Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting...

50
Energy Harvesting: introduction NiPS Summer School July 7-12th, 2015 Fiuggi, Italy Francesco Cottone NiPS lab, Physics Dep., Università di Perugia, Italy francesco.cottone at unipg.it NiPS Summer School 2015 July 7-12th -Fiuggi (Italy) F. Cottone 1

Transcript of Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting...

Page 1: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Energy Harvesting:

introduction

NiPS Summer School

July 7-12th, 2015

Fiuggi, Italy

Francesco Cottone

NiPS lab, Physics Dep., Università di Perugia, Italy

francesco.cottone at unipg.it

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 1

Page 2: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Summary

Energy harvesting applications and principles

Fundamentals of vibration energy harvesters

Beyond linear systems: linear and nonlinear

approaches

Conclusions

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 2

Page 3: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Energy harvesting applications

02/07/2014 - Belo Horizonte (Brazil)

(birdge collapse at FIAT factory)

Wireless Sensor Networks

Energy Harvesting could enable 90% of WSNs applications (IdTechex)

Environmental MonitoringStructural Monitoring

Transportation

Wearable sensing for health

applicationsEmergency medical response

Monitoring, pacemaker, defibrillators

Military applications

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 3

Page 4: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

• Ultra capacitors

• Rechargeable

Batteries

• Wireless Sensor

Node

• Piezoelectric

• Electrodynamics

• Photovoltaic

• Hydro Turbine

Wasted thermal energy

Electronic

device

Energy

Harvesting

Generator

Temporary

Storage

system

EM energy

Solar

Vibrations

Traffic

Hydro/wind

Power sources available from the ambient

RF

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 4

Biochemical

Thermal

energy Radioactivity

Page 5: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Examples of energy harvesting systems

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 5

Crystal radio - 1906

Sailing ship (XVI-XVII century)

Tree - vegetation

Self-charging

Seiko wristwatch

First automatic wristwatch,

Harwood, c. 1929 (Deutsches

Uhrenmuseum, Inv. 47-3543)

First automatic watch.

Abraham-Louis Perrelet,

Le Locle. 1776

Page 6: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Vibration energy harvesting versus

power requirements

Devic

e P

ow

er

Consu

mpti

on

Time

VEH

sPow

er

Densi

ty

Zero Power ??

100-300W/cm3 ?

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 6

Page 7: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Vibration Energy Harvesters (VEHs): basics

Inertial generators are more flexible than direct-force devices because they require

only one point of attachment to a moving structure, allowing a greater degree of

miniaturization.

Load (ULP sensors, MEMS

actuators)

Bridge Diodes

Rectifier

Cstorag

e ZL

Vou

t

AC/DC

converter Vibration

Energy

Harvester

RL

Transducer

k

i

F(t)

zRL d

m

fe

k

i

Transducer

F(t)=mÿ

zd

m

fe

y

zinc oxide (ZnO) nanowires

Wang et al. 2008

Energy harvesting from

moth vibrations

Chang. MIT 2013

Energy Harvesting from dancing

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 7

Page 8: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Vibration

Harvesting

Generator

Magnetostrictive

Piezoelectric

Electromagnetic

V

Moving magnet

Spring

Coil

(a) (b)

(c)

Electrostatic/Capacitive

Proof mass

Springs

Vb

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 8

Vibration Energy Harvesters (VEHs): basics

Page 9: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Piezoelectric conversion

Unpolarized

Crystal

Polarized

Crystal

After poling the zirconate-titanate atoms are off center.

The molecule becomes elongated and polarized

9

Pioneering work on the direct

piezoelectric effect (stress-charge)

in this material was presented by

Jacques and Pierre Curie in 1880

In 1903 Pierre received the Nobel

Prize in Physics with his wife, Marie

Skłodowska-Curieand and Henri

Becquerel, for the research on the

radiation phenomena discovered by

Professor Henri Becquerel.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

Page 10: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Piezoelectric conversion

Man-made ceramics

• Barium titanate (BaTiO3)—Barium titanate was the

first piezoelectric ceramic discovered.

