ENERGY GEOTECHNOLOGY · ENERGY GEOTECHNOLOGY Mixed Fluid Conditions UNSAT 2010 - Barcelona J....

76
ENERGY GEOTECHNOLOGY Mixed Fluid Conditions UNSAT 2010 - Barcelona J. Carlos Santamarina and Jaewon Jang

Transcript of ENERGY GEOTECHNOLOGY · ENERGY GEOTECHNOLOGY Mixed Fluid Conditions UNSAT 2010 - Barcelona J....

ENERGY GEOTECHNOLOGY

Mixed Fluid Conditions

UNSAT 2010 - Barcelona

J. Carlos Santamarina and Jaewon Jang

energy geotechnology

Explosion: 4/20/10 (@10 pm) Deepwater Horizon

Sinks: 4/22/10 (~10 am) Oil slick: 5/6/10

Energy in the News

0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.10 1.00 10.00

Hu

ma

n D

ev

elo

pm

en

t In

de

x

Total power per person [kW/person]

Energy and Life

CIA, UN, EIA

(Global: 2008)

0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.10 1.00 10.00

Hu

ma

n D

ev

elo

pm

en

t In

de

x

Total power per person [kW/person]

Countries following the same trend: P HDI

India

China

Brazil

Russia

USA

1 billion

Energy and Life (Global: 2008 – BRIC trends: 1980-2007)

CIA, UN, EIA

Sources – Case: USA 2008 LLNL – DOE

Units: [QUADS]

Efficiency in geotechnology? crushing<5% tunneling<< ants!

1 By

4.5 B

2 By 3 By 4 By 0

Geo-Centered Perspective: Time Scale

1 By

4.5 B

2 By 3 By 4 By 0

3.5

BY

A:

ba

cte

ria

2.5

BY

A:

O2 a

tmo

sp

h

1.5

BY

A:

pla

nts

230-65 MYA:

dinosaurs

coal & petrol

0 My 2 My 4 My 6 My 8 My 10 My

1 By

4.5 B

2 By 3 By 4 By 0

0 My 2 My 4 My 6 My 8 My 10 My

1 By

4.5 B

2 By 3 By 4 By 0

400k 300k 200k 100k 0k

Fedorov et al 2006

8 o

C 220

300

380

T

CO2

0 My 2 My 4 My 6 My 8 My 10 My

1 By

4.5 B

2 By 3 By 4 By 0

0 2000 yr -2000 yr -4000 yr -6000 yr

History of fossil fuels: a -function

200

300

400

500

1000 1200 1400 1600 1800 2000

Year

CO

2 (

pp

m)

-0.5

0

0.5

1

1.5

2

2.5

Te

mp

an

om

aly

(o

C)

2050

0 2000 yr -2000 yr -4000 yr -6000 yr

Global implications

C

CO2

Fossil Fuel: ~90%

Geo-Centered Perspective: Spatial Scale

FOSSIL FUELS (C-BASED) RENEWABLE

Nuclear Petroleum Gas Coal

Wind Solar Biofuels

Geo-T Tidal

• fines & clogging

•sand production

• shale instability

• EOR

• heavy oil & tar sand

• gas hydrates

• gas storage

• low-T LNG found. • characterization

• optimal extraction

• subsurface conv.

•periodic load

• ratcheting

• engineered soils

• decommission

• leak detect

• leak repair • mixed fluid flow, percolation

• contact angle & surface tension = f(ua)

GEOLOGICAL STORAGE

CO2 sequestration

104-105 yr BTHCM

mineral dissolution shear faults, pipes

Energy Storage

CAES, phase-change

Cyclic HTCM

Waste

storage

105 yr BTHCM

GEO-ENVIRONMENTAL REMEDIATION

CONSERVATION

Hydro-electric: capacity almost saturated

Energy Geotechnology

Energy Geotechnology: Phases

Gas water vapor

CO2

CH4

Liquid water

CO2

oil

Solid mineral

ice

CO2 hydrate

CH4 hydrate

supercritical CO2

Summary: Energy Geotechnology

Quality of life Current development patterns: HDI Energy

Current 15.6 TW – increasing at ~1% per year

Fossil fuels Stored solar energy (1 billion years in the making)

C-Economy: ~300 years

Short-term: C-emissions Climate (global)

CO2 storage Fossil fuels more sustainable … but…

Energy resource recovery production

Geotechnology energy storage waste storage

efficiency

Wide range of multi-phase conditions

CH4 hydrates

Hydrates (clathrate = cage)

H2O

CH4

Methane Hydrate

0

2

4

6

8

10

265 270 275 280 285 290

Flu

id P

res

su

re [M

Pa

]

Temperature [K]

