Elektrische Maschinen mit der ANSYS Maxwell Suite...• Quick model generation for Maxwell2D, 3D,...

31
© 2011 ANSYS, Inc. September 14, 2018 1 Elektrische Maschinen mit der ANSYS Maxwell Suite Gerd Prillwitz, ANSYS, Otterfing Design elektrischer Maschinen

Transcript of Elektrische Maschinen mit der ANSYS Maxwell Suite...• Quick model generation for Maxwell2D, 3D,...

© 2011 ANSYS, Inc. September 14, 2018

1

Elektrische Maschinen mit der ANSYS Maxwell Suite

Gerd Prillwitz, ANSYS, Otterfing

Design elektrischer Maschinen

© 2011 ANSYS, Inc. September 14, 2018

2

Motivation

Reduce weight, size, cost

Reduce magnet size

Improve efficiency

Reduce torque ripple

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00Time [ms]

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Mo

vin

g1

.To

rqu

e [N

ew

ton

Me

ter]

Design_BH_right_1_Current_Gamma_Sweep1XY Plot 2Curve Info

Moving1.TorqueSetup1 : Transient

© 2011 ANSYS, Inc. September 14, 2018

3

Electrical Machines and Actuators – Design Issues

Function Model

Co-simulation

Field Solution

Geometry

Analytical, System

Electromagnetic

Thermal

Stress, vibration, acoustics

Fatigue, lifetime

© 2011 ANSYS, Inc. September 14, 2018

5

Initial Machine Design

• RMxprt = analytical solution Input data as on data sheet

geometry, winding layout

saturation, core losses

comprehensive results

• machine parameters

• performance curves

© 2011 ANSYS, Inc. September 14, 2018

6

RMxprt Overview

Fast, analytical solution for

• Induction machines • Three-Phase, Single-Phase

• Wound Rotor (new v13.0)

• Synchronous machines• Line-Start PM, Adjustable Speed PM, IPM

• Salient Pole, Non-Salient Pole

• Brush commutated machines• DC, Permanent Magnet DC

• Universal, Claw-Pole Alternator

• Electronically commutated machines• Brushless PM, Switched Reluctance

© 2011 ANSYS, Inc. September 14, 2018

7

RMxprt Typical Results, Report

Performance curve for varying magnet size

TCog(je)

T(n)

h(n)

I(n)

P(n)

e(je)

Motor Performance curves of a BLDC

Original Optimized

Optimization of a synchronous generator

with damper

Customized reports possible ...

© 2011 ANSYS, Inc. September 14, 2018

9

RMxprt Maxwell and Simplorer Link

• RMxprt: • Quick model generation for Maxwell2D, 3D, and Simplorer circuit

• Easy model parametrization for Simplorer machine (ECE)

• Typical geometry, saturation, eddy current effects in system model

• Maxwell model parametrized, icl. external circuit model

3~

SYMP

3~M

SYMP

L1Q := 0.33m H

J := 1.1m kg m%

L1D := 0.43m H

L1ZERO := 0.050m H

R1 := 85m Ohm

P := 2

KE := 0.12 Wb ?

