ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter...

63
ENE 2XX: Renewable Energy Systems and Control LEC 05 : Case Study: Microgrid Planning & Control Professor Scott Moura University of California, Berkeley Summer 2017 Prof. Moura |Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 1

Transcript of ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter...

Page 1: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

ENE 2XX: Renewable Energy Systems and Control

LEC 05 : Case Study: Microgrid Planning & Control

Professor Scott MouraUniversity of California, Berkeley

Summer 2017

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 1

Page 2: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Outline

1 Microgrid Planning

2 Microgrid Control

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 2

Page 3: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Microgrids - A definition

U.S. DOE Microgrid Exchange Group:

group of interconnected loads & distributed energy resources (DERs)

clear electrical boundary w.r.t. grid

can connect and disconnect from grid

Basic components of a microgrid:

Generation: solar, wind, fuel cell, diesel generator, etc.

Loads: lighting, heating, A/C, etc.

Storage: batteries, supercaps, flywheels, thermal, hydraulic

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 3

Page 4: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Microgrid Configuration

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 4

Page 5: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 5

Page 6: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Oakland EcoBlock

28 buildings, 110+ inhabitants, mixed ethnicity & economic levels

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 6

Page 7: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Problem Statement

Objective: Optimize size of solar PV and energy storage

Given:

Historical electricity loads

Forecast of potential PV generation

Electricity tariff (i.e. cost) structure

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 7

Page 8: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Problem Formulation

minimize cb · b + cs · s +N∑

k=0

cG(k) · G(k) CAPEX + OPEX (1)

subject to: s · S(k) + Bd(k) − Bc(k) + G(k) = L(k) Power balance (2)

E(k + 1) = E(k) +

[ηcBc(k) − 1

ηdBd(k)

]∆t battery dynamics (3)

0 ≤ E(k) ≤ b · Emax battery energy limits (4)

0 ≤ Bc(k) ≤ b · Bmax, 0 ≤ Bd(k) ≤ b · Bmax battery power limits (5)

− Gmax ≤ G(k) ≤ Gmax grid power limits (6)

smin ≤ s ≤ smax, bmin ≤ b ≤ bmax solar, batt scale limits (7)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 8

Page 9: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Table: Notation and Parameter Values

Variable Value Units Descriptions,b optimize [-] Scale factors for solar size, battery sizeS(k) data provided [kW] Power generated from solarBd(k),Bc(k) optimize [kW] Batt charge / discharge powerG(k) optimize [kW] Power imported from gridL(k) data provided [kW] Power load of buildingE(k) optimize [kWh] Energy level of batterycb find [USD/kWh] Marginal levelized cost of scaling battcs find [USD/kW] Marginal levelized cost of scaling solarcG(k) data provided [USD/kW] Time-of-use cost of grid-imported power∆t 1 [hr] Time stepηc, ηd 0.9 [-] Battery charge, discharge efficiencyEmax 400 [kWh] Nominal battery energy capacityBmax 100 [kW] Nominal battery power capacityGmax 400 [kW] Maximum grid power (import & export)smin, smax [0,1] [-] Solar scale limitsbmin,bmax [0,5] [-] Battery scale limits

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 9

Page 10: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Program Reduction

Eliminate G(k) using G(k) = L(k) − s · S(k) − Bd(k) + Bc(k)

minimize cb · b + cs · s +N∑

k=0

cG(k) · [L(k) − s · S(k) − Bd(k) + Bc(k)] (8)

subject to: E(k + 1) = E(k) +

[ηcBc(k) − 1

ηdBd(k)

]∆t (9)

0 ≤ E(k) ≤ b · Emax (10)

0 ≤ Bc(k) ≤ b · Bmax, 0 ≤ Bd(k) ≤ b · Bmax (11)

− Gmax ≤ L(k) − s · S(k) − Bd(k) + Bc(k) ≤ Gmax (12)

smin ≤ s ≤ smax, bmin ≤ b ≤ bmax (13)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 10

Page 11: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Uncertain Load and Solar

Optimization variables are b, s,E(k),Bd(k),Bc(k). We still have a LP. In (8)and (12), the red vars denote random quantities: load L(k), solar power S(k).