Methane Hydrate

0

2

4

6

8

10

265 270 275 280 285 290

Flu

id P

res

su

re [M

Pa

]

Temperature [K]

W+G I+G

H+W

H+G

H+I

H+G

I+G

Methane Hydrate

0

2

4

6

8

10

265 270 275 280 285 290

Flu

id P

res

su

re [M

Pa

]

Temperature [K]

W+G I+G

I+G

H+W

H+G

Methane Hydrate

0

2

4

6

8

10

265 270 275 280 285 290

Flu

id P

res

su

re [M

Pa

]

Temperature [K]

W+G

H+W

H+G

H+I

H+G

I+G

Methane Hydrate - Occurrence

(Kvenvolden and Lorenson, 2001)

Hydrate – Key Observations

CH4 solubility in H2O CH4 : 750 H2O

CH4 concentration in hydrate CH4 : 6 H2O

Diffusivity CH4 in water ~1 x 10-9 m2/s

hydrate ~5 x 10-13 m2/s

Ice water Vw/Vice=0.92

Hydrate (water+CH4gas) Vw+g/Vhyd= 1 to >6

formation:

CH4 diffusion

production

0

10

20

30

40

50

272.15 277.15 282.15 287.15 292.15 297.15 302.15

Temp [K]

P [

MP

a]

India

Cascadia

Hydrate Ridge

Gulf of Mexico

Mallik

Mt.Elbert

β=1.3

1.4

1.5

2

34

6

Nankai Trouph

Blake Ridge

5

Fluid Volume Expansion

hy d

GW

V

VV

Sand Kaolinite

Hydrate-bearing Sediments

a: ’c=0.03 MPa

b: ’c=0.5 MPa

c: ’c=1 MPa

0

5

10

15

20

0 5 10

Axial strain [%]

0

2

4

6

0 5 10

d

ev

[MP

a]

d

ev

[MP

a]

Axial strain [%]

50%

0%

a

b

c

ab

c

a

c

b

100%

50%

0%

a

a

a

b

b

b

c

c

c

100%

all THCEM properties = non lineal functions of Shyd

Summary: Methane Hydrates

Relevance: C-reserves climate change instability

Formation PT history dependent

Shyd is CH4-limited (typically)

Multi-phase Hydrate Water Gas Ice Mineral (not all at once)

Pore habit Patchy (coarse grained sediments)

Lenses (fine grained sediments)

THCEM properties Non linear functions of Shyd

Gas Production Endothermic (may be heat-limited)

Very large volume expansion

Production from sands? from clayey sediments?

CO2 geo-storage

Geological Storage of CO2

Deep Saline Aquifer

z=0.7~3.5 km

Depleted Hydro-

Carbon Reservoir

z=1.7~4.5 km

Oil Reservoir

z=0.5~3.7 km

Coal seams

z=0.3~1.1 km

Hydrate Stability Z

z=0.3~0.8 km

Cap rock

Cap rock

Cap rock

Cap rock

CO2 Properties

0.1

1

10

100

1000

-100 -60 -20 20 60 100 140

Temperature [°C]

Pre

ssure

[M

Pa]

Supercritical CO2

CO2 LiquidCO2 Solid

CO2 Gas

CO2

Hydrate

0.1

1

10

100

1000

-100 -60 -20 20 60 100 140

Temperature [°C]

Pre

ssure

[M

Pa]

Supercritical CO2

CO2 LiquidCO2 Solid

CO2 Gas

CO2

Hydrate

supercritical

CO2

Cap rock

Water and Liquid CO2 Properties

Property [units] CO2 liquid H2O liquid

Heat capacity cp [kJ·kg-1·K-1] 2.3 4.2

Thermal cond. [W·m-1·K-1] ~0.13 0.56

Thermal Diff. [m2s-1] 6.1×10-8 1.3×10-7

Viscosity μ [Pa·s] (2-to-8)×10-5 ~1.5×10-3

Density ρ [kg·m-3] ~938-to-800 1003

Bulk Modulus [GPa] 0.1-to-0.3 2.1-to-2.3

VP [m/s] ~400-to-600 1450-to-1520

Electrical cond. [S/m] < 0.01 f(c) - seawater: ~5

Dielectric permit. [ ] ~ 1.5 ~79

Diffusion of CO2 in H2O

Water diffusion into liquid CO2: D~10-7 m2/s

Solubility of CO2 in Water - pH

(1) change in surface charge change in fabric (2) mineral dissolution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

So

lub

ilit

y o

f C

O2

[mo

l/L

]

Fluid pressure [MPa]

in 1 mol NaCl solution

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

3.0 3.5 4.0 4.5

Dis

so

lved

CO

2[m

ol/

L]

pH

T= 30C

60C

90C

120C

pH and Minerals

2 4 6 8 10 12

pH

Su

rface c

harg

e [

C/m

2]

