) from (3), then 𝑔𝑒π‘₯𝑑 is also even function, which means

𝑔𝑒π‘₯𝑑 (𝑧) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘” (𝑧) 𝑧 > 0𝑔 (βˆ’π‘§) 𝑧 < 0

Now that we found 𝑓𝑒π‘₯𝑑, 𝑔𝑒π‘₯𝑑 extensions, we go back to (2). For negative argument

𝑒 (π‘₯, 𝑑) =𝑓𝑒π‘₯𝑑 (π‘₯ + 𝑐𝑑) + 𝑓𝑒π‘₯𝑑 (π‘₯ βˆ’ 𝑐𝑑)

2+12𝑐 οΏ½

π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘”π‘’π‘₯𝑑 (𝑠) 𝑑𝑠 π‘₯ < 𝑐𝑑

Since 𝑓𝑒π‘₯𝑑, 𝑔𝑒π‘₯𝑑 are even, then using 𝑔𝑒π‘₯𝑑 (𝑧) = 𝑔 (βˆ’π‘§) since now 𝑧 < 0 and using 𝑓𝑒π‘₯𝑑 (𝑧) = 𝑓 (βˆ’π‘§)since now 𝑧 < 0 the above becomes

𝑒 (π‘₯, 𝑑) =𝑓 (βˆ’ (π‘₯ + 𝑐𝑑)) + 𝑓 (βˆ’ (π‘₯ βˆ’ 𝑐𝑑))

2+12𝑐 οΏ½

π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘”π‘’π‘₯𝑑 (𝑠) 𝑑𝑠 π‘₯ < 𝑐𝑑

But 𝑓 (βˆ’ (π‘₯ + 𝑐𝑑)) = 𝑓 (π‘₯ + 𝑐𝑑) since even and 𝑓 (βˆ’ (π‘₯ βˆ’ 𝑐𝑑)) = 𝑓 (𝑐𝑑 βˆ’ π‘₯), hence the above becomes

𝑒 (π‘₯, 𝑑) ==𝑓 (π‘₯ + 𝑐𝑑) + 𝑓 (𝑐𝑑 βˆ’ π‘₯)

2+12𝑐 οΏ½οΏ½

0

π‘₯βˆ’π‘π‘‘π‘” (βˆ’π‘ ) 𝑑𝑠 +οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠� π‘₯ < 𝑐𝑑

Let π‘Ÿ = βˆ’π‘ , then π‘‘π‘Ÿπ‘‘π‘  = βˆ’1. When 𝑠 = π‘₯ βˆ’ 𝑐𝑑, π‘Ÿ = 𝑐𝑑 βˆ’ π‘₯ and when 𝑠 = 0, π‘Ÿ = 0. Then the first

205

Page 210: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

integral on the RHS above becomes

𝑒 (π‘₯, 𝑑) =𝑓 (π‘₯ + 𝑐𝑑) + 𝑓 (𝑐𝑑 βˆ’ π‘₯)

2+12𝑐 οΏ½οΏ½

0

π‘π‘‘βˆ’π‘₯𝑔 (π‘Ÿ) (βˆ’π‘‘π‘Ÿ) +οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠�

=𝑓 (π‘₯ + 𝑐𝑑) + 𝑓 (𝑐𝑑 βˆ’ π‘₯)

2+12𝑐 οΏ½οΏ½

π‘π‘‘βˆ’π‘₯

0𝑔 (π‘Ÿ) π‘‘π‘Ÿ +οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠�

Relabel π‘Ÿ back to 𝑠, then

𝑒 (π‘₯, 𝑑) =𝑓 (π‘₯ + 𝑐𝑑) + 𝑓 (𝑐𝑑 βˆ’ π‘₯)

2+12𝑐 οΏ½οΏ½

π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 +οΏ½

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠� π‘₯ < 𝑐𝑑 (5)

Looking at (5) we see that this is the same solution in (1) for the case of π‘₯ < 𝑐𝑑. Hence (1A)and (5) put together give

𝑒 (π‘₯, 𝑑) =

⎧βŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺ⎩

𝑓(π‘₯+𝑐𝑑)+𝑓(π‘₯βˆ’π‘π‘‘)2 + 1

2π‘βˆ«π‘₯+𝑐𝑑

π‘₯βˆ’π‘π‘‘π‘” (𝑠) 𝑑𝑠 π‘₯ β‰₯ 𝑐𝑑

𝑓(π‘π‘‘βˆ’π‘₯)+𝑓(π‘₯+𝑐𝑑)2 + 1

2π‘οΏ½βˆ«π‘π‘‘βˆ’π‘₯

0𝑔 (𝑠) 𝑑𝑠 + ∫

π‘₯+𝑐𝑑

0𝑔 (𝑠) 𝑑𝑠� π‘₯ < 𝑐𝑑

(1)

Which is same solution obtain in part(a).

3.6.2.3 Part(c)

For 𝑔 (π‘₯) = 0, β„Ž (𝑑) = 0 and 𝑓 (π‘₯) as given, the solution in equation (10) in part(a) becomes

𝑒 (π‘₯, 𝑑) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩

𝑓(π‘₯+𝑐𝑑)+𝑓(π‘₯βˆ’π‘π‘‘)2 π‘₯ β‰₯ 𝑐𝑑

𝑓(π‘π‘‘βˆ’π‘₯)+𝑓(π‘₯+𝑐𝑑)2 π‘₯ < 𝑐𝑑

(10)

A small program we written to make few sketches important time instantces. The left movingwave 𝐺 (π‘₯ + 𝑐𝑑) hits the boundary at π‘₯ = 0 but do not reflect now as the case with Dirichletboundary conditions, but instead it remains upright and turns around as shown.

206

Page 211: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

time = 0.00

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.25

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.40

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.55

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.59

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.80

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 1.20

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 2.50

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 3.90

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 4.20

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 5.40

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 7.00

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

207

Page 212: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

208

Page 213: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 4

Study notes

Local contents4.1 question asked 2/7/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2104.2 note on Airy added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2114.3 note p1 added 2/3/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134.4 note added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204.5 note p3 figure 3.4 in text (page 92) reproduced in color . . . . . . . . . . . . . . . 2254.6 note p4 added 2/15/17 animations of the solutions to ODE from lecture 2/9/17

for small parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2274.7 note p5 added 2/15/17 animation figure 9.5 in text page 434 . . . . . . . . . . . . 2314.8 note p7 added 2/15/17, boundary layer problem solved in details . . . . . . . . . 2374.9 note p9. added 2/24/17, asking question about problem in book . . . . . . . . . . 2434.10 note p11. added 3/7/17, Showing that scaling for normalization is same for any 𝑛 2454.11 note p12. added 3/8/17, comparing exact solution to WKB solution using Math-

ematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2474.12 Convert ODE to Liouville form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2524.13 note p13. added 3/15/17, solving πœ–2𝑦″(π‘₯) = (π‘Ž + π‘₯ + π‘₯2)𝑦(π‘₯) in Maple . . . . . . . . 254

209

Page 214: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.1. question asked 2/7/2017 CHAPTER 4. STUDY NOTES

4.1 question asked 2/7/2017

Book at page 80 says "it is usually true that 𝑆′′ β‹˜ (𝑆′)2" as π‘₯ β†’ π‘₯0. What are the exceptionsto this? Since it is easy to find counter examples.

For 𝑦′′ = √π‘₯𝑦, as π‘₯ β†’ 0+. Using 𝑦 (π‘₯) = 𝑒𝑆0(π‘₯) and substituting, gives the ODE

𝑆′′0 + �𝑆′0οΏ½2= √π‘₯ (1)

If we follow the book, and drop 𝑆′′0 relative to (𝑆′)2 then

�𝑆′0οΏ½2= π‘₯

12

𝑆′0 = πœ”π‘₯14

So, lets check the assumption. Since 𝑆′′0 = πœ”14π‘₯

βˆ’ 34 . Therefore (ignoring all multiplicative

constants)

𝑆′′0?β‹˜ �𝑆′0οΏ½

2

1

π‘₯34

?β‹˜ π‘₯

12

No. Did not check out. Since when π‘₯ β†’ 0+ the LHS blow up while the RHS goes to zero.So in this example, this "rule of thumb" did not work out, and it is the other way around.Assuming I did not make a mistake, when the book says "it is usually true", it will good toknow under what conditions is this true or why did the book say this?

This will help in solving these problem.

210

Page 215: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.2. note on Airy added 1/31/2017 CHAPTER 4. STUDY NOTES

4.2 note on Airy added 1/31/2017

Note on using CAS for working with book AiryAI/AiryBI

termsCAS such as Mathematica or Maple can actually handle very large numbers. It is possible to calculate

individual terms of the Airy series given by the book (but no sum it). Calculating individual terms, up to

10 million terms for x=1,100 and x=10000 is shown below as illustration. It takes few minutes to do each

term

define small function to calculate one term

bookAi[x_Integer, n_Integer] :=

3-2

3x3 n

9n Factorial[n] Gamman + 2 3- 3

-4

3x3 n+1

9n Factorial[n] Gamman + 4 3;

This is for x=1, N=10,000,000

In[3]:= bookAi[1, 10 000 000] // N

Out[3]= 5.7642115 Γ— 10-140 856 542

This is for x=100, N=10,000,000

In[4]:= bookAi[100, 10 000 000] // N

Out[4]= 5.7583009 Γ— 10-80 856 542

This is for x=10,000 and N=10,000,000

In[5]:= Timing[bookAi[10000, 10 000000] // N]

Out[5]= 582.3829332, 5.167240 Γ— 10-20 856 542

The above took 582 seconds to complete! The largest number it can handle on my PC is

In[6]:= $MaxNumber

Out[6]= 1.605216761933662 Γ— 101355718576 299 609

Let compare the above to Gamma[10,000,000]

In[8]:= Gamma[10 000000.0]

Out[8]= 1.2024234 Γ— 1065657052

In[9]:= Gamma[10 000000.0] < $MaxNumber

Out[9]= True

We see that Gamma[10,000,000] is much less than the largest number it can handle. Here is Gamma

Printed by Wolfram Mathematica Student Edition

211

Page 216: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.2. note on Airy added 1/31/2017 CHAPTER 4. STUDY NOTES

for 10 billion

In[10]:= Gamma[10 000000 000.0]

Out[10]= 2.3258 Γ— 1095657055176

And 10 billion Factorial

In[11]:= Factorial[10 000000 000.0]

Out[11]= 2.3258 Γ— 1095657055186

So CAS can handle these terms. But not the complete series summation as given in

the book

2 airy.nb

Printed by Wolfram Mathematica Student Edition

212

Page 217: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

4.3 note p1 added 2/3/2017

Current rules I am using in simplifications are

1. 𝑆′0 β‹™ 𝑆′1

2. 𝑆′0𝑆′1 β‹™ �𝑆′1οΏ½2

3. 𝑆0 β‹™ 𝑆1

4. (𝑆0)𝑛 β‹™ 𝑆(𝑛)0 (the first is power, the second is derivative order).

Verify the above are valid for π‘₯ β†’ 0+ and well for π‘₯ β†’ ∞. What can we say about (𝑆′)compared to (𝑆′)2?

4.3.1 problem (a), page 88

𝑦′′ =1π‘₯5𝑦

Irregular singular point at π‘₯ β†’ 0+. Let 𝑦 = 𝑒𝑆0(π‘₯) and the above becomes

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)

𝑦′ (π‘₯) = 𝑆′0𝑒𝑆

𝑦′′ = 𝑆′′0 𝑒𝑆0 + �𝑆′0οΏ½2𝑒𝑆0

= �𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0

Substituting back into 𝑑2

𝑑π‘₯2𝑦 = π‘₯βˆ’5𝑦 gives

�𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆 = π‘₯βˆ’5𝑒𝑆0(π‘₯)

𝑆′′0 + �𝑆′0οΏ½2= π‘₯βˆ’5

Before solving for 𝑆0, we can do one more simplification. Using the approximation that

�𝑆′0οΏ½2β‹™ 𝑆′′0 for π‘₯ β†’ π‘₯0, the above becomes

�𝑆′0οΏ½2∼ π‘₯βˆ’5

213

Page 218: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Now we are ready to solve for 𝑆0

𝑆′0 ∼ πœ”π‘₯βˆ’52

𝑆0 ∼ πœ”οΏ½π‘₯βˆ’52𝑑π‘₯

∼ πœ”π‘₯βˆ’

32

βˆ’32

∼ βˆ’23πœ”π‘₯βˆ’

32

To find leading behavior, let

𝑆 (π‘₯) = 𝑆0 (π‘₯) + 𝑆1 (π‘₯)

Then 𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)+𝑆1(π‘₯) and hence now

𝑦′ (π‘₯) = (𝑆0 (π‘₯) + 𝑆1 (π‘₯))β€² 𝑒𝑆0+𝑆1

𝑦′′ (π‘₯) = οΏ½(𝑆0 + 𝑆1)β€²οΏ½2𝑒𝑆0+𝑆1 + (𝑆0 + 𝑆1)

β€²β€² 𝑒𝑆0+𝑆1

Using the above, the ODE 𝑑2

𝑑π‘₯2𝑦 = π‘₯βˆ’5𝑦 now becomes

οΏ½(𝑆0 + 𝑆1)β€²οΏ½2𝑒𝑆0+𝑆1 + (𝑆0 + 𝑆1)

β€²β€² 𝑒𝑆0+𝑆1 ∼ π‘₯βˆ’5𝑒𝑆0+𝑆1

οΏ½(𝑆0 + 𝑆1)β€²οΏ½2+ (𝑆0 + 𝑆1)

β€²β€² ∼ π‘₯βˆ’5

�𝑆′0 + 𝑆′1οΏ½2+ 𝑆′′0 + 𝑆′′1 ∼ π‘₯βˆ’5

�𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 ∼ π‘₯βˆ’5

But 𝑆′0 = πœ”π‘₯βˆ’ 52 , found before, hence �𝑆′0οΏ½

2= π‘₯βˆ’5 and the above simplifies to

�𝑆′1οΏ½2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 = 0

Using approximation 𝑆′0𝑆′1 β‹™ �𝑆′1οΏ½2the above simplifies to

2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 = 0

Finally, using approximation 𝑆′′0 β‹™ 𝑆′′1 , the above becomes

2𝑆′0𝑆′1 + 𝑆′′0 = 0

𝑆′1 ∼ βˆ’π‘†β€²β€²02𝑆′0

𝑆1 ∼ βˆ’12

ln 𝑆′0 + 𝑐

𝑆′1 ∼ βˆ’12

ln π‘₯βˆ’52 + 𝑐

𝑆′1 ∼54

ln π‘₯ + 𝑐

214

Page 219: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Hence, the leading behavior is

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)+𝑆1(π‘₯)

= exp οΏ½βˆ’23πœ”π‘₯βˆ’

32 +

54

ln π‘₯ + 𝑐�

= 𝑐π‘₯54 exp οΏ½βˆ’πœ”

23π‘₯βˆ’

32 οΏ½ (1)

To verify, using the formula 3.4.28, which is

𝑦 (π‘₯) ∼ 𝑐𝑄1βˆ’π‘›2𝑛 exp οΏ½πœ”οΏ½

π‘₯𝑄 (𝑑)

1𝑛 𝑑𝑑�

In this case, 𝑛 = 2, since the ODE 𝑦′′ = π‘₯βˆ’5𝑦 is second order. Here we have 𝑄 (π‘₯) = π‘₯βˆ’5,therefore, plug-in into the above gives

𝑦 (π‘₯) ∼ 𝑐 οΏ½π‘₯βˆ’5οΏ½1βˆ’24 exp οΏ½πœ”οΏ½

π‘₯οΏ½π‘‘βˆ’5οΏ½

12 𝑑𝑑�

∼ 𝑐 οΏ½π‘₯βˆ’5οΏ½βˆ’14 exp οΏ½πœ”οΏ½

π‘₯π‘‘βˆ’

52𝑑𝑑�

∼ 𝑐π‘₯54 exp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽπœ”

βŽ›βŽœβŽœβŽœβŽœβŽœβŽπ‘₯βˆ’

32

βˆ’32

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

∼ 𝑐π‘₯54 exp οΏ½βˆ’πœ”

23π‘₯βˆ’

32 οΏ½ (2)

Comparing (1) and (2), we see they are the same.

4.3.2 problem (b), page 88

𝑦′′′ = π‘₯𝑦

Irregular singular point at π‘₯ β†’ +∞. Let 𝑦 = 𝑒𝑆0(π‘₯) and the above becomes

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)

𝑦′ (π‘₯) = 𝑆′0𝑒𝑆0

𝑦′′ = 𝑆′′0 𝑒𝑆0 + �𝑆′0οΏ½2𝑒𝑆0

= �𝑆′′0 + �𝑆′0οΏ½2οΏ½ 𝑒𝑆0

𝑦′′′ = �𝑆′′0 + �𝑆′0οΏ½2�′𝑒𝑆0 + �𝑆′′0 + �𝑆′0οΏ½

2οΏ½ 𝑆′0𝑒𝑆0

= �𝑆′′′0 + 2𝑆′0𝑆′′0 οΏ½ 𝑒𝑆0 + �𝑆′0𝑆′′0 + �𝑆′0οΏ½3οΏ½ 𝑒𝑆0

= �𝑆′′′0 + 3𝑆′0𝑆′′0 + �𝑆′0οΏ½3οΏ½ 𝑒𝑆0

215

Page 220: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Substituting back into 𝑦′′′ = π‘₯𝑦 gives

�𝑆′′′0 + 3𝑆′0𝑆′′0 + �𝑆′0οΏ½3οΏ½ 𝑒𝑆0 = π‘₯𝑒𝑆0(π‘₯)

𝑆′′′0 + 3𝑆′0𝑆′′0 + �𝑆′0οΏ½3= π‘₯

Before solving for 𝑆0, we can do one more simplification. Using the approximation that

�𝑆′0οΏ½3β‹™ 𝑆′′′0 for π‘₯ β†’ π‘₯0, the above becomes

3𝑆′0𝑆′′0 + �𝑆′0οΏ½3∼ π‘₯

In addition, since 𝑆′0 β‹™ 𝑆′′0 then we can use the approximation �𝑆′0οΏ½3β‹™ 𝑆′0𝑆′′0 and the above

becomes

�𝑆′0οΏ½3∼ π‘₯

𝑆′0 ∼ πœ”π‘₯13

𝑆0 ∼ πœ”οΏ½π‘₯13𝑑π‘₯

𝑆0 ∼ πœ”34π‘₯43

To find leading behavior, let

𝑆 (π‘₯) = 𝑆0 (π‘₯) + 𝑆1 (π‘₯)

Then 𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)+𝑆1(π‘₯) and hence now

𝑦′ (π‘₯) = (𝑆0 (π‘₯) + 𝑆1 (π‘₯))β€² 𝑒𝑆0+𝑆1

𝑦′′ (π‘₯) = οΏ½(𝑆0 + 𝑆1)β€²οΏ½2𝑒𝑆0+𝑆1 + (𝑆0 + 𝑆1)

β€²β€² 𝑒𝑆0+𝑆1

= �𝑆′0 + 𝑆′1οΏ½2𝑒𝑆0+𝑆1 + �𝑆′′0 + 𝑆′′1 οΏ½ 𝑒𝑆0+𝑆1

= ��𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1οΏ½ 𝑒𝑆0+𝑆1 + �𝑆′′0 + 𝑆′′1 οΏ½ 𝑒𝑆0+𝑆1

= ��𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 οΏ½ 𝑒𝑆0+𝑆1

216

Page 221: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

We can take the third derivative

𝑦′′′ (π‘₯) ∼ ��𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 οΏ½

′𝑒𝑆0+𝑆1

+ ��𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 οΏ½ (𝑆0 + 𝑆1)

β€² 𝑒𝑆0+𝑆1

∼ οΏ½2𝑆′0𝑆′′0 + 2𝑆′1𝑆′′1 + 2𝑆′′0 𝑆′1 + 2𝑆′0𝑆′′1 + 𝑆′′′0 + 𝑆′′′1 οΏ½ 𝑒𝑆0+𝑆1

+ ��𝑆′0οΏ½2+ �𝑆′1οΏ½

2+ 2𝑆′0𝑆′1 + 𝑆′′0 + 𝑆′′1 οΏ½ �𝑆′0 + 𝑆′1οΏ½ 𝑒𝑆0+𝑆

∼ οΏ½2𝑆′0𝑆′′0 + 2𝑆′1𝑆′′1 + 2𝑆′′0 𝑆′1 + 2𝑆′0𝑆′′1 + 𝑆′′′0 + 𝑆′′′1 οΏ½ 𝑒𝑆0+𝑆1

+ ��𝑆′0οΏ½3+ 𝑆′0 �𝑆′1οΏ½

2+ 2 �𝑆′0οΏ½

2𝑆′1 + 𝑆′0𝑆′′0 + 𝑆′0𝑆′′1 οΏ½ 𝑒𝑆0+𝑆1

+ �𝑆′1 �𝑆′0οΏ½2+ �𝑆′1οΏ½

3+ 2𝑆′0 �𝑆′1οΏ½

2+ 𝑆′1𝑆′′0 + 𝑆′1𝑆′′1 οΏ½ 𝑒𝑆0+𝑆1

∼ οΏ½2𝑆′0𝑆′′0 + 2𝑆′1𝑆′′1 + 2𝑆′′0 𝑆′1 + 2𝑆′0𝑆′′1 + 𝑆′′′0 + 𝑆′′′1 οΏ½ 𝑒𝑆0+𝑆1

+ ��𝑆′0οΏ½3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 𝑆′0𝑆′′0 + 𝑆′0𝑆′′1 + �𝑆′1οΏ½

3+ 𝑆′1𝑆′′0 + 𝑆′1𝑆′′1 οΏ½ 𝑒𝑆0+𝑆1

∼ οΏ½3𝑆′0𝑆′′0 + 3𝑆′1𝑆′′1 + 3𝑆′′0 𝑆′1 + 3𝑆′0𝑆′′1 + 𝑆′′′0 + 𝑆′′′1 + �𝑆′0οΏ½3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + �𝑆′1οΏ½

3οΏ½ 𝑒𝑆0+𝑆1

∼ ��𝑆′0οΏ½3+ �𝑆′1οΏ½

3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 + 3𝑆′1𝑆′′1 + 3𝑆′′0 𝑆′1 + 3𝑆′0𝑆′′1 + 𝑆′′′0 + 𝑆′′′1 οΏ½ 𝑒𝑆0+𝑆1

Lets go ahead and plug-in this into the ODE

�𝑆′0οΏ½3+ �𝑆′1οΏ½

3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 + 3𝑆′1𝑆′′1 + 3𝑆′′0 𝑆′1 + 3𝑆′0𝑆′′1 + 𝑆′′′0 + 𝑆′′′1 ∼ π‘₯

Now we do some simplification. �𝑆′0οΏ½3β‹™ 𝑆′′′0 and �𝑆′1οΏ½

3β‹™ 𝑆′′′1 , hence above becomes

�𝑆′0οΏ½3+ �𝑆′1οΏ½

3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 + 3𝑆′1𝑆′′1 + 3𝑆′′0 𝑆′1 + 3𝑆′0𝑆′′1 ∼ π‘₯

Also, since 𝑆′′0 β‹™ 𝑆′′1 then 3𝑆′0𝑆′′0 β‹™ 3𝑆′0𝑆′′1

�𝑆′0οΏ½3+ �𝑆′1οΏ½

3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 + 3𝑆′1𝑆′′1 + 3𝑆′′0 𝑆′1 ∼ π‘₯

Also, since �𝑆′0οΏ½2β‹™ 𝑆′′0 then 3 �𝑆′0οΏ½

2𝑆′1 β‹™ 3𝑆′′0 𝑆′1

�𝑆′0οΏ½3+ �𝑆′1οΏ½

3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 + 3𝑆′1𝑆′′1 ∼ π‘₯

Also since 𝑆′1 β‹™ 𝑆′′1 then 3 �𝑆′0οΏ½2𝑆′1 β‹™ 3𝑆′1𝑆′′1

�𝑆′0οΏ½3+ �𝑆′1οΏ½

3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 ∼ π‘₯

But 𝑆′0 ∼ π‘₯13 hence�𝑆′0οΏ½

3∼ π‘₯ and the above simplies to

�𝑆′1οΏ½3+ 3𝑆′0 �𝑆′1οΏ½

2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 = 0

217

Page 222: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Using 3𝑆′0 �𝑆′1οΏ½2β‹™ �𝑆′1οΏ½

3since 𝑆′0 β‹™ 𝑆′1 then

3𝑆′0 �𝑆′1οΏ½2+ 3 �𝑆′0οΏ½

2𝑆′1 + 3𝑆′0𝑆′′0 = 0

Using 3 �𝑆′0οΏ½2𝑆′1 β‹™ 𝑆′0 �𝑆′1οΏ½

2since �𝑆′0οΏ½

2β‹™ 𝑆′0 then

3 �𝑆′0οΏ½2𝑆′1 + 3𝑆′0𝑆′′0 = 0

No more simplification. We are ready to solve for 𝑆1.

𝑆′1 βˆΌβˆ’π‘†β€²0𝑆′′0�𝑆′0οΏ½

2

βˆΌβˆ’π‘†β€²β€²0𝑆′0

Hence

𝑆1 ∼ βˆ’οΏ½π‘†β€²β€²0𝑆′0𝑑π‘₯

∼ βˆ’ ln 𝑆′0 + 𝑐

Since 𝑆′0 ∼ π‘₯13 then the above becomes

𝑆1 ∼ βˆ’ ln π‘₯13 + 𝑐

𝑆1 ∼ βˆ’13

ln π‘₯ + 𝑐

Hence, the leading behavior is

𝑦 (π‘₯) = 𝑒𝑆0(π‘₯)+𝑆1(π‘₯)

= exp οΏ½πœ”34π‘₯43 βˆ’

13

ln π‘₯ + 𝑐�

= 𝑐π‘₯βˆ’13 exp οΏ½πœ”

34π‘₯43 οΏ½ (1)

To verify, using the formula 3.4.28, which is

𝑦 (π‘₯) ∼ 𝑐𝑄1βˆ’π‘›2𝑛 exp οΏ½πœ”οΏ½

π‘₯𝑄 (𝑑)

1𝑛 𝑑𝑑�

In this case, 𝑛 = 3, since the ODE 𝑦′′′ = π‘₯𝑦 is third order. Here we have 𝑄 (π‘₯) = π‘₯, therefore,

218

Page 223: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

plug-in into the above gives

𝑦 (π‘₯) ∼ 𝑐 (π‘₯)1βˆ’36 exp οΏ½πœ”οΏ½

π‘₯(𝑑)

13 𝑑𝑑�

∼ 𝑐π‘₯βˆ’13 exp οΏ½πœ”

43π‘₯43 οΏ½

Comparing (1) and (2), we see they are the same.

219

Page 224: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

4.4 note added 1/31/2017

This note solves in details the ODE

π‘₯3𝑦′′ (π‘₯) = 𝑦 (π‘₯)

Using asymptoes method using what is called the dominant balance submethod where it isassumed that 𝑦 (π‘₯) = 𝑒𝑆(π‘₯).