Assume L(k),S(k) are independent Gaussian random variables:

L(k) ∼ N(L(k), σ2

L (k))

(14)

S(k) ∼ N(S(k), σ2

S(k))

(15)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 11

Page 12: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - I

Focus on (12) which includes random variables L(k),S(k). Relax into chanceconstraint:

Pr (L(k)− s · S(k) ≤ Bd(k)− Bc(k) + Gmax) ≥ α (16)

To express as second order cone constraint, let u = L(k)− s · S(k) with meanu = L(k)− s · S(k) and variance σ2

u = σ2L (k) + s2σ2

S(k). Then we can re-writeas

Pr

(u− u

σu≤ Bd(k)− Bc(k) + Gmax − u

σu

)≥ α (17)

Note (u− u)/σu is a zero mean, unit variance Gaussian random variable.The probability in (17) is given by normal CDF function

Φ

(Bd(k)− Bc(k) + Gmax − u

σu

)≥ α, where Φ(z) =

−1√2π

∫ z

−∞e−t

2/2dt

(18)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 12

Page 13: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - I

Focus on (12) which includes random variables L(k),S(k). Relax into chanceconstraint:

Pr (L(k)− s · S(k) ≤ Bd(k)− Bc(k) + Gmax) ≥ α (16)

To express as second order cone constraint, let u = L(k)− s · S(k) with meanu = L(k)− s · S(k) and variance σ2

u = σ2L (k) + s2σ2

S(k). Then we can re-writeas

Pr

(u− u

σu≤ Bd(k)− Bc(k) + Gmax − u

σu

)≥ α (17)

Note (u− u)/σu is a zero mean, unit variance Gaussian random variable.The probability in (17) is given by normal CDF function

Φ

(Bd(k)− Bc(k) + Gmax − u

σu

)≥ α, where Φ(z) =

−1√2π

∫ z

−∞e−t

2/2dt

(18)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 12

Page 14: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - I

Focus on (12) which includes random variables L(k),S(k). Relax into chanceconstraint:

Pr (L(k)− s · S(k) ≤ Bd(k)− Bc(k) + Gmax) ≥ α (16)

To express as second order cone constraint, let u = L(k)− s · S(k) with meanu = L(k)− s · S(k) and variance σ2

u = σ2L (k) + s2σ2

S(k). Then we can re-writeas

Pr

(u− u

σu≤ Bd(k)− Bc(k) + Gmax − u

σu

)≥ α (17)

Note (u− u)/σu is a zero mean, unit variance Gaussian random variable.The probability in (17) is given by normal CDF function

Φ

(Bd(k)− Bc(k) + Gmax − u

σu

)≥ α, where Φ(z) =

−1√2π

∫ z

−∞e−t

2/2dt

(18)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 12

Page 15: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - II

Consequently, (17) can be expressed as

u + Φ−1(α) · σu ≤ Bd(k)− Bc(k) + Gmax (19)

Replacing mean u = L(k)− s · S(k) and variance σ2u = σ2

L (k) + s2σ2S(k) we get

L(k)− s · S(k) + Φ−1(α) ·√σ2L (k) + s2σ2

S(k) ≤ Bd(k)− Bc(k) + Gmax (20)

Rearranging this expression and assuming Φ−1(α) > 0 (i.e. α > 0.5), weget a second order cone constraint with respect to optimization variabless,Bd(k),Bc(k):√

σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[s · S(k) + Bd(k)− Bc(k)− L(k) + Gmax

](21)

An identical process applied to lower bound in (12) yields√σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[−s · S(k)− Bd(k) + Bc(k) + L(k) + Gmax

](22)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 13

Page 16: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - II

Consequently, (17) can be expressed as

u + Φ−1(α) · σu ≤ Bd(k)− Bc(k) + Gmax (19)

Replacing mean u = L(k)− s · S(k) and variance σ2u = σ2

L (k) + s2σ2S(k) we get

L(k)− s · S(k) + Φ−1(α) ·√σ2L (k) + s2σ2

S(k) ≤ Bd(k)− Bc(k) + Gmax (20)