© 2011 ANSYS, Inc. September 14, 2018

10

Maxwell Machine Model Generation

0

0

LPhaseA

LPhaseB

LPhaseC

0.00801603ohm

RA

0.00801603ohm

RB

0.00801603ohm

RC

7.95824e-006H

LA

7.95824e-006H

LB

7.95824e-006H

LC

La

be

lID

=V

IAL

ab

elI

D=

VIB

La

be

lID

=V

IC

+ 0V

1VLabelID=V14

+ 0V

1VLabelID=V15

+ 0V

1VLabelID=V16

+ 0V

1VLabelID=V17

+ 0V

1VLabelID=V18

+ 0V

1VLabelID=V19

10

0o

hm

R2

0

10

0o

hm

R2

1

10

0o

hm

R2

2

10

0o

hm

R2

3

10

0o

hm

R2

4

10

0o

hm

R2

5

La

be

lID

=IV

c1

La

be

lID

=IV

c2

La

be

lID

=IV

c3

La

be

lID

=IV

c4

La

be

lID

=IV

c5

La

be

lID

=IV

c6

-

+ 100V

LabelID=V32

-

+100VLabelID=V33

D3

4

D3

5

D3

6

D3

7

D3

8

D3

9

D4

0

D4

1

D4

2

D4

3

D4

4

D4

5

V

S_

46

V

S_

47

V

S_

48

V

S_

49

V

S_

50

V

S_

51

Model

DModel1

ModelV

SModel1

• From RMxprt Most powerful way

Complete model setup

External circuit created

Ready to solve

• Draw using UDPs (C/C++) Complex machine cores

Windings with end turns

• Draw using CAD modeler Full ACIS based 2D/3D CAD

modeler included

Easy to use

• Import geometry

• Share geometry

Automatically setup

– Geometry

– Motion

– Boundaries

– Excitations

– Materials

– Mesh Operations

– Solve Setup

© 2011 ANSYS, Inc. September 14, 2018

11

Maxwell Machine Model Generation

• From RMxprt Most powerful way

Complete model setup

External circuit created

Ready to solve

• Draw using UDPs (C/C++) Complex machine cores

Windings with end turns

• Draw using CAD modeler Full ACIS based 2D/3D CAD

modeler included

Easy to use

• Import geometry

• Share geometry

© 2011 ANSYS, Inc. September 14, 2018

13

Maxwell – Transient 2D/3D FEA

• Efficiency of use, automatic meshing

• PE-switched excitation (circuits)

• Large motion

• dB/dt transients – fully integrated solution

• Various loss schemes

• Windings: Stranded losses

• Laminated steel: Core losses

• Solids and magnets: Eddy current losses

• Nonlinear, anisotropic, laminated mat

• Magnetization, demagnetization

• Hysteresis

© 2011 ANSYS, Inc. September 14, 2018

14

Maxwell – Engineering Approach

Induced J in cage at t = 8 ms

B in stator and rotor, J in cage

master

slave

Engineer‘s business:

• Geometry

• Materials

• Sources and boundaries

• Understand results

Maxwell‘s business:

• Numerics

• Meshing

• Solution

© 2011 ANSYS, Inc. September 14, 2018

16

Auto-Adaptive Meshing

Geometry, materials, excitations, boundaries

Create Initial Mesh

Calculate Field

CalculateField Accuracy

Error Acceptable?

Postprocess

No

Yes

Refine Mesh

Initial

Final

© 2011 ANSYS, Inc. September 14, 2018

17

Auto-Adaptive Meshing

© 2011 ANSYS, Inc. September 14, 2018

18

Clone region

Symmetric region

Different Mesh Methods for Regions

Symmetric mesh

Clone mesh

Layer Region

Rotational Region

© 2011 ANSYS, Inc. September 14, 2018

20

Transient Motion with External Circuits

0

0

LPhaseA

LPhaseB

LPhaseC

2.99132ohm

RA

2.99132ohm

RB

2.99132ohm

RC

0.000921945H

LA

0.000921945H

LB

0.000921945H

LC

LabelID

=V

IALabelID

=V

IBLabelID

=V

IC

+ 0V

1V

LabelID=V14

+ 0V

1V

LabelID=V15

+ 0V

1V

LabelID=V16

+ 0V

1V

LabelID=V17

+ 0V

1V

LabelID=V18

+ 0V

1V

LabelID=V19

100ohm

R20

100ohm

R21

100ohm

R22

100ohm

R23

100ohm

R24

100ohm

R25

LabelID

=IV

c1

LabelID

=IV

c2

LabelID

=IV

c3

LabelID

=IV

c4

LabelID

=IV

c5

LabelID

=IV

c6

-

+ 110V

LabelID=V32

-

+110V

LabelID=V33

D34

D35

D36

D37

D38

D39

D40

D41

D42

D43

D44

D45

V

S_46

V

S_47

V

S_48

V

S_49

V

S_50

V

S_51

Model

DModel1

ModelV

SModel1

10.00 15.00Time [ms]

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00N

od

eV

olta

ge

(IV

a)

[kV

]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

-Bra

nch

Cu

rre

nt(

VIA

) [A

]

Ansoft LLC 4_Partial_Motor_TR_PWMPhase Voltage / Current

Loss Types P = f(dB/dt): • Laminated steel (Core)• Copper (Stranded)• Magnet, bars, … (Solid)

© 2011 ANSYS, Inc. September 14, 2018

21

Solid Losses

• Calculated from induced

current density J

• Eddy currents JEddy

• Quality of B(t) essential for

good J and PeSolid result

• Mind magnetodynamic effects

(skin, proximity, etc.)