4.4.1 Solution

π‘₯ = 0 is an irregular singular point. The solution is assumeed to be 𝑦 (π‘₯) = 𝑒𝑆(π‘₯). Therefore𝑦′ = 𝑆′𝑒𝑆(π‘₯) and 𝑦′′ = 𝑆′′𝑒𝑆(π‘₯) + (𝑆′)2 𝑒𝑆(π‘₯) and the given ODE becomes

π‘₯3 �𝑆′′ + (𝑆′)2οΏ½ = 1 (1)

Assuming that

𝑆′ (π‘₯) ∼ 𝑐π‘₯𝛼

Hence 𝑆′′ ∼ 𝑐𝛼π‘₯π›Όβˆ’1. and (1) becomes

π‘₯3 �𝑐𝛼π‘₯π›Όβˆ’1 + (𝑐π‘₯𝛼)2οΏ½ ∼ 1𝑐𝛼π‘₯𝛼+2 + 𝑐2π‘₯2𝛼+3 ∼ 1

Term 𝑐𝛼π‘₯𝛼+2 β‹™ 𝑐2π‘₯2𝛼+3, hence we set 𝛼 = βˆ’32 to remove the subdominant term. Therefore

the above becomes, after substituting for the found 𝛼π‘₯β†’0

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βˆ’32𝑐π‘₯

12 + 𝑐2 ∼ 1

𝑐2 = 1

Therefore 𝑐 = Β±1. The result so far is 𝑆′ (π‘₯) ∼ 𝑐π‘₯βˆ’32 . Now another term is added. Let

𝑆′ (π‘₯) ∼ 𝑐π‘₯βˆ’32 + 𝐴 (π‘₯)

Now we will try to find 𝐴 (π‘₯). Hence 𝑆′′ (π‘₯) ∼ βˆ’32 𝑐π‘₯

βˆ’52 +𝐴′ and π‘₯3 �𝑆′′ + (𝑆′)2οΏ½ = 1 now becomes

π‘₯3 οΏ½βˆ’32𝑐π‘₯

βˆ’52 + 𝐴′ + �𝑐π‘₯

βˆ’32 + 𝐴�

2

� ∼ 1

π‘₯3 οΏ½βˆ’32𝑐π‘₯

βˆ’52 + 𝐴′ + 𝑐2π‘₯βˆ’3 + 𝐴2 + 2𝐴𝑐π‘₯

βˆ’32 οΏ½ ∼ 1

οΏ½βˆ’32𝑐π‘₯

12 + π‘₯3𝐴′ + 𝑐2 + π‘₯3𝐴2 + 2𝐴𝑐π‘₯

32 � ∼ 1

Since 𝑐2 = 1 from the above, thenβˆ’32𝑐π‘₯

12 + π‘₯3𝐴′ + π‘₯3𝐴2 + 2𝐴𝑐π‘₯

32 ∼ 0

220

Page 225: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

Dominant balance says to keep dominant term (but now looking at those terms in 𝐴 only).From the above, since 𝐴⋙ 𝐴2 and 𝐴 β‹™ 𝐴′ then from the above, we can cross out 𝐴2 and𝐴′ resulting in

βˆ’32𝑐π‘₯

12 + 2𝐴𝑐π‘₯

32 ∼ 0

Hence we just need to find 𝐴 to balance the aboveβˆ’32𝑐π‘₯

12 + 2𝐴𝑐π‘₯

32 ∼ 0

2𝐴𝑐π‘₯32 ∼

32𝑐π‘₯

12

𝐴 ∼34π‘₯

We found 𝐴 (π‘₯) for the second term. Therefore, so far we have

𝑆′ (π‘₯) = 𝑐π‘₯βˆ’32 +

34π‘₯

Or

𝑆 (π‘₯) = βˆ’2𝑐π‘₯βˆ’12 +

34

ln π‘₯ + 𝐢0

But 𝐢0 can be dropped (subdominant to ln π‘₯ when π‘₯ β†’ 0) and so far then we can write thesolution as

𝑦 (π‘₯) = 𝑒𝑆(π‘₯)π‘Š(π‘₯)

= 𝑒𝑆(π‘₯)βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ

= exp οΏ½βˆ’2𝑐π‘₯βˆ’12 +

34

ln π‘₯οΏ½βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ

= π‘’βˆ’2𝑐π‘₯βˆ’12 π‘₯

34

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ

= π‘’βˆ’ 2π‘βˆšπ‘₯

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ+ 3

4

= 𝑒± 2√π‘₯

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ+ 3

4

Since 𝑐 = Β±1. We can now try adding one more term to 𝑆 (π‘₯). Let

𝑆′ (π‘₯) = 𝑐π‘₯βˆ’32 +

34π‘₯+ 𝐡 (π‘₯)

Hence

𝑆′′ =βˆ’32𝑐π‘₯

βˆ’52 βˆ’

34π‘₯2

+ 𝐡′ (π‘₯)

221

Page 226: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

And π‘₯3 �𝑆′′ + (𝑆′)2οΏ½ ∼ 1 now becomes

π‘₯3βŽ›βŽœβŽœβŽœβŽœβŽοΏ½βˆ’32𝑐π‘₯

βˆ’52 βˆ’

34π‘₯2

+ 𝐡′ (π‘₯)οΏ½ + �𝑐π‘₯βˆ’32 +

34π‘₯+ 𝐡 (π‘₯)οΏ½

2⎞⎟⎟⎟⎟⎠ ∼ 1

π‘₯3 �𝑐2

π‘₯3βˆ’316π‘₯βˆ’2 + 2𝑐𝐡π‘₯βˆ’

32 +

32𝐡π‘₯βˆ’1 + 𝐡2 + 𝐡′� ∼ 1

βŽ›βŽœβŽœβŽœβŽœβŽ=1βžπ‘2 βˆ’

316π‘₯ + 2𝑐𝐡π‘₯

32 +

32𝐡π‘₯2 + π‘₯3𝐡2 + π‘₯3𝐡′

⎞⎟⎟⎟⎟⎠ ∼ 1

βˆ’316π‘₯ + 2𝑐𝐡π‘₯

32 +

32𝐡π‘₯2 + π‘₯3𝐡2 + π‘₯3𝐡′ ∼ 0

From the above, since 𝐡 (π‘₯) β‹™ 𝐡2 (π‘₯) and 𝐡 (π‘₯) β‹™ 𝐡′ (π‘₯) and for small π‘₯, then we can crossout terms with 𝐡2 and 𝐡′ from above, and we are left with

βˆ’316π‘₯ + 2𝑐𝐡π‘₯

32 +

32𝐡π‘₯2 ∽ 0

Between 2𝑐𝐡π‘₯32 and 3

2𝐡π‘₯2, for small π‘₯, then 2𝑐𝐡π‘₯

32 β‹™ 3

2𝐡π‘₯2, so we can cross out 3

2𝐡π‘₯2 from

above

βˆ’316π‘₯ + 2𝑐𝐡π‘₯

32 ∽ 0

2𝑐𝐡π‘₯32 ∽

316π‘₯

𝐡 ∽332𝑐

π‘₯βˆ’12

We found 𝐡 (π‘₯), Hence now we have

𝑆′ (π‘₯) = 𝑐π‘₯βˆ’32 +

34π‘₯+

332𝑐

π‘₯βˆ’12

Or

𝑆 (π‘₯) = βˆ’2𝑐π‘₯βˆ’12 +

34

ln π‘₯ + 316𝑐

π‘₯12 + 𝐢1

But 𝐢1 can be dropped (subdominant to ln π‘₯ when π‘₯ β†’ 0) and so far then we can write thesolution as

𝑦 (π‘₯) = 𝑒𝑆(π‘₯)π‘Š(π‘₯)

= 𝑒𝑆(π‘₯)βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ

= exp οΏ½βˆ’2𝑐π‘₯βˆ’12 +

34

ln π‘₯ + 316𝑐

π‘₯12 οΏ½

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ

= π‘’βˆ’2𝑐π‘₯βˆ’12 + 3

16𝑐π‘₯12 π‘₯

34

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ

= π‘’βˆ’2𝑐π‘₯βˆ’12 + 3

16𝑐π‘₯12

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ+ 3

4

222

Page 227: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

For 𝑐 = 1

𝑦1 (π‘₯) = π‘’βˆ’2π‘₯

βˆ’12 + 3

16π‘₯12

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ+ 3

4

For 𝑐 = βˆ’1

𝑦2 (π‘₯) = 𝑒2π‘₯

βˆ’12 βˆ’ 3

16π‘₯12

βˆžοΏ½π‘›=0

π‘Žπ‘›π‘₯π‘›π‘Ÿ+ 3

4

Hence

𝑦 (π‘₯) ∼ 𝐴𝑦1 (π‘₯) + 𝐡𝑦2 (π‘₯)

Reference

1. Page 80-82 Bender and Orszag textbook.

2. Lecture notes, Lecture 5, Tuesday Janurary 31, 2017. EP 548, University of Wisconsin,Madison by Professor Smith.

3. Lecture notes from http://www.damtp.cam.ac.uk/

223

Page 228: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

224

Page 229: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.5. note p3 figure 3.4 in text (page 92) . . . CHAPTER 4. STUDY NOTES

4.5 note p3 οΏ½gure 3.4 in text (page 92) reproduced incolor

figure 3.4 in text (page 92) was not too clear (it is black and white in my text book that I am using). So I

reproduced it in color. This type of plot is needed to check what happens with the improvement in

approximation for problem 3.42 (a) as more terms are added to leading behavior.

It is done in Wolfram Mathematica. Used 300 terms to find y(x). We see the red line, which is leading

behavior/y(x) ratio going to 1 for large x as would be expected.

In[1]:= leading[x] := 1 2 Pi^-1 2 x^-1 4 Exp2 x^1 2;

y[x_, max_] := Sumx^n Factorial[n]^2, {n, 0, max};

LogLinearPlotEvaluateleading[x] y[x, 300], y[x, 10] y[x, 300], {x, 0.001, 70 000},

PlotRange β†’ All, Frame β†’ True, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

PlotLegends β†’ {"leading behavior/y(x)", "truncated Taylor/y(x)"}, FrameLabel β†’

{{None, None}, {"x", "Reproducing figure 3.4 in text book"}}, PlotStyle β†’ {Red, Blue}

Out[3]=

0.01 1 100 104

0.0

0.5

1.0

1.5

x

Reproducing figure 3.4 in text book

leading behavior/y(x)

truncated Taylor/y(x)

Printed by Wolfram Mathematica Student Edition

225

Page 230: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.5. note p3 figure 3.4 in text (page 92) . . . CHAPTER 4. STUDY NOTES

226

Page 231: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

4.6 note p4 added 2/15/17 animations of the solutions toODE from lecture 2/9/17 for small parameter

These are small animations of the solutions to the 2 ODE’s from lecture 2/9/17 for the small parameter.

Nasser M. Abbasi

2/20/2017, EP 548, Univ. Wisconsin Madison.

Manipulate

Labeled

Plot-1 + β…‡x/z

-1 + β…‡1

z

, {x, 0, 2}, PlotRange β†’ {{0, 1.1}, {0, 1}},

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray, PlotStyle β†’ Red,

Row[{"solution to ", TraditionalForm[Ο΅ y''[x] - y'[x] β©΅ 0]}], Top,

{{z, 0.1, "Ο΅"}, .1, 0.001, -0.001, Appearance β†’ "Labeled"}

Ο΅ 0.1

solution to Ο΅ yβ€²β€²(x) - yβ€²(x) 0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

For eps*y’’+y=0 ode, we notice global variations showing up in frequency as well as in amplitude as

eps become very small

Printed by Wolfram Mathematica Student Edition

227

Page 232: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

Manipulate

Labeled

Plot

Sin x

z

Sin 1

z

, {x, 0, 2}, PlotRange β†’ {{0, 2}, {-10, 10}},

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray, PlotStyle β†’ Red,

Style[Row[{"solution to ", TraditionalForm[z y''[x] + y[x] β©΅ 0]}], 16], Top,

{{z, 0.01, "Ο΅"}, 0.01, 0.0001, -0.0001}

Ο΅

solution to 0.01 yβ€²β€²(x) + y(x) 0

0.5 1.0 1.5 2.0

-10

-5

0

5

10

2 p4.nb

Printed by Wolfram Mathematica Student Edition

228

Page 233: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

First animation

second animation

229

Page 234: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

230

Page 235: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

4.7 note p5 added 2/15/17 animation οΏ½gure 9.5 in textpage 434

Animation of figure 9.5Nasser M. Abbasi, Feb 2017, EP 548 course

Animation of figure 9.5 in text page 434, compare higher order boundary layer solutions

This is an animation of the percentage error between boundary layer solution and the

exact solution for Ο΅yβ€²β€²+(1+x)yβ€²+y=0 for different orders. Orders are given in text up y0,y1,y2,y3. We

see the error is smaller when order increases as what one would expect.

The percentage error is largest around x=0.1 than other regions. Why? Location of matching between

yin and yout. Due

to approximation made when doing matching? But all boundary layer solutions underestimate the exact

solution since error is negative.

The red color is the most accurate. 3rd order.

First animation

In[45]:= Clear["Global`*"];

yout[x_] := 2 1 + x;

yin[x_, eps_] :=

Plot[2 - Exp[-x / eps], {x, 0, 1}, AxesOrigin β†’ {0, 1}, PlotStyle β†’ Black];

p1 = Plot[yout[x], {x, 0, 1}, PlotStyle β†’ Blue];

combine[x_, eps_] := Plot[yout[x] - Exp[-x / eps], {x, 0, 1}, PlotStyle β†’ {Thick, Red},

AxesOrigin β†’ {0, 1}, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray];

Animate

GridTraditionalForm

NumberForm[eps, {Infinity, 4}] HoldFormy''[x] + 1 + x y'[x] + y[x] β©΅ 0,

{Show[

Legended[combine[x, eps], Style["combinbed solution", Red]],

Legended[p1, Style["Outer solution", Blue]],

Legended[yin[x, eps], Style["Inner solution", Black]]

, PlotRange β†’ {{0, 1}, {1, 2}}, ImageSize β†’ 400]

}, {eps, 0.001, .1, .00001}

Printed by Wolfram Mathematica Student Edition

231

Page 236: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

second animation, y0 vs. exactIn[51]:= Clear["Global`*"];

yout[x_] := 2 1 + x;

sol =

y[x] /. First@DSolveΟ΅ y''[x] + 1 + x y'[x] + y[x] β©΅ 0, y[0] β©΅ 1, y[1] β©΅ 1, y[x], x;

exact[x_, Ο΅_] := Evaluate@sol;

yin[x_, eps_] :=

Plot[2 - Exp[-x / eps], {x, 0, 1}, AxesOrigin β†’ {0, 1}, PlotStyle β†’ Black];

p1 = Plot[yout[x], {x, 0, 1}, PlotStyle β†’ Blue];

combine[x_, eps_] := Plot[yout[x] - Exp[-x / eps], {x, 0, 1}, PlotStyle β†’ {Thick, Red},

AxesOrigin β†’ {0, 1}, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray];

Animate

Grid

TraditionalForm

NumberForm[Ο΅, {Infinity, 4}] HoldFormy''[x] + 1 + x y'[x] + y[x] β©΅ 0,

{Row[{"exact solution ", TraditionalForm[sol]}]},

{Show[

Legended[combine[x, Ο΅], Style["Boundary layer solution, zero order", Red]],

Legended[Plot[Evaluate@exact[x, Ο΅], {x, 0, 1}, AxesOrigin β†’ {0, 0}, PlotStyle β†’ Blue],

Style["Exact analytical solution", Blue]]

, PlotRange β†’ {{0, 1}, {1, 2}}, ImageSize β†’ 400]

}, {Ο΅, 0.0001, .1, .00001}

2 p5.nb

Printed by Wolfram Mathematica Student Edition

232

Page 237: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

add more terms

In[60]:= Clear["Global`*"];

sol =

y[x] /. First@DSolveΟ΅ y''[x] + 1 + x y'[x] + y[x] β©΅ 0, y[0] β©΅ 1, y[1] β©΅ 1, y[x], x;

exact[x_, Ο΅_] := Evaluate@sol;

boundary0[x_, eps_] :=2

1 + x- Exp[-x / eps] ;

boundary1[x_, eps_] :=

2

1 + x- Exp[-x / eps] + eps

2

1 + x3-

1

2 1 + x+

1

2(x / eps)2 -

3

2Exp[-x / eps] ;

boundary2[x_, eps_] :=2

1 + x- Exp[-x / eps] +

eps2

1 + x3-

1

2 1 + x+

1

2(x / eps)2 -

3

2Exp[-x / eps] +

eps26

1 + x5-

1

2 1 + x3-

1

4 1 + x-

1

8(x / eps)4 -

3

4(x / eps)2 +

21

4Exp[-x / eps] ;

boundary3[x_, eps_] :=2

1 + x- Exp[-x / eps] +

eps2

1 + x3-

1

2 1 + x+

1

2(x / eps)2 -

3

2Exp[-x / eps] +

eps26

1 + x5-

1

2 1 + x3-

1

4 1 + x-

1

8(x / eps)4 -

3

4(x / eps)2 +

21

4Exp[-x / eps] +

eps330

1 + x7-

3

2 1 + x5-

1

4 1 + x3-

5

16 1 + x+

1

48(x / eps)6 -

3

16(x / eps)4 +

21

8(x / eps)2 -

1949

72Exp[-x / eps] ;

p5.nb 3

Printed by Wolfram Mathematica Student Edition

233

Page 238: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

In[67]:= Animate

ex = exact[x, Ο΅];

Grid

{Style[

"percentage relative error, exact vs. boundary layer for different order", 14]},

Show

LegendedPlot100 *boundary3[x, Ο΅] - ex

ex, {x, 0, 1},

PlotStyle β†’ {Thick, Red}, AxesOrigin β†’ {0, 1}, GridLines β†’ Automatic,

GridLinesStyle β†’ LightGray, PlotRange β†’ {Automatic, {-4, .5}}, Frame β†’ True,

Epilog β†’ Text[Style[Row[{"Ο΅ = ", NumberForm[Ο΅, {Infinity, 4}]}], 16], {.8, -3}],

Style"Boundary layer 3rd order error", Red,

LegendedPlot100 *boundary2[x, Ο΅] - ex

ex, {x, 0, 1}, PlotStyle β†’ {Thick, Black},

AxesOrigin β†’ {0, 1}, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

Style"Boundary layer 2nd order error", Black,

LegendedPlot100 *boundary1[x, Ο΅] - ex

ex, {x, 0, 1}, PlotStyle β†’ {Thick, Blue},

AxesOrigin β†’ {0, 1}, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

Style"Boundary layer 1st order error", Blue,

LegendedPlot100 *boundary0[x, Ο΅] - ex

ex, {x, 0, 1}, PlotStyle β†’ {Thick, Magenta},

AxesOrigin β†’ {0, 1}, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

Style["Boundary layer 0 order error", Magenta]

, PlotRange β†’ {{0, 1}, {-4, .5}}, ImageSize β†’ 400

, {Ο΅, 0.001, .1, .0001}

4 p5.nb

Printed by Wolfram Mathematica Student Edition

234

Page 239: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

Out[67]=

Ο΅

percentage relative error, exact vs. boundary layer for different order

0.0 0.2 0.4 0.6 0.8 1.0-4

-3

-2

-1

0

Ο΅ = 0.0656

Boundary layer 3rd order error

Boundary layer 2nd order error

Boundary layer 1st order errorBoundary layer 0 order error

p5.nb 5

Printed by Wolfram Mathematica Student Edition

235

Page 240: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

Animation of figure 9.5 in text page 434, compare higher order boundary layer solutions

This is an animation of the percentage error between boundary layer solution and the exactsolution for πœ–π‘¦β€³+(1+π‘₯)𝑦′+𝑦 = 0 for diοΏ½erent orders. Orders are given in text up 𝑦0, 𝑦1, 𝑦2, 𝑦3.We see the error is smaller when the order increases as what one would expect.

The percentage error is largest around π‘₯ = 0.1 than other regions. Why? Location of matchingis between 𝑦𝑖𝑛 and π‘¦π‘œπ‘’π‘‘. Due to approximation made when doing matching? But all boundarylayer solutions underestimate the exact solution since error is negative.

The red color is the most accurate. 3rd order.

First animation

second animation

third animation

236

Page 241: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

4.8 note p7 added 2/15/17, boundary layer problemsolved in details

This note solves

πœ€π‘¦β€²β€² (π‘₯) + (1 + π‘₯) 𝑦′ (π‘₯) + 𝑦 (π‘₯) = 0𝑦 (0) = 1𝑦 (1) = 1

Where πœ€ is small parameter, using boundary layer theory.

4.8.0.1 Solution

Since (1 + π‘₯) > 0 in the domain, we expect boundary layer to be on the left. Let π‘¦π‘œπ‘’π‘‘ (π‘₯) bethe solution in the outer region. Starting with 𝑦 (π‘₯) = βˆ‘βˆž

𝑛=0 πœ€π‘›π‘¦π‘› and substituting back into

the ODE gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + (1 + π‘₯) �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

𝑂 (1) terms

Collecting all terms with zero powers of πœ€(1 + π‘₯) 𝑦′0 + 𝑦0 = 0

The above is solved using the right side conditions, since this is where the outer region islocated. Solving the above using 𝑦0 (1) = 1 gives

π‘¦π‘œπ‘’π‘‘0 (π‘₯) =2

1 + π‘₯Now we need to find 𝑦𝑖𝑛 (π‘₯). To do this, we convert the ODE using transformation πœ‰ = π‘₯

πœ€ .

Hence 𝑑𝑦𝑑π‘₯ = 𝑑𝑦

π‘‘πœ‰π‘‘πœ‰π‘‘π‘₯ = 𝑑𝑦

π‘‘πœ‰1πœ€ . Hence the operator 𝑑

𝑑π‘₯ ≑ 1πœ€

π‘‘π‘‘πœ‰ . This means the operator 𝑑2

𝑑π‘₯2 ≑

οΏ½1πœ€

π‘‘π‘‘πœ‰οΏ½ οΏ½1

πœ€π‘‘π‘‘πœ‰οΏ½ = 1

πœ€2𝑑2

π‘‘πœ‰2 . The ODE becomes

πœ€1πœ€2𝑑2𝑦 (πœ‰)π‘‘πœ‰2

+ (1 + πœ‰πœ€)1πœ€π‘‘π‘¦ (πœ‰)π‘‘πœ‰

+ 𝑦 (πœ‰) = 0

1πœ€π‘¦β€²β€² + οΏ½

1πœ€+ πœ‰οΏ½ 𝑦′ + 𝑦 = 0

Plugging 𝑦 (πœ‰) = βˆ‘βˆžπ‘›=0 πœ€

𝑛𝑦 (πœ‰)𝑛 into the above gives

1πœ€οΏ½π‘¦β€²β€²0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + οΏ½

1πœ€+ πœ‰οΏ½ �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

1πœ€οΏ½π‘¦β€²β€²0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ +

1πœ€οΏ½π‘¦β€²0 + πœ€π‘¦β€²1 +β‹―οΏ½ + πœ‰ �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

237

Page 242: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

Collecting all terms with smallest power of πœ€ , which is πœ€βˆ’1 in this case, gives1πœ€π‘¦β€²β€²0 +

1πœ€π‘¦β€²0 = 0

𝑦′′0 + 𝑦′0 = 0

Let 𝑧 = 𝑦′0, the above becomes

𝑧′ + 𝑧 = 0

𝑑 οΏ½π‘’πœ‰π‘§οΏ½ = 0π‘’πœ‰π‘§ = 𝑐𝑧 = π‘π‘’βˆ’πœ‰

Hence 𝑦′0 (πœ‰) = π‘π‘’βˆ’πœ‰. Integrating

𝑦𝑖𝑛0 (πœ‰) = βˆ’π‘π‘’βˆ’πœ‰ + 𝑐1 (1A)

Since 𝑐 is arbitrary constant, the negative sign can be removed, giving

𝑦𝑖𝑛0 (πœ‰) = π‘π‘’βˆ’πœ‰ + 𝑐1 (1A)

This is the lowest order solution for the inner 𝑦𝑖𝑛 (πœ‰). We have two boundary conditions, butwe can only use the left side one, where 𝑦𝑖𝑛 (πœ‰) lives. Hence using 𝑦0 (πœ‰ = 0) = 1, the abovebecomes

1 = 𝑐 + 𝑐1𝑐1 = 1 βˆ’ 𝑐

The solution (1A) becomes

𝑦0 (πœ‰) = π‘π‘’βˆ’πœ‰ + (1 βˆ’ 𝑐)

= 1 + 𝑐 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

Let 𝑐 = 𝐴0 to match the book notation.

𝑦0 (πœ‰) = 1 + 𝐴0 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

To find 𝐴0, we match 𝑦𝑖𝑛0 (πœ‰) with π‘¦π‘œπ‘’π‘‘0 (π‘₯)

limπœ‰β†’βˆž

1 + 𝐴0 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½ = limπ‘₯β†’0+

21 + π‘₯

1 βˆ’ 𝐴0 = 2𝐴0 = βˆ’1

Hence

𝑦𝑖𝑛0 (πœ‰) = 2 βˆ’ π‘’βˆ’πœ‰

𝑂 (πœ€) terms

We now repeat the process to find 𝑦𝑖𝑛1 (πœ‰) and π‘¦π‘œπ‘’π‘‘1 (π‘₯) . Starting with π‘¦π‘œπ‘’π‘‘ (π‘₯)

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + (1 + π‘₯) �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

238

Page 243: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

Collecting all terms with πœ€1 now

πœ€π‘¦β€²β€²0 + (1 + π‘₯) πœ€π‘¦β€²1 + πœ€π‘¦1 = 0𝑦′′0 + (1 + π‘₯) 𝑦′1 + 𝑦1 = 0

But we know 𝑦0 =2

1+π‘₯ , from above. Hence 𝑦′′0 =4

(1+π‘₯)3and the above becomes

(1 + π‘₯) 𝑦′1 + 𝑦1 = βˆ’4

(1 + π‘₯)3

𝑦′1 +𝑦11 + π‘₯

= βˆ’4

(1 + π‘₯)4

Integrating factor πœ‡ = π‘’βˆ«1

1+π‘₯𝑑π‘₯ = 𝑒ln(1+π‘₯) = 1 + π‘₯ and the above becomes

𝑑𝑑π‘₯οΏ½πœ‡π‘¦1οΏ½ = βˆ’πœ‡

4(1 + π‘₯)4

𝑑𝑑π‘₯οΏ½(1 + π‘₯) 𝑦1οΏ½ = βˆ’

4(1 + π‘₯)3

Integrating

(1 + π‘₯) 𝑦1 = βˆ’οΏ½4

(1 + π‘₯)3𝑑π‘₯ + 𝑐

=2

(1 + π‘₯)2+ 𝑐

Hence

𝑦1 (π‘₯) =2

(1 + π‘₯)3+

𝑐1 + π‘₯

Applying 𝑦 (1) = 0 (notice the boundary condition now becomes 𝑦 (1) = 0 and not 𝑦 (1) = 1,since we have already used 𝑦 (1) = 1 to find leading order). From now on, all boundaryconditions will be 𝑦 (1) = 0.

0 =2

(1 + 1)3+

𝑐1 + 1

𝑐 = βˆ’12

Hence

𝑦1 (π‘₯) =2

(1 + π‘₯)3βˆ’12

1(1 + π‘₯)

Now we need to find 𝑦𝑖𝑛1 (πœ‰). To do this, starting from

1πœ€οΏ½π‘¦β€²β€²0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + οΏ½

1πœ€+ πœ‰οΏ½ �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

1πœ€οΏ½π‘¦β€²β€²0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ +

1πœ€οΏ½π‘¦β€²0 + πœ€π‘¦β€²1 +β‹―οΏ½ + πœ‰ �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0

239

Page 244: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

But now collecting all terms with 𝑂 (1) order, (last time, we collected terms with π‘‚οΏ½πœ€βˆ’1οΏ½ ).

𝑦′′1 + 𝑦′1 + πœ‰π‘¦β€²0 + 𝑦0 = 0𝑦′′1 + 𝑦′1 = βˆ’πœ‰π‘¦β€²0 βˆ’ 𝑦0 (1)

But we found 𝑦𝑖𝑛0 earlier which was

𝑦𝑖𝑛0 (πœ‰) = 1 + 𝐴0 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

Hence 𝑦′0 = βˆ’π΄0π‘’βˆ’πœ‰ and the ODE (1) becomes

𝑦′′1 + 𝑦′1 = πœ‰π΄0π‘’βˆ’πœ‰ βˆ’ οΏ½1 + 𝐴0 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½οΏ½

We need to solve this with boundary conditions 𝑦1 (0) = 0. (again, notice change in B.C. aswas mentioned above). The solution is

𝑦1 (πœ‰) = βˆ’πœ‰ + 𝐴0 οΏ½πœ‰ βˆ’12πœ‰2π‘’βˆ’πœ‰οΏ½ + 𝐴1 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½

= βˆ’πœ‰ + 𝐴0 οΏ½πœ‰ βˆ’12πœ‰2π‘’βˆ’πœ‰οΏ½ βˆ’ 𝐴1 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

Since 𝐴1 is arbitrary constant, and to match the book, we can call 𝐴2 = βˆ’π΄1 and thenrename 𝐴2 back to 𝐴1 and obtain

𝑦1 (πœ‰) = βˆ’πœ‰ + 𝐴0 οΏ½πœ‰ βˆ’12πœ‰2π‘’βˆ’πœ‰οΏ½ + 𝐴1 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½

This is to be able to follow the book. Therefore, this is what we have so far

π‘¦π‘œπ‘’π‘‘ = π‘¦π‘œπ‘’π‘‘0 + πœ€π‘¦π‘œπ‘’π‘‘1

=2

1 + π‘₯+ πœ€ οΏ½

2(1 + π‘₯)3

βˆ’1

2 (1 + π‘₯)οΏ½

And

𝑦𝑖𝑛 (πœ‰) = 𝑦𝑖𝑛0 + πœ€π‘¦π‘–π‘›1

= οΏ½1 + 𝐴0 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½οΏ½ + πœ€ οΏ½βˆ’πœ‰ + 𝐴0 οΏ½πœ‰ βˆ’12πœ‰2π‘’βˆ’πœ‰οΏ½ + 𝐴1 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½οΏ½

= 𝐴0π‘’βˆ’πœ‰ βˆ’ πœ‰πœ€ βˆ’ πœ€π΄1 βˆ’ 𝐴0 + πœ€π΄1π‘’βˆ’πœ‰ + πœ‰πœ€π΄0 βˆ’12πœ‰2πœ€π΄0π‘’βˆ’πœ‰ + 1

To find 𝐴0, 𝐴1, we match 𝑦𝑖𝑛 with π‘¦π‘œπ‘’π‘‘, therefore

limπœ‰β†’βˆž

𝑦𝑖𝑛 = limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘

Or

limπœ‰β†’βˆž

�𝐴0π‘’βˆ’πœ‰ βˆ’ πœ‰πœ€ βˆ’ πœ€π΄1 βˆ’ 𝐴0 + πœ€π΄1π‘’βˆ’πœ‰ + πœ‰πœ€π΄0 βˆ’12πœ‰2πœ€π΄0π‘’βˆ’πœ‰ + 1οΏ½ =

limπ‘₯β†’0

21 + π‘₯

+ πœ€ οΏ½2

(1 + π‘₯)3βˆ’

12 (1 + π‘₯)οΏ½

Which simplifies to

βˆ’πœ‰πœ€ βˆ’ πœ€π΄1 βˆ’ 𝐴0 + πœ‰πœ€π΄0 + 1 = limπ‘₯β†’0

21 + π‘₯

+ πœ€ οΏ½2

(1 + π‘₯)3βˆ’

12 (1 + π‘₯)οΏ½

240

Page 245: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

It is easier now to convert the LHS to use π‘₯ instead of πœ‰ so we can compare. Since πœ‰ = π‘₯πœ€ ,

then the above becomes

βˆ’π‘₯ βˆ’ πœ€π΄1 βˆ’ 𝐴0 + π‘₯𝐴0 + 1 = limπ‘₯β†’0

21 + π‘₯

+ πœ€ οΏ½2

(1 + π‘₯)3βˆ’

12 (1 + π‘₯)οΏ½

Using Taylor series on the RHS

1 βˆ’ 𝐴0 βˆ’ π‘₯ + 𝐴0π‘₯ + 𝐴1πœ€ = limπ‘₯β†’0

2 οΏ½1 βˆ’ π‘₯ + π‘₯2 +β‹―οΏ½

+ 2πœ€ οΏ½1 βˆ’ π‘₯ + π‘₯2 +β‹―οΏ½ οΏ½1 βˆ’ π‘₯ + π‘₯2 +β‹―οΏ½ οΏ½1 βˆ’ π‘₯ + π‘₯2 +β‹―οΏ½ βˆ’πœ€2οΏ½1 βˆ’ π‘₯ + π‘₯2 +β‹―οΏ½

Since we have terms on the the LHS of only 𝑂 (1) ,𝑂 (π‘₯) , 𝑂 (πœ€), then we need to keep at leastterms with 𝑂 (1) ,𝑂 (π‘₯) , 𝑂 (πœ€) on the RHS and drop terms with 𝑂�π‘₯2οΏ½ , 𝑂 (πœ€π‘₯) , 𝑂 οΏ½πœ€2οΏ½ to be ableto do the matching. So in the above, RHS simplifies to