Rearranging this expression and assuming Φ−1(α) > 0 (i.e. α > 0.5), weget a second order cone constraint with respect to optimization variabless,Bd(k),Bc(k):√

σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[s · S(k) + Bd(k)− Bc(k)− L(k) + Gmax

](21)

An identical process applied to lower bound in (12) yields√σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[−s · S(k)− Bd(k) + Bc(k) + L(k) + Gmax

](22)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 13

Page 17: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - II

Consequently, (17) can be expressed as

u + Φ−1(α) · σu ≤ Bd(k)− Bc(k) + Gmax (19)

Replacing mean u = L(k)− s · S(k) and variance σ2u = σ2

L (k) + s2σ2S(k) we get

L(k)− s · S(k) + Φ−1(α) ·√σ2L (k) + s2σ2

S(k) ≤ Bd(k)− Bc(k) + Gmax (20)

Rearranging this expression and assuming Φ−1(α) > 0 (i.e. α > 0.5), weget a second order cone constraint with respect to optimization variabless,Bd(k),Bc(k):√

σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[s · S(k) + Bd(k)− Bc(k)− L(k) + Gmax

](21)

An identical process applied to lower bound in (12) yields√σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[−s · S(k)− Bd(k) + Bc(k) + L(k) + Gmax

](22)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 13

Page 18: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Chance Constraints - II

Consequently, (17) can be expressed as

u + Φ−1(α) · σu ≤ Bd(k)− Bc(k) + Gmax (19)

Replacing mean u = L(k)− s · S(k) and variance σ2u = σ2

L (k) + s2σ2S(k) we get

L(k)− s · S(k) + Φ−1(α) ·√σ2L (k) + s2σ2

S(k) ≤ Bd(k)− Bc(k) + Gmax (20)

Rearranging this expression and assuming Φ−1(α) > 0 (i.e. α > 0.5), weget a second order cone constraint with respect to optimization variabless,Bd(k),Bc(k):√

σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[s · S(k) + Bd(k)− Bc(k)− L(k) + Gmax

](21)

An identical process applied to lower bound in (12) yields√σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[−s · S(k)− Bd(k) + Bc(k) + L(k) + Gmax

](22)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 13

Page 19: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

SOCP Formulation

To summarize, we converted a stochastic LP into SOCP:

minimize cb · b + cs · s +N∑

k=0

cG(k) · [L(k) − s · S(k) − Bd(k) + Bc(k)] (23)

subject to: E(k + 1) = E(k) +

[ηcBc(k) − 1

ηdBd(k)

]∆t (24)

0 ≤ E(k) ≤ b · Emax (25)

0 ≤ Bc(k) ≤ b · Bmax, 0 ≤ Bd(k) ≤ b · Bmax (26)√σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[s · S(k) + Bd(k) − Bc(k) − L(k) + Gmax

](27)√

σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[−s · S(k) − Bd(k) + Bc(k) + L(k) + Gmax

](28)

smin ≤ s ≤ smax, bmin ≤ b ≤ bmax (29)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 14

Page 20: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

SOCP Formulation w/ Expected Operating Cost

Random vars still exist in the objective fcn. Take the expectation.

minimize cb · b + cs · s +N∑

k=0

cG(k) ·[L(k) − s · S(k) − Bd(k) + Bc(k)

](30)

subject to: E(k + 1) = E(k) +

[ηcBc(k) − 1

ηdBd(k)

]∆t (31)

0 ≤ E(k) ≤ b · Emax (32)

0 ≤ Bc(k) ≤ b · Bmax, 0 ≤ Bd(k) ≤ b · Bmax (33)√σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[s · S(k) + Bd(k) − Bc(k) − L(k) + Gmax

](34)√

σ2S(k) · s2 + σ2

L (k) ≤ 1

Φ−1(α)

[−s · S(k) − Bd(k) + Bc(k) + L(k) + Gmax

](35)

smin ≤ s ≤ smax, bmin ≤ b ≤ bmax (36)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 15

