Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek...

24
Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1 , J.Ahn 1 , A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    215
  • download

    0

Transcript of Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek...

Page 1: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Embedded DRAMfor a Reconfigurable Array

S.Perissakis, Y.Joo1, J.Ahn1,

A.DeHon, J.Wawrzynek

University of California, Berkeley1LG Semicon Co., Ltd

Page 2: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Outline

• Reconfigurable architecture overview• Motivation for on-chip DRAM• Configurable Memory Block (CMB)• Evaluation• Conclusion

Page 3: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Long Term Architecture Goal

• On-chip CPU• LUT-based compute pages• DRAM memory pages• Fat pyramid network

fat tree + shortcuts

CPU

Page 4: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Long Term Architecture Goal

• On-chip CPU• LUT-based compute pages• DRAM memory pages• Fat pyramid network

fat tree + shortcuts

CPU

Page 5: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Long Term Architecture Goal

• On-chip CPU• LUT-based compute pages• DRAM memory pages• Fat pyramid network

fat tree + shortcuts

CPU

Page 6: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Long Term Architecture Goal

• On-chip CPU• LUT-based compute pages• DRAM memory pages• Fat pyramid network

fat tree + shortcuts

CPU

Page 7: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Long Term Architecture Goal

CPU CPU

K e r n e l 1 K e r n e l 2Reconfigure

( p r o d u c e r ) ( c o n s u m e r )

Page 8: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Motivation

– Stream buffersReduce reconfiguration frequency

– Configuration memorySpeed up reconfiguration

– Application memorySpeed up individual kernels

Need large on-chip memory for:

Page 9: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Challenges

• Harder to use– Row/Col accesses & variable latency– Refresh

• Lower performance– Increased access latency

Q: Is it worth the trouble ?

DRAM offers increased density (10X to 20X that of SRAM), but:

Page 10: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Trumpet test chip

CPU

Trumpet

• One compute page• One memory page• Corresponding

fraction of network

Page 11: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

CMB Functions

• Configuration source• State source/sink• Data store• Input/output

Page 12: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

CMB Overview

StallBuffers

RetimingRegisters

Address &Data Xbars

RateMatching

CMB Controller

DRAM Macro

DQ[127:0]

[127

:0]

[63:

0]

Ctl[1:0] Addr[17:0]

Addr[9:0]Ctl[1:0]

Tree[159:0]

Short[159:0]

Cmd

From computepage

From host

Page 13: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

DRAM Macro

• 0.25µm, 4 metal eDRAM process• 1 to 8 Mbits (2 Mbits in test chip)• 128-bit wide SDRAM interface• Up to 125 MHz clock 2 GB/s peak B/W• 36ns/12ns row/col latencies• Row buffers to hide precharge & refresh

Designed by LG Semicon

Page 14: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

SRAM Abstraction

• SRAM-like interfaceReq, R/W, Address, Data

• Row buffers simple direct-mapped cache• 6-cycle minimum latency, pipelined• Misses handled by logic stalls• 10-cycle miss latency “hidden” from logic

Page 15: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Stalls

• Stall sources:– Row buffer miss (10 cycles)– Write after read (4 cycles)– DRAM/logic clock alignment (1 cycle)– Refresh (Halt from host)

• Multicycle stall distribution

Page 16: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Stall Buffers

• Memory page is never stalled– Must buffer read data during stall– Must buffer requests during stall distribution

InputStall Buf

Stall BufOutput

DRAM macro

User logic

CMBlogic

Page 17: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Trumpet Test Chip

• 0.25 DRAM, 0.4 logic• 2 Mbits + 64 LUTs• 125 MHz operation• 1 GB/sec peak bandwidth• 10 sec reconfiguration• 10 x 5 mm2 die• 1 W @ 125 MHz

Page 18: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

CMB Area Breakdown

• 13.95 mm2 total• 2 Mbits capacity

147 Kbits/mm2

average density

Compare to 700-900 Kbits/mm2 commodity DRAM

DR

AM

Mac

roC

MB

Log

ic

Page 19: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Using a Custom Macro

• Existing:– 13.95 mm2

– 147 Kbits/mm2

• Custom:– 9.4 mm2

– 218 Kbits/mm20

2

4

6

8

10

12

14

16

Current Custom

Are

a,

mm

^2

DRAM core DRAM datapath

SDRAM controller Fuse

CMB datapath CMB controller

Clock buffer Misc

Page 20: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Comparison to SRAM CMB

• DRAM (custom macro) 218 Kb/mm2

• SRAM (equal area) 25 Kb/mm2

With typical SRAM core densities and: No stall buffers Simplified controller

Close to 1 order of magnitude density advantage for DRAM

Page 21: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Performance

• Configuration / state swap: peak 1 GB/s • User accesses: dependent on access

patterns– Peak if high locality– Near peak for sequential patterns (62-93%)– Column latency exposed when dependencies

exist, or on mixed R/W– Row latency exposed on random accesses

Page 22: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Performance (example)

Row

8

8 Input imageScanline order

8x8 DCT block1 Kbit = 1 DRAM row

Column

Row: ~ 4 misses / DCT block

Col: 2 misses / DCT block

73% efficiency

Page 23: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Refresh Overhead

• 8 to 16 ms retention time expected• 2.5% to 5.0% bandwidth loss• Can reduce by refreshing only active part of

memory• May skip refresh for short-lived data

Page 24: Embedded DRAM for a Reconfigurable Array S.Perissakis, Y.Joo 1, J.Ahn 1, A.DeHon, J.Wawrzynek University of California, Berkeley 1 LG Semicon Co., Ltd.

Conclusion• Q: Is on-chip DRAM advantageous to SRAM ?• Our experience so far:

– User-friendly abstraction possible– Can maintain density advantage– Effect on application performance:

» Large buffer space less frequent reconfiguration» High bandwidth faster reconfiguration» Effect on individual kernels often limited by DRAM core

latency