βˆ’π‘₯ βˆ’ πœ€π΄1 βˆ’ 𝐴0 + π‘₯𝐴0 + 1 = 2 (1 βˆ’ π‘₯) + 2πœ€ βˆ’πœ€2

βˆ’π‘₯ βˆ’ πœ€π΄1 βˆ’ 𝐴0 + π‘₯𝐴0 + 1 = 2 βˆ’ 2π‘₯ + 2πœ€ βˆ’πœ€2

βˆ’πœ€π΄1 βˆ’ 𝐴0 + π‘₯ (𝐴0 βˆ’ 1) + 1 = 2 βˆ’ 2π‘₯ +32πœ€

Comparing, we see that

𝐴0 βˆ’ 1 = βˆ’2𝐴0 = βˆ’1

We notice this is the same 𝐴0 we found for the lowest order. This is how it should always comeout. If we get diοΏ½erent value, it means we made mistake. We could also match βˆ’π΄0 + 1 = 2which gives 𝐴0 = βˆ’1 as well. Finally

βˆ’πœ€π΄1 =32πœ€

𝐴1 = βˆ’32

So we have used matching to find all the constants for 𝑦𝑖𝑛. Here is the final solution so far

π‘¦π‘œπ‘’π‘‘ (π‘₯) =

𝑦0οΏ½21+ π‘₯

+ πœ€

𝑦1οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

2(1 + π‘₯)3

βˆ’1

2 (1 + π‘₯)οΏ½

𝑦𝑖𝑛 (πœ‰) =

𝑦0οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½1 + 𝐴0 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½ + πœ€

𝑦1οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½βˆ’πœ‰ + 𝐴0 οΏ½πœ‰ βˆ’

12πœ‰2π‘’βˆ’πœ‰οΏ½ + 𝐴1 οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½οΏ½

= 1 βˆ’ οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½ + πœ€ οΏ½βˆ’πœ‰ βˆ’ οΏ½πœ‰ βˆ’12πœ‰2π‘’βˆ’πœ‰οΏ½ βˆ’

32οΏ½π‘’βˆ’πœ‰ βˆ’ 1οΏ½οΏ½

=32πœ€ βˆ’ π‘’βˆ’πœ‰ βˆ’ 2πœ‰πœ€ βˆ’

32πœ€π‘’βˆ’πœ‰ +

12πœ‰2πœ€π‘’βˆ’πœ‰ + 2

241

Page 246: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

In terms of π‘₯, since Since πœ‰ = π‘₯πœ€ the above becomes

𝑦𝑖𝑛 (π‘₯) =32πœ€ βˆ’ π‘’βˆ’

π‘₯πœ€ βˆ’ 2π‘₯ βˆ’

32πœ€π‘’βˆ’

π‘₯πœ€ +

12π‘₯2

πœ€π‘’βˆ’

π‘₯πœ€ + 2

= 2 βˆ’ 2π‘₯ +32πœ€ + π‘’βˆ’

π‘₯πœ€ οΏ½12π‘₯2

πœ€βˆ’32πœ€ βˆ’ 1οΏ½

Hence

π‘¦π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š = 𝑦𝑖𝑛 + π‘¦π‘œπ‘’π‘‘ βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„ŽWhere

π‘¦π‘šπ‘Žπ‘‘π‘β„Ž = limπœ‰β†’βˆž

𝑦𝑖𝑛

= 2 βˆ’ 2π‘₯ +32πœ€

Hence

π‘¦π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š = 2 βˆ’ 2π‘₯ +32πœ€ + π‘’βˆ’

π‘₯πœ€ οΏ½12π‘₯2

πœ€βˆ’32πœ€ βˆ’ 1οΏ½ +

21 + π‘₯

+ πœ€ οΏ½2

(1 + π‘₯)3βˆ’

12 (1 + π‘₯)οΏ½

βˆ’ οΏ½2 βˆ’ 2π‘₯ +32πœ€οΏ½

= π‘’βˆ’π‘₯πœ€ οΏ½12π‘₯2

πœ€βˆ’32πœ€ βˆ’ 1οΏ½ +

21 + π‘₯

+ πœ€ οΏ½2

(1 + π‘₯)3βˆ’

12 (1 + π‘₯)οΏ½

= οΏ½2

1 + π‘₯βˆ’ π‘’βˆ’

π‘₯πœ€ +

12π‘₯2

πœ€π‘’βˆ’

π‘₯πœ€ οΏ½ + πœ€ οΏ½

2(1 + π‘₯)3

βˆ’1

2 (1 + π‘₯)βˆ’32π‘’βˆ’

π‘₯πœ€ οΏ½

Which is the same as

π‘¦π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š = οΏ½2

1 + π‘₯βˆ’ π‘’βˆ’πœ‰ +

12π‘₯2

πœ€π‘’βˆ’πœ‰οΏ½ + πœ€ οΏ½

2(1 + π‘₯)3

βˆ’1

2 (1 + π‘₯)βˆ’32π‘’βˆ’πœ‰οΏ½

= οΏ½2

1 + π‘₯βˆ’ π‘’βˆ’πœ‰οΏ½ + πœ€ οΏ½

2(1 + π‘₯)3

βˆ’1

2 (1 + π‘₯)βˆ’32π‘’βˆ’πœ‰ +

12πœ‰2π‘’βˆ’πœ‰οΏ½

= οΏ½2

1 + π‘₯βˆ’ π‘’βˆ’πœ‰οΏ½ + πœ€ οΏ½

2(1 + π‘₯)3

βˆ’1

2 (1 + π‘₯)+ οΏ½

12πœ‰2 βˆ’

32οΏ½π‘’βˆ’πœ‰οΏ½ (1)

Comparing (1) above, with book result in first line of 9.3.16, page 433, we see the sameresult.

4.8.0.2 References

1. Advanced Mathematica methods, Bender and Orszag. Chapter 9.

2. Lecture notes. Feb 16, 2017. By Professor Smith. University of Wisconsin. NE 548

242

Page 247: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.9. note p9. added 2/24/17, asking . . . CHAPTER 4. STUDY NOTES

4.9 note p9. added 2/24/17, asking question aboutproblem in book

How did the book, on page 429, near the end, arrive at 𝐴1 = βˆ’π‘’ ? I am not able to see it.This is what I tried. The book does things little diοΏ½erent than what we did in class. Thebook does not do

limπœ‰β†’βˆž

𝑦𝑖𝑛 ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘

But instead, book replaces π‘₯ in the π‘¦π‘œπ‘’π‘‘ (π‘₯) solution already obtained, with πœ‰πœ€, and rewritesπ‘¦π‘œπ‘’π‘‘ (π‘₯), which is what equation (9.2.14) is. So following this, I am trying to verify the bookresult for 𝐴1 = βˆ’π‘’, but do not see how. Using the book notation, of using 𝑋 in place of πœ‰,we have

π‘Œ1 (𝑋) = (𝐴1 + 𝐴0) οΏ½1 βˆ’ π‘’βˆ’π‘‹οΏ½ βˆ’ 𝑒𝑋

Which is the equation in the book just below 9.2.14. The goal now is to find 𝐴1. Book alreadyfound 𝐴0 = 𝑒 earlier. So we write

limπ‘‹β†’βˆž

π‘Œ1(𝑋)

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½(𝐴1 + 𝐴0) οΏ½1 βˆ’ π‘’βˆ’π‘‹οΏ½ βˆ’ 𝑒𝑋 ∼ π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπ‘‹β†’βˆž

(𝐴1 + 𝐴0) οΏ½1 βˆ’ π‘’βˆ’π‘‹οΏ½ βˆ’ 𝑒𝑋 ∼ 𝑒 οΏ½1 βˆ’ πœ€π‘‹ +πœ€2𝑋2

2!βˆ’β‹―οΏ½

So far so good. But now the book says "comparing π‘Œ1 (π‘₯) when 𝑋 β†’ ∞ with the second termin 9.2.14 gives 𝐴1 = βˆ’π‘’". But how? If we take 𝑋 β†’ ∞ on the LHS above, we get

limπ‘‹β†’βˆž

(𝐴1 + 𝐴0) βˆ’ 𝑒𝑋 ∼ 𝑒 οΏ½1 βˆ’ πœ€π‘‹ +πœ€π‘‹2

2!βˆ’β‹―οΏ½

But 𝐴0 = 𝑒, so

limπ‘‹β†’βˆž

𝐴1 + 𝑒 βˆ’ 𝑒𝑋 ∼ 𝑒 βˆ’ π‘’πœ€π‘‹ + π‘’πœ€π‘‹2

2!βˆ’β‹―

limπ‘‹β†’βˆž

𝐴1 βˆ’ 𝑒𝑋 ∼ βˆ’π‘’πœ€π‘‹ + π‘’πœ€π‘‹2

2!βˆ’β‹―

How does the above says that 𝐴1 = βˆ’π‘’ ? If we move βˆ’π‘’π‘‹ to the right sides, it becomes

𝐴1 ∼ 𝑒𝑋 βˆ’ π‘’πœ€π‘‹ + π‘’πœ€π‘‹2

2!βˆ’β‹―

𝐴1 ∼ 𝑒 (𝑋 βˆ’ πœ€π‘‹) + π‘’πœ€π‘‹2

2!βˆ’β‹―

I do not see how 𝐴1 = βˆ’π‘’. Does any one see how to get 𝐴1 = βˆ’π‘’?

Let redo this using the class method

243

Page 248: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.9. note p9. added 2/24/17, asking . . . CHAPTER 4. STUDY NOTES

limπ‘‹β†’βˆž

π‘Œ1(𝑋)

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½(𝐴1 + 𝐴0) οΏ½1 βˆ’ π‘’βˆ’π‘‹οΏ½ βˆ’ 𝑒𝑋 ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπ‘‹β†’βˆž

(𝐴1 + 𝐴0) οΏ½1 βˆ’ π‘’βˆ’π‘‹οΏ½ βˆ’ 𝑒𝑋 ∼ limπ‘₯β†’0

𝑒 οΏ½1 βˆ’ π‘₯ +π‘₯2

2!βˆ’β‹―οΏ½

limπ‘‹β†’βˆž

𝐴1 + 𝑒 βˆ’ 𝑒𝑋 ∼ 𝑒

limπ‘‹β†’βˆž

𝐴1 ∼ 𝑒𝑋

How does the above says that 𝐴1 = βˆ’π‘’? and what happend to the limπ‘‹β†’βˆž of 𝑋 which remainsthere?

244

Page 249: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.10. note p11. added 3/7/17, Showing . . . CHAPTER 4. STUDY NOTES

4.10 note p11. added 3/7/17, Showing that scaling fornormalization is same for any 𝑛

This small computation verifies that normalization constant for the S-L from lecture 3/2/2017for making all eigenfunction orthonormal is the same for each 𝑛. Its numerical value is0.16627. Here is the table generated for 𝑛 = 1, 2, … , 6.

245

Page 250: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.10. note p11. added 3/7/17, Showing . . . CHAPTER 4. STUDY NOTES

246

Page 251: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

4.11 note p12. added 3/8/17, comparing exact solutionto WKB solution using Mathematica

Comparing Exact to WKB solution

for ODE in lecture 3/2/2017by Nasser M. Abbasi EP 548, Spring 2017.

This note shows how to obtain exact solution for the ODE given in lecture 3/2/2017, EP 548, and to

compare it to the WKB solution for different modes. This shows that the WKB becomes very close to

the exact solution for higher modes.

Obtain the exact solution, in terms of BesselJ functionsIn[16]:= ClearAll[n, c, y, m, lam];

lam[n_] :=9 n^2

49 Pi^4; (*eigenvalues from WKB solution*)

c =6

7 Pi^3; (*normalization value found for WKB*)

y[n_, x_] := c1

Pi + xSinn x^3 + 3 x^2 Pi + 3 Pi^2 x 7 Pi^2;

(*WKB solution found*)

Find exact solution

In[18]:= ode = y''[x] + lam x + Pi^4 y[x] β©΅ 0;

solExact = y[x] /. First@DSolve[{ode, y[0] β©΅ 0}, y[x], x] // TraditionalForm

Out[19]//TraditionalForm=

1

66

lam24

J 16

lam Ο€3

3

c1 Ξ“5

6 lam (x + Ο€)4

8J 1

6

lam Ο€3

3J-

16

lam x4 + 4 lam Ο€ x3 + 6 lam Ο€2x

2 + 4 lam Ο€3x + lam Ο€4

34

3 lam4

-

J-

16

lam Ο€3

3J 1

6

lam x4 + 4 lam Ο€ x3 + 6 lam Ο€2x

2 + 4 lam Ο€3x + lam Ο€4

34

3 lam4

Make function which normalizes the exact solution eigenfunctions and plot each

mode eigenfunction with the WKB on the same plot

Printed by Wolfram Mathematica Student Edition

247

Page 252: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

In[65]:= compare[modeNumber_] :=

Module{solExact1, int, cFromExact, eigenvalueFromHandSolution, flip},

eigenvalueFromHandSolution = lam[modeNumber];

solExact1 = solExact /. lam β†’ eigenvalueFromHandSolution;

int = IntegratesolExact1^2 * x + Pi^4, {x, 0, Pi};

cFromExact = First@NSolve[int β©΅ 1, C[1]];

solExact1 = solExact1 /. cFromExact;

If[modeNumber > 5, flip = -1, flip = 1];

Plot {y[modeNumber, x], flip * solExact1}, {x, 0, Pi},

PlotStyle β†’ {Red, Blue}, Frame -> True, FrameLabel β†’ {{"y(x)", None},

{"x", Row[{"Comparing exact solution with WKB for mode ", modeNumber}]}},

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray, BaseStyle β†’ 12, ImageSize β†’ 310,

FrameTicks β†’ {Automatic, None}, 0, Pi 4, Pi 2, 3 4 Pi, Pi, None

;

Generate 4 plots, for mode 1, up to 6

These plots show that after mode 5 or 6, the two eigenfunctions are almost exact

2 p12.nb

Printed by Wolfram Mathematica Student Edition

248

Page 253: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

In[66]:= plots = Table[compare[n], {n, 6}];

Grid[Partition[plots, 2]]

Out[67]=

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.01

0.02

0.03

x

y(x)

Comparing exact solution with WKB for mode 1

0 Ο€

4

Ο€

2

3Ο€

4Ο€

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

x

y(x)

Comparing exact solution with WKB for mode 2

0 Ο€

4

Ο€

2

3Ο€

4Ο€

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 3

0 Ο€

4

Ο€

2

3Ο€

4Ο€

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 4

0 Ο€

4

Ο€

2

3Ο€

4Ο€

-0.04

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 5

0 Ο€

4

Ο€

2

3Ο€

4Ο€

-0.04

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 6

p12.nb 3

Printed by Wolfram Mathematica Student Edition

249

Page 254: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

Generate the above again, but now using relative error between the exact and

WKB for each mode, to make it more clear

In[68]:= compareError[modeNumber_] :=

Module{solExact1, eigenvalueFromHandSolution, int, cFromExact, flip},

eigenvalueFromHandSolution = lam[modeNumber];

solExact1 = solExact /. lam β†’ eigenvalueFromHandSolution;

int = IntegratesolExact1^2 * x + Pi^4, {x, 0, Pi};

cFromExact = First@NSolve[int β©΅ 1, C[1]];

solExact1 = solExact1 /. cFromExact;

If[modeNumber > 5, flip = -1, flip = 1];

Plot 100 * Absflip * solExact1 - y[modeNumber, x], {x, 0, Pi}, PlotStyle β†’

{Red, Blue}, Frame -> True, FrameLabel β†’ {{"relative error percentage", None},

{"x", Row[{"Absolute error. Exact solution vs WKB for mode ", modeNumber}]}},

GridLines β†’ Automatic, GridLinesStyle β†’ LightGray, BaseStyle β†’ 12, ImageSize β†’ 310,

FrameTicks β†’ {Automatic, None}, 0, Pi 4, Pi 2, 3 4 Pi, Pi, None,

PlotRange β†’ {Automatic, {0, 0.3}}

;

In[69]:= plots = Table[compareError[n], {n, 10}]; (*let do 10 modes*)

Grid[Partition[plots, 2]]

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 1

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 2

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 3

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 4

4 p12.nb

Printed by Wolfram Mathematica Student Edition

250

Page 255: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

Out[69]=

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 5

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 6

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 7

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 8

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 9

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 10

p12.nb 5

Printed by Wolfram Mathematica Student Edition

251

Page 256: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.12. Convert ODE to Liouville form CHAPTER 4. STUDY NOTES

4.12 Convert ODE to Liouville form

Handy image to remember. Thanks to http://people.uncw.edu/hermanr/mat463/ODEBook/Book/SL.pdf

252

Page 257: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.12. Convert ODE to Liouville form CHAPTER 4. STUDY NOTES

253

Page 258: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.13. note p13. added 3/15/17, solving . . . CHAPTER 4. STUDY NOTES

4.13 note p13. added 3/15/17, solvingπœ–2𝑦″(π‘₯) = (π‘Ž + π‘₯ + π‘₯2)𝑦(π‘₯) in Maple

> >

> >

> >

> >

> >

Define the ODEassume(a>0 and 'real');ode:=epsilon^2*diff(y(x),x$2)=(x^2+a*x)*y(x);

Solve without giving any B.C.sol:=dsolve(ode,y(x));

Solve with one B.C. at infinity givensol:=dsolve({ode,y(infinity)=0},y(x));

Now solve giving B.C. at -infinitysol:=dsolve({ode,y(-infinity)=0},y(x));

Now solve by giving both B.C.at both endssol:=dsolve({ode,y(infinity)=0,y(-infinity)=0},y(x));

254

Page 259: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 5

Exams

Local contents5.1 Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2565.2 Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

255

Page 260: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1 Exam 1

5.1.1 problem 3.26 (page 139)

Problem Perform local analysis solution to (π‘₯ βˆ’ 1) 𝑦′′ βˆ’ π‘₯𝑦′ + 𝑦 = 0 at π‘₯ = 1. Use the resultof this analysis to prove that a Taylor series expansion of any solution about π‘₯ = 0 has aninfinite radius of convergence. Find the exact solution by summing the series.

solution

Writing the ODE in standard form

𝑦′′ (π‘₯) + π‘Ž (π‘₯) 𝑦′ (π‘₯) + 𝑏 (π‘₯) 𝑦 (π‘₯) = 0 (1)

𝑦′′ βˆ’π‘₯

(π‘₯ βˆ’ 1)𝑦′ +

1(π‘₯ βˆ’ 1)

𝑦 = 0 (2)

Where π‘Ž (π‘₯) = βˆ’π‘₯(π‘₯βˆ’1) , 𝑏 (π‘₯) =

1(π‘₯βˆ’1) . The above shows that π‘₯ = 1 is singular point for both π‘Ž (π‘₯)

and 𝑏 (π‘₯). The next step is to classify the type of the singular point. Is it regular singularpoint or irregular singular point?

limπ‘₯β†’1

(π‘₯ βˆ’ 1) π‘Ž (π‘₯) = limπ‘₯β†’1

(π‘₯ βˆ’ 1)βˆ’π‘₯

(π‘₯ βˆ’ 1)= βˆ’1

And

limπ‘₯β†’1

(π‘₯ βˆ’ 1)2 𝑏 (π‘₯) = limπ‘₯β†’1

(π‘₯ βˆ’ 1)21

(π‘₯ βˆ’ 1)= 0

Because the limit exist, then π‘₯ = 1 is a regular singular point. Therefore solution is assumedto be a Frobenius power series given by

𝑦 (π‘₯) =βˆžοΏ½π‘›=0

π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿ

Substituting this in the original ODE (π‘₯ βˆ’ 1) 𝑦′′ βˆ’ π‘₯𝑦′ + 𝑦 = 0 gives

𝑦′ (π‘₯) =βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

𝑦′′ (π‘₯) =βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’2

In order to move the (π‘₯ βˆ’ 1) inside the summation, the original ODE (π‘₯ βˆ’ 1) 𝑦′′ βˆ’ π‘₯𝑦′ + 𝑦 = 0is first rewritten as

(π‘₯ βˆ’ 1) 𝑦′′ βˆ’ (π‘₯ βˆ’ 1) 𝑦′ βˆ’ 𝑦′ + 𝑦 = 0 (3)

256

Page 261: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Substituting the Frobenius series into the above gives

(π‘₯ βˆ’ 1)βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’2

βˆ’ (π‘₯ βˆ’ 1)βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

+βˆžοΏ½π‘›=0

π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿ = 0

OrβˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿ

βˆ’βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

+βˆžοΏ½π‘›=0

π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿ = 0

Adjusting all powers of (π‘₯ βˆ’ 1) to be the same by rewriting exponents and summation indicesgives

βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘›=1

(𝑛 + π‘Ÿ βˆ’ 1) π‘Žπ‘›βˆ’1 (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

βˆ’βˆžοΏ½π‘›=0

(𝑛 + π‘Ÿ) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1

+βˆžοΏ½π‘›=1

π‘Žπ‘›βˆ’1 (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1 = 0

Collecting terms with same powers in (π‘₯ βˆ’ 1) simplifies the above toβˆžοΏ½π‘›=0

((𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) βˆ’ (𝑛 + π‘Ÿ)) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1 βˆ’

βˆžοΏ½π‘›=1

(𝑛 + π‘Ÿ βˆ’ 2) π‘Žπ‘›βˆ’1 (π‘₯ βˆ’ 1)𝑛+π‘Ÿβˆ’1 = 0 (4)

Setting 𝑛 = 0 gives the indicial equation((𝑛 + π‘Ÿ) (𝑛 + π‘Ÿ βˆ’ 1) βˆ’ (𝑛 + π‘Ÿ)) π‘Ž0 = 0

((π‘Ÿ) (π‘Ÿ βˆ’ 1) βˆ’ π‘Ÿ) π‘Ž0 = 0

Since π‘Ž0 β‰  0 then the indicial equation is

(π‘Ÿ) (π‘Ÿ βˆ’ 1) βˆ’ π‘Ÿ = 0π‘Ÿ2 βˆ’ 2π‘Ÿ = 0π‘Ÿ (π‘Ÿ βˆ’ 2) = 0

257

Page 262: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

The roots of the indicial equation are therefore

π‘Ÿ1 = 2π‘Ÿ2 = 0

Each one of these roots generates a solution to the ODE. The next step is to find the solution𝑦1 (π‘₯) associated with π‘Ÿ = 2. (The largest root is used first). Using π‘Ÿ = 2 in equation (4) gives

βˆžοΏ½π‘›=0

((𝑛 + 2) (𝑛 + 1) βˆ’ (𝑛 + 2)) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+1 βˆ’

βˆžοΏ½π‘›=1

π‘›π‘Žπ‘›βˆ’1 (π‘₯ βˆ’ 1)𝑛+1 = 0

βˆžοΏ½π‘›=0

𝑛 (𝑛 + 2) π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+1 βˆ’

βˆžοΏ½π‘›=1

π‘›π‘Žπ‘›βˆ’1 (π‘₯ βˆ’ 1)𝑛+1 = 0 (5)

At 𝑛 β‰₯ 1, the recursive relation is found and used to generate the coeοΏ½cients of the Frobeniuspower series

𝑛 (𝑛 + 2) π‘Žπ‘› βˆ’ π‘›π‘Žπ‘›βˆ’1 = 0

π‘Žπ‘› =𝑛

𝑛 (𝑛 + 2)π‘Žπ‘›βˆ’1

Few terms are now generated to see the pattern of the series and to determine the closedform. For 𝑛 = 1

π‘Ž1 =13π‘Ž0

For 𝑛 = 2

π‘Ž2 =2

2 (2 + 2)π‘Ž1 =

2813π‘Ž0 =

112π‘Ž0

For 𝑛 = 3

π‘Ž3 =3

3 (3 + 2)π‘Ž2 =

315

112π‘Ž0 =

160π‘Ž0

For 𝑛 = 4

π‘Ž4 =4

4 (4 + 2)π‘Ž3 =

16160π‘Ž0 =

1360

π‘Ž0

And so on. From the above, the first solution becomes

𝑦1 (π‘₯) =βˆžοΏ½π‘›=0

π‘Žπ‘› (π‘₯ βˆ’ 1)𝑛+2

= π‘Ž0 (π‘₯ βˆ’ 1)2 + π‘Ž1 (π‘₯ βˆ’ 1)

3 + π‘Ž2 (π‘₯ βˆ’ 1)4 + π‘Ž3 (π‘₯ βˆ’ 1)

4 + π‘Ž4 (π‘₯ βˆ’ 1)5 +β‹―

= (π‘₯ βˆ’ 1)2 οΏ½π‘Ž0 + π‘Ž1 (π‘₯ βˆ’ 1) + π‘Ž2 (π‘₯ βˆ’ 1)2 + π‘Ž3 (π‘₯ βˆ’ 1)

3 + π‘Ž4 (π‘₯ βˆ’ 1)4 +β‹―οΏ½

= (π‘₯ βˆ’ 1)2 οΏ½π‘Ž0 +13π‘Ž0 (π‘₯ βˆ’ 1) +

112π‘Ž0 (π‘₯ βˆ’ 1)

2 +160π‘Ž0 (π‘₯ βˆ’ 1)

3 +1360

π‘Ž0 (π‘₯ βˆ’ 1)4 +β‹―οΏ½

= π‘Ž0 (π‘₯ βˆ’ 1)2 οΏ½1 +

13(π‘₯ βˆ’ 1) +

112(π‘₯ βˆ’ 1)2 +

160(π‘₯ βˆ’ 1)3 +

1360

(π‘₯ βˆ’ 1)4 +β‹―οΏ½ (6)

To find closed form solution to 𝑦1 (π‘₯), Taylor series expansion of 𝑒π‘₯ around π‘₯ = 1 is found

258

Page 263: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

first

𝑒π‘₯ β‰ˆ 𝑒 + 𝑒 (π‘₯ βˆ’ 1) +𝑒2(π‘₯ βˆ’ 1)2 +

𝑒3!(π‘₯ βˆ’ 1)3 +

𝑒4!(π‘₯ βˆ’ 1)4 +

𝑒5!(π‘₯ βˆ’ 1)5 +β‹―

β‰ˆ 𝑒 + 𝑒 (π‘₯ βˆ’ 1) +𝑒2(π‘₯ βˆ’ 1)2 +

𝑒6(π‘₯ βˆ’ 1)3 +

𝑒24(π‘₯ βˆ’ 1)4 +

𝑒120

(π‘₯ βˆ’ 1)5 +β‹―

β‰ˆ 𝑒 οΏ½1 + (π‘₯ βˆ’ 1) +12(π‘₯ βˆ’ 1)2 +

16(π‘₯ βˆ’ 1)3 +

124(π‘₯ βˆ’ 1)4 +

1120

(π‘₯ βˆ’ 1)5 +β‹―οΏ½

Multiplying the above by 2 gives

2𝑒π‘₯ β‰ˆ 𝑒 οΏ½2 + 2 (π‘₯ βˆ’ 1) + (π‘₯ βˆ’ 1)2 +13(π‘₯ βˆ’ 1)3 +

112(π‘₯ βˆ’ 1)4 +

160(π‘₯ βˆ’ 1)5 +β‹―οΏ½

Factoring (π‘₯ βˆ’ 1)2 from the RHS results in

2𝑒π‘₯ β‰ˆ 𝑒 οΏ½2 + 2 (π‘₯ βˆ’ 1) + (π‘₯ βˆ’ 1)2 οΏ½1 +13(π‘₯ βˆ’ 1) +

112(π‘₯ βˆ’ 1)2 +

160(π‘₯ βˆ’ 1)3 +β‹―οΏ½οΏ½ (6A)

Comparing the above result with the solution 𝑦1 (π‘₯) in (6), shows that the (6A) can be writtenin terms of 𝑦1 (π‘₯) as

2𝑒π‘₯ = 𝑒 οΏ½2 + 2 (π‘₯ βˆ’ 1) + (π‘₯ βˆ’ 1)2 �𝑦1 (π‘₯)

π‘Ž0 (π‘₯ βˆ’ 1)2 οΏ½οΏ½

Therefore

2𝑒π‘₯ = 𝑒 οΏ½2 + 2 (π‘₯ βˆ’ 1) +𝑦1 (π‘₯)π‘Ž0

οΏ½

2𝑒π‘₯βˆ’1 = 2 + 2 (π‘₯ βˆ’ 1) +𝑦1 (π‘₯)π‘Ž0

2𝑒π‘₯βˆ’1 βˆ’ 2 βˆ’ 2 (π‘₯ βˆ’ 1) =𝑦1 (π‘₯)π‘Ž0

Solving for 𝑦1 (π‘₯)

𝑦1 (π‘₯) = π‘Ž0 οΏ½2𝑒π‘₯βˆ’1 βˆ’ 2 βˆ’ 2 (π‘₯ βˆ’ 1)οΏ½

= π‘Ž0 οΏ½2𝑒π‘₯βˆ’1 βˆ’ 2 βˆ’ 2π‘₯ + 2οΏ½

= π‘Ž0 οΏ½2𝑒π‘₯βˆ’1 βˆ’ 2π‘₯οΏ½

=2π‘Ž0𝑒𝑒π‘₯ βˆ’ 2π‘Ž0π‘₯

Let 2π‘Ž0𝑒 = 𝐢1 and βˆ’2π‘Ž0 = 𝐢2, then the above solution can be written as

𝑦1 (π‘₯) = 𝐢1𝑒π‘₯ + 𝐢2π‘₯

Now that 𝑦1 (π‘₯) is found, which is the solution associated with π‘Ÿ = 2, the next step is to findthe second solution 𝑦2 (π‘₯) associated with π‘Ÿ = 0. Since π‘Ÿ2 βˆ’ π‘Ÿ1 = 2 is an integer, the solutioncan be either case 𝐼𝐼(𝑏) (𝑖) or case 𝐼𝐼 (𝑏) (𝑖𝑖) as given in the text book at page 72.

