Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat,...

19
interdisciplinarity interdisciplinarity and links with and links with research research Anne-Marie ROMULUS Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université Paul Sabatier Laboratoire de Génie Chimique, Université Paul Sabatier Toulouse, France Toulouse, France European Curriculum of Methodological Training of Trainers in the Field European Curriculum of Methodological Training of Trainers in the Field of Environmental Education, Iasi, Roumania of Environmental Education, Iasi, Roumania June 8-10, 2007 June 8-10, 2007

Transcript of Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat,...

Page 1: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Energy : interdisciplinarity Energy : interdisciplinarity and links with researchand links with research

Anne-Marie ROMULUSAnne-Marie ROMULUS

Lycée Pierre de Fermat, Parvis des Jacobins Lycée Pierre de Fermat, Parvis des Jacobins

Laboratoire de Génie Chimique, Université Paul SabatierLaboratoire de Génie Chimique, Université Paul Sabatier

Toulouse, FranceToulouse, France

European Curriculum of Methodological Training of Trainers European Curriculum of Methodological Training of Trainers in the Field of Environmental Education, Iasi, Roumaniain the Field of Environmental Education, Iasi, Roumania

June 8-10, 2007June 8-10, 2007

Page 2: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Energy, Energy, a need for human beingsa need for human beings

• TransportsTransports• Residential and servicesResidential and services• Industry and agricultureIndustry and agriculture

Page 3: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Why interdisciplinarity ?Why interdisciplinarity ?-- science « of the planet » : chemistry, physics, geology, climatology…science « of the planet » : chemistry, physics, geology, climatology…- science « of the living »- science « of the living »- technologies- technologies

- social sciences and economic sciences- social sciences and economic sciences

Increase in the request for energy due to human activities : Increase in the request for energy due to human activities : 65% between 1995 and 2020 ?65% between 1995 and 2020 ?

World consumption of energy :2000 : 9 Gtep (i.e.13.5 GtC) ; 6 billion inhabitants2050 : 20 Gtep ? ; 9 billion inhabitants ?

economic development of China and India ?

Energy

Why is it such a major problem ?Why is it such a major problem ?

Page 4: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

« Nothing is lost ; nothing is « Nothing is lost ; nothing is created »created »

(Lavoisier, a French chemist, 18(Lavoisier, a French chemist, 18thth century) century)

• « Primary energy »« Primary energy » – Fossil energy : coal, oil, gas Fossil energy : coal, oil, gas – Nuclear energyNuclear energy– Renewable energies : hydraulic power, solar energy, wind power, Renewable energies : hydraulic power, solar energy, wind power,

geothermics, tidal power, biomass energygeothermics, tidal power, biomass energy

• Useful energyUseful energy : mechanic, electric, thermal, electromagnetic, chemical : mechanic, electric, thermal, electromagnetic, chemical • ProblemsProblems

– Primary energy transformation into final energyPrimary energy transformation into final energy– Transport of energy (two existing energy vectors : heat, electricity Transport of energy (two existing energy vectors : heat, electricity another vector tomorrow : hydrogen ?another vector tomorrow : hydrogen ? ) )– Storage of energy : mechanic (hydroelectric dam), thermal (hot water tank), Storage of energy : mechanic (hydroelectric dam), thermal (hot water tank),

chemical (accumulator, battery..) chemical (accumulator, battery..) – Loss linked to consumptionLoss linked to consumption

Total output : approximatively 30%Total output : approximatively 30%

Page 5: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

World consumption of primary World consumption of primary energyenergy

(according to IEA, 2000)(according to IEA, 2000)

• Fossil energy : 88.8%Fossil energy : 88.8%

• Nuclear energy : 7.4%Nuclear energy : 7.4%

• Hydraulic power : 2.5%Hydraulic power : 2.5%

• Other renewable energies : 0.6%Other renewable energies : 0.6%

Page 6: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

World production of electricityWorld production of electricity(according to Bernard Wiesenfeld in « l’énergie en 2050, edited by EDP (according to Bernard Wiesenfeld in « l’énergie en 2050, edited by EDP sciences, 2005)sciences, 2005)

• Fossil fuels : 64.6% Fossil fuels : 64.6% (coal 38.7% ; oil 7.5 % ; gas 18.3 %)(coal 38.7% ; oil 7.5 % ; gas 18.3 %)• Renewable energies : 18.3%Renewable energies : 18.3%

(hydroelectric energy : 16.5 %)(hydroelectric energy : 16.5 %)

