Engine Efficiency and Power Density: … Efficiency and Power Density: Distinguishing Limits from...

24
Engine Efficiency and Power Density: Distinguishing Limits from Limitations Chris F. Edwards Advanced Energy Systems Laboratory Department of Mechanical Engineering Stanford University

Transcript of Engine Efficiency and Power Density: … Efficiency and Power Density: Distinguishing Limits from...

  • EngineEfficiencyandPowerDensity:DistinguishingLimitsfromLimitations

    ChrisF.Edwards

    AdvancedEnergySystemsLaboratoryDepartmentofMechanicalEngineering

    StanfordUniversity

  • ExergytoEngines

    Limits areimposedbytheresource,environment,andphysicsgoverningtransfers

    andtransformations.

    Limitations areintroducedbythechoiceofdevices andprocessesi.e.,bythearchitecture ofanengine.

    ChemicalResource

    RestrainedReaction

    ElectrostaticWork

    BatchExpansion

    FlowWork

    UnrestrainedReaction

    BatchExpansion

    FlowingExpansion

    LorentzWork(MHD)

    Exergy Classification Architecture Engines

  • Efficiency,EffectiveCompressionRatio,andIdealArchitectures

    7080%IdealWork,6075%PeakPres.,7590%PeakTemp.

    100

    101

    1020

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Effective Compression Ratio (/0)

    Firs

    t Law

    Effi

    cien

    cy (%

    )

    Fuel-air Atkinson cycleFuel-air Otto cycle70-80% of Otto cycleJaguar AV133, 5.0 LDISI gasoline, ULEV2

    Volvo TG103/G10A, 11.8 LSI natural gasCummins 6BT5.9-G6, 5.9 LDiesel, turbocharged, Tier 1

    Cummins QSM11-G4, 10.8 LDiesel, turbocharged, Tier 3Volvo Penta TAD734GE, 7.2 LDiesel, turbocharged, Tier 2

    RCCI gasoline + Diesel, Gross-IndicatedPCI gasoline, Gross-IndicatedFPEC Diesel, Gross-Indicated

  • EquivalenceandCompressionRatios

    Efficiencyandpeakpressurerequireuseofsignificantcompressionwithadilutemixture.

  • UseofLowTemperatureCombustion

    UseofLTCto controlNOxemissionslimitsworkoutputto67barIMEP(56barBMEP).

  • Atkinson?NotLTC?

    Efficient, pressurelimited,highoutputoperationmight beachievablewithoptimalexpansionandnondilutemixtures.

  • SpanningExergytoEngines

    Limits areimposedbytheresource,environment,andphysicsgoverningtransfers

    andtransformations.

    Limitations areintroducedbythechoiceofdevices andprocessesi.e.,bythearchitecture ofanengine.

    ChemicalResource

    RestrainedReaction

    ElectrostaticWork

    BatchExpansion

    FlowWork

    UnrestrainedReaction

    BatchExpansion

    FlowingExpansion

    LorentzWork(MHD)

    Exergy Classification Architecture Engines

  • VanBlarigan/AichlmayrFreePistonEngineConcept

  • 9

    FreePistonArchitectureforHighCR

    Balancedforces,nobearingloads Longstroketoboreratioforlow

    surfacetovolumeratio Shortresidencetimeatmin.V

    Canuselinearalternatorforworkextraction(vanBlarigan/Aichlmayr)

    Gasdriver Gasdriver

    Freepistons

    Combustionchamber

    0 20 40 60 800

    0.2

    0.4

    0.6

    0.8

    1

    Time (ms)

    Vol

    ume

    (V/V

    0)

    Free-pistonexperimentSlider-crank

  • 10

    SamplebagCondenser

    Vacuumpump

    HCanalyzer

    Heatedsampleline

    Bandheaters

    StanfordFreePiston,ExtremeCompressionApparatus

  • DieselCombustionatHighCompression

    CR = 30:1, 1050 K CR = 100:1, 1550 K

    #2 Diesel, 1 ms injection, EOI at TDC

  • InitialDieselEfficiencyResults

    0 20 40 60 80 10020

    30

    40

    50

    60

    70

    80

    Compression Ratio

    Effi

    cien

    cy(%

    )

    Ideal 1st-law efficiencyIdeal cycle minus air experiment lossesExperimental indicated efficiency

    Diesel #2 = 0.27 - 0.30

  • LimitedtoDieselStyleCombustion?