From equation (3.3.9) at page 72 of the text, using 𝑁 = 2 since 𝑁 = π‘Ÿ2βˆ’π‘Ÿ1 and where 𝑝 (π‘₯) = βˆ’π‘₯and π‘ž (π‘₯) = 1 in this problem by comparing our ODE with the standard ODE in (3.3.2) at

259

Page 264: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

page 70 given by

𝑦′′ +𝑝 (π‘₯)(π‘₯ βˆ’ π‘₯0)

𝑦′ +π‘ž (π‘₯)

(π‘₯ βˆ’ π‘₯0)2𝑦 = 0

Expanding 𝑝 (π‘₯) , π‘ž (π‘₯) in Taylor series

𝑝 (π‘₯) =βˆžοΏ½π‘›=0

𝑝𝑛 (π‘₯ βˆ’ 1)𝑛

π‘ž (π‘₯) =βˆžοΏ½π‘›=0

π‘žπ‘› (π‘₯ βˆ’ 1)𝑛

Since 𝑝 (π‘₯) = βˆ’π‘₯ in our ODE, then 𝑝0 = βˆ’1 and 𝑝1 = βˆ’1 and all other terms are zero. For π‘ž (π‘₯),which is just 1 in our ODE, then π‘ž0 = 1 and all other terms are zero. Hence

𝑝0 = βˆ’1𝑝1 = βˆ’1π‘ž0 = 1𝑁 = 2π‘Ÿ = 0

The above values are now used to evaluate RHS of 3.3.9 in order to find which case it is.(book uses 𝛼 for π‘Ÿ)

0π‘Žπ‘ = βˆ’π‘βˆ’1οΏ½π‘˜=0

οΏ½(π‘Ÿ + π‘˜) π‘π‘βˆ’π‘˜ + π‘žπ‘βˆ’π‘˜οΏ½ π‘Žπ‘˜ (3.3.9)

Since 𝑁 = 2 the above becomes

0π‘Ž2 = βˆ’1οΏ½π‘˜=0

οΏ½(π‘Ÿ + π‘˜) 𝑝2βˆ’π‘˜ + π‘ž2βˆ’π‘˜οΏ½ π‘Žπ‘˜

Using π‘Ÿ = 0, since this is the second root, gives

0π‘Ž2 = βˆ’1οΏ½π‘˜=0

οΏ½π‘˜π‘2βˆ’π‘˜ + π‘ž2βˆ’π‘˜οΏ½ π‘Žπ‘˜

= βˆ’ οΏ½οΏ½0𝑝2βˆ’0 + π‘ž2βˆ’0οΏ½ π‘Ž0 + �𝑝2βˆ’1 + π‘ž2βˆ’1οΏ½ π‘Ž1οΏ½

= βˆ’ οΏ½οΏ½0𝑝2 + π‘ž2οΏ½ π‘Ž0 + �𝑝1 + π‘ž1οΏ½ π‘Ž1οΏ½

= βˆ’ οΏ½0 + π‘ž2οΏ½ π‘Ž0 βˆ’ �𝑝1 + π‘ž1οΏ½ π‘Ž1Since π‘ž2 = 0, 𝑝1 = βˆ’1, π‘ž1 = 1, therefore

0π‘Ž2 = βˆ’ (0 + 0) π‘Ž0 βˆ’ (βˆ’1 + 1) π‘Ž1= 0

The above shows that this is case 𝐼𝐼 (𝑏) (𝑖𝑖), because the right side of 3.3.9 is zero. This meansthe second solution 𝑦2 (π‘₯) is also a Fronbenius series. If the above was not zero, the methodof reduction of order would be used to find second solution.

260

Page 265: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Assuming 𝑦2 (π‘₯) = βˆ‘π‘π‘› (π‘₯ βˆ’ 1)𝑛+π‘Ÿ, and since π‘Ÿ = 0, therefore

𝑦2 (π‘₯) =βˆžοΏ½π‘›=0

𝑏𝑛 (π‘₯ βˆ’ 1)𝑛

Following the same method used to find the first solution, this series is now used in the ODEto determine 𝑏𝑛.

𝑦′2 (π‘₯) =βˆžοΏ½π‘›=0

𝑛𝑏𝑛 (π‘₯ βˆ’ 1)π‘›βˆ’1 =

βˆžοΏ½π‘›=1

𝑛𝑏𝑛 (π‘₯ βˆ’ 1)π‘›βˆ’1 =

βˆžοΏ½π‘›=0

(𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛

𝑦′′2 (π‘₯) =βˆžοΏ½π‘›=0

𝑛 (𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)π‘›βˆ’1 =

βˆžοΏ½π‘›=1

𝑛 (𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)π‘›βˆ’1 =

βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) 𝑏𝑛+2 (π‘₯ βˆ’ 1)𝑛

The ODE (π‘₯ βˆ’ 1) 𝑦′′ βˆ’ (π‘₯ βˆ’ 1) 𝑦′ βˆ’ 𝑦′ + 𝑦 = 0 now becomes

(π‘₯ βˆ’ 1)βˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) 𝑏𝑛+2 (π‘₯ βˆ’ 1)𝑛

βˆ’ (π‘₯ βˆ’ 1)βˆžοΏ½π‘›=0

(𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛

βˆ’βˆžοΏ½π‘›=0

(𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛

+βˆžοΏ½π‘›=0

𝑏𝑛 (π‘₯ βˆ’ 1)𝑛 = 0

OrβˆžοΏ½π‘›=0

(𝑛 + 1) (𝑛 + 2) 𝑏𝑛+2 (π‘₯ βˆ’ 1)𝑛+1

βˆ’βˆžοΏ½π‘›=0

(𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛+1

βˆ’βˆžοΏ½π‘›=0

(𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛

+βˆžοΏ½π‘›=0

𝑏𝑛 (π‘₯ βˆ’ 1)𝑛 = 0

HenceβˆžοΏ½π‘›=1

(𝑛) (𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛 βˆ’

βˆžοΏ½π‘›=1

𝑛𝑏𝑛 (π‘₯ βˆ’ 1)𝑛 βˆ’

βˆžοΏ½π‘›=0

(𝑛 + 1) 𝑏𝑛+1 (π‘₯ βˆ’ 1)𝑛 +

βˆžοΏ½π‘›=0

𝑏𝑛 (π‘₯ βˆ’ 1)𝑛 = 0

𝑛 = 0 gives

βˆ’ (𝑛 + 1) 𝑏𝑛+1 + 𝑏𝑛 = 0βˆ’π‘1 + 𝑏0 = 0

𝑏1 = 𝑏0

261

Page 266: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

𝑛 β‰₯ 1 generates the recursive relation to find all remaining 𝑏𝑛 coeοΏ½cients

(𝑛) (𝑛 + 1) 𝑏𝑛+1 βˆ’ 𝑛𝑏𝑛 βˆ’ (𝑛 + 1) 𝑏𝑛+1 + 𝑏𝑛 = 0(𝑛) (𝑛 + 1) 𝑏𝑛+1 βˆ’ (𝑛 + 1) 𝑏𝑛+1 = 𝑛𝑏𝑛 βˆ’ 𝑏𝑛𝑏𝑛+1 ((𝑛) (𝑛 + 1) βˆ’ (𝑛 + 1)) = 𝑏𝑛 (𝑛 βˆ’ 1)

𝑏𝑛+1 = 𝑏𝑛(𝑛 βˆ’ 1)

(𝑛) (𝑛 + 1) βˆ’ (𝑛 + 1)Therefore the recursive relation is

𝑏𝑛+1 =𝑏𝑛𝑛 + 1

Few terms are generated to see the pattern and to find the closed form solution for 𝑦2 (π‘₯).For 𝑛 = 1

𝑏2 = 𝑏112=12𝑏0

For 𝑛 = 2

𝑏3 =𝑏23=1312𝑏0 =

16𝑏0

For 𝑛 = 3

𝑏4 =𝑏33 + 1

=1416𝑏0 =

124𝑏0

For 𝑛 = 4

𝑏5 =𝑏44 + 1

=15124𝑏0 =

1120

𝑏0

And so on. Therefore, the second solution is

𝑦2 (π‘₯) =βˆžοΏ½π‘›=0

𝑏𝑛 (π‘₯ βˆ’ 1)𝑛

= 𝑏0 + 𝑏1 (π‘₯ βˆ’ 1) + 𝑏2 (π‘₯ βˆ’ 1)2 +β‹―

= 𝑏0 + 𝑏0 (π‘₯ βˆ’ 1) +12𝑏0 (π‘₯ βˆ’ 1)

2 +16𝑏0 (π‘₯ βˆ’ 1)

3 +124𝑏0 (π‘₯ βˆ’ 1)

4 +1120

𝑏0 (π‘₯ βˆ’ 1)5 +β‹―

= 𝑏0 οΏ½1 + (π‘₯ βˆ’ 1) +12(π‘₯ βˆ’ 1)2 +

16(π‘₯ βˆ’ 1)3 +

124(π‘₯ βˆ’ 1)4 +

1120

(π‘₯ βˆ’ 1)5 +β‹―οΏ½ (7A)

The Taylor series for 𝑒π‘₯ around π‘₯ = 1 is

𝑒π‘₯ β‰ˆ 𝑒 + 𝑒 (π‘₯ βˆ’ 1) +𝑒2(π‘₯ βˆ’ 1)2 +

𝑒6(π‘₯ βˆ’ 1)3 +

𝑒24(π‘₯ βˆ’ 1)4 +

𝑒120

(π‘₯ βˆ’ 1)5 +β‹―

β‰ˆ 𝑒 οΏ½1 + (π‘₯ βˆ’ 1) +12(π‘₯ βˆ’ 1)2 +

16(π‘₯ βˆ’ 1)3 +

124(π‘₯ βˆ’ 1)4 +

1120

(π‘₯ βˆ’ 1)5 +β‹―οΏ½ (7B)

Comparing (7A) with (7B) shows that the second solution closed form is

𝑦2 (π‘₯) = 𝑏0𝑒π‘₯

𝑒Let 𝑏0

𝑒 be some constant, say 𝐢3, the second solution above becomes

𝑦2 (π‘₯) = 𝐢3𝑒π‘₯

262

Page 267: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Both solutions 𝑦1 (π‘₯) , 𝑦2 (π‘₯) have now been found. The final solution is

𝑦 (π‘₯) = 𝑦1 (π‘₯) + 𝑦2 (π‘₯)

=𝑦1(π‘₯)

�������������𝐢1𝑒π‘₯ + 𝐢2π‘₯ +𝑦2(π‘₯)�𝐢3𝑒π‘₯

= 𝐢4𝑒π‘₯ + 𝐢2π‘₯

Hence, the exact solution is

𝑦 (π‘₯) = 𝐴𝑒π‘₯ + 𝐡π‘₯ (7)

Where 𝐴,𝐡 are constants to be found from initial conditions if given. Above solution is nowverified by substituting it back to original ODE

𝑦′ = 𝐴𝑒π‘₯ + 𝐡𝑦′′ = 𝐴𝑒π‘₯

Substituting these into (π‘₯ βˆ’ 1) 𝑦′′ βˆ’ π‘₯𝑦′ + 𝑦 = 0 gives(π‘₯ βˆ’ 1)𝐴𝑒π‘₯ βˆ’ π‘₯ (𝐴𝑒π‘₯ + 𝐡) + 𝐴𝑒π‘₯ + 𝐡π‘₯ = 0π‘₯𝐴𝑒π‘₯ βˆ’ 𝐴𝑒π‘₯ βˆ’ π‘₯𝐴𝑒π‘₯ βˆ’ π‘₯𝐡 + 𝐴𝑒π‘₯ + 𝐡π‘₯ = 0

βˆ’π΄π‘’π‘₯ βˆ’ π‘₯𝐡 + 𝐴𝑒π‘₯ + 𝐡π‘₯ = 00 = 0

To answer the final part of the question, the above solution (7) is analytic around π‘₯ = 0 withinfinite radius of convergence since exp (β‹…) is analytic everywhere. Writing the solution as

𝑦 (π‘₯) = οΏ½π΄βˆžοΏ½π‘›=0

π‘₯𝑛

𝑛! οΏ½+ 𝐡π‘₯

The function π‘₯ have infinite radius of convergence, since it is its own series. And the ex-ponential function has infinite radius of convergence as known, verified by using standardratio test

𝐴 limπ‘›β†’βˆž

οΏ½π‘Žπ‘›+1π‘Žπ‘›

οΏ½ = 𝐴 limπ‘›β†’βˆž

οΏ½π‘₯𝑛+1𝑛!

(𝑛 + 1)!π‘₯𝑛 οΏ½= 𝐴 lim

π‘›β†’βˆžοΏ½π‘₯𝑛!

(𝑛 + 1)!οΏ½ = 𝐴 lim

π‘›β†’βˆžοΏ½π‘₯

𝑛 + 1οΏ½ = 0

For any π‘₯. Since the ratio is less than 1, then the solution 𝑦 (π‘₯) expanded around π‘₯ = 0 hasan infinite radius of convergence.

263

Page 268: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1.2 problem 9.8 (page 480)

Problem Use boundary layer to find uniform approximation with error of order π‘‚οΏ½πœ€2οΏ½ forthe problem πœ€π‘¦β€²β€² + 𝑦′ + 𝑦 = 0 with 𝑦 (0) = 𝑒, 𝑦 (1) = 1. Compare your solution to exact solution.Plot the solution for some values of πœ€.

solution

πœ€π‘¦β€²β€² + 𝑦′ + 𝑦 = 0 (1)

Since π‘Ž (π‘₯) = 1 > 0, then a boundary layer is expected at the left side, near π‘₯ = 0. Matchingwill fail if this was not the case. Starting with the outer solution near π‘₯ = 1. Let

π‘¦π‘œπ‘’π‘‘ (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› (π‘₯)

Substituting this into (1) gives

πœ€ �𝑦′′0 + πœ€π‘¦β€²β€²1 + πœ€2𝑦′′2 +β‹―οΏ½ + �𝑦′0 + πœ€π‘¦β€²1 + πœ€2𝑦′2 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―οΏ½ = 0 (2)

Collecting powers of π‘‚οΏ½πœ€0οΏ½ results in the ODE

𝑦′0 ∼ βˆ’π‘¦0𝑑𝑦0𝑦0

∼ βˆ’π‘‘π‘₯

ln �𝑦0οΏ½ ∼ βˆ’π‘₯ + 𝐢1

π‘¦π‘œπ‘’π‘‘0 (π‘₯) ∼ 𝐢1π‘’βˆ’π‘₯ + 𝑂 (πœ€) (3)

𝐢1 is found from boundary conditions 𝑦 (1) = 1. Equation (3) gives

1 = 𝐢1π‘’βˆ’1

𝐢1 = 𝑒

Hence solution (3) becomes

π‘¦π‘œπ‘’π‘‘0 (π‘₯) ∼ 𝑒1βˆ’π‘₯

π‘¦π‘œπ‘’π‘‘1 (π‘₯) is now found. Using (2) and collecting terms of π‘‚οΏ½πœ€1οΏ½ gives the ODE

𝑦′1 + 𝑦1 ∼ βˆ’π‘¦β€²β€²0 (4)

But

𝑦′0 (π‘₯) = βˆ’π‘’1βˆ’π‘₯

𝑦′′0 (π‘₯) = 𝑒1βˆ’π‘₯

Using the above in the RHS of (4) gives

𝑦′1 + 𝑦1 ∼ βˆ’π‘’1βˆ’π‘₯

264

Page 269: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

The integrating factor is 𝑒π‘₯, hence the above becomes𝑑𝑑π‘₯�𝑦1𝑒π‘₯οΏ½ ∼ βˆ’π‘’π‘₯𝑒1βˆ’π‘₯

𝑑𝑑π‘₯�𝑦1𝑒π‘₯οΏ½ ∼ βˆ’π‘’

Integrating both sides gives

𝑦1𝑒π‘₯ ∼ βˆ’π‘’π‘₯ + 𝐢2

π‘¦π‘œπ‘’π‘‘1 (π‘₯) ∼ βˆ’π‘₯𝑒1βˆ’π‘₯ + 𝐢2π‘’βˆ’π‘₯ (5)

Applying boundary conditions 𝑦 (1) = 0 to the above gives

0 = βˆ’1 + 𝐢2π‘’βˆ’1

𝐢2 = 𝑒

Hence the solution in (5) becomes

π‘¦π‘œπ‘’π‘‘1 (π‘₯) ∼ βˆ’π‘₯𝑒1βˆ’π‘₯ + 𝑒1βˆ’π‘₯

∼ (1 βˆ’ π‘₯) 𝑒1βˆ’π‘₯

Therefore the outer solution is

π‘¦π‘œπ‘’π‘‘ (π‘₯) = 𝑦0 + πœ€π‘¦1= 𝑒1βˆ’π‘₯ + πœ€ (1 βˆ’ π‘₯) 𝑒1βˆ’π‘₯ (6)

Now the boundary layer (inner) solution 𝑦𝑖𝑛 (π‘₯) near π‘₯ = 0 is found. Let πœ‰ = π‘₯πœ€π‘ be the inner

variable. The original ODE is expressed using this new variable, and 𝑝 is found. Since𝑑𝑦𝑑π‘₯ =

π‘‘π‘¦π‘‘πœ‰

π‘‘πœ‰π‘‘π‘₯ then 𝑑𝑦

𝑑π‘₯ =π‘‘π‘¦π‘‘πœ‰πœ€

βˆ’π‘. The diοΏ½erential operator is 𝑑𝑑π‘₯ ≑ πœ€

βˆ’π‘ π‘‘π‘‘πœ‰ therefore

𝑑2

𝑑π‘₯2=𝑑𝑑π‘₯

𝑑𝑑π‘₯

= οΏ½πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½ οΏ½

πœ€βˆ’π‘π‘‘π‘‘πœ‰οΏ½

= πœ€βˆ’2𝑝𝑑2

π‘‘πœ‰2

Hence 𝑑2𝑦𝑑π‘₯2 = πœ€

βˆ’2𝑝 𝑑2π‘¦π‘‘πœ‰2 and πœ€π‘¦

β€²β€² + 𝑦′ + 𝑦 = 0 becomes

πœ€ οΏ½πœ€βˆ’2𝑝𝑑2π‘¦π‘‘πœ‰2 οΏ½

+ πœ€βˆ’π‘π‘‘π‘¦π‘‘πœ‰

+ 𝑦 = 0

πœ€1βˆ’2𝑝𝑦′′ + πœ€βˆ’π‘π‘¦β€² + 𝑦 = 0 (7A)

The largest terms are οΏ½πœ€1βˆ’2𝑝, πœ€βˆ’π‘οΏ½, balance gives 1 βˆ’ 2𝑝 = βˆ’π‘ or

𝑝 = 1

The ODE (7A) becomes

πœ€βˆ’1𝑦′′ + πœ€βˆ’1𝑦′ + 𝑦 = 0 (7)

265

Page 270: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Assuming that solution is

𝑦𝑖𝑛 (π‘₯) =βˆžοΏ½π‘›=0

πœ€π‘›π‘¦π‘› = 𝑦0 + πœ€π‘¦1 + πœ€2𝑦2 +β‹―

Substituting the above into (7) gives

πœ€βˆ’1 �𝑦′′0 + πœ€π‘¦β€²β€²1 +β‹―οΏ½ + πœ€βˆ’1 �𝑦′0 + πœ€π‘¦β€²1 +β‹―οΏ½ + �𝑦0 + πœ€π‘¦1 +β‹―οΏ½ = 0 (8)

Collecting terms with π‘‚οΏ½πœ€βˆ’1οΏ½ gives the first order ODE to solve

𝑦′′0 ∼ βˆ’π‘¦β€²0Let 𝑧 = 𝑦′0, the above becomes

𝑧′ ∼ βˆ’π‘§π‘‘π‘§π‘§

∼ βˆ’π‘‘πœ‰

ln |𝑧| ∼ βˆ’πœ‰ + 𝐢4

𝑧 ∼ 𝐢4π‘’βˆ’πœ‰

Hence

𝑦′0 ∼ 𝐢4π‘’βˆ’πœ‰

Integrating

𝑦𝑖𝑛0 (πœ‰) ∼ 𝐢4οΏ½π‘’βˆ’πœ‰π‘‘πœ‰ + 𝐢5

∼ βˆ’πΆ4π‘’βˆ’πœ‰ + 𝐢5 (9)

Applying boundary conditions 𝑦 (0) = 𝑒 gives

𝑒 = βˆ’πΆ4 + 𝐢5

𝐢5 = 𝑒 + 𝐢4

Equation (9) becomes

𝑦𝑖𝑛0 (πœ‰) ∼ βˆ’πΆ4π‘’βˆ’πœ‰ + 𝑒 + 𝐢4

∼ 𝐢4 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝑒 (10)

The next leading order 𝑦𝑖𝑛1 (πœ‰) is found from (8) by collecting terms in π‘‚οΏ½πœ€0οΏ½, which resultsin the ODE

𝑦′′1 + 𝑦′1 ∼ βˆ’π‘¦0Since 𝑦𝑖𝑛0 (πœ‰) ∼ 𝐢4 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝑒, therefore 𝑦′0 ∼ 𝐢4π‘’βˆ’πœ‰ and the above becomes

𝑦′′1 + 𝑦′1 ∼ βˆ’πΆ4π‘’βˆ’πœ‰

The homogenous solution is found first, then method of undetermined coeοΏ½cients is usedto find particular solution. The homogenous ODE is

𝑦′′1,β„Ž ∼ 𝑦′1,β„ŽThis was solved above for 𝑦𝑖𝑛0 , and the solution is

𝑦1,β„Ž ∼ βˆ’πΆ5π‘’βˆ’πœ‰ + 𝐢6

266

Page 271: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

To find the particular solution, let 𝑦1,𝑝 ∼ π΄πœ‰π‘’βˆ’πœ‰, where πœ‰ was added since π‘’βˆ’πœ‰ shows up inthe homogenous solution. Hence

𝑦′1,𝑝 ∼ π΄π‘’βˆ’πœ‰ βˆ’ π΄πœ‰π‘’βˆ’πœ‰

𝑦′′1,𝑝 ∼ βˆ’π΄π‘’βˆ’πœ‰ βˆ’ οΏ½π΄π‘’βˆ’πœ‰ βˆ’ π΄πœ‰π‘’βˆ’πœ‰οΏ½

∼ βˆ’2π΄π‘’βˆ’πœ‰ + π΄πœ‰π‘’βˆ’πœ‰

Substituting these in the ODE 𝑦′′1,𝑝 + 𝑦′1,𝑝 ∼ βˆ’πΆ4π‘’βˆ’πœ‰ results in

βˆ’2π΄π‘’βˆ’πœ‰ + π΄πœ‰π‘’βˆ’πœ‰ + π΄π‘’βˆ’πœ‰ βˆ’ π΄πœ‰π‘’βˆ’πœ‰ ∼ βˆ’πΆ4π‘’βˆ’πœ‰

βˆ’π΄ = βˆ’πΆ4

𝐴 = 𝐢4

Therefore the particular solution is

𝑦1,𝑝 ∼ 𝐢4πœ‰π‘’βˆ’πœ‰

And therefore the complete solution is

𝑦𝑖𝑛1 (πœ‰) ∼ 𝑦1,β„Ž + 𝑦1,π‘βˆΌ βˆ’πΆ5π‘’βˆ’πœ‰ + 𝐢6 + 𝐢4πœ‰π‘’βˆ’πœ‰

Applying boundary conditions 𝑦 (0) = 0 to the above gives

0 = βˆ’πΆ5 + 𝐢6

𝐢6 = 𝐢5

Hence the solution becomes

𝑦𝑖𝑛1 (πœ‰) ∼ βˆ’πΆ5π‘’βˆ’πœ‰ + 𝐢5 + 𝐢4πœ‰π‘’βˆ’πœ‰

∼ 𝐢5 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝐢4πœ‰π‘’βˆ’πœ‰ (11)

The complete inner solution now becomes

𝑦𝑖𝑛 (πœ‰) ∼ 𝑦𝑖𝑛0 + πœ€π‘¦π‘–π‘›1∼ 𝐢4 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝑒 + πœ€ �𝐢5 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝐢4πœ‰π‘’βˆ’πœ‰οΏ½ (12)

There are two constants that need to be determined in the above from matching with theouter solution.

limπœ‰β†’βˆž

𝑦𝑖𝑛 (πœ‰) ∼ limπ‘₯β†’0

π‘¦π‘œπ‘’π‘‘ (π‘₯)

limπœ‰β†’βˆž

𝐢4 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝑒 + πœ€ �𝐢5 οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½ + 𝐢4πœ‰π‘’βˆ’πœ‰οΏ½ ∼ limπ‘₯β†’0

𝑒1βˆ’π‘₯ + πœ€ (1 βˆ’ π‘₯) 𝑒1βˆ’π‘₯

𝐢4 + 𝑒 + πœ€πΆ5 ∼ 𝑒 + πœ€π‘’

The above shows that

𝐢5 = 𝑒𝐢4 + 𝑒 = 𝑒

𝐢4 = 0

267

Page 272: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

This gives the boundary layer solution 𝑦𝑖𝑛 (πœ‰) as

𝑦𝑖𝑛 (πœ‰) ∼ 𝑒 + πœ€π‘’ οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½

∼ 𝑒 οΏ½1 + πœ€ οΏ½1 βˆ’ π‘’βˆ’πœ‰οΏ½οΏ½

In terms of π‘₯, since πœ‰ = π‘₯πœ€ , the above can be written as

𝑦𝑖𝑛 (π‘₯) ∼ 𝑒 οΏ½1 + πœ€ οΏ½1 βˆ’ π‘’βˆ’π‘₯πœ€ οΏ½οΏ½

The uniform solution is therefore

𝑦uniform (π‘₯) ∼ 𝑦𝑖𝑛 (π‘₯) + π‘¦π‘œπ‘’π‘‘ (π‘₯) βˆ’ π‘¦π‘šπ‘Žπ‘‘π‘β„Ž

∼

𝑦𝑖𝑛

�����������������������𝑒 οΏ½1 + πœ€ οΏ½1 βˆ’ π‘’βˆ’

π‘₯πœ€ οΏ½οΏ½ +

π‘¦π‘œπ‘’π‘‘

�������������������������𝑒1βˆ’π‘₯ + πœ€ (1 βˆ’ π‘₯) 𝑒1βˆ’π‘₯ βˆ’ (𝑒 + πœ€π‘’)

∼ 𝑒 + π‘’πœ€ οΏ½1 βˆ’ π‘’βˆ’π‘₯πœ€ οΏ½ + 𝑒1βˆ’π‘₯ + (πœ€ βˆ’ πœ€π‘₯) 𝑒1βˆ’π‘₯ βˆ’ (𝑒 + πœ€π‘’)

∼ 𝑒 + π‘’πœ€ βˆ’ πœ€π‘’1βˆ’π‘₯πœ€ + 𝑒1βˆ’π‘₯ + πœ€π‘’1βˆ’π‘₯ βˆ’ πœ€π‘₯𝑒1βˆ’π‘₯ βˆ’ 𝑒 βˆ’ πœ€π‘’

∼ βˆ’πœ€π‘’1βˆ’π‘₯πœ€ + 𝑒1βˆ’π‘₯ + πœ€π‘’1βˆ’π‘₯ βˆ’ πœ€π‘₯𝑒1βˆ’π‘₯

∼ 𝑒1βˆ’π‘₯ οΏ½βˆ’πœ€π‘’βˆ’1πœ€ + 1 + πœ€ βˆ’ πœ€π‘₯οΏ½

Or

𝑦uniform (π‘₯) ∼ 𝑒1βˆ’π‘₯ οΏ½1 + πœ€ οΏ½1 βˆ’ π‘₯ βˆ’ π‘’βˆ’1πœ€ οΏ½οΏ½

With error π‘‚οΏ½πœ€2οΏ½.

The above solution is now compared to the exact solution of πœ€π‘¦β€²β€² + 𝑦′ + 𝑦 = 0 with 𝑦 (0) =𝑒, 𝑦 (1) = 1. Since this is a homogenous second order ODE with constant coeοΏ½cient, it iseasily solved using characteristic equation.