• Nuclear energy : 17.1%Nuclear energy : 17.1%(it reaches 30% in the OECD countries)(it reaches 30% in the OECD countries)

Goal : to reach 60% produced by nuclear energy Goal : to reach 60% produced by nuclear energy and renewable energies in 2060and renewable energies in 2060

Page 7: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Problems involved Problems involved in the use of fossil energiesin the use of fossil energies

• Lifespan of layersLifespan of layers – Coal : 200 yearsCoal : 200 years– Oil : 40 yearsOil : 40 years– Gas : 60 yearsGas : 60 years

• Increase in COIncrease in CO22 emission in the world : emission in the world : + 3.3 GtC/year + 3.3 GtC/year (according to Wikipedia 2007)(according to Wikipedia 2007)

– Human activities (+ 6.3 GtC / year)Human activities (+ 6.3 GtC / year) (combustion of fossil fuels, destruction of the forests)(combustion of fossil fuels, destruction of the forests)

– Entry of COEntry of CO22 in the biosphere (- 1.3 GtC/year) in the biosphere (- 1.3 GtC/year) (photosynthesis)(photosynthesis)

– Dissolution of CODissolution of CO22 in the oceans (- 1.7 GtC/year) in the oceans (- 1.7 GtC/year)

(HCO(HCO33-- ; CaCO ; CaCO33))

- Increase in the temperature : from 2 to 6 °C during the 21- Increase in the temperature : from 2 to 6 °C during the 21stst century century

Page 8: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Awareness and wishesAwareness and wishes• International wishInternational wish

– Protocol of Kyoto, 1997 Protocol of Kyoto, 1997 reduction of gas emission : reduction of gas emission : -8% between 2008 and 2012 ?-8% between 2008 and 2012 ?– World meeting World meeting Rio de Janeiro 1992 ; Johannesbourg 2002 ; Rio de Janeiro 1992 ; Johannesbourg 2002 ; Montreal 2005 ; Nairobi 2006Montreal 2005 ; Nairobi 2006

• Example : COExample : CO22 emissions in France emissions in France

2000 : 85 MtC 2000 : 85 MtC 2050 : 145 MtC ? (2050 : 145 MtC ? (wishwish : 145 : 145/4/4))According to « mission interministérielle de l’effet de serre », France, 2004- Transport (2000 : 28% ; 2050 : 54% ?)Transport (2000 : 28% ; 2050 : 54% ?)- Residential and services (2000 : 42% ; 2050 : 24% ?)Residential and services (2000 : 42% ; 2050 : 24% ?)- Industry and agriculture (2000 : 30% ; 2050 : 22% ?)Industry and agriculture (2000 : 30% ; 2050 : 22% ?)

• Solutions ?: new fuels, capture and storage of CO2 ?

Page 9: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Various axes of classical scientific Various axes of classical scientific developments developments

at various levels of teachingat various levels of teaching

Transformations of the main forms of energyTransformations of the main forms of energy

chemical energy

électromagnetic energy

thermal energyelectric power

mechanical energy

nuclear energy

Electric power directly produced from chemical energy far more efficient than from thermal energy

Page 10: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Links between school Links between school and research or industry and research or industry

in a coursein a course

• Necessity to train future engineers, researchers, Necessity to train future engineers, researchers, technicianstechnicians

• Necessity to train the future citizens of the planet Necessity to train the future citizens of the planet

• Local contextLocal context– Contacts school - research or industry laboratoriesContacts school - research or industry laboratories– Passing work carried out in research to teaching staffPassing work carried out in research to teaching staff– Participation of a researcher invited in a courseParticipation of a researcher invited in a course

• External contextExternal context

Page 11: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Example 1 : chemical energy Example 1 : chemical energy electric power electric powerPrinciple of the fuel cellPrinciple of the fuel cell

Hydrogen, energy vector for tomorrow ?Hydrogen, energy vector for tomorrow ?