0.2

0.1

0

-0.1

change in fabric

Stumm, 1992

TiO2

SiO2

pH

So

lub

ilit

y [

mm

ol/

L]

Fe(OH)3

Al2O3

Ti(OH)4

Fe(OH)2

CaCO3

Ca(OH)2 Mg(OH)2

Al2O3

Gidigasu, 1976

mineral dissolution

Summary: CO2 Geological Storage

More sustainable use of fossil fuels

PT: typically in supercritical regime

Liquid CO2 low viscosity invasion pattern?

low B, ’, el geophysical monitoring

Acidifies water surface charge (+) clay fabric in shale cap rock?

mineral dissolution stress field? permeability?

interfaces

BBC News In pictures Visions of Science.jpg

Surface Tension

Low P High P

CO2-H2O: Interfacial Interaction

(1) mutual diffusion of CO2-H2O (2) interfacial tension=f(P)

Surface Tension and Contact Angle

Water droplet in

CO2 gas

CO2 liquid

Surface Tension = f(P)

0

20

40

60

80

100

0 5 10 15 20

Inte

rfa

cia

l te

nsio

n

[mN

/m]

Pressure [MPa]

CO2 L-V boundary

at 298 Kat 295 K

Gaseous CO2 Liquid CO2

H2O-CO2

Interfacial Tension

30

72

water vapor

CO2gas

31 1

Ice

CH4hyd

CO2hyd

oil

34-46 CH4

gas

64

70 40 50 60

CO2liq

30 [mN/m]

water and …

Gasses Liquids

Solids

Increasing pressure

or density

VS LS

LV

q VS LS

LV

q

Mineral

Non-wetting droplet Wetting droplet

LV ↓ → θ ↑ LV ↓ → θ ↓

Mineral

Contact Angle LV

LSVScos

q

Contact Angle = f(Pgas) LV

LSVScos

q

Alveola size S

urf

ace tensio

n

Air

Other Effects - Surfactants

30 mN/m

hydrophobic hydrophilic

Surfactant Surface tension = f(pore size) S-u data interpretation

Pulmonary self-regulation:

2R nwP wP

q

q

cosR

2P

cosR2RPP 2

wnw

Capillary Pressure - Laplace

q

cosR

2P

rh

1lnTR

MP

TTP mm

q

r

LV

h

1lnTR

Mcos2R

TT

1cos2R

mm

wi

q

Characteristic curves u-S for: water -gas water-oil gas-oil

water-ice water-hydrate

Summary: Interfacial Phenomena

Interfacial tension: participating molecules and PT (or density)

Contact angle: varies with interfacial tensions

Implications: capillarity

characteristic curves

resource recovery

grains and pores

Critical fines

Content FC*

finecoarse

coarse

total

fine*

ee1

e

M

MFC

Grain Size Distribution: The Role of Fines

Sediment e1kPa FC*

Silt ~0.7 ~ 25 %

Kaolinite ~1.5 ~ 20 %

Illite ~3.7 ~ 11 %

Montmorillonite ~5.4 ~ 8 %

(for mechanical properties …)

Critical fines

Content FC*

Fines Migration and Clogging

fines migration

& clogging

Volout = 20cc Volout = 40cc Volout = 70cc Volout = 100cc

early Q after large Q

J. Valdez

Grains and Pores: Clays

L

dpore

t

s

poreS

e2d

'

1kPa ce e C log1kPa

Sediment compaction

Sediment e1kPa CC S [m2/g] mean dpore P [Mpa]

Silt ~0.7 0.02-0.09 0.045-1 5 m 0.05

Kaolinite ~1.5 0.19-0.3 10-20 0.5 m 0.5

Illite ~3.7 0.5-1.1 65-100 0.05 m 5

Montmorillonite ~5.4 1-2.6 300-780 0.005 m 50

MEAN PORE SIZE

@ ’=100 kPa LV=70 mN/m

0.01

0.10

1.00

10.00

100.00

0.10 1.00 10.00 100.00 1000.00

Mean of d [micron]

Sta

nd

ard

de

via

tio

n o

f d

[m

icro

n]

(σd/μd) σln(dpore)

d

d

0.4

Pore Size Distribution

Log (dpore/micron)