πœ€πœ†2 + πœ† + 1 = 0

The roots are

πœ† =βˆ’π‘2π‘Ž

Β± βˆšπ‘2 βˆ’ 4π‘Žπ‘2π‘Ž

=βˆ’12πœ€

Β± √1 βˆ’ 4πœ€2πœ€

Therefore the solution is

𝑦 (π‘₯) = π΄π‘’πœ†1π‘₯ + π΅π‘’πœ†2π‘₯

= π΄π‘’οΏ½βˆ’12πœ€+

√1βˆ’4πœ€2πœ€ οΏ½π‘₯

+ π΅π‘’οΏ½βˆ’12πœ€ βˆ’

√1βˆ’4πœ€2πœ€ οΏ½π‘₯

= π΄π‘’βˆ’π‘₯2πœ€ 𝑒

√1βˆ’4πœ€2πœ€ π‘₯ + 𝐡𝑒

βˆ’π‘₯2πœ€ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯

= π‘’βˆ’π‘₯2πœ€ �𝐴𝑒

√1βˆ’4πœ€2πœ€ π‘₯ + 𝐡𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½

268

Page 273: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Applying first boundary conditions 𝑦 (0) = 𝑒 to the above gives

𝑒 = 𝐴 + 𝐡𝐡 = 𝑒 βˆ’ 𝐴

Hence the solution becomes

𝑦 (π‘₯) = π‘’βˆ’π‘₯2πœ€ �𝐴𝑒

√1βˆ’4πœ€2πœ€ π‘₯ + (𝑒 βˆ’ 𝐴) 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½

= π‘’βˆ’π‘₯2πœ€ �𝐴𝑒

√1βˆ’4πœ€2πœ€ π‘₯ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€ π‘₯ βˆ’ 𝐴𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½

= π‘’βˆ’π‘₯2πœ€ �𝐴 �𝑒

√1βˆ’4πœ€2πœ€ π‘₯ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€ π‘₯οΏ½ (13)

Applying second boundary conditions 𝑦 (1) = 1 gives

1 = π‘’βˆ’12πœ€ �𝐴 �𝑒

√1βˆ’4πœ€2πœ€ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ οΏ½ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€ οΏ½

𝑒12πœ€ = 𝐴�𝑒

√1βˆ’4πœ€2πœ€ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ οΏ½ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€

𝐴 =𝑒

12πœ€ βˆ’ 𝑒1βˆ’

√1βˆ’4πœ€2πœ€

π‘’βˆš1βˆ’4πœ€2πœ€ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€

(14)

Substituting this into (13) results in

𝑦exact (π‘₯) = π‘’βˆ’π‘₯2πœ€ �𝐴 �𝑒

√1βˆ’4πœ€2πœ€ π‘₯ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€ π‘₯οΏ½

Where 𝐴 is given in (14). hence

𝑦exact (π‘₯) = π‘’βˆ’π‘₯2πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘’

12πœ€ βˆ’ 𝑒1βˆ’

√1βˆ’4πœ€2πœ€

π‘’βˆš1βˆ’4πœ€2πœ€ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€

⎞⎟⎟⎟⎟⎟⎟⎟⎠ οΏ½π‘’βˆš1βˆ’4πœ€2πœ€ π‘₯ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€ π‘₯

⎞⎟⎟⎟⎟⎟⎟⎟⎠

In summary

exact solution asymptotic solution

π‘’βˆ’π‘₯2πœ€

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

𝑒12πœ€ βˆ’π‘’1βˆ’

√1βˆ’4πœ€2πœ€

π‘’βˆš1βˆ’4πœ€2πœ€ βˆ’π‘’

βˆ’βˆš1βˆ’4πœ€2πœ€

⎞⎟⎟⎟⎟⎟⎠ �𝑒

√1βˆ’4πœ€2πœ€ π‘₯ βˆ’ 𝑒

βˆ’βˆš1βˆ’4πœ€2πœ€ π‘₯οΏ½ + 𝑒1βˆ’

√1βˆ’4πœ€2πœ€ π‘₯

⎞⎟⎟⎟⎟⎟⎠ 𝑒1βˆ’π‘₯ + πœ€π‘’1βˆ’π‘₯ οΏ½1 βˆ’ π‘₯ βˆ’ π‘’βˆ’

1πœ€ οΏ½ + 𝑂 οΏ½πœ€2οΏ½

The following plot compares the exact solution with the asymptotic solution for πœ€ = 0.1

269

Page 274: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Exact solution

Asymptotic

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

x

y(x)

Exact solution vs. two terms asymptotic Ο΅ = 0.1

The following plot compares the exact solution with the asymptotic solution for πœ€ = 0.01.The diοΏ½erence was too small to notice in this case, the plot below is zoomed to be near π‘₯ = 0

Out[21]=

Exact solution

Asymptotic

0.00 0.05 0.10 0.15 0.20

2.3

2.4

2.5

2.6

2.7

x

y(x)

Exact solution vs. two terms asymptotic Ο΅ = 0.01

At πœ€ = 0.001, the diοΏ½erence between the exact and the asymptotic solution was not noticeable.Therefore, to better compare the solutions, the following plot shows the relative percentage

270

Page 275: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

error given by

100 �𝑦exact βˆ’ 𝑦uniform

𝑦exact οΏ½%

For diοΏ½erent πœ€.

Ο΅=0.1

Ο΅=0.05

Ο΅=0.01

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x

%relativeerror

Percentage relative error between exact solution and asymptotic solution

Some observations: The above plot shows more clearly how the diοΏ½erence between theexact solution and the asymptotic solution became smaller as πœ€ became smaller. The plotalso shows that the boundary layer near π‘₯ = 0 is becoming more narrow are πœ€ becomessmaller as expected. It also shows that the relative error is smaller in the outer region thanin the boundary layer region. For example, for πœ€ = 0.05, the largest percentage error inthe outer region was less than 1%, while in the boundary layer, very near π‘₯ = 0, the errorgrows to about 5%. Another observation is that at the matching location, the relative errorgoes down to zero. One also notices that the matching location drifts towards π‘₯ = 0 as πœ€becomes smaller because the boundary layer is becoming more narrow. The following tablesummarizes these observations.

πœ€ % error near π‘₯ = 0 apparent width of boundary layer

0.1 10 0.20.05 5 0.120.01 1 0.02

271

Page 276: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1.3 problem 3

Problem (a) Find physical optics approximation to the eigenvalue and eigenfunctions of theSturm-Liouville problem are πœ† β†’ ∞

βˆ’π‘¦β€²β€² = πœ† (sin (π‘₯) + 1)2 𝑦𝑦 (0) = 0𝑦 (πœ‹) = 0

(b) What is the integral relation necessary to make the eigenfunctions orthonormal? Forsome reasonable choice of scaling coeοΏ½cient (give the value), plot the eigenfunctions for𝑛 = 5, 𝑛 = 20.

(c) Estimate how large πœ† should be for the relative error of less than 0.1%

solution

5.1.3.1 Part a

Writing the ODE as

𝑦′′ + πœ† (sin (π‘₯) + 1)2 𝑦 = 0Let1

πœ† = 1πœ€2

Then the given ODE becomes

πœ€2𝑦′′ (π‘₯) + (sin (π‘₯) + 1)2 𝑦 (π‘₯) = 0 (1)

Physical optics approximation is obtained when πœ† β†’ ∞ which implies πœ€ β†’ 0+. Since theODE is linear and the highest derivative is now multiplied by a very small parameter πœ€,WKB can therefore be used to solve it. WKB starts by assuming that the solution has theform

𝑦 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ 𝛿 β†’ 0

Therefore, taking derivatives and substituting back in the ODE results in

𝑦′ (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½

𝑦′′ (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½2

+ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯)οΏ½

1πœ† = 1πœ€could also be used. But the book uses πœ€2.

272

Page 277: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Substituting these into (1) and canceling the exponential terms gives

πœ€2βŽ›βŽœβŽœβŽœβŽœβŽοΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′𝑛 (π‘₯)οΏ½2

+1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆′′𝑛 (π‘₯)⎞⎟⎟⎟⎟⎠ ∼ βˆ’ (sin (π‘₯) + 1)2

πœ€2

𝛿2�𝑆′0 + 𝛿𝑆′1 +β‹―οΏ½ �𝑆′0 + 𝛿𝑆′1 +β‹―οΏ½ +

πœ€2

𝛿�𝑆′′0 + 𝛿𝑆′′1 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2

πœ€2

𝛿2��𝑆′0οΏ½

2+ 𝛿 οΏ½2𝑆′1𝑆′0οΏ½ +β‹―οΏ½ +

πœ€2

𝛿�𝑆′′0 + 𝛿𝑆′′1 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2

οΏ½πœ€2

𝛿2�𝑆′0οΏ½

2+2πœ€2

𝛿𝑆′1𝑆′0 +β‹―οΏ½ + οΏ½

πœ€2

𝛿𝑆′′0 + πœ€2𝑆′′1 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2 (2)

The largest term in the left side is πœ€2

𝛿2�𝑆′0οΏ½

2. By dominant balance, this term has the same

order of magnitude as the right side βˆ’ (sin (π‘₯) + 1)2. This implies that 𝛿2 is proportional toπœ€2. For simplicity (following the book) 𝛿 can be taken as equal to πœ€

𝛿 = πœ€

Using the above in equation (2) results in

��𝑆′0οΏ½2+ 2πœ€π‘†β€²1𝑆′0 +β‹―οΏ½ + οΏ½πœ€π‘†β€²β€²0 + πœ€2𝑆′′1 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2

Balance of 𝑂 (1) gives

�𝑆′0οΏ½2∼ βˆ’ (sin (π‘₯) + 1)2 (3)

Balance of 𝑂 (πœ€) gives

2𝑆′1𝑆′0 ∼ βˆ’π‘†β€²β€²0 (4)

Equation (3) is solved first in order to find 𝑆0 (π‘₯).

𝑆′0 ∼ ±𝑖 (sin (π‘₯) + 1)Hence

𝑆0 (π‘₯) ∼ ±𝑖�π‘₯

0(sin (𝑑) + 1) 𝑑𝑑 + 𝐢±

∼ ±𝑖 (𝑑 βˆ’ cos (𝑑))π‘₯0 + 𝐢±

∼ ±𝑖 (1 + π‘₯ βˆ’ cos (π‘₯)) + 𝐢± (5)

𝑆1 (π‘₯) is now found from (4) and using 𝑆′′0 = ±𝑖 cos (π‘₯) gives

𝑆′1 ∼ βˆ’12𝑆′′0𝑆′0

∼ βˆ’12

±𝑖 cos (π‘₯)±𝑖 (sin (π‘₯) + 1)

∼ βˆ’12

cos (π‘₯)(sin (π‘₯) + 1)

Hence the solution is

𝑆1 (π‘₯) ∼ βˆ’12

ln (1 + sin (π‘₯)) (6)

273

Page 278: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Having found 𝑆0 (π‘₯) and 𝑆1 (π‘₯), the leading behavior is now obtained from

𝑦 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½

∼ exp οΏ½1πœ€(𝑆0 (π‘₯) + πœ€π‘†1 (π‘₯)) +β‹―οΏ½

∼ exp οΏ½1πœ€π‘†0 (π‘₯) + 𝑆1 (π‘₯) +β‹―οΏ½

The leading behavior is only the first two terms (called physical optics approximation inWKB), therefore

𝑦 (π‘₯) ∼ exp οΏ½1πœ€π‘†0 (π‘₯) + 𝑆1 (π‘₯)οΏ½

∼ exp οΏ½Β±π‘–πœ€(1 + π‘₯ βˆ’ cos (π‘₯)) + 𝐢± βˆ’

12

ln (1 + sin (π‘₯))οΏ½

∼1

√1 + sin π‘₯exp οΏ½Β±

π‘–πœ€(1 + π‘₯ βˆ’ cos (π‘₯)) + 𝐢±�

Which can be written as

𝑦 (π‘₯) ∼𝐢

√1 + sin π‘₯exp οΏ½

π‘–πœ€(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ βˆ’

𝐢

√1 + sin π‘₯exp οΏ½

βˆ’π‘–πœ€(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½

In terms of sin and cos the above becomes (using the standard Euler relation simplifications)

𝑦 (π‘₯) ∼𝐴

√1 + sin π‘₯cos οΏ½

1πœ€(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ +

𝐡

√1 + sin π‘₯sin οΏ½

1πœ€(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½

Where 𝐴,𝐡 are the new constants. But πœ† = 1πœ€2 , and the above becomes

𝑦 (π‘₯) ∼𝐴

√1 + sin π‘₯cos οΏ½βˆšπœ† (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ + 𝐡

√1 + sin π‘₯sin οΏ½βˆšπœ† (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ (7)

Boundary conditions are now applied to determine 𝐴,𝐡.

𝑦 (0) = 0𝑦 (πœ‹) = 0

First B.C. applied to (7) gives (where now ∼ is replaced by = for notation simplicity)

0 = 𝐴 cos οΏ½βˆšπœ† (1 βˆ’ cos (0))οΏ½ + 𝐡 sin οΏ½βˆšπœ† (1 βˆ’ cos (0))οΏ½

0 = 𝐴 cos (0) + 𝐡 sin (0)0 = 𝐴

Hence solution (7) becomes

𝑦 (π‘₯) ∼𝐡

√1 + sin π‘₯sin οΏ½βˆšπœ† (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½

274

Page 279: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Applying the second B.C. 𝑦 (πœ‹) = 0 to the above results in

0 =𝐡

√1 + sinπœ‹sin οΏ½βˆšπœ† (1 + πœ‹ βˆ’ cos (πœ‹))οΏ½

0 = 𝐡 sin οΏ½βˆšπœ† (1 + πœ‹ + 1)οΏ½

= 𝐡 sin οΏ½(2 + πœ‹)βˆšπœ†οΏ½

Hence, non-trivial solution implies that

(2 + πœ‹)οΏ½πœ†π‘› = π‘›πœ‹ 𝑛 = 1, 2, 3,β‹―

οΏ½πœ†π‘› =π‘›πœ‹2 + πœ‹

The eigenvalues are

πœ†π‘› =𝑛2πœ‹2

(2 + πœ‹)2𝑛 = 1, 2, 3,β‹―

Hence πœ†π‘› β‰ˆ 𝑛2 for large 𝑛. The eigenfunctions are

𝑦𝑛 (π‘₯) βˆΌπ΅π‘›

√1 + sin π‘₯sin οΏ½οΏ½πœ†π‘› (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ 𝑛 = 1, 2, 3,β‹―

The solution is therefore a linear combination of the eigenfunctions

𝑦 (π‘₯) βˆΌβˆžοΏ½π‘›=1

𝑦𝑛 (π‘₯)

βˆΌβˆžοΏ½π‘›=1

π΅π‘›βˆš1 + sin π‘₯

sin οΏ½οΏ½πœ†π‘› (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ (7A)

This solution becomes more accurate for large πœ† or large 𝑛.

5.1.3.2 Part b

For normalization, the requirement is that

οΏ½πœ‹

0𝑦2𝑛 (π‘₯)

weight

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½(sin (π‘₯) + 1)2𝑑π‘₯ = 1

Substituting the eigenfunction 𝑦𝑛 (π‘₯) solution obtained in first part in the above results in

οΏ½πœ‹

0οΏ½

π΅π‘›βˆš1 + sin π‘₯

sin οΏ½οΏ½πœ†π‘› (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½οΏ½2

(sin (π‘₯) + 1)2 𝑑π‘₯ ∼ 1

The above is now solved for constant 𝐡𝑛. The constant 𝐡𝑛 will the same for each 𝑛 fornormalization. Therefore any 𝑛 can be used for the purpose of finding the scaling constant.

275

Page 280: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Selecting 𝑛 = 1 in the above gives

οΏ½πœ‹

0οΏ½

𝐡

√1 + sin π‘₯sin οΏ½ πœ‹

2 + πœ‹(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½οΏ½

2

(sin (π‘₯) + 1)2 𝑑π‘₯ ∼ 1

𝐡2οΏ½πœ‹

0

11 + sin π‘₯ sin2 οΏ½

πœ‹2 + πœ‹

(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ (sin (π‘₯) + 1)2 𝑑π‘₯ ∼ 1

𝐡2οΏ½πœ‹

0sin2 οΏ½

πœ‹2 + πœ‹

(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ (sin (π‘₯) + 1) 𝑑π‘₯ ∼ 1 (8)

Letting 𝑒 = πœ‹2+πœ‹

(1 + π‘₯ βˆ’ cos (π‘₯)), then𝑑𝑒𝑑π‘₯

=πœ‹

2 + πœ‹(1 + sin (π‘₯))

When π‘₯ = 0, then 𝑒 = πœ‹2+πœ‹

(1 + 0 βˆ’ cos (0)) = 0 and when π‘₯ = πœ‹ then 𝑒 = πœ‹2+πœ‹

(1 + πœ‹ βˆ’ cos (πœ‹)) =πœ‹

2+πœ‹(2 + πœ‹) = πœ‹, hence (8) becomes

𝐡2οΏ½πœ‹

0sin2 (𝑒)

2 + πœ‹πœ‹

𝑑𝑒𝑑π‘₯𝑑π‘₯ = 1

2 + πœ‹πœ‹

𝐡2οΏ½πœ‹

0sin2 (𝑒) 𝑑𝑒 = 1

But sin2 (𝑒) = 12 βˆ’

12 cos 2𝑒, therefore the above becomes

2 + πœ‹πœ‹

𝐡2οΏ½πœ‹

0οΏ½12βˆ’12

cos 2𝑒� 𝑑𝑒 = 1

122 + πœ‹πœ‹

𝐡2 �𝑒 βˆ’sin 2𝑒2 οΏ½

πœ‹

0= 1

2 + πœ‹2πœ‹

𝐡2 οΏ½οΏ½πœ‹ βˆ’sin 2πœ‹2 οΏ½ βˆ’ οΏ½0 βˆ’

sin 02 οΏ½οΏ½ = 1

2 + πœ‹2πœ‹

𝐡2πœ‹ = 1

𝐡2 =2

2 + πœ‹Therefore

𝐡 =�

2πœ‹ + 2

= 0.62369

Using the above for each 𝐡𝑛 in the solution obtained for the eigenfunctions in (7A), andpulling this scaling constant out of the sum results in

𝑦normalized ∼�

2πœ‹ + 2

βˆžοΏ½π‘›=1

1

√1 + sin π‘₯sin οΏ½οΏ½πœ†π‘› (1 + π‘₯ βˆ’ cos (π‘₯))οΏ½ (9)

Where

οΏ½πœ†π‘› =π‘›πœ‹2 + πœ‹

𝑛 = 1, 2, 3,β‹―

The following are plots for the normalized 𝑦𝑛 (π‘₯) for 𝑛 values it asks to show.

276

Page 281: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

0 Ο€

4Ο€

23Ο€4

Ο€

-0.4

-0.2

0.0

0.2

0.4

x

y(x)

yn(x) for n =5

0 Ο€

4Ο€

23Ο€4

Ο€

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

x

y(x)

yn(x) for n =20

The following shows the 𝑦 (π‘₯) as more eigenfunctions are added up to 55.

277

Page 282: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

0 Ο€

4Ο€

23Ο€4

Ο€

0.0

0.5

1.0

1.5

2.0

x

y(x)

sum of first 5 eigenfunction

0 Ο€

4Ο€

23Ο€4

Ο€

0

1

2

3

4

5

6

xy(x)

sum of first 15 eigenfunction

0 Ο€

4Ο€

23Ο€4

Ο€

0

2

4

6

8

10

x

y(x)

sum of first 25 eigenfunction

0 Ο€

4Ο€

23Ο€4

Ο€

0

5

10

15

x

y(x)

sum of first 35 eigenfunction

0 Ο€

4Ο€

23Ο€4

Ο€

0

5

10

15

20

x

y(x)

sum of first 45 eigenfunction

0 Ο€

4Ο€

23Ο€4

Ο€

0

5

10

15

20

25

x

y(x)

sum of first 55 eigenfunction

278

Page 283: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1.3.3 Part c

Since approximate solution is

𝑦 (π‘₯) ∼ exp οΏ½1𝛿

βˆžοΏ½π‘›=0

𝛿𝑛𝑆𝑛 (π‘₯)οΏ½ 𝛿 β†’ 0

∼ exp οΏ½1𝛿𝑆0 (π‘₯) + 𝑆1 (π‘₯) + 𝛿𝑆2 (π‘₯) +β‹―οΏ½ (1)

And the physical optics approximation includes the first two terms in the series above, thenthe relative error between physical optics and exact solution is given by 𝛿𝑆2 (π‘₯). But 𝛿 = πœ€.Hence (1) becomes

𝑦 (π‘₯) ∼ exp οΏ½1πœ€π‘†0 (π‘₯) + 𝑆1 (π‘₯) + πœ€π‘†2 (π‘₯) +β‹―οΏ½

Hence the relative error must be such that

|πœ€π‘†2 (π‘₯)|max ≀ 0.001 (1A)

Now 𝑆2 (π‘₯) is found. From (2) in part(a)

πœ€2

𝛿2�𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½ �𝑆′0 + 𝛿𝑆′1 + 𝛿2𝑆′2 +β‹―οΏ½ +

πœ€2

𝛿�𝑆′′0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2

πœ€2

𝛿2��𝑆′0οΏ½

2+ 𝛿 οΏ½2𝑆′1𝑆′0οΏ½ + 𝛿2 οΏ½2𝑆′0𝑆′2 + �𝑆′1οΏ½

2οΏ½ +β‹―οΏ½ +

πœ€2

𝛿�𝑆′′0 + 𝛿𝑆′′1 + 𝛿2𝑆′′2 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2

��𝑆′0οΏ½2+ πœ€ οΏ½2𝑆′1𝑆′0οΏ½ + πœ€2 οΏ½2𝑆′0𝑆′2 + �𝑆′1οΏ½

2οΏ½ +β‹―οΏ½ + οΏ½πœ€π‘†β€²β€²0 + πœ€2𝑆′′1 + πœ€3𝑆′′2 +β‹―οΏ½ ∼ βˆ’ (sin (π‘₯) + 1)2

A balance on π‘‚οΏ½πœ€2οΏ½ gives the ODE to solve to find 𝑆2

2𝑆′0𝑆′2 ∼ βˆ’ �𝑆′1οΏ½2βˆ’ 𝑆′′1 (2)

But

𝑆′0 ∼ ±𝑖 (1 + sin (π‘₯))

�𝑆′1οΏ½2∼ οΏ½βˆ’

12

cos (π‘₯)(sin (π‘₯) + 1)οΏ½

2

∼14

cos2 (π‘₯)(1 + sin (π‘₯))2

𝑆′′1 ∼ βˆ’12𝑑𝑑π‘₯ οΏ½

cos (π‘₯)(1 + sin (π‘₯))οΏ½

∼12 �

11 + sin (π‘₯)οΏ½

279

Page 284: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Hence (2) becomes

2𝑆′0𝑆′2 ∼ βˆ’ �𝑆′1οΏ½2βˆ’ 𝑆′′1

𝑆′2 ∼ βˆ’οΏ½οΏ½π‘†β€²1οΏ½

2+ 𝑆′′1 οΏ½

2𝑆′0

∼ βˆ’οΏ½14

cos2(π‘₯)(1+sin(π‘₯))2

+ 12οΏ½ 11+sin(π‘₯)οΏ½οΏ½

Β±2𝑖 (1 + sin (π‘₯))

∼ ±𝑖 οΏ½14

cos2(π‘₯)(sin(π‘₯)+1)2

+ 12οΏ½ 11+sin(π‘₯)οΏ½οΏ½

2 (sin (π‘₯) + 1)

∼ ±𝑖14 οΏ½

cos2(π‘₯)+2(1+sin(π‘₯))(sin(π‘₯)+1)2

οΏ½

2 (sin (π‘₯) + 1)

∼ ±𝑖8

cos2 (π‘₯) + 2 (1 + sin (π‘₯))(1 + sin (π‘₯))3

Therefore

𝑆2 (π‘₯) ∼ ±𝑖8 οΏ½

π‘₯

0

cos2 (𝑑) + 2 (1 + sin (𝑑))(1 + sin (𝑑))3

𝑑𝑑

∼ ±𝑖8 οΏ½οΏ½

π‘₯

0

cos2 (𝑑)(1 + sin (𝑑))3

𝑑𝑑 + 2οΏ½π‘₯

0

1(1 + sin (𝑑))2

𝑑𝑑� (3)

To do ∫π‘₯

0cos2(𝑑)

(1+sin(𝑑))3𝑑𝑑, I used a lookup integration rule from tables which says ∫ cos𝑝 (𝑑) (π‘Ž + sin 𝑑)π‘š 𝑑𝑑 =

1(π‘Ž)(π‘š) cos𝑝+1 (𝑑) (π‘Ž + sin 𝑑)π‘š, therefore using this rule the integral becomes, where now π‘š =βˆ’3, 𝑝 = 2, π‘Ž = 1,

οΏ½π‘₯

0

cos2 𝑑(1 + sin 𝑑)3

𝑑𝑑 =1βˆ’3 οΏ½

cos3 𝑑(1 + sin 𝑑)3

οΏ½π‘₯

0

=1βˆ’3 οΏ½

cos3 π‘₯(1 + sin π‘₯)3

βˆ’ 1οΏ½

=13 οΏ½1 βˆ’

cos3 π‘₯(1 + sin π‘₯)3

οΏ½

And for ∫ 1(1+sin(π‘₯))2

𝑑π‘₯, half angle substitution can be used. I do not know what other substi-

tution to use. Using CAS for little help on this, I get

οΏ½π‘₯

0

1(1 + sin 𝑑)2

𝑑𝑑 = οΏ½βˆ’cos 𝑑

3 (1 + sin 𝑑)2βˆ’13

cos 𝑑1 + sin 𝑑�

π‘₯

0

= οΏ½βˆ’cos π‘₯

3 (1 + sin π‘₯)2βˆ’13

cos π‘₯1 + sin π‘₯οΏ½ βˆ’ οΏ½βˆ’

13βˆ’13οΏ½

=23βˆ’

cos π‘₯3 (1 + sin π‘₯)2

βˆ’13

cos π‘₯1 + sin π‘₯

280

Page 285: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Hence from (3)

𝑆2 (π‘₯) ∼ ±𝑖8 οΏ½

13 οΏ½1 βˆ’

cos3 (π‘₯)(1 + sin (π‘₯))3

οΏ½ + 2 οΏ½23βˆ’

cos π‘₯3 (1 + sin π‘₯)2

βˆ’13

cos π‘₯1 + sin π‘₯οΏ½οΏ½

∼ ±𝑖8 οΏ½

13βˆ’13

cos3 (π‘₯)(1 + sin (π‘₯))3

+43βˆ’

2 cos π‘₯3 (1 + sin π‘₯)2

βˆ’23

cos π‘₯1 + sin π‘₯οΏ½

∼ ±𝑖24 οΏ½

1 βˆ’cos3 (π‘₯)

(1 + sin (π‘₯))3+ 4 βˆ’

2 cos π‘₯(1 + sin π‘₯)2

βˆ’2 cos π‘₯1 + sin π‘₯οΏ½

Therefore, from (1A)

|πœ€π‘†2 (π‘₯)|max ≀ 0.001

οΏ½πœ€π‘–24 οΏ½

1 βˆ’cos3 (π‘₯)

(1 + sin (π‘₯))3+ 4 βˆ’

2 cos π‘₯(1 + sin π‘₯)2

βˆ’2 cos π‘₯1 + sin π‘₯οΏ½οΏ½

max≀ 0.001

124 οΏ½

πœ€ οΏ½1 βˆ’cos3 (π‘₯)

(1 + sin (π‘₯))3+ 4 βˆ’

2 cos π‘₯(1 + sin π‘₯)2

βˆ’2 cos π‘₯1 + sin π‘₯οΏ½οΏ½

max≀ 0.001

οΏ½πœ€ οΏ½1 βˆ’cos3 (π‘₯)

(1 + sin (π‘₯))3+ 4 βˆ’

2 cos π‘₯(1 + sin π‘₯)2

βˆ’2 cos π‘₯1 + sin π‘₯οΏ½οΏ½

max≀ 0.024 (2)

The maximum value of οΏ½1 βˆ’ cos3(π‘₯)(1+sin(π‘₯))3

+ 4 βˆ’ 2 cos π‘₯(1+sin π‘₯)2

βˆ’ 2 cos π‘₯1+sin π‘₯

οΏ½ between π‘₯ = 0 and π‘₯ = πœ‹ is now

found and used to find πœ€. A plot of the above shows the maximum is maximum at the end,at π‘₯ = πœ‹ (Taking the derivative and setting it to zero to determine where the maximum iscan also be used).

In[324]:= myResult = 1 -Cos[x]3

(1 + Sin[x])3+ 4 -

2 Cos[x]

(1 + Sin[x])2-

2 Cos[x]

1 + Sin[x];

Plot[myResult, {x, 0, Pi}, PlotRange β†’ All, Frame β†’ True, GridLines β†’ Automatic, GridLinesStyle β†’ LightGray,

FrameLabel β†’ {{"s2(x)", None}, {"x", "Finding where maximum S2(x) is, part(c)"}}, PlotStyle β†’ Red, BaseStyle β†’ 14,

FrameTicks β†’ {Automatic, {{0, Pi / 4, Pi / 2, 3 / 4 Pi, Pi}, None}}, ImageSize β†’ 400]

Out[325]=

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0

2

4

6

8

10

x

s2(x)

Finding where maximum S2(x) is, part(c)

Therefore, at π‘₯ = πœ‹

οΏ½1 βˆ’cos3 π‘₯

(1 + sin π‘₯)3+ 4 βˆ’

2 cos π‘₯(1 + sin π‘₯)2

βˆ’2 cos π‘₯1 + sin π‘₯οΏ½

π‘₯=πœ‹

= οΏ½1 βˆ’cos3 (πœ‹)

(1 + sinπœ‹)3+ 4 βˆ’

2 cosπœ‹(1 + sinπœ‹)2

βˆ’2 cosπœ‹1 + sinπœ‹οΏ½

= 10

281

Page 286: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Hence (2) becomes

10πœ€ ≀ 0.024πœ€ ≀ 0.0024

But since πœ† = 1πœ€2 the above becomes

1

βˆšπœ†β‰€ 0.0024

βˆšπœ† β‰₯1

0.0024βˆšπœ† β‰₯ 416.67

Hence

πœ† β‰₯ 17351.1

To find which mode this corresponds to, since πœ†π‘› =𝑛2πœ‹2

(2+πœ‹)2, then need to solve for 𝑛

17351.1 =𝑛2πœ‹2

(2 + πœ‹)2

𝑛2πœ‹2 = (17351.1) (2 + πœ‹)2

𝑛 =οΏ½(17351.1) (2 + πœ‹)2

πœ‹2

= 215.58

Hence the next largest integer is used

𝑛 = 216

To have relative error less than 0.1% compared to exact solution. Therefore using the resultobtained in (9) in part (b) the normalized solution needed is

𝑦normalized ∼�

2πœ‹ + 2

216�𝑛=1

1

√1 + sin π‘₯sin οΏ½ π‘›πœ‹

2 + πœ‹(1 + π‘₯ βˆ’ cos (π‘₯))οΏ½

The following is a plot of the above solution adding all the first 216 modes for illustration.

282

Page 287: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

In[42]:= ClearAll[x, n, lam]

mySol[x_, max_] := Sqrt2

Pi + 2 Sum

1

Sqrt[1 + Sin[x]]Sin

n Pi

2 + Pi(1 + x - Cos[x]), {n, 1, max};

In[46]:= p[n_] := Plot[mySol[x, n], {x, 0, Pi}, PlotRange β†’ All, Frame β†’ True,

FrameLabel β†’ {{"y(x)", None}, {"x", Row[{"yn(x) for n =", n}]}}, BaseStyle β†’ 14, GridLines β†’ Automatic,

GridLinesStyle β†’ LightGray, ImageSize β†’ 600, PlotStyle β†’ Red,

FrameTicks β†’ { {Automatic, None}, {{0, Pi / 4, Pi / 2, 3 / 4 Pi, Pi}, None}}, PlotRange β†’ All]

In[47]:= p[216]

Out[47]=

0 Ο€

4

Ο€

2

3Ο€

4Ο€

0

20

40

60

80

100

x

y(x)

yn(x) for n =216

283

Page 288: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2 Exam 2

5.2.1 problem 3

2. Consider the 1D heat equation in a semi-infinite domain:

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2, x β‰₯ 0

with boundary conditions: u(0, t) = exp(βˆ’iΟ‰t) and u(x, t) bounded as x β†’ ∞. In orderto construct a real forcing, we need both positive and negative real values of Ο‰. Considerthat this forcing has been and will be applied for all time. This β€œpure boundary valueproblem” could be an idealization of heating the surface of the earth by the sun (periodicforcing). One could then ask, how far beneath the surface of the earth do the periodicfluctuations of the heat propagate?