    Premixedcombustionissootless. Premixedleancombustionisveryefficient. Premixedstoich combustionhashighpowerdensity. Premixedstoich combustionpermitsuseofaTWC,andthereforeverylowNOx emissions.

    ToaccomplishthisathighCR,autoignitionmustbeheldoffuntiltheminimumvolume.

    Mightbeabletoholdoffautoignitionby: Choiceoffuel(e.g.,methane/NG,methanol) Activecoolingofthecharge

  • TemperatureControlofAutoignition

    Loweringtheinitialgastemperatureby50Klowersthetemperatureat100:1by210K.

    Ignitionoccursatthedesiredvolume.

    0 20 40 60 80 100200

    400

    600

    800

    1000

    1200

    1400

    1600

    /0

    T (K

    )

    Tstart = 250 K

    Tstart = 298 K

    Model:

    Adiabaticcompression Homogeneous,stoichiometric

    methaneaircharge

    Volumetimeprofilefromexperimentaldata

    GRI3.0chemicalkinetics

  • TwoMethodsofCooling

    Compressor

    JTvalve

    Coolingair

    Refrigerant

    ReactantsatT0,P0

    12

    Engine

    Products

    Compressor

    Coolingair

    ReactantsatT0,P0

    1

    2

    Engine

    3

    Products

    1 2 3 4

    250

    300

    350

    400

    /0

    T (K

    )

    S

    S

    2

    P = 1 atm

    1

    1 2 3 4

    250

    300

    350

    400

    /0

    T (K

    )

    S

    S

    3

    2

    1

    P = 2.17 atm

    Thisisacommonturbocharger/intercooler,with2.17atmmanifoldpressure.

  • Experimentsw/Intercooling

    Experimentalmethod: Chargecompressedpartway,remainingatwallT Usualrapidcompressionstartsfromthatpoint IntercoolingPchosenforignitionjustafterTDC

    10-2 10-1 100100

    101

    102

    103

    Volume / Full Cyl. Volume

    Pre

    ssur

    e (b

    ar)

    Fuel:premixedmethaneair

    EffectiveCR:35to90:1

    Equivalenceratio:0.96to1.04

    PeakEfficiency:57%(Includescomp.work.)

  • MeasuredCombustionEfficiency

  • 18

    NOx,HC,andCOPremixedEmissionsw/Intercooling

    0.96 0.98 1 1.02 1.04 1.060

    10

    20

    30

    40

    Equivalence Ratio

    Spe

    cific

    Em

    issi

    on (g

    /kW

    -hr)

    ~ 35:1 CR~ 60:1~ 80:1

    0.96 0.98 1 1.02 1.04 1.060

    0.5

    1

    1.5

    2

    Equivalence Ratio

    Spe

    cific

    Em

    issi

    on (g

    /kW

    -hr)

    ~ 35:1 CR~ 60:1~ 80:1

    0.96 0.98 1 1.02 1.04 1.060

    2

    4

    6

    8

    10

    12

    14

    Equivalence Ratio

    Spe

    cific

    Em

    issi

    on (g

    /kW

    -hr)

    ~ 35:1 CR~ 60:1~ 80:1

    NOx

    HCCO

  • NOxEmissionsvs.GRI3.0

    60:1CR,methane

    ~1%LossinCombustionEfficiency

  • EmissionsinContextofTWC

    1J.Chiu,J.Wegrzyn,andK.Murphy,SAEPaper20040129822I.Saanum,M.Bysveen,P.Tunestal,andB.Johansson,SAEPaperNo.2007010015.