• Lead titanate (PbTiO3)

• Lead zirconate titanate (Pb[ZrxTi1−x]O3 0≤x≤1)—more

commonly known as PZT, lead zirconate titanate is

the most common piezoelectric ceramic in use

today.

• Lithium niobate (LiNbO3)

Naturally-occurring crystals

• Berlinite (AlPO4), a rare phosphate mineral that is

structurally identical to quartz

• Cane sugar

• Quartz (SiO2)

• Rochelle salt

Polymers

• Polyvinylidene fluoride (PVDF): exhibits

piezoelectricity several times greater than quartz.

Unlike ceramics, long-chain molecules attract and

repel each other when an electric field is applied.

direct piezoelectric effect

Stress-to-charge conversion

10

Biological

• Bones

• DNA !!!

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

Page 11: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Piezoelectric conversion

31 Mode

FV

+

-

3

1

2

• S = strain vector (6x1) in Voigt notation

• T = stress vector (6x1) [N/m2]

• sE = compliance matrix (6x6) [m2/N]

• cE = stifness matrix (6x6) [N/m2]

• d = piezoelectric coupling matrix (3x6) in Strain-Charge

[C/N]

• D = electrical displacement (3x1) [C/m2]

• e = piezoelectric coupling matrix (3x6) in Stress-Charge

[C/m2]

• = electric permittivity (3x3) [F/m]

• E = electric field vector (3x1) [N/C] or [V/m]

F33 Mode

V-

+

3

12

Strain-charge

t

E

T

S s T d E

D d T E

Stress-charge

E t

S

T c S e E

D e S E

11NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

Page 12: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Conversion techniques comparison

Technique Advantages Drawbacks

Piezoelectric • high output voltages

• well adapted for

miniaturization

• high coupling in single

crystal

• no external voltage source

needed

• expensive

• small coupling for

piezoelectric thin films

• large load optimal

impedance required (MΩ)

• Fatigue effect

Electrostatic • suited for MEMS

integration

• good output voltage (2-

10V)

• possiblity of tuning

electromechanical

coupling

• Long-lasting

• need of external bias

voltage

• relatively low power

density at small scale

Electromagnetic • good for low frequencies

(5-100Hz)

• no external voltage source

needed

• suitable to drive low

impedances

• inefficient at MEMS scales:

low magnetic field, micro-

magnets manufacturing

issues

• large mass displacement

required.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 12

Page 13: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Human activity

Gorlatova, M et al (2013). Movers and shakers: Kinetic energy harvesting for the internet of things.

Example of vibration sources

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 13

Page 14: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Example of vibration sources

Chicago North Bridge

http://realvibration.nipslab.org

Car in highway

Walking person

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 14

Page 15: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

A general model for VEHs

RL

k

i

coil

magnet

ÿ

z

Bz

Electromagnetic transduction Piezoelectric transduction

k

i

Piezo bar or cantilever beam

ÿ

z

RL

Seismic massmagnet

Vibrations

( )

( )

L

L c i L c

dU zmz dz V my

dz

V V z

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 15

Page 16: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

A general model for VEHs

22

0 2

2

2 2 2

( )2 ( )( )

e

c

L c c

PY m j

R j m d j k j

0

j ty Y e

( )

L

L c i L c

mz dz kz V my

V V z

LINEAR mechanical oscillator 21( )

2U z kz

2

0c c

Z mYms ds k

Vs s

Z mY

det A(s

c)

mY (sc)

ms3 (mc d)s2 (k

c d

c)s k

c

,

V mY

det A

cs

mY cs

ms3 (mc d )s2 (k

c d

c)s k

c

.

Hence, the transfer functions between displacement and voltage over input acceleration are given by

H

ZY(s)

Z

Y, (a) H

VY(s)

V

Y. (b) By substituting s=j in , we can calculate the electrical

power dissipated across the resistive load

Laplace transform

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 16

Page 17: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Piezoelectric conversion

17

22 3131

11 33

.