(a) Consider solutions of the form u(x, t;Ο‰) = exp(ikx) exp(βˆ’iΟ‰t). Find a single expressionfor k as a function of (given) Ο‰ real, sgn(Ο‰) and Ξ½ real.

Write u(x, t;Ο‰) as a function of (given) Ο‰ real, sgn(Ο‰) and Ξ½ real. To obtain the mostgeneral solution by superposition, one would next integrate over all values of Ο‰, βˆ’βˆž <Ο‰ <∞ (do not do this).

(b) The basic solution can be written as u(x, t;Ο‰) = exp(βˆ’iΟ‰t) exp(βˆ’Οƒx) exp(iΟƒ sgn(Ο‰) x).Find Οƒ in terms of |Ο‰| and Ξ½.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

3. Here we study the competing effects of nonlinearity and diffusion in the context ofBurger’s equation

βˆ‚u

βˆ‚t+ u

βˆ‚u

βˆ‚x= Ξ½

βˆ‚2u

βˆ‚x2(3a)

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solvedexactly using the Cole-Hopf transformation

u = βˆ’2Ξ½Ο†xΟ†

(3b)

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = ψx (where the subscript denotes partial differentiation) and integrate oncewith respect to x.

(b) Let ψ = βˆ’2Ξ½ ln(Ο†) to get the diffusion equation for Ο†.

(c) Solve for Ο† with Ο†(x, 0) = Ξ¦(x), βˆ’βˆž < x < ∞. In your integral expression for Ο†, usedummy variable Ξ· to facilitate the remaining parts below.

(d) Show that

Ξ¦(x) = exp

[

βˆ’1

2Ξ½

∫ x

xo

F (Ξ±)dΞ±

]

where u(x, 0) = F (x), with xo arbitrary which we will take to be positive for conveniencebelow (xo > 0).

2

(e) Write your expression for Ο†(x, t) in terms of

f(Ξ·, x, t) =

∫ η

xo

F (Ξ±)dΞ±+(xβˆ’ Ξ·)2

2t.

(f) Find Ο†x(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2+Q(x, t), 0 ≀ x ≀ L, t β‰₯ 0

u(x, 0) = f(x),βˆ‚u

βˆ‚x(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimallysmall slits separated by a distance 2a.

Solve the diffraction equation

βˆ‚u

βˆ‚t=iΞ»

4Ο€

βˆ‚2u

βˆ‚x2(1)

with initial source u(x, 0) = f(x) = Ξ΄(xβˆ’ a) + Ξ΄(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consistsof a series of alternating bright and dark fringes with period Ξ»t/(2a).

3

5.2.1.1 Part (a)

πœ•π‘’πœ•π‘‘

+ π‘’πœ•π‘’πœ•π‘₯

= πœˆπœ•2π‘’πœ•π‘₯2

(1)

284

Page 289: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Let

𝑒 = βˆ’2πœˆπœ™π‘₯π‘₯

=πœ•πœ•π‘₯

οΏ½βˆ’2𝜈 lnπœ™οΏ½ (1A)

5.2.1.2 Part(b)

Let

πœ“ = βˆ’2𝜈 lnπœ™ (2)

Hence (1A) becomes

𝑒 =πœ•πœ•π‘₯πœ“

We now substitute the above back into (1) noting first that

πœ•π‘’πœ•π‘‘

=πœ•πœ•π‘‘πœ•πœ“πœ•π‘₯

Interchanging the order gives

πœ•π‘’πœ•π‘‘

=πœ•πœ•π‘₯πœ•πœ“πœ•π‘‘

=πœ•πœ•π‘₯πœ“π‘‘

Andπœ•π‘’πœ•π‘₯

=πœ•πœ•π‘₯πœ•πœ“πœ•π‘₯

= πœ“π‘₯π‘₯

Andπœ•2π‘’πœ•π‘₯2

= πœ“π‘₯π‘₯π‘₯

Hence the original PDE (1) now can be written in term of πœ“ as the new dependent variableas

πœ•πœ•π‘₯πœ“π‘‘ + πœ“π‘₯ οΏ½πœ“π‘₯π‘₯οΏ½ = πœˆπœ“π‘₯π‘₯π‘₯ (3)

But

πœ“π‘₯ οΏ½πœ“π‘₯π‘₯οΏ½ =12πœ•πœ•π‘₯

οΏ½πœ“2π‘₯οΏ½

285

Page 290: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Using the above in (3), then (3) becomes

πœ•πœ•π‘₯πœ“π‘‘ +

12πœ•πœ•π‘₯

οΏ½πœ“2π‘₯οΏ½ = πœˆπœ“π‘₯π‘₯π‘₯

πœ•πœ•π‘₯πœ“π‘‘ +

12πœ•πœ•π‘₯

οΏ½πœ“2π‘₯οΏ½ βˆ’ 𝜈

πœ•πœ•π‘₯

οΏ½πœ“π‘₯π‘₯οΏ½ = 0

πœ•πœ•π‘₯ οΏ½

πœ“π‘‘ +12πœ“2π‘₯ βˆ’ πœˆπœ“π‘₯π‘₯οΏ½ = 0

Therefore

πœ“π‘‘ +12πœ“2π‘₯ βˆ’ πœˆπœ“π‘₯π‘₯ = 0 (4)

But from (2) πœ“ = βˆ’2𝜈 lnπœ™, then using this in (4), we now rewrite (4) in terms of πœ™

πœ•πœ•π‘‘οΏ½βˆ’2𝜈 lnπœ™οΏ½ + 1

2 οΏ½πœ•πœ•π‘₯

οΏ½βˆ’2𝜈 lnπœ™οΏ½οΏ½2

βˆ’ πœˆπœ•2

πœ•π‘₯2οΏ½βˆ’2𝜈 lnπœ™οΏ½ = 0

οΏ½βˆ’2πœˆπœ™π‘‘πœ™ οΏ½

+12 οΏ½βˆ’2𝜈

πœ™π‘₯πœ™ οΏ½

2

βˆ’ πœˆπœ•πœ•π‘₯ οΏ½

βˆ’2πœˆπœ™π‘₯πœ™ οΏ½

= 0

βˆ’2πœˆπœ™π‘‘πœ™+ 2𝜈2 οΏ½

πœ™π‘₯πœ™ οΏ½

2

+ 2𝜈2πœ•πœ•π‘₯ οΏ½

πœ™π‘₯πœ™ οΏ½

= 0

But πœ•πœ•π‘₯οΏ½πœ™π‘₯πœ™οΏ½ = πœ™π‘₯π‘₯

πœ™ βˆ’ πœ™2π‘₯πœ™2 , hence the above becomes

βˆ’2πœˆπœ™π‘‘πœ™+ 2𝜈2 οΏ½

πœ™π‘₯πœ™ οΏ½

2

+ 2𝜈2 οΏ½πœ™π‘₯π‘₯πœ™

βˆ’πœ™2π‘₯πœ™2 οΏ½ = 0

βˆ’2πœˆπœ™π‘‘πœ™+ 2𝜈2 οΏ½

πœ™π‘₯πœ™ οΏ½

2

+ 2𝜈2πœ™π‘₯π‘₯πœ™

βˆ’ 2𝜈2πœ™2π‘₯πœ™2 = 0

βˆ’2πœˆπœ™π‘‘πœ™+ 2𝜈2

πœ™π‘₯π‘₯πœ™

= 0

βˆ’πœ™π‘‘πœ™+ 𝜈

πœ™π‘₯π‘₯πœ™

= 0

Since πœ™ β‰  0 identically, then the above simplifies to the heat PDE

πœ™π‘‘ = πœˆπœ™π‘₯π‘₯ (5)

πœ™ (π‘₯, 0) = Ξ¦ (π‘₯)βˆ’βˆž < π‘₯ < ∞

5.2.1.3 Part (c)

Now we solve (5) for πœ™ (π‘₯, 𝑑) and then convert the solution back to 𝑒 (π‘₯, 𝑑) using the Cole-Hopftransformation. This infinite domain heat PDE has known solution (as πœ™ (±∞, 𝑑) is boundedwhich is

πœ™ (π‘₯, 𝑑) = �∞

βˆ’βˆžΞ¦οΏ½πœ‚οΏ½

1

√4πœ‹πœπ‘‘exp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’ οΏ½π‘₯ βˆ’ πœ‚οΏ½

2

4πœπ‘‘

⎞⎟⎟⎟⎟⎟⎟⎠ π‘‘πœ‚ (6)

286

Page 291: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.1.4 Part(d)

Now

Ξ¦ (π‘₯) = πœ™ (π‘₯, 0) (7)

But since 𝑒 (π‘₯, 𝑑) = πœ•πœ•π‘₯οΏ½βˆ’2𝜈 lnπœ™οΏ½, then integrating

οΏ½π‘₯

π‘₯0𝑒 (𝛼, 𝑑) 𝑑𝛼 = βˆ’2𝜈 lnπœ™

lnπœ™ = βˆ’12𝜈 οΏ½

π‘₯

π‘₯0𝑒 (𝛼, 𝑑) 𝑑𝛼

πœ™ (π‘₯, 𝑑) = exp οΏ½βˆ’12𝜈 οΏ½

π‘₯

π‘₯0𝑒 (𝛼, 𝑑) 𝑑𝛼�

Hence at 𝑑 = 0 the above becomes

πœ™ (π‘₯, 0) = exp οΏ½βˆ’12𝜈 οΏ½

π‘₯

π‘₯0𝑒 (𝛼, 0) 𝑑𝛼�

= exp οΏ½βˆ’12𝜈 οΏ½

π‘₯

π‘₯0𝐹 (𝛼) 𝑑𝛼�

Where 𝐹 (π‘₯) = 𝑒 (π‘₯, 0). Hence from the above, comparing it to (6) we see that

Ξ¦ (π‘₯) = exp οΏ½βˆ’12𝜈 οΏ½

π‘₯

π‘₯0𝐹 (𝛼) 𝑑𝛼� (8)

5.2.1.5 Part(e)

From (6), we found πœ™ (π‘₯, 𝑑) = ∫∞

βˆ’βˆžΞ¦οΏ½πœ‚οΏ½ 1

√4πœ‹πœπ‘‘exp

βŽ›βŽœβŽœβŽœβŽβˆ’οΏ½π‘₯βˆ’πœ‚οΏ½

2

4πœπ‘‘

⎞⎟⎟⎟⎠ π‘‘πœ‚. Plugging (8) into this expression

gives

πœ™ (π‘₯, 𝑑) =1

√4πœ‹πœπ‘‘οΏ½

∞

βˆ’βˆžexp οΏ½

βˆ’12𝜈 οΏ½

πœ‚

π‘₯0𝐹 (𝛼) 𝑑𝛼� exp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’ οΏ½π‘₯ βˆ’ πœ‚οΏ½

2

4πœπ‘‘

⎞⎟⎟⎟⎟⎟⎟⎠ π‘‘πœ‚

=1

√4πœ‹πœπ‘‘οΏ½

∞

βˆ’βˆžexp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’12𝜈 οΏ½

πœ‚

π‘₯0𝐹 (𝛼) 𝑑𝛼 βˆ’

οΏ½π‘₯ βˆ’ πœ‚οΏ½2

4πœπ‘‘

⎞⎟⎟⎟⎟⎟⎟⎠ π‘‘πœ‚

=1

√4πœ‹πœπ‘‘οΏ½

∞

βˆ’βˆžexp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’12𝜈

⎑⎒⎒⎒⎒⎒⎒⎣�

πœ‚

π‘₯0𝐹 (𝛼) 𝑑𝛼 +

οΏ½π‘₯ βˆ’ πœ‚οΏ½2

2𝑑

⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦

⎞⎟⎟⎟⎟⎟⎟⎠ π‘‘πœ‚ (9)

Let

οΏ½πœ‚

π‘₯0𝐹 (𝛼) 𝑑𝛼 +

οΏ½π‘₯ βˆ’ πœ‚οΏ½2

2𝑑= 𝑓 οΏ½πœ‚, π‘₯, 𝑑�

287

Page 292: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Hence (9) becomes

πœ™ (π‘₯, 𝑑) = �∞

βˆ’βˆž

1

√4πœ‹πœπ‘‘π‘’βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�

2𝜈 π‘‘πœ‚ (10)

5.2.1.6 Part(f)

From (10)

πœ•πœ™πœ•π‘₯

= �∞

βˆ’βˆž

1

√4πœ‹πœπ‘‘πœ•πœ•π‘₯

βŽ›βŽœβŽœβŽœβŽπ‘’

βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�2𝜈

⎞⎟⎟⎟⎠ π‘‘πœ‚

= �∞

βˆ’βˆž

1

√4πœ‹πœπ‘‘

βŽ›βŽœβŽœβŽœβŽπœ•πœ•π‘₯𝑓 οΏ½πœ‚, π‘₯, 𝑑� 𝑒

βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�2𝜈

⎞⎟⎟⎟⎠ π‘‘πœ‚

= �∞

βˆ’βˆž

1

√4πœ‹πœπ‘‘

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπœ•πœ•π‘₯

⎑⎒⎒⎒⎒⎒⎒⎣�

πœ‚

π‘₯0𝐹 (𝛼) 𝑑𝛼 +

οΏ½π‘₯ βˆ’ πœ‚οΏ½2

2𝑑

⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦ 𝑒

βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�2𝜈

⎞⎟⎟⎟⎟⎟⎟⎠ π‘‘πœ‚

Using Leibniz integral rule the above simplifies to

πœ•πœ™πœ•π‘₯

= �∞

βˆ’βˆž

1

√4πœ‹πœπ‘‘

βŽ›βŽœβŽœβŽœβŽœβŽοΏ½π‘₯ βˆ’ πœ‚οΏ½π‘‘

π‘’βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�

2𝜈

⎞⎟⎟⎟⎟⎠ π‘‘πœ‚ (11)

But

𝑒 = βˆ’2πœˆπœ™π‘₯πœ™

Hence, using (10) and (11) in the above gives

𝑒 = βˆ’2𝜈∫∞

βˆ’βˆž1

√4πœ‹πœπ‘‘

βŽ›βŽœβŽœβŽœβŽοΏ½π‘₯βˆ’πœ‚οΏ½

𝑑 π‘’βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�

2𝜈

⎞⎟⎟⎟⎠ π‘‘πœ‚

∫∞

βˆ’βˆž1

√4πœ‹πœπ‘‘π‘’βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�

2𝜈 π‘‘πœ‚

Hence the solution is

𝑒 (π‘₯, 𝑑) = βˆ’2𝜈∫∞

βˆ’βˆž

οΏ½π‘₯βˆ’πœ‚οΏ½

𝑑 π‘’βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�

2𝜈 π‘‘πœ‚

∫∞

βˆ’βˆžπ‘’βˆ’π‘“οΏ½πœ‚,π‘₯,𝑑�

2𝜈 π‘‘πœ‚

Where

𝑓 οΏ½πœ‚, π‘₯, 𝑑� = οΏ½πœ‚

π‘₯0𝐹 (𝛼) 𝑑𝛼 +

οΏ½π‘₯ βˆ’ πœ‚οΏ½2

2𝑑

288

Page 293: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.2 problem 4

(e) Write your expression for Ο†(x, t) in terms of

f(Ξ·, x, t) =

∫ η

xo

F (Ξ±)dΞ±+(xβˆ’ Ξ·)2

2t.

(f) Find Ο†x(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2+Q(x, t), 0 ≀ x ≀ L, t β‰₯ 0

u(x, 0) = f(x),βˆ‚u

βˆ‚x(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimallysmall slits separated by a distance 2a.

Solve the diffraction equation

βˆ‚u

βˆ‚t=iΞ»

4Ο€

βˆ‚2u

βˆ‚x2(1)

with initial source u(x, 0) = f(x) = Ξ΄(xβˆ’ a) + Ξ΄(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consistsof a series of alternating bright and dark fringes with period Ξ»t/(2a).

3

5.2.2.1 Part(a)

πœ•π‘’πœ•π‘‘

= πœπœ•2π‘’πœ•π‘₯2

+ 𝑄 (π‘₯, 𝑑) (1)

0 ≀ π‘₯ ≀ 𝐿𝑑 β‰₯ 0

Initial conditions are

𝑒 (π‘₯, 0) = 𝑓 (π‘₯)

Boundary conditions are

πœ•π‘’ (0, 𝑑)πœ•π‘₯

= 0

𝑒 (𝐿, 𝑑) = 𝐴

Multiplying both sides of (1) by 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) and integrating over the domain gives (wherein the following 𝐺 is used instead of 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) for simplicity).

�𝐿

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑒𝑑 𝑑𝑑𝑑π‘₯ = οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’π‘₯π‘₯𝐺 𝑑𝑑𝑑π‘₯ +οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0𝑄𝐺 𝑑𝑑𝑑π‘₯ (1)

For the integral on the LHS, we apply integration by parts once to move the time derivativefrom 𝑒 to 𝐺

�𝐿

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑒𝑑 𝑑𝑑𝑑π‘₯ = οΏ½

𝐿

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑑𝑒 𝑑𝑑𝑑π‘₯ (1A)

289

Page 294: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

And the first integral in the RHS of (1) gives, after doing integration by parts two times onit

�𝐿

π‘₯=0οΏ½

∞

𝑑=0π‘˜π‘’π‘₯π‘₯𝐺 𝑑𝑑𝑑π‘₯ = οΏ½

∞

𝑑=0[𝑒π‘₯𝐺]

𝐿π‘₯=0 𝑑𝑑 βˆ’οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’π‘₯𝐺π‘₯ 𝑑𝑑𝑑π‘₯

= �𝐿

𝑑=0[𝑒π‘₯𝐺]

𝐿π‘₯=0 𝑑𝑑 βˆ’ οΏ½οΏ½

∞

𝑑=0[𝑒𝐺π‘₯]

𝐿π‘₯=0 𝑑𝑑 βˆ’οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯οΏ½

= �∞

𝑑=0οΏ½[𝑒π‘₯𝐺]

𝐿π‘₯=0 βˆ’ [𝑒𝐺π‘₯]

𝐿π‘₯=0οΏ½ 𝑑𝑑 +οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯

= �∞

𝑑=0[𝑒π‘₯𝐺 βˆ’ 𝑒𝐺π‘₯]

𝐿π‘₯=0 𝑑𝑑 +οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯

= βˆ’οΏ½βˆž

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

𝐿π‘₯=0 𝑑𝑑 +οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯ (1B)

Substituting (1A) and (1B) back into (1) results in

�𝐿

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯βˆ’οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑑𝑒 𝑑𝑑𝑑π‘₯ = οΏ½

∞

𝑑=0[𝑒π‘₯𝐺 βˆ’ 𝑒𝐺π‘₯]

𝐿π‘₯=0 𝑑𝑑+οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0πœπ‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯+οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯

Or

�𝐿

π‘₯=0οΏ½

∞

𝑑=0βˆ’πΊπ‘‘π‘’ βˆ’ πœπ‘’πΊπ‘₯π‘₯ 𝑑𝑑𝑑π‘₯ = βˆ’οΏ½

𝐿

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

∞

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

𝐿π‘₯=0 𝑑𝑑 +οΏ½

𝐿

π‘₯=0οΏ½

∞

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯

(2)

We now want to choose 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) such that

βˆ’πΊπ‘‘π‘’ βˆ’ πœπ‘’πΊπ‘₯π‘₯ = 𝛿 (π‘₯ βˆ’ π‘₯0) 𝛿 (𝑑 βˆ’ 𝑑0)βˆ’πΊπ‘‘π‘’ = πœπ‘’πΊπ‘₯π‘₯ + 𝛿 (π‘₯ βˆ’ π‘₯0) 𝛿 (𝑑 βˆ’ 𝑑0) (3)

This way, the LHS of (2) becomes just 𝑒 (π‘₯0, 𝑑0). Hence (2) now (after the above choice of𝐺) reduces to

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½πΏ

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

𝐿π‘₯=0 𝑑𝑑 +οΏ½

𝐿

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (4)

We now need to find the Green function which satisfies (3). But (3) is equivalent to solutionof problem

βˆ’πΊπ‘‘π‘’ = πœπ‘’πΊπ‘₯π‘₯

𝐺 (π‘₯, 0) = 𝛿 (π‘₯ βˆ’ π‘₯0) 𝛿 (𝑑 βˆ’ 𝑑0)βˆ’βˆž < π‘₯ < ∞

𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) = 0 𝑑 > 𝑑0𝐺 (±∞, 𝑑; π‘₯0, 𝑑0) = 0𝐺 (π‘₯, 𝑑0; π‘₯0, 𝑑0) = 𝛿 (π‘₯ βˆ’ π‘₯0)

The above problem has a known fundamental solution which we found before, but for theforward heat PDE instead of the reverse heat PDE as it is now. The fundamental solution

290

Page 295: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

to the forward heat PDE is

𝐺 (π‘₯, 𝑑) =1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ 0 ≀ 𝑑0 ≀ 𝑑

Therefore, for the reverse heat PDE the above becomes

𝐺 (π‘₯, 𝑑) =1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ 0 ≀ 𝑑 ≀ 𝑑0 (5)

We now go back to (4) and try to evaluate all terms in the RHS. Starting with the first term∫𝐿

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯. Since 𝐺 (π‘₯,∞; π‘₯0, 𝑑0) = 0 then the upper limit is zero. But at lower limit 𝑑 = 0

we are given that 𝑒 (π‘₯, 0) = 𝑓 (π‘₯), hence this term becomes

�𝐿

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ = οΏ½

𝐿

π‘₯=0βˆ’π‘’ (π‘₯, 0) 𝐺 (π‘₯, 0) 𝑑π‘₯

= �𝐿

π‘₯=0βˆ’π‘“ (π‘₯)𝐺 (π‘₯, 0) 𝑑π‘₯

Now looking at the second term in RHS of (4), we expand it and find

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]𝐿π‘₯=0 = (𝑒 (𝐿, 𝑑) 𝐺π‘₯ (𝐿, 𝑑) βˆ’ 𝑒π‘₯ (𝐿, 𝑑) 𝐺 (𝐿, 𝑑)) βˆ’ (𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) βˆ’ 𝑒π‘₯ (0, 𝑑) 𝐺 (0, 𝑑))

We are told that 𝑒π‘₯ (0, 𝑑) = 0 and 𝑒 (𝐿, 𝑑) = 𝐴, then the above becomes

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]𝐿π‘₯=0 = 𝐴𝐺π‘₯ (𝐿, 𝑑) βˆ’ 𝑒π‘₯ (𝐿, 𝑑) 𝐺 (𝐿, 𝑑) βˆ’ 𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑) (5A)

There are still two terms above we do not know. We do not know 𝑒π‘₯ (𝐿, 𝑑) and we also donot know 𝑒 (0, 𝑑). If we can configure, using method of images, such that 𝐺 (𝐿, 𝑑) = 0 and𝐺π‘₯ (0, 𝑑) = 0 then we can get rid of these two terms and end up only with [𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

∞π‘₯=0 =

𝐴𝐺π‘₯ (𝐿, 𝑑) which we can evaluate once we know what 𝐺 (π‘₯, 𝑑) is.

This means we need to put images on both sides of the boundaries such that to force𝐺 (𝐿, 𝑑) = 0 and also 𝐺π‘₯ (0, 𝑑) = 0.

We see that this result agrees what we always did, which is, If the prescribed boundary

conditions on 𝑒 are such that 𝑒 = 𝐴, then we want 𝐺 = 0 there. And if it is πœ•π‘’πœ•π‘₯ = 𝐴, then we

want πœ•πΊπœ•π‘₯ = 0 there. And this is what we conclude here also from the above. In other words,

the boundary conditions on Green functions are always the homogeneous version of theboundary conditions given on 𝑒.

βˆ‚uβˆ‚x = 0βˆ‚Gβˆ‚x = 0

x = 0 x = L

u(L, t) = A

G(L, t) = 0

291

Page 296: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

To force 𝐺π‘₯ (0, 𝑑) = 0, we need to put same sign images on both sides of π‘₯ = 0. So we endup with this

x0x = 0 x = L

βˆ‚Gβˆ‚x = 0

G = 0βˆ’x0

The above makes 𝐺π‘₯ (0, 𝑑) = 0 at π‘₯ = 0. Now we want to make 𝐺 = 0 at π‘₯ = 𝐿. Then we updatethe above and put a negative image at π‘₯ = 2𝐿 βˆ’ π‘₯0 to the right of π‘₯ = 𝐿 as follows

x0x = 0 x = L

βˆ‚Gβˆ‚x = 0

G = 0βˆ’x0

2Lβˆ’ x0

But now we see that the image at π‘₯ = βˆ’π‘₯0 has aοΏ½ected condition of 𝐺 = 0 at π‘₯ = 𝐿 and willmake it not zero as we wanted. So to counter eοΏ½ect this, we have to add another negativeimage at distance π‘₯ = 2𝐿 + π‘₯0 to cancel the eοΏ½ect of the image at π‘₯ = βˆ’π‘₯0. We end up withthis setup

x0x = 0 x = L

βˆ‚Gβˆ‚x = 0

G = 0βˆ’x0

2Lβˆ’ x0 2L+ x0

But now we see that the two negative images we added to the right will no longer make𝐺π‘₯ (0, 𝑑) = 0, so we need to counter eοΏ½ect this by adding two negative images to the left sideto keep 𝐺π‘₯ (0, 𝑑) = 0. So we end up with

292

Page 297: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

x0x = 0 x = L

βˆ‚Gβˆ‚x = 0

G = 0βˆ’x0

2Lβˆ’ x0 2L+ x0βˆ’2Lβˆ’ x0 βˆ’2L+ x0

But now we see that by putting these two images on the left, we no longer have 𝐺 = 0 atπ‘₯ = 𝐿. So to counter eοΏ½ect this, we have to put copies of these 2 images on the right againbut with positive sign, as follows

x0x = 0 x = L

βˆ‚Gβˆ‚x = 0

G = 0βˆ’x0

2Lβˆ’ x0 2L+ x0βˆ’2Lβˆ’ x0 βˆ’2L+ x0

4Lβˆ’ x0 4L+ x0

But now these two images on the right, no longer keep 𝐺π‘₯ (0, 𝑑) = 0, so we have to put samesign images to the left, as follows

x0x = 0 x = L

βˆ‚Gβˆ‚x = 0

G = 0

βˆ’x0

2Lβˆ’ x0

2L+ x0βˆ’2Lβˆ’ x0

βˆ’2L+ x0

4Lβˆ’ x0

4L+ x0

βˆ’4L+ x0

βˆ’4Lβˆ’ x0

And so on. This continues for infinite number of images. Therefore we see from the above,for the positive images, we have the following sum

οΏ½4πœ‹πœ (𝑑0 βˆ’ 𝑑)𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) = expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ π‘₯0)

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ + π‘₯0)

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (4𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+ expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’4𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (4𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+ expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’4𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ +β‹―

Or

𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) =1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠ (6)

293

Page 298: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

The above takes care of the positive images. For negative images, we have this sum of images

οΏ½4πœ‹πœ (𝑑0 βˆ’ 𝑑)𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) = expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (2𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’2𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+ expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (2𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’2𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+ expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (6𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’6𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+ expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (6𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’6𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

βŽžβŽŸβŽŸβŽŸβŽ β‹―

Or

οΏ½4πœ‹πœ (𝑑0 βˆ’ 𝑑)𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) = βˆ’βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

(7)

Hence the Green function to use is (6)+(7) which gives

𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) =1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

(7A)

Using the above Green function, we go back to 5A and finally are able to simplify it

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]𝐿π‘₯=0 = 𝐴𝐺π‘₯ (𝐿, 𝑑) βˆ’ 𝑒π‘₯ (𝐿, 𝑑) 𝐺 (𝐿, 𝑑) βˆ’ 𝑒 (0, 𝑑) 𝐺π‘₯ (0, 𝑑)

The above becomes now (with the images in place as above)

[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]𝐿π‘₯=0 = 𝐴

πœ•πΊ (𝐿, 𝑑; π‘₯0, 𝑑0)πœ•π‘₯

(8)

Since now we know what 𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0), from (7), we can evaluate its derivative w.r.t. π‘₯. (brokenup, so it fits on one page)

πœ•πΊ (π‘₯, 𝑑; π‘₯0, 𝑑0)πœ•π‘₯

=1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (π‘₯ βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (π‘₯ βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

294

Page 299: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

At π‘₯ = 𝐿, the above derivative becomes

πœ•πΊ (𝐿, 𝑑; π‘₯0, 𝑑0)πœ•π‘₯

=1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

+1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑0 βˆ’ 𝑑)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))2𝜐 (𝑑0 βˆ’ 𝑑)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))

2

4𝜐 (𝑑0 βˆ’ 𝑑)

⎞⎟⎟⎟⎠ (9)

From (4), we now collect all terms into the solution

𝑒 (π‘₯0, 𝑑0) = βˆ’οΏ½πΏ

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ βˆ’οΏ½

𝑑0

𝑑=0[𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]

𝐿π‘₯=0 𝑑𝑑 +οΏ½

𝐿

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺𝑄 𝑑𝑑𝑑π‘₯ (4)

We found ∫𝐿

π‘₯=0[𝑒𝐺]βˆžπ‘‘=0 𝑑π‘₯ = ∫𝐿

π‘₯=0βˆ’π‘“ (π‘₯)𝐺 (π‘₯, 0) 𝑑π‘₯ and now we know what 𝐺 is. Hence we can

find 𝐺 (π‘₯, 0; π‘₯0, 𝑑0). It is, from (7A)

𝐺 (π‘₯, 0; π‘₯0, 𝑑0) =1

√4πœ‹πœπ‘‘0

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (4𝑛𝐿 βˆ’ π‘₯0))

2

4πœπ‘‘0

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ (βˆ’4𝑛𝐿 + π‘₯0))

2

4πœπ‘‘0

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœπ‘‘0

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯0))

2

4πœπ‘‘0

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯ βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯0))

2

4πœπ‘‘0

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

(10)

And we now know what [𝑒𝐺π‘₯ βˆ’ 𝑒π‘₯𝐺]𝐿π‘₯=0 is. It is 𝐴

πœ•πΊ(𝐿,𝑑;π‘₯0,𝑑0)πœ•π‘₯ . Hence (4) becomes

𝑒 (π‘₯0, 𝑑0) = �𝐿

π‘₯=0𝑓 (π‘₯)𝐺 (π‘₯, 0; π‘₯0, 𝑑0) 𝑑π‘₯βˆ’οΏ½

𝑑0

𝑑=0π΄πœ•πΊ (𝐿, 𝑑; π‘₯0, 𝑑0)

πœ•π‘₯𝑑𝑑+οΏ½

𝐿

π‘₯=0οΏ½

𝑑0

𝑑=0𝐺 (π‘₯, 𝑑; π‘₯0, 𝑑0) 𝑄 (π‘₯, 𝑑) 𝑑𝑑𝑑π‘₯

Changing the roles of π‘₯0, 𝑑0

𝑒 (π‘₯, 𝑑) = �𝐿

π‘₯0=0𝑓 (π‘₯0) 𝐺 (π‘₯0, 𝑑0; π‘₯, 0) 𝑑π‘₯0 βˆ’οΏ½

𝑑

𝑑=0π΄πœ•πΊ (π‘₯0, 𝑑0; 𝐿, 𝑑)

πœ•π‘₯0𝑑𝑑0 +οΏ½

𝐿

π‘₯0=0οΏ½

𝑑

𝑑0=0𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) 𝑄 (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0

(11)

This completes the solution.