• 1839, Sir William Grove (a British chemist), 1839, Sir William Grove (a British chemist), inventor of the first electrochemical cell inventor of the first electrochemical cell with hydrogen fuelwith hydrogen fuel

• Anodic exchange : HAnodic exchange : H22 2H 2H++ + 2 e + 2 e--

• Cathodic exchange : 2HCathodic exchange : 2H++ + 1/2 O + 1/2 O22 + 2e + 2e-- H H22OO

• Chemical conversion : HChemical conversion : H22 + 1/2 O + 1/2 O22 H H22OO• Electrolyte : solid polymer which exchanges HElectrolyte : solid polymer which exchanges H++

• Current density : 0.6 - 0.8 A/cmCurrent density : 0.6 - 0.8 A/cm22

• Potential difference : 0.6 VPotential difference : 0.6 V• Output : 50% (loss with thermal energy)Output : 50% (loss with thermal energy)

• Favour : non COFavour : non CO22 emission emission

• Drawbacks : producing HDrawbacks : producing H22 , storage of H , storage of H22

The Yeager 3 phases

Model Of Nafion Clusters

Page 12: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Fuel cellsFuel cells PresentPresented by André Savall, Professor at the University Paul Sabatier, Toulouseed by André Savall, Professor at the University Paul Sabatier, Toulouse

Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, FranceLaboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, France

PC25 Fuel Cell Power Plant Installation at Data Center in First National Bank of Omaha,Omaha, Nebraska

UTC Fuel Cells was one of the first companies to incorporate fuel cells into buses

Space Shuttle Lift Off-UTC Fuel Cells 12kW power plants provide

electric power and drinking water for all space shuttle flights

Installation of Five PC25 Fuel Cell Power Plants at Regional

USPS Mail Sorting Centerin Anchorage, Alaska

Page 13: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Microorganisms in a fuel cellMicroorganisms in a fuel cell« Price of the innovation », Midi-Pyrénées, France« Price of the innovation », Midi-Pyrénées, France

Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, FranceLaboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, France

• Microorganisms on the electrodsMicroorganisms on the electrods

• Replacement of hydrogen by milk or marine sediments Replacement of hydrogen by milk or marine sediments

• First prototype, patent 2002, CNRS-CEA (First prototype, patent 2002, CNRS-CEA (Research Director : Alain BergelResearch Director : Alain Bergel))

• Future : microbial cell ? Future : microbial cell ?

• Use of household waste for the power supply in the house ?Use of household waste for the power supply in the house ?

e-

Matières organiques

CO2

métabolites

Oxydations métaboliquese-

An

od

e

Micro-organisme

O2

H2O

Cat

ho

de

Bio

film

e-

Page 14: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Example 2 : electric power Example 2 : electric power chemical energy chemical energyElectrolysis in nuclear industry

• Elements in waste fuel : actinides (U, Th), minor actinides (Am, Cm), Elements in waste fuel : actinides (U, Th), minor actinides (Am, Cm), lanthanides (Nd, Sm, Gd), other fission products (Cs, Sr…)lanthanides (Nd, Sm, Gd), other fission products (Cs, Sr…)

• Problems : small proportion of fuel used, great proportion of waste, only one Problems : small proportion of fuel used, great proportion of waste, only one recycling in fuel MOX, radioactivity of waste (great activity of minor recycling in fuel MOX, radioactivity of waste (great activity of minor actinides, the longest lifespan), thermogenic effectsactinides, the longest lifespan), thermogenic effects

• Two ways of dealing with nuclear waste currently : reversible geological Two ways of dealing with nuclear waste currently : reversible geological storage, transmutation to decrease the radioactivity of ultimate wastestorage, transmutation to decrease the radioactivity of ultimate waste

• Development of separation processes by ECA : DIAMEX, SANEXDevelopment of separation processes by ECA : DIAMEX, SANEX• ResearchResearch

– Recycling of fuelRecycling of fuel– Management of radioactive wasteManagement of radioactive waste– Nuclear reactors of generation IVNuclear reactors of generation IV Example MSR (Molten Salt Reactor System) Example MSR (Molten Salt Reactor System) light consumption of natural deposits : U, Thlight consumption of natural deposits : U, Th recycling on line of fuel reprocessing plant of waste and reactor on the same site

• Law of program relating to the sustainable management of matters and radioactive waste, French Parliament, June 2006

• Objectives in nuclear industry : security, energy competitiveness, resistence to proliferation, sustainable development

Page 15: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Actinide separation : an electrochemical way Presented by Pierre Chamelot, Research Assistant Professor at the University Paul Presented by Pierre Chamelot, Research Assistant Professor at the University Paul

Sabatier, Toulouse,Sabatier, Toulouse, Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, France31062 Toulouse Cedex 9, France

• European program PYROREPEuropean program PYROREP

• Project ACSEPT (Actinide reCycling by Separation and Transmutation),Project ACSEPT (Actinide reCycling by Separation and Transmutation),

• Advantage of the electrochemical way compared to the hydrometallurgic Advantage of the electrochemical way compared to the hydrometallurgic way : dissolution of fuel in molten salts, safer methodway : dissolution of fuel in molten salts, safer method