Page 21: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Possible Extensions

Demand charges, i.e. costs associated with the maximum grid powercD ·maxk G(k)

Transformer sizing, i.e. add transformer cost to the objective functionand scale the grid power limits

EV charging, i.e. a load C(k) which is flexible subject to deliveringsufficient energy by a certain deadline

Islanded operation, i.e. optimize PV and storage size while ensuring atleast 72 hours of islanded operation (G(k) = 0)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 16

Page 22: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Outline

1 Microgrid Planning

2 Microgrid Control

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 17

Page 23: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Motivation for Model Predictive Control (MPC)

What we learned so far: Optimization

Uses mathematical model.

Optimizes performance over finite-time horizon.

SDP models stochastic process as Markov chain.

Generates optimal control policy.

Some Questions/Gaps:

Model uncertainty?

Time horizon for my application is VERY long.

I want to forecast inputs with ML, instead of probability distributions

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 18

Page 24: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

What is MPC?

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 19

Page 25: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

What is MPC?

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 19

Page 26: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

What is MPC?

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 19

Page 27: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Applications of MPC

Like Playing Chess!

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 20

Page 28: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Applications of MPC

Building Energy Management

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 20

Page 29: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Applications of MPC

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 20

Page 30: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Receding Horizon Philosophy

- At time t: Solve optimal control problem over a finite future horizon of Nsteps:

minimizeut,··· ,ut+N−1

N−1∑k=0

ct+k(xt+k,ut+k) + ct+N(xt+N),

subject to xt+(k+1) = f(xt+k,ut+k), k = 0, · · · ,N− 1

xt = x(t), [Measurement of States]

umin ≤ ut+k ≤ umax

xmin ≤ xt+k ≤ xmax

[HINT:] Can use DP, NLP, CP, SOCP, QP, LP...

- Only apply the first optimal move: u∗(t) = u∗k

- At time t + 1: Get new measurements, repeat the optimization...

Advantage of repeated online optimization: FEEDBACK!

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 21

Page 31: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Receding Horizon Philosophy

Advantage of repeated online optimization: FEEDBACK!

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 21

Page 32: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Learn more about MPC

Take ME 231A - Experiential Advanced Control Design

Read: Model Predictive Control, E. F. Camacho and C. Bordons, Springer,2007

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 22

Page 33: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

SMART HOME ENERGYMANAGEMENT

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 23

Page 34: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

The Building Solar+Storage Problem

Needs: Optimally manage energy flow between loads, solar, and storage.

Reality: Current controls are mostly heuristic - no models, no data.

Some Motivating Facts

Policy 50% renewables in CA by 2030, 100% in Hawaii by 2045

Climate 2011 Tsunami in Japan→ energy security and reliability

Costs Li-ion battery pack costs decreasing toward 125 USD/kWh

Data Over 50M (43%) of US homes have smart meters

Hybrid Vehicles

Photovoltaics/Grid↔ Engine

Home Demand↔ Driver Power Demand

Battery Storage↔ Battery Storage

PunchlineApply & Extend ∼10 years of HEV Energy Management

Control Research to Building Solar+Storage

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 24

Page 35: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

The Building Solar+Storage Problem

Needs: Optimally manage energy flow between loads, solar, and storage.

Reality: Current controls are mostly heuristic - no models, no data.

Some Motivating Facts

Policy 50% renewables in CA by 2030, 100% in Hawaii by 2045

Climate 2011 Tsunami in Japan→ energy security and reliability

Costs Li-ion battery pack costs decreasing toward 125 USD/kWh

Data Over 50M (43%) of US homes have smart meters

Hybrid Vehicles

Photovoltaics/Grid↔ Engine

Home Demand↔ Driver Power Demand

Battery Storage↔ Battery Storage

PunchlineApply & Extend ∼10 years of HEV Energy Management

Control Research to Building Solar+Storage

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 24

Page 36: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

The Building Solar+Storage Problem

Needs: Optimally manage energy flow between loads, solar, and storage.

Reality: Current controls are mostly heuristic - no models, no data.