Summary

The solution is

𝑒 (π‘₯, 𝑑) = �𝐿

π‘₯0=0𝑓 (π‘₯0) 𝐺 (π‘₯0, 𝑑0; π‘₯, 0) 𝑑π‘₯0βˆ’οΏ½

𝑑

𝑑=0π΄πœ•πΊ (π‘₯0, 𝑑0; 𝐿, 𝑑)

πœ•π‘₯0𝑑𝑑0+οΏ½

𝐿

π‘₯0=0οΏ½

𝑑

𝑑0=0𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) 𝑄 (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0

Where 𝐺 (π‘₯0, 𝑑0; π‘₯, 0) is given in (10) (after changing roles of parameters):

295

Page 300: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

𝐺 (π‘₯0, 𝑑0; π‘₯, 0) =1

√4πœ‹πœπ‘‘

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ (4𝑛𝐿 βˆ’ π‘₯))

2

4πœπ‘‘

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ (βˆ’4𝑛𝐿 + π‘₯))

2

4πœπ‘‘

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœπ‘‘

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯))

2

4πœπ‘‘

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯))

2

4πœπ‘‘

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

(10A)

and πœ•πΊ(π‘₯0,𝑑0;𝐿,𝑑)πœ•π‘₯0

is given in (9) (after also changing roles of parameters):

πœ•πΊ (π‘₯0, 𝑑0; 𝐿, 𝑑)πœ•π‘₯0

=1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ (4𝑛𝐿 βˆ’ π‘₯))2𝜐 (𝑑 βˆ’ 𝑑0)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ (4𝑛𝐿 βˆ’ π‘₯))2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

+1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ (βˆ’4𝑛𝐿 + π‘₯))2𝜐 (𝑑 βˆ’ 𝑑0)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ (βˆ’4𝑛𝐿 + π‘₯))2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯))2𝜐 (𝑑 βˆ’ 𝑑0)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯))2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

βˆ’1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)

βˆžοΏ½π‘›=βˆ’βˆž

βˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯))2𝜐 (𝑑 βˆ’ 𝑑0)

expβŽ›βŽœβŽœβŽœβŽβˆ’ (𝐿 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯))2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ (9A)

and 𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) is given in (7A), but with roles changed as well to become

𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) =1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ (4𝑛𝐿 βˆ’ π‘₯))

2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ (βˆ’4𝑛𝐿 + π‘₯))

2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

(7AA)

βˆ’1

√4πœ‹πœ (𝑑 βˆ’ 𝑑0)

βŽ›βŽœβŽœβŽœβŽ

βˆžοΏ½π‘›=βˆ’βˆž

expβŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 + π‘₯))

2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽβˆ’ (π‘₯0 βˆ’ ((4𝑛 βˆ’ 2) 𝐿 βˆ’ π‘₯))

2

4𝜐 (𝑑 βˆ’ 𝑑0)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

5.2.2.2 Part(b)

When 𝐴 = 0, the solution in part (a) becomes

𝑒 (π‘₯, 𝑑) = �𝐿

π‘₯0=0𝑓 (π‘₯0) 𝐺 (π‘₯0, 𝑑0; π‘₯, 0) 𝑑π‘₯0 +οΏ½

𝐿

π‘₯0=0οΏ½

𝑑

𝑑0=0𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) 𝑄 𝑑𝑑0𝑑π‘₯0

Where 𝐺 (π‘₯0, 𝑑0; π‘₯, 0) is given in (10A) in part (a), and 𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) is given in (7AA) in part(a). Now we find the eigenfunction solution for this problem order to compare it with theabove green function images solution. Since 𝐴 = 0 then the PDE now becomes

πœ•π‘’πœ•π‘‘

= πœπœ•2π‘’πœ•π‘₯2

+ 𝑄 (π‘₯, 𝑑) (1)

0 ≀ π‘₯ ≀ 𝐿𝑑 β‰₯ 0

Initial conditions

𝑒 (π‘₯, 0) = 𝑓 (π‘₯)

296

Page 301: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Boundary conditions

πœ•π‘’ (0, 𝑑)πœ•π‘₯

= 0

𝑒 (𝐿, 𝑑) = 0

Since boundary conditions has now become homogenous (thanks for 𝐴 = 0), we can useseparation of variables to find the eigenfunctions, and then use eigenfunction expansion.Let the solution be

𝑒𝑛 (π‘₯, 𝑑) = π‘Žπ‘› (𝑑) πœ™π‘› (π‘₯)

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

π‘Žπ‘› (𝑑) πœ™π‘› (π‘₯) (1A)

Where πœ™π‘› (𝑑) are eigenfunctions for the associated homogeneous PDE πœ•π‘’πœ•π‘‘ = 𝜐

πœ•2π‘’πœ•π‘₯2 which can

be found from separation of variables. To find πœ™π‘› (π‘₯), we start by separation of variables.Let 𝑒 (π‘₯, 𝑑) = 𝑋 (π‘₯) 𝑇 (𝑑) and we plug this solution back to the PDE to obtain

𝑋𝑇′ = πœπ‘‹β€²β€²π‘‡1𝑣𝑇′

𝑇=𝑋′′

𝑋= βˆ’πœ†

Hence the spatial ODE is 𝑋′′

𝑋 = βˆ’πœ† or 𝑋′′ + πœ†π‘‹ = 0 with boundary conditions

𝑋′ (0) = 0𝑋 (𝐿) = 0

case πœ† = 0 The solution is 𝑋 = 𝑐1 + 𝑐2π‘₯. Hence 𝑋′ = 𝑐2. Therefore 𝑐2 = 0. Hence 𝑋 = 𝑐1 = 0.Trivial solution. So πœ† = 0 is not possible.

case πœ† > 0 The solution is 𝑋 = 𝑐1 cos οΏ½βˆšπœ†π‘₯οΏ½+𝑐2 sin οΏ½βˆšπœ†π‘₯οΏ½. and 𝑋′ = βˆ’βˆšπœ†π‘1 sinπœ†π‘₯+𝑐2βˆšπœ† cosπœ†π‘₯.From first B.C. at π‘₯ = 0 we find 0 = 𝑐2βˆšπœ†, hence 𝑐2 = 0 and the solution becomes 𝑋 =𝑐1 cos οΏ½βˆšπœ†π‘₯οΏ½. At π‘₯ = 𝐿, we have 0 = 𝑐1 cos οΏ½βˆšπœ†πΏοΏ½ which leads to βˆšπœ†πΏ = 𝑛

πœ‹2 for 𝑛 = 1, 3, 5,β‹― or

οΏ½πœ†π‘› = οΏ½2𝑛 βˆ’ 12 οΏ½

πœ‹πΏ

𝑛 = 1, 2, 3,β‹―

πœ†π‘› = οΏ½2𝑛 βˆ’ 12

πœ‹πΏ οΏ½

2

𝑛 = 1, 1, 2, 3,β‹―

Hence the 𝑋𝑛 (π‘₯) solution is

𝑋𝑛 (π‘₯) = 𝑐𝑛 cos οΏ½οΏ½πœ†π‘›π‘₯οΏ½ 𝑛 = 1, 2, 3,β‹―

The time ODE is now solved using the above eigenvalues. (we really do not need to do thispart, since 𝐴𝑛 (𝑑) will be solved for later, and 𝐴𝑛 (𝑑) will contain all the time dependent parts,

297

Page 302: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

including those that come from 𝑄 (π‘₯, 𝑑), but for completion, this is done)1𝑣𝑇′

𝑇= βˆ’πœ†π‘›

𝑇′ + π‘£πœ†π‘›π‘‡ = 0𝑑𝑇𝑇= βˆ’π‘£πœ†π‘›π‘‘π‘‘

ln |𝑇| = βˆ’π‘£πœ†π‘›π‘‘ + 𝐢𝑇 = πΆπ‘›π‘’π‘£πœ†π‘›π‘‘

Hence the solution to the homogenous PDE is

𝑒𝑛 (π‘₯, 𝑑) = 𝑋𝑛𝑇𝑛= 𝑐𝑛 cos οΏ½οΏ½πœ†π‘›π‘₯οΏ½ π‘’π‘£πœ†π‘›π‘‘

Where constants of integration are merged into one. Therefore

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝑋𝑛𝑇𝑛

=βˆžοΏ½π‘›=1

𝑐𝑛 cos οΏ½οΏ½πœ†π‘›π‘₯οΏ½ π‘’π‘£πœ†π‘›π‘‘ (2)

From the above we see that

πœ™π‘› (π‘₯) = cos οΏ½βˆšπœ†π‘›π‘₯οΏ½

Using this, we now write the solution to πœ•π‘’πœ•π‘‘ = 𝜐

πœ•2π‘’πœ•π‘₯2 + 𝑄 (π‘₯, 𝑑) using eigenfunction expansion

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝐴𝑛 (𝑑) πœ™π‘› (π‘₯) (3)

Where now 𝐴𝑛 (𝑑) will have all the time dependent terms from 𝑄 (π‘₯, 𝑑) as well from the time

solution from the homogenous PDE 𝑒𝑣� 2π‘›βˆ’12

πœ‹πΏ οΏ½

2𝑑part. We will solve for 𝐴𝑛 (𝑑) now.

In this below, we will expand 𝑄 (π‘₯, 𝑑) using these eigenfunctions (we can do this, since theeigenfunctions are basis for the whole solution space which the forcing function is in as well).We plug-in (3) back into the PDE, and since boundary conditions are now homogenous,

then term by term diοΏ½erentiation is justified. The PDE πœ•π‘’πœ•π‘‘ = 𝜐

πœ•2π‘’πœ•π‘₯2 + 𝑄 (π‘₯, 𝑑) now becomes

πœ•πœ•π‘‘

βˆžοΏ½π‘›=1

𝐴𝑛 (𝑑) πœ™π‘› (π‘₯) = πœπœ•2

πœ•π‘₯2βˆžοΏ½π‘›=1

𝐴𝑛 (𝑑) πœ™π‘› (π‘₯) +βˆžοΏ½π‘›=1

π‘žπ‘› (𝑑) πœ™π‘› (π‘₯) (4)

Where βˆ‘βˆžπ‘›=1 π‘žπ‘› (𝑑) πœ™π‘› (π‘₯) is the eigenfunction expansion of 𝑄 (π‘₯, 𝑑). To find π‘žπ‘› (𝑑) we apply

298

Page 303: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

orthogonality as follows

𝑄 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

π‘žπ‘› (𝑑) πœ™π‘› (π‘₯)

�𝐿

0πœ™π‘š (π‘₯)𝑄 (π‘₯, 𝑑) 𝑑π‘₯ = οΏ½

𝐿

0οΏ½βˆžοΏ½π‘›=1

π‘žπ‘› (𝑑) πœ™π‘› (π‘₯)οΏ½ πœ™π‘š (π‘₯) 𝑑π‘₯

�𝐿

0πœ™π‘š (π‘₯)𝑄 (π‘₯, 𝑑) 𝑑π‘₯ =

βˆžοΏ½π‘›=1

�𝐿

0π‘žπ‘› (𝑑) πœ™π‘› (π‘₯) πœ™π‘š (π‘₯) 𝑑π‘₯

= �𝐿

0π‘žπ‘š (𝑑) πœ™2

π‘š (π‘₯) 𝑑π‘₯

= π‘žπ‘š (𝑑)�𝐿

0cos2 οΏ½οΏ½πœ†π‘›π‘₯οΏ½ 𝑑π‘₯

But

�𝐿

0cos2 οΏ½οΏ½πœ†π‘›π‘₯οΏ½ 𝑑π‘₯ =

𝐿2

Hence

π‘žπ‘› (𝑑) =2𝐿 οΏ½

𝐿

0πœ™π‘› (π‘₯)𝑄 (π‘₯, 𝑑) 𝑑π‘₯ (5)

Now that we found π‘žπ‘› (𝑑), we go back to (4) and simplifies it moreβˆžοΏ½π‘›=1

𝐴′𝑛 (𝑑) πœ™π‘› (π‘₯) = 𝜐

βˆžοΏ½π‘›=1

𝐴𝑛 (𝑑) πœ™β€²β€²π‘› (π‘₯) +

βˆžοΏ½π‘›=1

π‘žπ‘› (𝑑) πœ™π‘› (π‘₯)

𝐴′𝑛 (𝑑) πœ™π‘› (π‘₯) = πœπ΄π‘› (𝑑) πœ™β€²β€²

𝑛 (π‘₯) + π‘žπ‘› (𝑑) πœ™π‘› (π‘₯)

But since πœ™π‘› (π‘₯) = cos οΏ½βˆšπœ†π‘›π‘₯οΏ½ then

πœ™β€²π‘› (π‘₯) = βˆ’ οΏ½οΏ½πœ†π‘›οΏ½ sin οΏ½οΏ½πœ†π‘›π‘₯οΏ½

And

πœ™β€²β€²π‘› (π‘₯) = βˆ’πœ†π‘› cos οΏ½οΏ½πœ†π‘›π‘₯οΏ½

= βˆ’πœ†π‘›πœ™π‘› (π‘₯)

Hence the above ODE becomes

π΄β€²π‘›πœ™π‘› = βˆ’πœπ΄π‘›πœ†π‘›πœ™π‘› + π‘žπ‘›πœ™π‘›

Canceling the eigenfunction πœ™π‘› (π‘₯) (since not zero) gives

𝐴′𝑛 (𝑑) + πœπ΄π‘› (𝑑) πœ†π‘› = π‘žπ‘› (𝑑) (6)

We now solve this for 𝐴𝑛 (𝑑). Integrating factor is

πœ‡ = exp οΏ½οΏ½πœπœ†π‘›π‘‘π‘‘οΏ½

= π‘’πœ†π‘›πœπ‘‘

299

Page 304: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Hence (6) becomesπ‘‘π‘‘π‘‘οΏ½πœ‡π΄π‘› (𝑑)οΏ½ = πœ‡π‘žπ‘› (𝑑)

π‘’πœ†π‘›πœπ‘‘π΄π‘› (𝑑) = �𝑑

0π‘’πœ†π‘›πœπ‘ π‘žπ‘› (𝑠) 𝑑𝑠 + 𝐢

𝐴𝑛 (𝑑) = π‘’βˆ’πœ†π‘›πœπ‘‘οΏ½π‘‘

0π‘’πœ†π‘›πœπ‘ π‘žπ‘› (𝑠) 𝑑𝑠 + πΆπ‘’βˆ’πœ†π‘›πœπ‘‘ (7)

Now that we found 𝐴𝑛 (𝑑), then the solution (3) becomes

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

βŽ›βŽœβŽœβŽœβŽœβŽπ‘’

βˆ’οΏ½ 2π‘›βˆ’12πœ‹πΏ οΏ½

2πœπ‘‘οΏ½

𝑑

0𝑒� 2π‘›βˆ’12

πœ‹πΏ οΏ½

2πœπ‘ π‘žπ‘› (𝑠) 𝑑𝑠 + 𝐢𝑒

βˆ’οΏ½ 2π‘›βˆ’12πœ‹πΏ οΏ½

2πœπ‘‘βŽžβŽŸβŽŸβŽŸβŽŸβŽ  πœ™π‘› (π‘₯) (8)

At 𝑑 = 0 , we are given that 𝑒 (π‘₯, 0) = 𝑓 (π‘₯), hence the above becomes

𝑓 (π‘₯) =βˆžοΏ½π‘›=1

πΆπœ™π‘› (π‘₯)

To find 𝐢, we apply orthogonality again, which gives

�𝐿

0𝑓 (π‘₯) πœ™π‘š (π‘₯) 𝑑π‘₯ =

βˆžοΏ½π‘›=1

�𝐿

0πΆπœ™π‘› (π‘₯) πœ™π‘š (π‘₯) 𝑑π‘₯

= 𝐢�𝐿

0πœ™2π‘š (π‘₯) 𝑑π‘₯

�𝐿

0𝑓 (π‘₯) πœ™π‘š (π‘₯) 𝑑π‘₯ =

𝐿2𝐢

𝐢 =2𝐿 �

𝐿

0𝑓 (π‘₯) πœ™π‘› (π‘₯) 𝑑π‘₯

Now that we found 𝐢, then the solution in (8) is complete. It is

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

𝐴𝑛 (𝑑) πœ™π‘› (π‘₯)

=βˆžοΏ½π‘›=1

οΏ½π‘’βˆ’πœ†π‘›πœπ‘‘οΏ½π‘‘

0π‘’πœ†π‘›πœπ‘ π‘žπ‘› (𝑠) 𝑑𝑠 +

2πΏπ‘’βˆ’πœ†π‘›πœπ‘‘οΏ½

𝐿

0𝑓 (π‘₯) πœ™π‘› (π‘₯) 𝑑π‘₯οΏ½πœ™π‘› (π‘₯)

Or

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

οΏ½πœ™π‘› (π‘₯) π‘’βˆ’πœ†π‘›πœπ‘‘οΏ½π‘‘

0π‘’πœ†π‘›πœπ‘ π‘žπ‘› (𝑠) 𝑑𝑠�

+2𝐿

βˆžοΏ½π‘›=1

οΏ½πœ™π‘› (π‘₯) π‘’βˆ’πœ†π‘›πœπ‘‘οΏ½πΏ

0𝑓 (π‘₯) πœ™π‘› (π‘₯) 𝑑π‘₯οΏ½

Summary

The eigenfunction solution is

𝑒 (π‘₯, 𝑑) =βˆžοΏ½π‘›=1

οΏ½πœ™π‘› (π‘₯) π‘’βˆ’πœ†π‘›πœπ‘‘οΏ½π‘‘

0π‘’πœ†π‘›πœπ‘ π‘žπ‘› (𝑠) 𝑑𝑠�

+2𝐿

βˆžοΏ½π‘›=1

οΏ½πœ™π‘› (π‘₯) π‘’βˆ’πœ†π‘›πœπ‘‘οΏ½πΏ

0𝑓 (π‘₯) πœ™π‘› (π‘₯) 𝑑π‘₯οΏ½

300

Page 305: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Where

πœ™π‘› (π‘₯) = cos οΏ½οΏ½πœ†π‘›π‘₯οΏ½ 𝑛 = 1, 2, 3,β‹―

πœ†π‘› = οΏ½2𝑛 βˆ’ 12

πœ‹πΏ οΏ½

2

𝑛 = 1, 1, 2, 3,β‹―

And

π‘žπ‘› (𝑑) =2𝐿 οΏ½

𝐿

0πœ™π‘› (π‘₯)𝑄 (π‘₯, 𝑑) 𝑑π‘₯

To compare the eigenfunction expansion solution and the Green function solution, we seethe following mapping of the two solutions

2πΏβˆ‘βˆžπ‘›=1οΏ½πœ™π‘›(π‘₯)𝑒

βˆ’πœ†π‘›πœπ‘‘βˆ«πΏ0

𝑓(π‘₯)πœ™π‘›(π‘₯)𝑑π‘₯οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝐿

0𝑓 (π‘₯0) 𝐺 (π‘₯0, 𝑑0; π‘₯, 0) 𝑑π‘₯0 +

βˆ‘βˆžπ‘›=1οΏ½πœ™π‘›(π‘₯)𝑒

βˆ’πœ†π‘›πœπ‘‘βˆ«π‘‘0π‘’πœ†π‘›πœπ‘ π‘žπ‘›(𝑠)𝑑𝑠�

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

𝐿

0οΏ½

𝑑

0𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) 𝑄 (π‘₯0, 𝑑0) 𝑑𝑑0𝑑π‘₯0

Where the top expression is the eigenfunction expansion and the bottom expression is theGreen function solution using method of images. Where 𝐺 (π‘₯0, 𝑑0; π‘₯, 𝑑) in above contains theinfinite sums of the images. So the Green function solution contains integrals and insidethese integrals are the infinite sums. While the eigenfunction expansions contains two infinitesums, but inside the sums we see the integrals. So summing over the images seems to beequivalent to the operation of summing over eigenfunctions. These two solutions in thelimit should of course give the same result (unless I made a mistake somewhere). In thisexample, I found method of eigenfunction expansion easier, since getting the images incorrect locations and sign was tricky to get right.

301

Page 306: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.3 problem 5

(e) Write your expression for Ο†(x, t) in terms of

f(Ξ·, x, t) =

∫ η

xo

F (Ξ±)dΞ±+(xβˆ’ Ξ·)2

2t.

(f) Find Ο†x(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2+Q(x, t), 0 ≀ x ≀ L, t β‰₯ 0

u(x, 0) = f(x),βˆ‚u

βˆ‚x(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimallysmall slits separated by a distance 2a.

Solve the diffraction equation

βˆ‚u

βˆ‚t=iΞ»

4Ο€

βˆ‚2u

βˆ‚x2(1)

with initial source u(x, 0) = f(x) = Ξ΄(xβˆ’ a) + Ξ΄(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consistsof a series of alternating bright and dark fringes with period Ξ»t/(2a).

3

πœ•π‘’ (π‘₯, 𝑑)πœ•π‘‘

=π‘–πœ†4πœ‹

πœ•2𝑒 (π‘₯, 𝑑)πœ•π‘₯2

(1)

𝑒 (π‘₯, 0) = 𝑓 (π‘₯) = 𝛿 (π‘₯ βˆ’ π‘Ž) + 𝛿 (π‘₯ + π‘Ž)

I will Use Fourier transform to solve this, since this is for βˆ’βˆž < π‘₯ < ∞ and the solution 𝑒 (π‘₯, 𝑑)is assumed bounded at ±∞ (or goes to zero there), hence 𝑒 (π‘₯, 𝑑) is square integrable andtherefore we can assume it has a Fourier transform.

Let π‘ˆ (πœ‰, 𝑑) be the spatial part only Fourier transform of 𝑒 (π‘₯, 𝑑). Using the Fourier transformpairs defined as

π‘ˆ (πœ‰, 𝑑) = β„± (𝑒 (π‘₯, 𝑑)) = �∞

βˆ’βˆžπ‘’ (π‘₯, 𝑑) π‘’βˆ’π‘–2πœ‹π‘₯πœ‰π‘‘π‘₯

𝑒 (π‘₯, 𝑑) = β„± βˆ’1 (π‘ˆ (πœ‰, 𝑑)) = �∞

βˆ’βˆžπ‘ˆ (πœ‰, 𝑑) 𝑒𝑖2πœ‹π‘₯πœ‰π‘‘πœ‰

Therefore, by Fourier transform properties of derivatives

β„±οΏ½πœ•π‘’ (π‘₯, 𝑑)πœ•π‘₯ οΏ½ = (2πœ‹π‘–πœ‰)π‘ˆ (πœ‰, 𝑑)

β„± οΏ½πœ•2𝑒 (π‘₯, 𝑑)πœ•π‘₯2 οΏ½ = (2πœ‹π‘–πœ‰)2π‘ˆ (πœ‰, 𝑑) (2)

And

β„±οΏ½πœ•π‘’ (π‘₯, 𝑑)πœ•π‘‘ οΏ½ =

πœ•π‘ˆ (πœ‰, 𝑑)πœ•π‘‘

(3)

Where in (3), we just need to take time derivative of π‘ˆ (πœ‰, 𝑑) since the transform is appliedonly to the space part. Now we take the Fourier transform of the given PDE and using (2,3)

302

Page 307: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

relations we obtain the PDE but now in Fourier space.

πœ•π‘ˆ (πœ‰, 𝑑)πœ•π‘‘

= οΏ½π‘–πœ†4πœ‹οΏ½

(2πœ‹π‘–πœ‰)2π‘ˆ (πœ‰, 𝑑)

= βˆ’ οΏ½π‘–πœ†4πœ‹οΏ½

4πœ‹2πœ‰2π‘ˆ (πœ‰, 𝑑)

= οΏ½βˆ’π‘–πœ†πœ‹πœ‰2οΏ½π‘ˆ (πœ‰, 𝑑) (4)

Equation (4) can now be easily solved for π‘ˆ (πœ‰, 𝑑) since it is separable.πœ•π‘ˆ (πœ‰, 𝑑)π‘ˆ (πœ‰, 𝑑)

= οΏ½βˆ’π‘–πœ†πœ‹πœ‰2οΏ½ πœ•π‘‘

Integrating

ln |π‘ˆ (πœ‰, 𝑑)| = οΏ½βˆ’π‘–πœ†πœ‹πœ‰2οΏ½ 𝑑 + 𝐢

π‘ˆ (πœ‰, 𝑑) = π‘ˆ (πœ‰, 0) π‘’οΏ½βˆ’π‘–πœ†πœ‹πœ‰2�𝑑

Where π‘ˆ (πœ‰, 0) is the Fourier transform of 𝑒 (π‘₯, 0), the initial conditions, which is 𝑓 (π‘₯) and isgiven in the problem. To go back to spatial domain, we now need to do the inverse Fouriertransform. By applying the convolution theorem, we know that multiplication in Fourierdomain is convolution in spatial domain, therefore

β„± βˆ’1 (π‘ˆ (πœ‰, 𝑑)) = β„± βˆ’1 (π‘ˆ (πœ‰, 0)) βŠ› β„± βˆ’1 οΏ½π‘’βˆ’π‘–πœ†πœ‹πœ‰2𝑑� (5)

But

β„± βˆ’1 (π‘ˆ (πœ‰, 𝑑)) = 𝑒 (π‘₯, 𝑑)β„± βˆ’1 (π‘ˆ (πœ‰, 0)) = 𝑓 (π‘₯)

And

β„± βˆ’1 οΏ½π‘’βˆ’π‘–πœ†πœ‹πœ‰2𝑑� = �∞

βˆ’βˆžπ‘’βˆ’π‘–πœ†πœ‹πœ‰2𝑑𝑒2π‘–πœ‹π‘₯πœ‰π‘‘πœ‰ (5A)

Hence (5) becomes

𝑒 (π‘₯, 𝑑) = 𝑓 (π‘₯) βŠ› β„± βˆ’1 οΏ½π‘’βˆ’π‘–πœ†πœ‹πœ‰2𝑑�

Here, I used Mathematica to help me with the above integral (5A) as I could not find it intables so far2. Here is the result

Find inverse Fourier transform, for problem 5, NE 548

In[13]:= InverseFourierTransform[ Exp[-I lam Pi z^2 t], z, x, FourierParameters -> {1, -2 * Pi}]

Out[13]=β…‡

β…ˆ Ο€ x2

lam t

2 Ο€ β…ˆ lam t

2Trying to do this integral by hand also, but so far having some diοΏ½culty..

303

Page 308: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Therefore, from Mathematica, we see that

β„± βˆ’1 οΏ½π‘’βˆ’π‘–πœ†πœ‹πœ‰2𝑑� =π‘’π‘–πœ‹π‘₯2πœ†π‘‘

√2πœ‹βˆšπ‘–βˆšπœ†π‘‘(6)

But3

βˆšπ‘– =1

√2+ 𝑖

1

√2

= cos οΏ½πœ‹4οΏ½ + 𝑖 sin οΏ½πœ‹

4οΏ½

= π‘’π‘–πœ‹4

Hence (6) becomes

β„± βˆ’1 οΏ½π‘’βˆ’π‘–πœ†πœ‹πœ‰2𝑑� =1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

π‘’π‘–πœ‹π‘₯2πœ†π‘‘ (7)

Now we are ready to do the convolution in (5A) since we know everything in the RHS,hence

𝑒 (π‘₯, 𝑑) = 𝑓 (π‘₯) βŠ›1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

π‘’π‘–πœ‹π‘₯2πœ†π‘‘

= (𝛿 (π‘₯ βˆ’ π‘Ž) + 𝛿 (π‘₯ + π‘Ž)) βŠ›1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

π‘’π‘–πœ‹π‘₯2πœ†π‘‘ (8)

Applying convolution integral on (8), which says that

𝑓 (π‘₯) = 𝑔1 (π‘₯) βŠ› 𝑔2 (π‘₯)

= �∞

βˆ’βˆžπ‘”1 (𝑧) 𝑔2 (π‘₯ βˆ’ 𝑧) 𝑑𝑧

Therefore (8) becomes

𝑒 (π‘₯, 𝑑) = �∞

βˆ’βˆž(𝛿 (𝑧 βˆ’ π‘Ž) + 𝛿 (𝑧 + π‘Ž))

1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

π‘’π‘–πœ‹(π‘₯βˆ’π‘§)2

πœ†π‘‘ 𝑑𝑧

=1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

�∞

βˆ’βˆž(𝛿 (𝑧 βˆ’ π‘Ž) + 𝛿 (𝑧 + π‘Ž)) 𝑒𝑖

πœ‹(π‘₯βˆ’π‘§)2

πœ†π‘‘ 𝑑𝑧

=1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

βŽ›βŽœβŽœβŽœβŽοΏ½

∞

βˆ’βˆžπ›Ώ (𝑧 βˆ’ π‘Ž) 𝑒𝑖

πœ‹(π‘₯βˆ’π‘§)2

πœ†π‘‘ 𝑑𝑧 +�∞

βˆ’βˆžπ›Ώ (𝑧 + π‘Ž) 𝑒𝑖

πœ‹(π‘₯βˆ’π‘§)2

πœ†π‘‘ π‘‘π‘§βŽžβŽŸβŽŸβŽŸβŽ 

But an integral with delta function inside it, is just the integrand evaluated where the deltaargument become zero which is at 𝑧 = π‘Ž and 𝑧 = βˆ’π‘Ž in the above. (This is called the siftingproperty). Hence the above integrals are now easily found and we obtain the solution

𝑒 (π‘₯, 𝑑) =1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

βŽ›βŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽπ‘–πœ‹ (π‘₯ βˆ’ π‘Ž)2

πœ†π‘‘

⎞⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽπ‘–πœ‹ (π‘₯ + π‘Ž)2

πœ†π‘‘

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

3Taking the positive root only.