• End effect

• Axial PM segmentation

BrotJ

dt

dBfJ

dvJ

P

r

Eddy

n

mag

v

eSolid

mag

0

2

1

© 2011 ANSYS, Inc. September 14, 2018

22

Solid Losses – Capture End Effects

Exact same mesh

Turn on/off insulation

boundary condition

© 2011 ANSYS, Inc. September 14, 2018

23

Power Loss in Magnet vs. Number of Segments

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 2 4 8 16 32

Normalized Loss with Carrier Harmonics

© 2011 ANSYS, Inc. September 14, 2018

24

Skin Depth of Solid Winding

r0

2

= 2pf – three components:

Source excitation – carrier harmonics Rotor speed – spatial harmonics Saturation – nonlinear harmonics

The total current in this group of eight

conductors is equal to the applied phase

current.

© 2011 ANSYS, Inc. September 14, 2018

25

Core Loss

5.122

_ )()( memcmhCoreFe BfkBfkBfkP

excesseddyclassicalhysteresisCoreFe PPPP __

m

i

n

j

mijiemijicmijihvijech

i

BfkBfkBfkpkkkerror11

25.15.1222 )]([),,(Minimizing the Error:

Lin, D.; Zhou, P.; Chen, Q. M.: The

Effects of Steel Lamination Core

Losses on Transient Magnetic Fields

Using T-Ω Method. IEEE VPPC, 2008-

09-03 -05, Harbin, China

© 2011 ANSYS, Inc. September 14, 2018

26

• Coreloss from fundamental (blue) and PWM (upper red)

• Coreloss for alternative steel types (lower red, different core

loss parameters)

Stator and Rotor Core Loss

Fundamental harmonic only

PWM, Steel:kh = 250kc = 0.4

PWM, Steel: kh = 500kc = 1.7

© 2011 ANSYS, Inc. September 14, 2018

27

Vendor sheet data

Permanent Magnet – Temperature Dependent Demagnetization

• Q2 and Q3

• Specify Hc(T) and

Br(T)

• Demagnetized –

new recoil curve

used

© 2011 ANSYS, Inc. September 14, 2018

28

Permanent Magnet – Temperature Dependent Demagnetization

B(T)

20 0C 80 0C 110 0C

© 2011 ANSYS, Inc. September 14, 2018

29

Basic Properties

Hx=0 ; Hz=0Mx=0; Mz=0

Hy

My

Maxwell2D/3D Vector Hysteresis

-8

-4

0

4

8

-20 -10 0 10 20

B (k

G)

H (O)

Hysteresis Motor with Solid Rotor

Satisfy All Hystereis Properties

Memory Efficient

Convenient Parameter Identification

Minor Loop handled inherently

© 2011 ANSYS, Inc. September 14, 2018

30

Comparison Between Fundamental and PWM Excitation

Fundamental PWM

© 2011 ANSYS, Inc. September 14, 2018

31

UDO/UDD, Toolkits(IronPython)

0.00 1250.00 2500.00 3750.00 5000.00 6250.00Speed [rpm]

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

To

rqu

e [N

ew

ton

Me

ter]

current_MotorMode_EfficiencyMap2Torque vs Speed MachineSolutions1Gamma_TSC='348.232944deg' Imax_TSC='3.536519818A'

MachineSolutions1Gamma_TSC='6.202690006deg' Imax_TSC='6.29808369A'

MachineSolutions1Gamma_TSC='16.42916617deg' Imax_TSC='9.552484652A'