Network Models – Upscaling

Mass Balance at Nodes

c0 q

Poiseuille’s Eq. PL

Rq

8

4

a a c b b c r r c l l c0 P P P P P P P P

a a b b r r l l

c

a b r l

P P P PP

L

R

8

4

Pl

Pb

Pc

Pa

Pr

System of Equations

1B AP then P A B

COV(R2)=0.49 COV(R2)=1.26 COV(R2)=1.95 U

nc

orr

ela

ted

C

orr

ela

ted

Spatially Correlated Porosity

Log (dpore/micron)

log Nm

log

NC

4 -4 -8

-4

-8

4 Viscous

fingering

μdef » μinv

Stable

displacement

μdef « μinv

Capillary

fingering

v ≈ 0

Transition region

Lenormand et al. (1988) - S. Dai

5 10 15 20 25 30

5

10

15

20

25

30

log Nm = -4.2

log Nc = 0.2

5 10 15 20 25 30

5

10

15

20

25

30

log Nm = 1.8

log Nc = -8.5

5 10 15 20 25 30

5

10

15

20

25

30

log Nm = 1.8

log Nc = 3.2

Immiscible Fluids: Invading vs. Defending

q

cos

v3

F

FN inv

c

dC

def

invmN

invasion nucleation

Gas Invasion vs. & Gas Nucleation

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Gas r

eco

ve

ry e

ffic

ien

cy E

10%

5%

30%

Expansion factor β

20%

Sh

40%

15%

μ(Rp)= 1μm

Gas

Water

Pore

Throat

Characteristic Curve Recovery Efficiency

Methane Hydrates

Summary: Grains and Pores

CAUTION fines content !

Invasion pore size distribution and connectivity

patterns: flow velocity and rel. viscosities

Gas invasion Gas nucleation

similar characteristic curve

different relative permeabilities

Characteristic curve Recovery efficiency

positive feedback in coupled THCM processes localizations

Drainage

Pressure

transducer

Pressure

port

Microscope

/ Digital camera

100 mm

40

mm

Sediment

(water)

Invading

fluid (oil)

Forced Immiscible Fluid Invasion - Device

Time

Suction

wate

r co

nte

nt

a b c d e

a

b

c

d

e

Evolution

Forcing Gas Into Sediment

kaolin paste

internal heating

Internal Gas Generation

Ice Lenses

Ice Lens Formation Under Stress Boundary

Compression

Tension

Tension /

compression

Percussion Core - KUB

Hydrate lenses – Pressure cores

Tip Conditions e

SρP ss

Sediment in compression EVERYwhere

Gas-Driven Fracture

1.0 10 0.1

LOCALIZATION

Lenses

Fractures

Hyd.: lenses

INVASION

Fluid invasion

Crystal growth in pores

Hyd.: patchy saturation d'

2

N

F LVc

fine grained soils

low effective stress

coarse grained soils

high effective stress

Invasion vs. Localization

Acidification: Reactive Transport

rateDiffusion

rateAdvection

D

dvPe

rate Advection

Reaction

v

lαDa

rate

diffusion

dominant

advection

dominant

low reaction rate

Fredd & Fogler 1988, 1998

Fredd & Miller’s 2000

Golfier et al. 2002

10-4 10-3 10-2 101 102 103 104 10-1

103

102

101

10-1

10-2

10-3

10-4

10-4

Dissolution + k + q : Localized Flow

0.3

0.4

0.5

0.6

0.7

0 1000 2000

Time (sec)

La

tera

l s

tre

ss

co

eff

icie

nt,

k

0.00

0.02

0.04 Ve

rtic

al s

tra

in 90% glass bead + 10% NaCl

Dissolution ko

1km

250m

Cartwright (2005)

seabed

koka: Possible Shear Localization

Summary: Localizations

Fc/N explains hydrate formation habit

Various possible positive-feedbacks in coupled THCM

Fluid-driven fractures: desiccation cracks, gas or oil-driven

Lenses: ice, hydrate

Dissolution: Shear fractures in contraction, wormholes

May hinder long-term CO2 geological storage

Can be used to enhance recovery

In all cases: CAUTION

Closing Thoughts

Energy: critical to life

Energy geotechnology: fascinating BTHCEM coupled problems

Unsaturated soil mechanics: great framework but careful “extension”

Methane hydrates:

C-fuel + climate + hazard

Challenging: multi-physics, testing… production

CO2 geological storage = C-economy + climate change

Must be reliable in the long time scales

Complex geo-plumbing

Faustian bargain ?

Emergent phenomena & unanticipated coupled processes

Caution: positive feedback in coupled processes

Various localizations can be anticipated

J.W. Jung P. Taboada H. Shin N. Espinoza

F. Francisca J.Y. Lee A.I. Martin T.S. Yun D. Cortes T.H. Kwon

C.H. Lee S. Dai

C. Ruppel USGS

C Tsouris ORNL and team

M. Sanchez Texas A&M

G.C. Cho KAIST

K. Soga Cambridge U.

JS Lee Korea U.