Some Motivating Facts

Policy 50% renewables in CA by 2030, 100% in Hawaii by 2045

Climate 2011 Tsunami in Japan→ energy security and reliability

Costs Li-ion battery pack costs decreasing toward 125 USD/kWh

Data Over 50M (43%) of US homes have smart meters

Hybrid Vehicles

Photovoltaics/Grid↔ Engine

Home Demand↔ Driver Power Demand

Battery Storage↔ Battery Storage

PunchlineApply & Extend ∼10 years of HEV Energy Management

Control Research to Building Solar+Storage

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 24

Page 37: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

The Building Solar+Storage Problem

Needs: Optimally manage energy flow between loads, solar, and storage.

Reality: Current controls are mostly heuristic - no models, no data.

Some Motivating Facts

Policy 50% renewables in CA by 2030, 100% in Hawaii by 2045

Climate 2011 Tsunami in Japan→ energy security and reliability

Costs Li-ion battery pack costs decreasing toward 125 USD/kWh

Data Over 50M (43%) of US homes have smart meters

Hybrid Vehicles

Photovoltaics/Grid↔ Engine

Home Demand↔ Driver Power Demand

Battery Storage↔ Battery Storage

PunchlineApply & Extend ∼10 years of HEV Energy Management

Control Research to Building Solar+Storage

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 24

Page 38: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Residential Buildings with Solar & Storage

Cloud

with information,

algorithms ...Photovoltaic

Arrays

Utility

Grid

Controller &

Converters

Battery

Load

Demand

BatteryPower

Electronic

PV

ArraysDC/DC

DC Bus AC Bus

AC Loads

DC Loads

Utility

Grid

DC/AC

(b)

(a)

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 25

Page 39: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Predictive Controller with Load/Weather Forecasting

Smart  Home  nGrid  

Predic0ve  Controller  

PV  Model  

Load  Forecaster  

S   T   Pdem  Hour  of  day   Day  of  

Week  

SOC  

Pdem  PPV  

PbaB  

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 26

Page 40: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Single-Family Home Energy Patterns in LA

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

0.5

1

1.5

2

2.5

3

3.5

4

Month

Ele

ctric

ityiL

oadi

HkW

Y

HourlyiLoadDailyiLoadMonthlyiLoadYeariAverage

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 27

Page 41: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Single-Family Home Energy Patterns in LA

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 27

Page 42: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Single-Family Home Energy Patterns in LA

12 14 16 18 20 22 240.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

WeeklyLAverageLTemperatureL(°C)

Wee

klyL

Ave

rage

LLoa

dL(k

W)

Noise

LoadLvs.LTempFitLResult

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 27

Page 43: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Artificial Neural Network (ANN)

w

w

w

······

···

····

··

X

H(X,C,σ)

Y=P dem

Ta

Dw

Td

Lh

Future load

demand.

Input Layer Hidden Layer Output Layer

Y = fANN(X), X = [Ta,Dw, Td, Lh] , Y = [Lk+1, · · · , Lk+m]

Y = fANN(X) =N∑i=1

ai · Hi (‖X − Ci‖)

Hi (‖X − Ci‖) = exp

[− 1

2σi2‖X − Ci‖2

]Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 28

Page 44: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Short-term Forecast of Home Load

10

20

30

° C

0 3 6 9 12 15 18 210

1

2

3

HourAofADayAonA2013 09 15 Tuesday

Load

AbkW

)

10

20

30

0 3 6 9 12 15 18 210

1

2

3

Hour of Day on 2013 12 06 Friday

AirATemperautreAonA09 15

RealALoadForecastAL

AirATemperautreAonA12 06

ba)-1

ba)-2

bb)-1

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 29

Page 45: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Short-term Forecast of Home Load

0 0y2 0y4 0y6 0y8 1 1y20

0y2

0y4

0y6

0y8

1

RMSE

Em

piric

altC

DF

24 21 18 15 12 9 6 3 00y4

0y43

0y46

0y49

0y52

InputtHistoricaltLoadtLength

Ave

rage

tRM

SE

RMSEtcdftoftLAtDataRMSEtcdftoftBerkeleytData

haA

hbA

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 29

Page 46: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Battery and Photovoltaic Cell Models

battery

d

dtSOC(t) = − Ibatt(t)