MachineSolutions1Gamma_TSC='10.27921018deg' Imax_TSC='12.94480651A'

MachineSolutions1Gamma_TSC='354.8801996deg' Imax_TSC='16.74830142A'

MachineSolutions1Gamma_TSC='350.7911592deg' Imax_TSC='20.89757705A'

MachineSolutions1Gamma_TSC='3.605184489deg' Imax_TSC='24.40520948A'

MachineSolutions1Gamma_TSC='347.5926747deg' Imax_TSC='29.84627507A'

MachineSolutions1Gamma_TSC='2.469514124deg' Imax_TSC='35.42019947A'

MachineSolutions1Gamma_TSC='0.007748901848deg' Imax_TSC='42.42453768A'

MachineSolutions1Gamma_TSC='352.7369737deg' Imax_TSC='3.53911626A'

MachineSolutions1Gamma_TSC='23.90892886deg' Imax_TSC='6.447020649A'

MachineSolutions1Gamma_TSC='34.41455762deg' Imax_TSC='10.60675263A'

MachineSolutions1Gamma_TSC='28.26118541deg' Imax_TSC='14.03181228A'

Speed [rpm]

To

rqu

e [N

.m]

94.2

93.6

94.2

94.595.1

95.1

94.5

93.6

92.2

91.085.6

93.9

89.8

92.5

90.186.5

54.2

60.4

77.9

91.6

89.2

93.3

93.390.1

83.6

91.0

91.9

89.5

83.0

75.2

85.9

74.778.5

93.3

0 1000 2000 3000 4000 5000 60000

5

10

15

20

25

30

35

50

55

60

65

70

75

80

85

90

95

100Efficiency Map

• Extracts application specific data

• Controls tool

• Allows application specific input

• ANSYS Toolkits UDO – User Defined Outputs

UDD – User Defined Documents

© 2011 ANSYS, Inc. September 14, 2018

32

Seamless Customization via UDO/Toolkit

© 2011 ANSYS, Inc. September 14, 2018

33

Seamless Customization via UDO/Toolkit

Total loss

Copper loss

Core loss

Magnet loss

Magna Electronics IPM Motor

© 2011 ANSYS, Inc. September 14, 2018

34

Maxwell connected in Workbench

Electrical Machine Design Reference, Short Training Course, California, Nov. 2013. 35/37

Synchronous PM Machine DrivesSyncPM

A Complete Solution for Modern Electric Machines and Drives Design

Equivalent Circuit Model : High

Fidelity Physics Based Model

Fast Analytical Solution:

Narrow the Design Space

Parametric Analysis

Optimization

Magnetostatic/Eddy Current

Analysis using FEA

Parametric Analysis

Optimization

AHA

JA

vV

tcs

sc

f

f

f

f

f uudt

idLiRd

dt

dA

aS

lNd 0

dt

duCi c

f

Field Equation:

Circuit Equation:

Motion Equationexternalem TTm

Simultaneous Equations:

Transient Analysis

using FEA

Parametric Analysis

Drive System Integration with

Manufacturer’s IGBTs

Drive System using System Level

IGBT’s and Analytical Motor Model

Phase CurrentIA.I

IB.I

IC.I

t

1.00k

-1.00k

0

-500.00

500.00

0 17.27m10.00m

Torque

Torque.I

t

400.00

-100.00

0

200.00

0 17.27m10.00m

Phase Voltage

V_AB.V

t

300.00

-300.00

0

-200.00

200.00

0 17.27m10.00m

Von Mises stress

Thermal and Stress Analysis

Complete Transient FEA -Transient

System Co-simulation

Design

Requirements

✓ Size/Weight

✓ Efficiency

✓ Torque

✓ Speed

✓ Cogging/Ripple

✓ Inverter Matching

✓ Thermal

✓ Stress

✓ Manufacturability

✓ Cost

© 2011 ANSYS, Inc. September 14, 2018

36

Electrical Machines and Actuators – Design Issues

Function Model

Co-simulation

Field Solution

Geometry

Analytical, System

Electromagnetic

Thermal

Stress, vibration, acoustics

Fatigue, lifetime