304

Page 309: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

The above is the solution we need. But we can simplify it more by using Euler relation.

𝑒 (π‘₯, 𝑑) =1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

βŽ›βŽœβŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽœβŽπ‘–πœ‹ οΏ½π‘₯2 + π‘Ž2 βˆ’ 2π‘₯π‘ŽοΏ½

πœ†π‘‘

⎞⎟⎟⎟⎟⎠ + exp

βŽ›βŽœβŽœβŽœβŽœβŽπ‘–πœ‹ οΏ½π‘₯2 + π‘Ž2 + 2π‘Žπ‘₯οΏ½

πœ†π‘‘

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

=1

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

βŽ›βŽœβŽœβŽœβŽœβŽexp

βŽ›βŽœβŽœβŽœβŽœβŽπ‘–πœ‹ οΏ½π‘₯2 + π‘Ž2οΏ½

πœ†π‘‘

⎞⎟⎟⎟⎟⎠ exp �

βˆ’π‘–2πœ‹π‘₯π‘Žπœ†π‘‘ οΏ½ + exp

βŽ›βŽœβŽœβŽœβŽœβŽπ‘–πœ‹ οΏ½π‘₯2 + π‘Ž2οΏ½

πœ†π‘‘

⎞⎟⎟⎟⎟⎠ exp �

𝑖2πœ‹π‘Žπ‘₯πœ†π‘‘ οΏ½

⎞⎟⎟⎟⎟⎠

Taking exp οΏ½π‘–πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ οΏ½ as common factor outside results in

𝑒 (π‘₯, 𝑑) =exp οΏ½

π‘–πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ οΏ½

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

οΏ½exp �𝑖2πœ‹π‘Žπ‘₯πœ†π‘‘ οΏ½ + exp οΏ½βˆ’π‘–

2πœ‹π‘₯π‘Žπœ†π‘‘ οΏ½οΏ½

=2 exp οΏ½

π‘–πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ οΏ½

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

exp �𝑖2πœ‹π‘Žπ‘₯πœ†π‘‘οΏ½ + exp οΏ½βˆ’π‘–2πœ‹π‘₯π‘Žπœ†π‘‘

οΏ½

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=2 exp οΏ½

π‘–πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ οΏ½

π‘’π‘–πœ‹4√2πœ‹πœ†π‘‘

cos οΏ½2πœ‹π‘Žπ‘₯πœ†π‘‘ οΏ½

=√2 exp �

π‘–πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ βˆ’ π‘–πœ‹4 οΏ½

βˆšπœ‹πœ†π‘‘cos οΏ½

2πœ‹π‘Žπ‘₯πœ†π‘‘ οΏ½

=√2 exp �𝑖 οΏ½

πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ βˆ’ πœ‹4 οΏ½οΏ½

βˆšπœ‹πœ†π‘‘cos οΏ½

2πœ‹π‘Žπ‘₯πœ†π‘‘ οΏ½

Hence the final solution is

𝑒 (π‘₯, 𝑑) = οΏ½2

πœ‹πœ†π‘‘ exp οΏ½π‘–πœ‹οΏ½π‘₯2+π‘Ž2οΏ½

πœ†π‘‘ βˆ’ πœ‹4 οΏ½ cos οΏ½2πœ‹π‘Žπœ†

π‘₯𝑑� (9)

Hence the real part of the solution is

β„œ (𝑒 (π‘₯, 𝑑)) =οΏ½

2πœ‹πœ†π‘‘

cosβŽ›βŽœβŽœβŽœβŽœβŽπœ‹ οΏ½π‘₯2 + π‘Ž2οΏ½

πœ†π‘‘βˆ’πœ‹4

⎞⎟⎟⎟⎟⎠ cos �

2πœ‹π‘Žπœ†

π‘₯𝑑 οΏ½

And the imaginary part of the solution is

β„‘ (𝑒 (π‘₯, 𝑑)) =οΏ½

2πœ‹πœ†π‘‘

sinβŽ›βŽœβŽœβŽœβŽœβŽπœ‹ οΏ½π‘₯2 + π‘Ž2οΏ½

πœ†π‘‘βˆ’πœ‹4

⎞⎟⎟⎟⎟⎠ cos �

2πœ‹π‘Žπœ†

π‘₯𝑑 οΏ½

The πœ‹4 is just a phase shift. Here is a plot of the Real and Imaginary parts of the solution,

using for πœ† = 600 Γ— 10βˆ’9π‘šπ‘’π‘‘π‘’π‘Ÿ, π‘Ž = 1000 Γ— 10βˆ’9π‘šπ‘’π‘‘π‘’π‘Ÿ at 𝑑 = 1 second

305

Page 310: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

In[15]:= a = 1000 * 10^(-9);

Ξ» = 600 * 10^(-9);

u[x_, t_] :=2

Ο€ Ξ» t

ExpIΟ€ x

2+ a2

Ξ» t

-Ο€

4 Cos

2 Ο€ a

Ξ»

x

t

In[59]:= Clear[t];

Plot[Re@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel β†’ {{"u(x,t)", None}, {"x", "Real part of solution at t= 1 second"}}, BaseStyle β†’ 12,

PlotStyle β†’ Red, PlotTheme β†’ "Classic"]

Out[60]=

-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-400

-200

0

200

400

x

u(x,t)

Real part of solution at t= 1 second

In[61]:= Plot[Im@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel β†’ {{"u(x,t)", None}, {"x", "Imaginary part of solution at t= 1 second"}}, BaseStyle β†’ 12,

PlotStyle β†’ Red, PlotTheme β†’ "Classic"]

Out[61]=

-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-400

-200

0

200

400

x

u(x,t)

Imaginary part of solution at t= 1 second

We see the rapid oscillations as distance goes away from the origin. This is due to the π‘₯2

term making the radial frequency value increase quickly with π‘₯. We now plot the |𝑒 (π‘₯, 𝑑)|2.Looking at solution in (9), and since complex exponential is Β±1, then the amplitude is

governed by οΏ½2

πœ‹πœ†π‘‘ cos οΏ½2πœ‹π‘Žπœ†π‘₯𝑑� part of the solution. Hence

|𝑒 (π‘₯, 𝑑)|2 = 2πœ‹πœ†π‘‘ cos2 οΏ½2πœ‹π‘Žπœ†

π‘₯𝑑�

These plots show the intensity at diοΏ½erent time values. We see from these plots, that theintensity is well behaved in that it does not have the same rapid oscillations seen in the𝑒 (π‘₯, 𝑑) solution plots.

306

Page 311: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

In[154]:= a = 1000 * 10^(-9);

Ξ» = 600 * 10^(-9);

intensity[x_, t_] :=2

Ο€ Ξ» t

Cos2 Ο€ a

Ξ»

x

t

2

p =

Plotintensity[x, #], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel β†’ {"u(x,t)", None}, "x", Row" intensity |u 2 of solution at t =", #, " second",

BaseStyle β†’ 12, PlotStyle β†’ Red, PlotTheme β†’ "Classic", ImageSize β†’ 300 & /@ Range[0.002, 0.012, 0.002];

Out[153]=

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

1Γ— 108

2Γ— 108

3Γ— 108

4Γ— 108

5Γ— 108

x

u(x,t)

intensity |u 2 of solution at t =0.002 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

5.0Γ— 107

1.0Γ— 108

1.5Γ— 108

2.0Γ— 108

2.5Γ— 108

xu(x,t)

intensity |u 2 of solution at t =0.004 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

5.0Γ— 107

1.0Γ— 108

1.5Γ— 108

x

u(x,t)

intensity |u 2 of solution at t =0.006 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2.0Γ— 1074.0Γ— 1076.0Γ— 1078.0Γ— 1071.0Γ— 1081.2Γ— 1081.4Γ— 108

x

u(x,t)

intensity |u 2 of solution at t =0.008 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2Γ— 107

4Γ— 107

6Γ— 107

8Γ— 107

1Γ— 108

x

u(x,t)

intensity |u 2 of solution at t =0.01 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2Γ— 107

4Γ— 107

6Γ— 107

8Γ— 107

x

u(x,t)

intensity |u 2 of solution at t =0.012 second

Now Comparing argument to cosine in above to standard form in order to find the period:2πœ‹π‘Žπœ†

π‘₯𝑑= 2πœ‹π‘“π‘‘

307

Page 312: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Where 𝑓 is now in hertz, then when π‘₯ = 𝑑, we get by comparing terms that2πœ‹π‘Žπœ†

1𝑑= 2πœ‹π‘“

π‘Žπœ†1𝑑= 𝑓

But 𝑓 = 1𝑇 where 𝑇 is the period in seconds. Hence π‘Ž

πœ†1𝑑 =

1𝑇 or

𝑇 = πœ†π‘‘π‘Ž

So period on intensity is πœ†π‘‘π‘Ž at π‘₯ = 𝑑 (why problem statement is saying period is πœ†π‘‘

2π‘Ž?).

308

Page 313: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.4 problem 2 (optional)

2. Consider the 1D heat equation in a semi-infinite domain:

βˆ‚u

βˆ‚t= Ξ½

βˆ‚2u

βˆ‚x2, x β‰₯ 0

with boundary conditions: u(0, t) = exp(βˆ’iΟ‰t) and u(x, t) bounded as x β†’ ∞. In orderto construct a real forcing, we need both positive and negative real values of Ο‰. Considerthat this forcing has been and will be applied for all time. This β€œpure boundary valueproblem” could be an idealization of heating the surface of the earth by the sun (periodicforcing). One could then ask, how far beneath the surface of the earth do the periodicfluctuations of the heat propagate?

(a) Consider solutions of the form u(x, t;Ο‰) = exp(ikx) exp(βˆ’iΟ‰t). Find a single expressionfor k as a function of (given) Ο‰ real, sgn(Ο‰) and Ξ½ real.

Write u(x, t;Ο‰) as a function of (given) Ο‰ real, sgn(Ο‰) and Ξ½ real. To obtain the mostgeneral solution by superposition, one would next integrate over all values of Ο‰, βˆ’βˆž <Ο‰ <∞ (do not do this).

(b) The basic solution can be written as u(x, t;Ο‰) = exp(βˆ’iΟ‰t) exp(βˆ’Οƒx) exp(iΟƒ sgn(Ο‰) x).Find Οƒ in terms of |Ο‰| and Ξ½.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

3. Here we study the competing effects of nonlinearity and diffusion in the context ofBurger’s equation

βˆ‚u

βˆ‚t+ u

βˆ‚u

βˆ‚x= Ξ½

βˆ‚2u

βˆ‚x2(3a)

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solvedexactly using the Cole-Hopf transformation

u = βˆ’2Ξ½Ο†xΟ†

(3b)

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = ψx (where the subscript denotes partial differentiation) and integrate oncewith respect to x.

(b) Let ψ = βˆ’2Ξ½ ln(Ο†) to get the diffusion equation for Ο†.

(c) Solve for Ο† with Ο†(x, 0) = Ξ¦(x), βˆ’βˆž < x < ∞. In your integral expression for Ο†, usedummy variable Ξ· to facilitate the remaining parts below.

(d) Show that

Ξ¦(x) = exp

[

βˆ’1

2Ξ½

∫ x

xo

F (Ξ±)dΞ±

]

where u(x, 0) = F (x), with xo arbitrary which we will take to be positive for conveniencebelow (xo > 0).

2

5.2.4.1 Part (a)

πœ•π‘’πœ•π‘‘

= πœˆπœ•2π‘’πœ•π‘₯2

(1)

𝑒 (0, 𝑑) = π‘’βˆ’π‘–πœ”π‘‘

And π‘₯ β‰₯ 0, 𝑒 (∞, 𝑑) bounded. Let

𝑒 (π‘₯, 𝑑) = π‘’π‘–π‘˜π‘₯π‘’βˆ’π‘–πœ”π‘‘

Henceπœ•π‘’ (π‘₯, 𝑑)πœ•π‘‘

= βˆ’π‘–πœ”π‘’π‘–π‘˜π‘₯π‘’βˆ’π‘–πœ”π‘‘

= βˆ’π‘–πœ”π‘’ (π‘₯, 𝑑) (2)

Andπœ•π‘’ (π‘₯, 𝑑)πœ•π‘₯

= π‘–π‘˜π‘’π‘–π‘˜π‘₯π‘’βˆ’π‘–πœ”π‘‘

πœ•2𝑒 (π‘₯, 𝑑)πœ•π‘₯2

= βˆ’π‘˜2π‘’π‘–π‘˜π‘₯π‘’βˆ’π‘–πœ”π‘‘

= βˆ’π‘˜2𝑒 (π‘₯, 𝑑) (3)

Substituting (2,3) into (1) gives

βˆ’π‘–πœ”π‘’ (π‘₯, 𝑑) = βˆ’πœˆπ‘˜2𝑒 (π‘₯, 𝑑)309

Page 314: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Since π‘’πœ” (π‘₯, 𝑑) can not be identically zero (trivial solution), then the above simplifies to

βˆ’π‘–πœ” = βˆ’πœˆπ‘˜2

Or

π‘˜2 = π‘–πœ”πœˆ (4)

Writing

πœ” = sgn (πœ”) |πœ”|Where

sgn (πœ”) =

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

+1 πœ” > 00 πœ” = 0βˆ’1 πœ” < 0

Then (4) becomes

π‘˜2 =𝑖 sgn (πœ”) |πœ”|

𝜈

π‘˜ = Β±βˆšπ‘– √sgn (πœ”)√|πœ”|

√𝜈Since

βˆšπ‘– = 𝑖12 = �𝑒𝑖

πœ‹2 οΏ½

12= 𝑒𝑖

πœ‹4

Hence π‘˜ can be written as

π‘˜ = ±𝑒𝑖

πœ‹4 √sgn (πœ”)√|πœ”|

√𝜈case A. Let start with the positive root hence

π‘˜ =𝑒𝑖

πœ‹4 √sgn (πœ”)√|πœ”|

√𝜈Case (A1) πœ” < 0 then the above becomes

π‘˜ =𝑖𝑒𝑖

πœ‹4 √|πœ”|

√𝜈=𝑒𝑖

πœ‹2 𝑒𝑖

πœ‹4 √|πœ”|

√𝜈=𝑒𝑖

3πœ‹4 √|πœ”|

√𝜈

= οΏ½cos 34πœ‹ + 𝑖 sin 3

4πœ‹οΏ½

√|πœ”|

√𝜈

= οΏ½βˆ’1

√2+ 𝑖

1

√2�√|πœ”|

√𝜈

=βŽ›βŽœβŽœβŽœβŽβˆ’

1

√2√|πœ”|

√𝜈+ 𝑖

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠

310

Page 315: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

And the solution becomes

𝑒 (π‘₯, 𝑑) = exp (π‘–π‘˜π‘₯) exp (βˆ’π‘–πœ”π‘‘)

= expβŽ›βŽœβŽœβŽœβŽπ‘–βŽ›βŽœβŽœβŽœβŽβˆ’

1

√2√|πœ”|

√𝜈+ 𝑖

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠ π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘)

= expβŽ›βŽœβŽœβŽœβŽ

βŽ›βŽœβŽœβŽœβŽβˆ’

1

√2√|πœ”|

βˆšπœˆπ‘– βˆ’

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠ π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘)

= expβŽ›βŽœβŽœβŽœβŽβˆ’

1

√2√|πœ”|

√𝜈π‘₯⎞⎟⎟⎟⎠ exp

βŽ›βŽœβŽœβŽœβŽβˆ’

1

√2√|πœ”|

βˆšπœˆπ‘–π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘)

We are told that 𝑒 (∞, 𝑑) is bounded. So for large π‘₯ we want the above to be bounded. Thecomplex exponential present in the above expression cause no issue for large π‘₯ since theyare oscillatory trig functions. We then just need to worry about exp οΏ½βˆ’ 1

√2√|πœ”|

√𝜈π‘₯οΏ½ for large π‘₯.

This term will decay for large π‘₯ since βˆ’ 1

√2√|πœ”|

√𝜈is negative (assuming 𝜈 > 0 always). Hence

positive root hence worked OK when πœ” < 0. Now we check if it works OK also when πœ” > 0

case A2 When πœ” > 0 then π‘˜ now becomes

π‘˜ =𝑒𝑖

πœ‹4 √sgn (πœ”)√|πœ”|

√𝜈

=𝑒𝑖

πœ‹4 βˆšπœ”

√𝜈

= οΏ½cos πœ‹4+ 𝑖 sin πœ‹

4οΏ½ βˆšπœ”

√𝜈

= οΏ½1

√2+ 𝑖

1

√2οΏ½ βˆšπœ”

√𝜈

=1

√2βˆšπœ”

√𝜈+ 𝑖

1

√2βˆšπœ”

√𝜈And the solution becomes

𝑒 (π‘₯, 𝑑) = exp (π‘–π‘˜π‘₯) exp (βˆ’π‘–πœ”π‘‘)

= exp �𝑖 οΏ½1

√2βˆšπœ”

√𝜈+ 𝑖

1

√2βˆšπœ”

√𝜈� π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘)

= exp ��𝑖1

√2βˆšπœ”

βˆšπœˆβˆ’

1

√2βˆšπœ”

√𝜈� π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘)

= exp οΏ½βˆ’1

√2βˆšπœ”

√𝜈π‘₯οΏ½ exp �𝑖

1

√2βˆšπœ”

√𝜈π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘)

We are told that 𝑒 (∞, 𝑑) is bounded. So for large π‘₯ we want the above to be bounded. Thecomplex exponential present in the above expression cause no issue for large π‘₯ since theyare oscillatory trig functions. We then just need to worry about exp οΏ½βˆ’ 1

√2βˆšπœ”

√𝜈π‘₯οΏ½ for large π‘₯.

311

Page 316: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

This term will decay for large π‘₯ since βˆ’ 1

√2βˆšπœ”

√𝜈is negative (assuming 𝜈 > 0 always). Hence

positive root hence worked OK when πœ” > 0 as well.

Let check what happens if we use the negative root.

case B. negative root hence

π‘˜ = βˆ’π‘’π‘–

πœ‹4 √sgn (πœ”)√|πœ”|

√𝜈Case (A1) πœ” < 0 then the above becomes

π‘˜ = βˆ’π‘–π‘’π‘–

πœ‹4 √|πœ”|

√𝜈= βˆ’

π‘’π‘–πœ‹2 𝑒𝑖

πœ‹4 √|πœ”|

√𝜈= βˆ’

𝑒𝑖3πœ‹4 √|πœ”|

√𝜈

= βˆ’ οΏ½cos 34πœ‹ + 𝑖 sin 3

4πœ‹οΏ½

√|πœ”|

√𝜈

= βˆ’ οΏ½βˆ’1

√2+ 𝑖

1

√2�√|πœ”|

√𝜈

= βˆ’βŽ›βŽœβŽœβŽœβŽβˆ’

1

√2√|πœ”|

√𝜈+ 𝑖

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠

=βŽ›βŽœβŽœβŽœβŽ1

√2√|πœ”|

βˆšπœˆβˆ’ 𝑖

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠

And the solution becomes

𝑒 (π‘₯, 𝑑) = exp (π‘–π‘˜π‘₯) exp (βˆ’π‘–πœ”π‘‘)

= expβŽ›βŽœβŽœβŽœβŽπ‘–βŽ›βŽœβŽœβŽœβŽ1

√2√|πœ”|

βˆšπœˆβˆ’ 𝑖

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠ π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘)

= expβŽ›βŽœβŽœβŽœβŽ

βŽ›βŽœβŽœβŽœβŽπ‘–1

√2√|πœ”|

√𝜈+

1

√2√|πœ”|

√𝜈

⎞⎟⎟⎟⎠ π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘)

= expβŽ›βŽœβŽœβŽœβŽ+

1

√2√|πœ”|

√𝜈π‘₯⎞⎟⎟⎟⎠ exp

βŽ›βŽœβŽœβŽœβŽ1

√2√|πœ”|

βˆšπœˆπ‘–π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘)

We are told that 𝑒 (∞, 𝑑) is bounded. So for large π‘₯ we want the above to be bounded. Thecomplex exponential present in the above expression cause no issue for large π‘₯ since theyare oscillatory trig functions. We then just need to worry about exp οΏ½+ 1

√2√|πœ”|

√𝜈π‘₯οΏ½ for large π‘₯.

This term will blow up for large π‘₯ since + 1

√2√|πœ”|

√𝜈is positive (assuming 𝜈 > 0 always). Hence

we reject the case of negative sign on π‘˜. And pick

π‘˜ =𝑒𝑖

πœ‹4 √sgn (πœ”)√|πœ”|

√𝜈

= οΏ½1

√2+ 𝑖

1

√2�√sgn (πœ”)√|πœ”|

√𝜈

312

Page 317: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Therefore the solution is

𝑒 (π‘₯, 𝑑; πœ”) = exp (π‘–π‘˜π‘₯) exp (βˆ’π‘–πœ”π‘‘)

= exp

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘–

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

οΏ½ 1

√2+ 𝑖 1

√2οΏ½ √sgn (πœ”)√|πœ”|

√𝜈

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠π‘₯

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠exp (βˆ’π‘–πœ”π‘‘)

= exp �𝑖 οΏ½1

√2𝜈�sgn (πœ”)√|πœ”| + 𝑖

1

√2𝜈�sgn (πœ”)√|πœ”| οΏ½ π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘)

= exp �𝑖1

√2𝜈�sgn (πœ”)√|πœ”|π‘₯ βˆ’

1

√2𝜈�sgn (πœ”)√|πœ”| π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘)

Hence

𝑒 (π‘₯, 𝑑; πœ”) = exp οΏ½βˆ’βˆšsgn(πœ”)√|πœ”|√2𝜈

π‘₯οΏ½ exp οΏ½π‘–βˆšsgn(πœ”)√|πœ”|√2𝜈

π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘)

The general solution 𝑒 (π‘₯, 𝑑) is therefore the integral over all πœ”, hence

𝑒 (π‘₯, 𝑑) = �∞

πœ”=βˆ’βˆžπ‘’ (π‘₯, 𝑑; πœ”) π‘‘πœ”

= �∞

βˆ’βˆžexp

βŽ›βŽœβŽœβŽœβŽβˆ’βˆšsgn (πœ”)√|πœ”|

√2𝜈π‘₯⎞⎟⎟⎟⎠ exp

βŽ›βŽœβŽœβŽœβŽπ‘–βˆšsgn (πœ”)√|πœ”|

√2𝜈π‘₯⎞⎟⎟⎟⎠ exp (βˆ’π‘–πœ”π‘‘) π‘‘πœ”

= �∞

βˆ’βˆžexp

βŽ›βŽœβŽœβŽœβŽβˆ’βˆšsgn (πœ”)√|πœ”|

√2𝜈π‘₯⎞⎟⎟⎟⎠ exp

βŽ›βŽœβŽœβŽœβŽπ‘–βŽ‘βŽ’βŽ’βŽ’βŽ£βˆšsgn (πœ”)√|πœ”|

√2𝜈π‘₯ βˆ’ πœ”π‘‘

⎀βŽ₯βŽ₯βŽ₯⎦

⎞⎟⎟⎟⎠ π‘‘πœ”

= �∞

βˆ’βˆžexp

βŽ›βŽœβŽœβŽœβŽβˆ’βˆšsgn (πœ”)√|πœ”|

√2𝜈π‘₯⎞⎟⎟⎟⎠ exp

βŽ›βŽœβŽœβŽœβŽπ‘–π‘₯

⎑⎒⎒⎒⎣√sgn (πœ”)√|πœ”|

√2πœˆβˆ’ πœ”

𝑑π‘₯

⎀βŽ₯βŽ₯βŽ₯⎦

⎞⎟⎟⎟⎠ π‘‘πœ”

5.2.4.2 Part (b)

From part (a), we found that

𝑒 (π‘₯, 𝑑; πœ”) = exp οΏ½βˆ’βˆšsgn(πœ”)√|πœ”|√2𝜈

π‘₯οΏ½ exp οΏ½π‘–βˆšsgn(πœ”)√|πœ”|√2𝜈

π‘₯οΏ½ exp (βˆ’π‘–πœ”π‘‘) (1)

comparing the above to expression given in problem which is

𝑒 (π‘₯, 𝑑) = exp (βˆ’πœŽπ‘₯) exp (π‘–πœŽ sgn (πœ”) π‘₯) exp (βˆ’π‘–πœ”π‘‘) (2)

Therefore, by comparing exp (βˆ’πœŽπ‘₯) to exp οΏ½βˆ’βˆšsgn(πœ”)√|πœ”|√2𝜈

π‘₯οΏ½ we see that

𝜎 = √sgn(πœ”)√|πœ”|√2𝜈

(3)

5.2.4.3 part (c)

Using the solution found in part (a)

𝑒 (π‘₯, 𝑑; πœ”) = exp (βˆ’πœŽπ‘₯) exp (π‘–πœŽ sgn (πœ”) π‘₯) exp (βˆ’π‘–πœ”π‘‘)

313

Page 318: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

To find numerical estimate, assuming πœ” > 0 for now

𝑒 (π‘₯, 𝑑; πœ”) = exp (βˆ’πœŽπ‘₯) exp (π‘–πœŽπ‘₯) exp (βˆ’π‘–πœ”π‘‘)= π‘’βˆ’πœŽπ‘₯ (cos 𝜎π‘₯ + 𝑖 sin 𝜎π‘₯) (cosπœ”π‘‘ βˆ’ 𝑖 sinπœ”π‘‘)= π‘’βˆ’πœŽπ‘₯ (cos 𝜎π‘₯ cosπœ”π‘‘ βˆ’ 𝑖 sinπœ”π‘‘ cos 𝜎π‘₯ + 𝑖 cosπœ”π‘‘ sin 𝜎π‘₯ + sin 𝜎π‘₯ sinπœ”π‘‘)= π‘’βˆ’πœŽπ‘₯ (cos (𝜎π‘₯) cos (πœ”π‘‘) + sin (𝜎π‘₯) sin (πœ”π‘‘) + 𝑖 (cos (πœ”π‘‘) sin (𝜎π‘₯) βˆ’ sin (πœ”π‘‘) cos (𝜎π‘₯)))= π‘’βˆ’πœŽπ‘₯ (cos (π‘‘πœ” βˆ’ π‘₯𝜎) βˆ’ 𝑖 sin (π‘‘πœ” βˆ’ π‘₯𝜎))

Hence will evaluate

Re (𝑒 (π‘₯, 𝑑; πœ”)) = π‘’βˆ’πœŽπ‘₯ Re (cos (π‘‘πœ” βˆ’ π‘₯𝜎) βˆ’ 𝑖 sin (π‘‘πœ” βˆ’ π‘₯𝜎))= π‘’βˆ’πœŽπ‘₯ cos (π‘‘πœ” βˆ’ π‘₯𝜎)

I assume here it is asking for numerical estimate. We only need to determine numericalestimate for 𝜎. For πœ”, using the period 𝑇 = 24 hrs or 𝑇 = 86 400 seconds, then πœ” = 2πœ‹

𝑇 is nowfound. Then we need to determine 𝜈, which is thermal diοΏ½usivity for earth crust. There doesnot seem to be an agreed on value for this and this value also changed with depth inside theearth crust. The value I found that seem mentioned more is 1.2 Γ— 10βˆ’6 meter2 per second.Hence

𝜎 = οΏ½2πœ‹

86 400

οΏ½2 οΏ½1.2 Γ— 10βˆ’6οΏ½

= 5.505 per meter

Therefore

Re (𝑒 (π‘₯, 𝑑; πœ”)) = π‘’βˆ’5.505π‘₯ cos (π‘‘πœ” βˆ’ 5.505π‘₯)

Using πœ” = 2πœ‹86 400 = 7.29 Γ— 10

βˆ’5 rad/sec. Now we can use the above to estimate fluctuation ofheat over 24 hrs period. But we need to fix π‘₯ for each case. Here π‘₯ = 0 means on the earthsurface and π‘₯ say 10, means at depth 10 meters and so on as I understand that π‘₯ is starts at0 at surface or earth and increases as we go lower into the earth crust. Plotting at the abovefor π‘₯ = 0, 0.5, 1, 1.5, 2 I see that when π‘₯ > 2 then maximum value of π‘’βˆ’5.505π‘₯ cos (π‘‘πœ” βˆ’ 5.505π‘₯)is almost zero. This seems to indicate a range of heat reach is about little more than2 meters below the surface of earth.

This is a plot of the fluctuation in temperature at diοΏ½erent π‘₯ each in separate plot, then latera plot is given that combines them all.

314

Page 319: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

0 20000 40000 60000 80000

-1.0

-0.5

0.0

0.5

1.0

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 0

0 20000 40000 60000 80000

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 0.5

0 20000 40000 60000 80000

-0.004

-0.002

0.000

0.002

0.004

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 1

315

Page 320: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

0 20000 40000 60000 80000

-0.0002

-0.0001

0.0000

0.0001

0.0002

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 1.5

0 20000 40000 60000 80000

-0.000015

-0.000010

-5.Γ—10-6

0.000000

5.Γ—10-6

0.000010

0.000015

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 2

0 20000 40000 60000 80000

-1.Γ—10-6

-5.Γ—10-7

0

5.Γ—10-7

1.Γ—10-6

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 2.5

This plot better show the diοΏ½erence per depth, as it combines all the plots into one.

316

Page 321: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

0 20000 40000 60000 80000

-1.0

-0.5

0.0

0.5

1.0

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at different depth x

u(0, t)

u(0.5, t)

u(1, t)

u(1.5, t)

317