    60:1CR,1.028

  • 21

    EvaporativeCooling?

    Model:

    Sameasbefore,butwithwatervaporization

    Vaporizationratematchesinjectionrateofrealinjector

    Startofinjectionchosentoavoidgassaturation

    Injectliquidduringcompression(waterhasgoodproperties). Vaporizationdrawssensibleenergyfromthegas,thusloweringthe

    temperature.

    10-2 10-1 100100

    101

    102

    103

    V/V0

    P (b

    ar)

    No coolingWater injection

    3% mass fractiontotal water injected

    Start waterinjection

  • 10-1 100100

    101

    102

    103

    V/V0

    Pres

    sure

    (bar

    )

    Water injectionIntercoolingWater model forequal cooling

    SOIModel EOI

    Experiment EOI

    Experimentsw/EvaporativeCooling

    22

    AchievedTDCphasingupto60:1CR

    Morewaterneeded(8%vs.1%)

    10%decreaseinefficiency(53%)

    Limitedbytheinjectorsetup:

    Stratification Slowvaporization

  • ReductioninRateofRise,Ringing

    ~5000bar/CADforintercoolingapproach

    ~80bar/CADforwaterinjectionapproach

    61 62 63 64 650

    200

    400

    600

    800

    1000

    Time (ms)

    Pre

    ssur

    e (b

    ar)

    IntercoolingWater injection

    Maximumrateofpressurerise,translatedtoslidercrankat1800RPM:

  • TakeAwayMessages

    Exergysetsanabsolutelimitfortheworkfromaresourceinaspecifiedsetofsurroundings.Ifyouarenotaspiringtoapproachthislimit,pleaseadjustyourthinking.(Suspensionofdisbelief!)

    Thephysicsofthevariousenergytransferandtransformationprocessesthatcanbeinvokedsetsadditionallimits.Taketheseseriouslyandchangetheprocessesusedifnecessary.

    Thearchitectureyouchooseforyourengineintroduceslimitationsbasedonboththeprocessesinvolvedandthedevicesusedtoimplementthem.Tracktheexergydestructionthroughthesedevicestoknowhowwellyouaredoing.

    Ifyouarenotdoingwell(exergyefficiencybelow50%),considerchangingthesetofprocesses,aswellasimprovingthedevices.Alsoconsiderusingnontraditionaldevicestoimplementtheprocesses.

    Thekeytoimprovementistoknowwhereyoustand.(Absolutely!)

    Engine Efficiency and Power Density:Distinguishing Limits from LimitationsExergy to EnginesEfficiency, Effective Compression Ratio, and Ideal ArchitecturesEquivalence and Compression RatiosUse of Low-Temperature CombustionAtkinson? Not LTC?Spanning Exergy to EnginesVan Blarigan/Aichlmayr Free-Piston Engine ConceptFree-Piston Architecture for High CRStanford Free-Piston, Extreme Compression ApparatusDiesel Combustion at High CompressionInitial Diesel Efficiency ResultsLimited to Diesel-Style Combustion?Temperature Control of AutoignitionTwo Methods of CoolingExperiments w/IntercoolingMeasured Combustion EfficiencyNOx, HC, and CO Premixed Emissions w/IntercoolingNOx Emissions vs. GRI3.0Emissions in Context of TWCEvaporative Cooling?Experiments w/Evaporative CoolingReduction in Rate-of-Rise, RingingTake-Away MessagesSlide Number 25Peak Conversion Efficiency of EnginesStoichiometric with EGROptical imaging systemExtinction, Schlieren, and LuminosityEmissions from Diesel CombustionIndicated Efficiency w/IntercoolingSoot measurement systemJunkers Free-Piston Compressor