. E T

El energy dk

Mech energy s

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a

piezoelectric material. IT’s defined as the ratio between the mechanical energy converted and the

electric energy input or the electric energy converted per mechanical energy input

Characteristic PZT-5H BaTiO3 PVDF AlN

(thin film)

d33 (10-10 C/N) 593 149 -33 5,1

d31 (10-10 C/N) -274 78 23 -3,41

k33 0,75 0,48 0,15 0,3

k31 0,39 0,21 0,12 0,23

𝜀𝑟 3400 1700 12 10,5

Strain-charge Stress-charge

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

Page 18: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 18

y(t)

z(t)

Mt

RL

i

strain

Lb

VL

Piezoelectric

plates

( )

L

L c i L c

mz dz kz V my

V V z

hp

hs

Piezoelectric layer

Subtrate layer

Le

Lm

Ep and Es are the Young’s modulus of

piezo layer and steel substrate

respectively

Piezoelectric conversion

31 2/ , ,

1 / , 1 / ,

p L

c L p i i p

kd h k R

R C R C

1 2

1 22

3 3

2

,

3 (2 )2, ,

3(2 )2

2

/, 2 ,

2 12 12

p

b m e

b m eb b m

s p b p s p b s

b p

k k k E

b l l lIk k

b l l ll l l

h h w h E E w hb I w h b

Page 19: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 19

Electromagnetic conversion

Equivalent circuit

i(t)

Ri

Lc

RL

RL

k

i

coil

magnet

ÿ

z

Bz

magnet

( )

L

L c i L c

mz dz kz V my

V V z

/ , ,

/ , / ,

L L

c L c i i c

Bl R Bl R

R L R L

Page 20: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

𝑘𝑠𝑝

𝑘𝑠𝑡

𝑔0

𝑚𝑠

𝑅𝐿

𝑉0

𝑑

Mathematical modeling

2 2

2 2

( ),a i

d x dx dU x d ym c c m

dt dt dx dt

0( ) ,L

dR C V V U

dt

2 2

0 lim

2 2

0 lim

1 1( ) , for

2 2( )

1 1( ) ( ) , for

2 2

sp

sp st

k x C x U x x

U x

k k x C x U x x

Governing equations

MEMS electrostatic kinetic energy harvester

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 20

Page 21: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

• narrow bandwidth that implies

constrained resonant frequency-tuned

applications

• Non-adaptation to variable vibration

sources

• small inertial mass and high resonant

frequency at micro/nano-scale -> most

of vibration sources are below 100 Hz

Main limits of resonant VEHs

At 20% off the resonance

the power falls by 80-90%

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 21

Page 22: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Beyond linear harvesting systems

Frequency tuning

Wu et al. 2008

Challa et al. 2008

Roundy and Zhang 2004

Piezoelectric cantilever with

a movable mass

Piezoelectric cantilever with magnetic tuning

Piezoelectric beam with a

scavenging and a tuning part

Zhu, et al. (2010). Sensors and Actuators A: Physical

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 22

Page 23: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Beyond linear harvesting systems

Frequency tuning

Tang et al. 2010

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 23

Page 24: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Multimodal Energy Harvesting

Beyond linear harvesting systems

Ferrari, M., et al. (2008). Sensors and Actuators A: Physical

Hybrid harvester with piezoelectric and electromagnetic transduction

mechanisms

Tadesse et al. 2009

Shahruz 2006

Piezoelectric cantilever arrays

with various lengths and tip masses

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 24

Page 25: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

H. Kulah and K. Najafi, IEEE Sensors Journal 8 (3), 261 (2008).

D.G. Lee et al. IEEE porc. (2007)

Frequency-up conversion

Jung, S.-M. et al. (2010). Applied Physics Letters

Beyond linear harvesting systems

Le, C. P., Halvorsen (2012). Journal of Intelligent Material Systems and

Structures

Impact electrostatic MEMS generator

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 25

Page 26: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Burrow, S.G and Clare, L.R. IEEE porc. (2007)

Nonlinear systems

Beyond linear harvesting systems

Cottone, F., H. Vocca & L. Gammaitoni, Nonlinear Energy Harvesting. PRL, 102 (2009).