Expectations : recycling actinides in solution in molten salts after Expectations : recycling actinides in solution in molten salts after electroextraction of lanthanides directly starting from fuel in reactorelectroextraction of lanthanides directly starting from fuel in reactor

• Molten salts : LiF, CaFMolten salts : LiF, CaF22

• Reactive cathode : Al, Ni, Cu Reactive cathode : Al, Ni, Cu Reduction : NdFReduction : NdF33 + 3 e + 3 e-- Nd + 3 F Nd + 3 F--

• Anode C, electrolyte LiCl in LiF-CaFAnode C, electrolyte LiCl in LiF-CaF22

Oxydation : 2 ClOxydation : 2 Cl-- 2 Cl 2 Cl22 + 2e + 2e--

Page 16: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

thermochemical transformation(pyrolyse and gazeification))

force thermic energy electricityé

new fuels hydrogen

biodiesel bioethanol

Example 3 : biomass and chemical energyPresented by Maurice Comtat, Professor at the University Paul Sabatier, ToulousePresented by Maurice Comtat, Professor at the University Paul Sabatier, Toulouse

Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, FranceLaboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS 31062 Toulouse Cedex 9, France

Page 17: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

Hydrogen Hydrogen a chemical product and an energy vectora chemical product and an energy vector

• Production by reformage of fossil fuels (natural gas 48%) Production by reformage of fossil fuels (natural gas 48%) and by electrolysis of water or of living mattersand by electrolysis of water or of living matters

• AdvantagesAdvantages : large abundance, strong massic energy : large abundance, strong massic energy 120 MJ kg120 MJ kg-1-1 (gas : 2.2 MJ kg (gas : 2.2 MJ kg-1-1), ),

non polluting, non toxic, non polluting, non toxic,

combustion without COcombustion without CO22, ,

easily transportable, low weighteasily transportable, low weight• Problems Problems : more highly inflammable and detonating than : more highly inflammable and detonating than

natural gas, no visible flame, availability, solid storage, natural gas, no visible flame, availability, solid storage, compression, liquefaction compression, liquefaction

• Hydrogen consumption (million tonne / year)Hydrogen consumption (million tonne / year)• Europa : 6.3Europa : 6.3• World : 50World : 50

• Hydrogen prize (E/tep in 2005) :Hydrogen prize (E/tep in 2005) :• Fuel : 187.5Fuel : 187.5• Natural gas : 132Natural gas : 132• Hydrogen gas (wholesale) : 290Hydrogen gas (wholesale) : 290• Hydrogen gas (retail) : 1320Hydrogen gas (retail) : 1320

ReformageCH4 + H2O CO +3 H2

CO + H2O CO2 +H2

CnHm + 1/2 O2 n CO + 1/2m H2

Water electrolysis1) Basic electrolyteAnodic exchange 2 OH- H2O + 2 e- + 1/2 O2

Cathodic exchange 2 H2O + 2 e- 2 OH- + H2

2) Cationic membraneAnodic exchange H2O 2H+ + 2e- + 1/2 O2

Cathodic exchange 2H+ + 2e- H2

Page 18: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

The house tomorrow ?

Page 19: Energy : interdisciplinarity and links with research Anne-Marie ROMULUS Lycée Pierre de Fermat, Parvis des Jacobins Laboratoire de Génie Chimique, Université

ReferencesReferences• IEA, International Energy AgencyIEA, International Energy Agency

• OCDE, Organisation for Economic Co-operation and DevelopmentOCDE, Organisation for Economic Co-operation and Development

• NEA, Nuclear Energy AgencyNEA, Nuclear Energy Agency

• « L’énergie nucléaire du futur : quelles recherches pour quels objectifs ? », CEA « L’énergie nucléaire du futur : quelles recherches pour quels objectifs ? », CEA Saclay, edited by Le Moniteur, 2005Saclay, edited by Le Moniteur, 2005

• Bernard Wiesenfeld in « l’énergie en 2050, edited by EDP sciences, 2005Bernard Wiesenfeld in « l’énergie en 2050, edited by EDP sciences, 2005

• Scientific Journal of University Paul Sabatier, 2007, Toulouse, FranceScientific Journal of University Paul Sabatier, 2007, Toulouse, France

• Mission interministérielle de l’effet de serre, France, 2004Mission interministérielle de l’effet de serre, France, 2004

• Wikipedia, 2007Wikipedia, 2007

The Palace of Cultureof Iasi