Q,

Pbatt(t) = VocIbatt(t)− I2batt(t)Rin,

(a)

(b)

(c)

OCV-R

OCV-R-RC

Impedance

X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit modelsfor Li-ion batteries,” Journal of Power Sources, vol. 198, pp. 359-367, 2012.

photovoltaics

Vd = Vcell + IpvRs,

I = Isc − Is

[e

(qVd

AkTpv(t) ) − 1

]− Vd

Rp,

Is = Is,r

(Tpv(t)

Tr

)3

eqEbgAk

(1Tr− 1

Tpv(t)

),

Isc = [Isc,r + KI(Tpv(t)− Tr)]Spv(t)

1000,

Ppv(t) = ncellVcell(t)I(t)

Isc Vd

+

-

Rp

Rs

Vcell

+

-

I

S

G. Vachtsevanos and K. Kalaitzakis, “A hybrid photovoltaic simulator for utility inter-active studies,” IEEE Transactions on Energy Conversion, no. 2, pp. 227-231, 1987.

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 30

Page 47: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Internet-based Data Feeds

Smart  Home  nGrid  

Predic0ve  Controller  

PV  Model  

Load  Forecaster  

S   T   Pdem  Hour  of  day   Day  of  

Week  

SOC  

Pdem  PPV  

PbaB  

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 31

Page 48: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Internet-based Data Feeds

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 31

Page 49: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Internet-based Data Feeds

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 31

Page 50: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Cloud-Enabled Control

Smart  Home  nGrid  

Predic0ve  Controller  

PV  Model  

Load  Forecaster  

S   T   Pdem  Hour  of  day   Day  of  

Week  

SOC  

Pdem  PPV  

PbaB  

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 32

Page 51: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Nonlinear MPC Formulation

minimize Jk =

∫ (k+Hp)∆t

k∆t[λ1celecPrice(t)G(t) + λ2cCO2(t)G(t)] dt,

subject tod

dtSOC(t)=− Ibatt(t)

Q, [Battery]

0=Voc(SOC)Ibatt(t)− I2batt(t)Rin − B(t),

0 = hPV(P(t),S(t), T(t)), [Photovoltaic]

0 = G(t) + ηddηdaP(t) + ηdaB(t)− L(t), [Pwr Balance]

SOCmin ≤ SOC(t) ≤ SOCmax, Iminbatt ≤ Ibatt(t) ≤ Imax

batt ,

Bmin ≤ B(t) ≤ Bmax, Gmin ≤ G(t) ≤ Gmax,

d̂ ((k + n)∆t)=fforecast(d(k∆t), · · · ,d((k − Hh)∆t)), n = 1, · · · ,Hp

‘state’ = SOC(t), ‘control’ = G(t),B(t), ‘exo. input’ = [L(t),S(t), T(t)]T

∆t = 1 hr, Hp = 6 hrs, Hh = 6 hrsSolved via Dynamic Programming

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 33

Page 52: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Nonlinear MPC Formulation

minimize Jk =

∫ (k+Hp)∆t

k∆t[λ1celecPrice(t)G(t) + λ2cCO2(t)G(t)] dt,

subject tod

dtSOC(t)=− Ibatt(t)

Q, [Battery]

0=Voc(SOC)Ibatt(t)− I2batt(t)Rin − B(t),

0 = hPV(P(t),S(t), T(t)), [Photovoltaic]

0 = G(t) + ηddηdaP(t) + ηdaB(t)− L(t), [Pwr Balance]

SOCmin ≤ SOC(t) ≤ SOCmax, Iminbatt ≤ Ibatt(t) ≤ Imax

batt ,

Bmin ≤ B(t) ≤ Bmax, Gmin ≤ G(t) ≤ Gmax,

d̂ ((k + n)∆t)=fforecast(d(k∆t), · · · ,d((k − Hh)∆t)), n = 1, · · · ,Hp

‘state’ = SOC(t), ‘control’ = G(t),B(t), ‘exo. input’ = [L(t),S(t), T(t)]T

∆t = 1 hr, Hp = 6 hrs, Hh = 6 hrsSolved via Dynamic Programming

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 33

Page 53: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Nonlinear MPC Formulation

minimize Jk =

∫ (k+Hp)∆t

k∆t[λ1celecPrice(t)G(t) + λ2cCO2(t)G(t)] dt,

subject tod

dtSOC(t)=− Ibatt(t)