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 26

Page 27: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

2 0 1 2

2 2 3/2

1( , )

2 2 ( )eff

M MU x K x

x

Magneto-elastic potential

Governing equations of a single-DOF

piezo-magnetoelastic model

( , ) ( ) ( ) ( ) ( ) ( )

1( ) ( ) ( );

eff v

c L p

U xmx t x t K x t K V t my t

x

V t V t K x t R C

Mechanical vibrations

Piezoelectric beam

x

ÿ

m

Opposing magnets

Vout

Cottone, F., H. Vocca & L. Gammaitoni. PRL, 102 (2009).

Beyond linear harvesting systemsNonlinear systems for vibration energy harvesting

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 27

Page 28: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Bistable oscillators for vibration energy harvesting

Resonant monostableBistable: inter-well and

intra-well oscillations

Bifurcation point

x

U(x,)

=25mm

x

U(x,)

Cottone, F., H. Vocca & L. Gammaitoni, Nonlinear Energy Harvesting. PRL, 102 (2009).NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 28

Page 29: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Bistable oscillators for vibration energy harvesting

Resonant monostableBistable: inter-well and

intra-well oscillations

Bandwith enhancement

when interwell jumps occur

x

U(x,)

=25mm

x

U(x,)

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 29

Page 30: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Buckled beam piezoelectric harvesters

Snapping between buckled states

Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., & Ferrari, V. (2012). Smart materials and structures, 21(3), 035021

stretching

bending

stretching

PP

Bistable oscillators for vibration energy harvesting

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 30

Page 31: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

L L

x

L0

z

w(x,t)

hp

hs

Steel support

Piezoelectric layer

V (t)ip(t) Cp RL

RL

b

zk+1

zk

P

Buckled piezoelectric beams

1( , ) ) ( , )(w x t w v x tx

stretching

bending

stretching

0( ) (1 cos(2 / )) / 2x h x L

the initial buckling shape function is

P

by applying Euler-Lagrange equations

( ), ( )d d

F t I tdt q q dt

L L L L

gives two coupled second order nonlinear differential equations

governing the motion of the piezoelectric buckled beam

Where the output voltage is related to the flux linkage

0 1

33 2 1 0

2

,

2 2 .L p P P

V V

k kV V

R C C C

mq cq k q k k q k z

q qq

P

V

Bistable oscillators for vibration energy harvesting

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 31

Page 32: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Experimental and numerical results

Cottone, F., L. Gammaitoni, H. Vocca, M. Ferrari & V. Ferrari (2012) Smart materials and structures, 21, 2012.

Bistable oscillators for vibration energy harvesting

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 32

Page 33: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Nonlinear electromagnetic generators for wide

band vibrational energy harvesting

2 2

3

2 2

( ) 1 ( ) ( )( ) ( ) ( ) ,

d q dq d yq q V

d Q d d

2( )( )

1,

em

dV dqV k

d d

0 / ( )R L 2 2

2

1 1

( ).em

c c

Blk

k L k L

22

1 0

pzkk C

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 33

Page 34: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Nonlinear electromagnetic generators for wide

band vibrational energy harvesting

Bandwidth

enhancement of 2.5x

with bistability at 0,2 grms

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 34

Page 35: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Université Paris-Est, ESIEE Paris,

Silicon MEMS electrostatic harvesters.

• Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F. and T. Bourouina. IEEE TRANSDUCERS 2013.

• R., Guillemet, Basset., P, Galayko, D., Cottone, F., Marty, F. and T. Bourouina. Conf. Proceeding IEEE MEMS 2013.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 35

MEMS electrostatic kinetic energy harvester

Page 36: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

MEMS electrostatic kinetic energy harvester

Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). Journal of Micromechanics and Microengineering

24(3), 035001

Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013). 2013 Transducers & Eurosensors.

Guilllemet, R., Basset, P., Galayko, D., Cottone, F., Marty, F., & Bourouina, T. (2013).

Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on (pp. 817-820): IEEE.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 36

Page 37: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

F. Cottone, P. Basset Université Paris-Est, ESIEE Paris,

Silicon MEMS-based electrostatic harvesters.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 37

MEMS electrostatic kinetic energy harvester

Page 38: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013).

Transducers & Eurosensors.

MEMS electrostatic kinetic energy harvester

Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., &

Bourouina, T. (2014). JMM 24(3), 035001.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 38

Page 39: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Velocity-amplified mulitple-mass EM VEH

1 1 2 1 22

1 2

( 1) ( )i if

e m v m em vv

m m

the final velocity of the smaller mass is

v2f = 2v1f − v2i.

In the case of equal but opposite initial velocities

v2f = − 3v2i,

which represents a gain factor of 3x in velocity.

if 𝑒 = 1 and in the limit of m1 / m2 → ∞,

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 39

Electromagnetic generators

Page 40: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Electromagnetic generators

For a series of n−bodies of progressively

smaller mass that impact sequentially,

the velocity gain is proportional to n.

(Rodgers et al., 2008)

, 1

1,0

2 , 1

1(1 ) 1

1

nk k

n

k k k

eG e

r

Velocity-amplified mulitple-mass EM VEH

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 40

Page 41: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Velocity-amplified mulitple-mass EM VEH

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 41

Electromagnetic generators

Page 42: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Velocity-amplified mulitple-mass EM VEH

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 42

Electromagnetic generators

Page 43: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Velocity-amplified mulitple-mass EM VEH

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 43

Electromagnetic generators

Page 44: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Moving coil

Gap magnet

expansions (iron)

High Q-factor

springs

Linear low friction

guides

Base for clamping

Top cap

NdFeB Magnets

University of Limerick (Ireland) and Bell-Labs Alcatel (USA).

F. Cottone, G. Suresh, J. Punch - “Energy Harvesting Apparatus Having Improved Efficiency”. US Patent n.

8350394B2

Prototype 2 with transversal magnetic flux

Velocity-amplified mulitple-mass EM VEH

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 44

Electromagnetic generators

Page 45: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Moving coil

Gap magnet

expansions (iron)

High Q-factor

springs

Linear low friction

guides

Base for clamping

Top cap

NdFeB

Magnets

Velocity-amplified mulitple-mass EM VEH

University of Limerick (Ireland) and Bell-Labs Alcatel (USA).

F. Cottone, G. Suresh, J. Punch - “Energy Harvesting Apparatus Having

Improved Efficiency”. US Patent n. 8350394B2

Prototype 2 with transversal flux linkage

Improvement up to a

factor 10x

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 45

Electromagnetic generators

Page 46: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Comparison of various approaches

Zhu, D., Tudor, M. J., & Beeby, S. P. (2010).

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 46

Page 47: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Performance metrics

Mitcheson, P. D., E. M. Yeatman, et al. (2008). Proceedings of the IEEE 96(9): 1457-1486.

Bandwidth figure of merit

Frequency range within which the output

power is less than 1 dB

below its maximum value

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 47

Page 48: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Conclusions

o Marriage between Energy harvesting systems and Zero-power

Technology will enable autonomous WSN applications

o Energy harvesting systems can be improved by:

o Nonlinear dynamic: Bistable systems, freqeuncy-up converters,

impacting masses, electrostatic softening

o Innovative electro-active materials (electrets, lead-free piezo)

o Miniaturization

o Zero-Power Technology has plenty of room for improvement at

level of

o Low-consumption components,

o Efficient conditioning.

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 48

Page 49: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Current technical challenges

o Miniaturization issues

o Improvements of piezoelectric-material properties

o Improving capacitive design

o Increasing magnetic filed in micro magnets

o Research on electrets materials

o Efficient conditioning electronics

o Efficient Integrated design

o Power-aware operation of the powered device

o Target applications

o Tailoring the WSN technology to specific applications

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 49

Page 50: Energy Harvesting: introduction Cottone - EH introduction.pdf · Multimodal Energy Harvesting Beyond linear harvesting systems Ferrari, M., et al. (2008). Sensors and Actuators A:

Acknowledgments

Thank you

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 50