Q, [Battery]

0=Voc(SOC)Ibatt(t)− I2batt(t)Rin − B(t),

0 = hPV(P(t),S(t), T(t)), [Photovoltaic]

0 = G(t) + ηddηdaP(t) + ηdaB(t)− L(t), [Pwr Balance]

SOCmin ≤ SOC(t) ≤ SOCmax, Iminbatt ≤ Ibatt(t) ≤ Imax

batt ,

Bmin ≤ B(t) ≤ Bmax, Gmin ≤ G(t) ≤ Gmax,

d̂ ((k + n)∆t)=fforecast(d(k∆t), · · · ,d((k − Hh)∆t)), n = 1, · · · ,Hp

‘state’ = SOC(t), ‘control’ = G(t),B(t), ‘exo. input’ = [L(t),S(t), T(t)]T

∆t = 1 hr, Hp = 6 hrs, Hh = 6 hrsSolved via Dynamic Programming

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 33

Page 54: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Nonlinear MPC Formulation

minimize Jk =

∫ (k+Hp)∆t

k∆t[λ1celecPrice(t)G(t) + λ2cCO2(t)G(t)] dt,

subject tod

dtSOC(t)=− Ibatt(t)

Q, [Battery]

0=Voc(SOC)Ibatt(t)− I2batt(t)Rin − B(t),

0 = hPV(P(t),S(t), T(t)), [Photovoltaic]

0 = G(t) + ηddηdaP(t) + ηdaB(t)− L(t), [Pwr Balance]

SOCmin ≤ SOC(t) ≤ SOCmax, Iminbatt ≤ Ibatt(t) ≤ Imax

batt ,

Bmin ≤ B(t) ≤ Bmax, Gmin ≤ G(t) ≤ Gmax,

d̂ ((k + n)∆t)=fforecast(d(k∆t), · · · ,d((k − Hh)∆t)), n = 1, · · · ,Hp

‘state’ = SOC(t), ‘control’ = G(t),B(t), ‘exo. input’ = [L(t),S(t), T(t)]T

∆t = 1 hr, Hp = 6 hrs, Hh = 6 hrsSolved via Dynamic Programming

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 33

Page 55: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Nonlinear MPC Formulation

minimize Jk =

∫ (k+Hp)∆t

k∆t[λ1celecPrice(t)G(t) + λ2cCO2(t)G(t)] dt,

subject tod

dtSOC(t)=− Ibatt(t)

Q, [Battery]

0=Voc(SOC)Ibatt(t)− I2batt(t)Rin − B(t),

0 = hPV(P(t),S(t), T(t)), [Photovoltaic]

0 = G(t) + ηddηdaP(t) + ηdaB(t)− L(t), [Pwr Balance]

SOCmin ≤ SOC(t) ≤ SOCmax, Iminbatt ≤ Ibatt(t) ≤ Imax

batt ,

Bmin ≤ B(t) ≤ Bmax, Gmin ≤ G(t) ≤ Gmax,

d̂ ((k + n)∆t)=fforecast(d(k∆t), · · · ,d((k − Hh)∆t)), n = 1, · · · ,Hp

‘state’ = SOC(t), ‘control’ = G(t),B(t), ‘exo. input’ = [L(t),S(t), T(t)]T

∆t = 1 hr, Hp = 6 hrs, Hh = 6 hrsSolved via Dynamic Programming

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 33

Page 56: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Model Predictive Control w/ Cloud-enabled Forecasts

0f40f60f8

1

SO

C

2

0

2

4

Pow

er7y

kWG

Monf Tuef Wedf Thuf Frif Satf Sunf15161718

Cen

ts&k

Wh

Load7DemandPV7PowerBattery7PowerGrid7Power

Electric7Rate7from7PGVE

Optimize for Grid Electricity Cost

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 34

Page 57: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Model Predictive Control w/ Cloud-enabled Forecasts

0I40I60I8

1

SO

C

2

0

2

4

Pow

ergG

kWb

MonI TueI WedI ThuI FriI SatI SunI0I4

0I450I5

0I55

kg/k

Wh

LoadgDemandPVgPowerBatterygPowerGridgPower

CarbongEmissiongfromgCAISO

Optimize for Marginal CO2 Produced from Power Plants

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 34

Page 58: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Control Horizon Length?Short-Term Greedy vs. Long-Term Planning

1 5 9 13 17 21 2555

60

65

70

75

80

85

90

95

100

105

Control Horizon Length (Hour)

Nor

mal

ized

Cos

t (%

)

MPC with PB

Without PBLower bound

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 35

Page 59: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Load Forecasting - how accurate is accurate enough?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

62

64

66

68

70

72

LoadiDemandiForecastiRMSE (kW)

Nor

mal

ized

iCos

tip)

UDPiOptimalUniformiDistributionRBF−NNiResult

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 36

Page 60: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Battery Health Aware

minimize Jk =

∫ (k+Hp)∆t

k∆t[λ · cElecPrice(u, t) + (1− λ) · Qloss(u)]2 dt

J.Wang, et al., Journal of PowerSources (2010), doi:10.1016/j.jpowsour.2010.11.134

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 37

Page 61: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Battery Health Aware

70 75 80 85 90 95 100 105 1100

0.2

0.4

0.6

0.8

1

1.2

Monthly Electric Cost (USD)

Mon

thly

Bat

tery

Cap

acity

Los

s (%

) λ=1, Electric Cost Emphasis

Battery Health

Emphasis, λ=0

λ=0.89

λ=0.45

Utopia

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 37

Page 62: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Battery Health Aware

0.3 0.45 0.6 0.75 0.9−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Battery SOC

Cel

l C−

rate

(a)

Off−peak On−peak0

50

100

150

200

250

300

350

400

450

Period

Cum

ulat

ive

Grid

Pow

er (

kW)

(b)λ=1λ=0.83λ=0

λ=1λ=0.83λ=0

C. Sun, F. Sun, S. J. Moura, “Nonlinear predictive energy management of residential buildings withphotovoltaics & batteries” Journal of Power Sources. Sept 2016, DOI: 10.1016/j.jpowsour.2016.06.076

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 37

Page 63: ENE 2XX: Renewable Energy Systems and Control - Microgrids.pdf · Table:Notation and Parameter Values Variable Value Units Description s;b optimize [-] Scale factors for solar size,

Excited about this research?Reading Materials

C. Sun, F. Sun, S. J. Moura, “Nonlinear predictive energy management ofresidential buildings with photovoltaics & batteries” Journal of Power Sources.Sept 2016, DOI: 10.1016/j.jpowsour.2016.06.076

X. Wu, X. Hu, S. J. Moura, X. Yin, V. Picket, “Stochastic Control of Smart HomeEnergy Management with PEV Energy Storage and Photovoltaic Array,” Journalof Power Sources, Nov 2016. DOI: 10.1016/j.jpowsour.2016.09.157

X. Wu, S. J. Moura, X. Hu, X. Yin, “Stochastic Optimal Energy Management ofSmart Home with PEV Energy Storage,” to appear in IEEE Transactions on SmartGrid. DOI: 10.1109/TSG.2016.2606442

E. Burger, S. J. Moura, “Gated Ensemble Learning Method for Demand-SideElectricity Load Forecasting,” Energy and Buildings, Dec 2015. DOI:10.1016/j.enbuild.2015.10.019.

E. Burger, S. J. Moura, “Building Electricity Load Forecasting via StackingEnsemble Learning Method with Moving Horizon Optimization,” eScholarship,Dec 2015. http://escholarship.org/uc/item/6jc7377f.

Prof. Moura | Tsinghua-Berkeley Shenzhen Institute ENE 2XX | LEC 05 - Microgrids Slide 38